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Abstract

In this paper we define two types of proper efficient solutions in the Borwein sense for vector
optimisation problems and we compare them with the notions of local Borwein, Ishizuka-
Tuan, Kuhn-Tucker and strict efficiency. A sufficient condition for a proper solution is also
proved.

1. Introduction

In many different fields, such as economics, management science, engineering, indus-
try or operations research, there arise problems in which various functions (objectives)
are to be simultaneously optimised. This is why we need tools for nonlinear program-
ming capable of handling several conflicting objectives. In this case, methods of
traditional single objective optimisation are not enough, and we need the new con-
cepts and methods of nonlinear multiobjective optimisation. This area is undergoing
rapid development and its importance can be seen from the large variety of applications
presented in the literature (see Miettinen [18] and the references therein).

One of the main aims of vector optimisation theory is the determination of all the
efficient points for a problem. However, this is not always enough, and we can select
solutions which are better in some sense. These are the proper efficient solutions.
In the finite-dimensional case, the idea of proper Pareto optimal solutions is that
unbounded trade-offs between objectives are not allowed. Practically, a proper Pareto
optimal solution with very high or very low trade-offs does not essentially differ from
a weak Pareto optimal solution for a human decision maker.
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76 B. Jimenez and V. Novo [2]

The first notion of proper efficiency was introduced by Kuhn and Tucker [15] in
their well-known work about nonlinear programming and many other notions have
been proposed since then. The best-known are those by Hurwicz [9], Geoffrion [6],
Borwein [2, 3], Benson [1] and Henig [8]. The reader is referred to [20] for a good
presentation of these notions in the finite-dimensional case and to [7, 17] for the
infinite-dimensional case and for a comparison between them.

There are two main motivations for introducing proper efficiency. First of all, it
makes possible the exclusion of some efficient solutions with undesirable properties, as
was observed by Klinger [14] in setting up the starting point of Geoffrion's definition.
Secondly, it allows us to set up equivalent scalar problems whose solutions produce
most of the optimal solutions, that is, the proper ones.

In this paper, two notions of proper efficiency in the Borwein sense for vector
optimisation problems are introduced and they are compared with four others: one
was considered by Borwein [3], another two were introduced by Ishizuka and Tuan
[10] and the fourth one was introduced in [12]. Section 3 is devoted to the first
two definitions, studying implications between them under different assumptions. In
Section 4 we introduce two notions of local efficiency in the Borwein sense and
the relationships between these definitions and the four aforementioned ones are
discussed. A sufficient condition for the existence of proper local efficient solutions
for Hadamard directionally differentiable functions is also presented.

2. Preliminaries

Let Ei, E2 be real normed linear spaces, S C Eu Y c E2 and/ : E\ -> E2.
The cone generated by 5 is denoted by cone S = {kx : x e S, k > 0} and the

convex hull of S, by co 5.
Throughout this work, D denotes a cone in E2 and we will assume its vertex lies

at 0 e D. We do not suppose that D is convex, consequently the order defined by
D in E2 is not transitive. Recall that D is said to be pointed if D D (—D) — {0}.
Cones that are not necessarily pointed have often been considered by authors (see for
instance, Borwein [3], Ishizuka and Tuan [10], Khanh [13]), although some authors
only consider pointed cones [7, 17]. In the present work, we suppose that the cone D
is not pointed, although we need a pointed cone D to obtain the main results.

Let us denote by T(Y, y0) the tangent cone to Y aty0 ec\Y (cl Y is the closure of
Y), that is, the set of limits of the form

v = lim \n(yn - y0),
n—• o o

where (kn) is a sequence of positive real numbers and (>>„) is a sequence in Y with
limit y0.
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[3] Proper efficiency in the Borwein sense 77

It is said that the subset 8) of D is called a base for the cone D if 0 ^ cl SS and
every d 6 D \ {0} has an unique representation as d = kb, with A. > 0 and b e 36.
Following Luc [16, Definition 1.5] we do not assume that SS is convex.

The existence of a base for a cone has some relevant consequences for the cone
itself.

REMARK 2.1. (1) If D has a closed bounded base, then D is closed [16, Proposi-
tion 1.7].
(2) If D has a convex base, then D is convex and pointed [11, Lemma 1.14].

Therefore if D has a convex compact base, then D is convex, closed and pointed.
(3) In this paper, we frequently use a cone D with a convex compact base. In this

case, we point out that if E2 is a normed vector lattice with positive cone D, then £2

is finite dimensional (Dauer and Gallagher, [5, Theorem 3.1]).

For y0 6 Y and D fixed, various notions of optimality are defined as follows.
The point y0 e Y is an efficient element of Y (with respect to D), denoted >>o e

Min(y, D), if there exists no y € Y for which y0 — y e D\(—D). Such a point is also
called minimal or Pareto optimal. The point y0 is a weak efficient element of Y, written
y0 6 WMin( Y, D), if there exists no y e Y satisfying y0 — y € int D \ (— int D). The
point y0 is called a local efficient element of Y, denoted y0 e LMin(K, D), if it has a
neighbourhood V such that yQ is an efficient element of Y D V. A local weak efficient
element is defined similarly. It will be denoted yo e LWMin(K, D).

With respect to the weak efficient elements, we remark that D is assumed to have
a nonempty interior.

Obviously, it is straightforward to verify that

The weak notions are the same as the non weak ones if the cone D satisfies
D = int D U {0}.

Le t / : Ei —> E2 be a function and 5 c Fj. The vector optimisation problem
considered here is

Min{/ (x) : x e S), (VP)

that is, the problem of determining all XQ e S for which f (x0) € Min(/(5), D).
Such an ^0 is called an efficient (or minimal) solution for (VP); it will be denoted
x0 e Min(/, S). Finally, it is said that XQ is a local efficient solution for (VP) if
/ Ocn) e Min(/(5 n if), D), for some neighbourhood U of x0. Notice that this is
not equivalent t o / (x0) 6 LMin(/ (5), D). A local weak efficient solution is defined
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similarly. The Hadamard directional derivative of / at;to € E\ in the direction v e E\
is defined to be

, , , v .. f(xo + tu)-f(xo)f'(xo,v)= hm .
(/,«)-• (0+,i>) t

The function/ is called Hadamard directionally differentiable at a pointx0 iff'(xo, v)
exists and is finite for all v 6 E,.

3. Local Borwein proper efficiency

In this section various notions of local efficiency in the Borwein sense are discussed.
The following is a well-known definition due to Borwein [2].

DEFINITION 3.1 (Borwein proper efficiency). The point yo 6 Y is called a Borwein
proper efficient element, written y0 e Bor(K, D), if

T(Y+D,yo)n(-D)CD. (3.1)

Borwein's original definition [2] requires that the point )>o be an efficient element
of Y, but Sawaragi etal. [20, Proposition 3.1.5] show that if E2 = Kp and D is convex
and closed, then such a condition is unnecessary. In the next proposition this result is
generalised.

PROPOSITION 3.2. Ify0 e Y is a Borwein proper efficient element, then y0 is an
efficient element of Y, that is, Bor( Y, D) C Min( Y, D).

PROOF. If y0 $ Min(K, D), then there exists y e Y such that y - y0 € (-D) \ D.
Then the segment [y, y0] C Y + D, since for all a € [0, 1] we have

ya = ocy0 + (l-a)y = y+ a(y0 - y) e Y+ D.

Obvjously ya = y0 + (1 — a)(y — y0). Let (yn) be the sequence defined by taking
a = 1 — 1/n, that is,

1
yn=yo + -(y-yo)e Y+D,

n
therefore yn -> y0, and limn^oo n(yn - y0) = y - y0 e T(Y + D, y0) n [ ( -D) \ D]
in contradiction to (3.1).

We consider now two local definitions of proper efficiency.
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DEFINITION 3.3 (Local Borwein proper efficiency, Borwein [3, Definition 2 (a)]).
The point y0 e Y is said to be a local Borwein proper efficient element, denoted
yo € LBor( Y, D), if it is a local efficient element of Y and

T(Y,yo)n(-D)cD. (3.2)

Guerraggio etal. use a slightly different notion [7, Definition 6.5].
It will be proved in Proposition 3.5 that if the cone D is pointed and has a compact

base, then it is not necessary to require that >>0 be a local efficient point of Y because
this is implied by condition (3.2). To prove this result, we need the following lemma.

LEMMA 3.4. Let D be a cone with a compact base. If the sequence [dn] C D and
\\dn\\ = 1, then there is a subsequence which converges to some d e D with \\d\\ = 1.

PROOF. Let SB be a compact base of D. We have that dn = knbn with kn > 0
and bn e SS. By the compactness of 5S, there exists a subsequence [bk] convergent
to some b € a, b £ 0. Thus \\dk\\ = kt\\bk\\, kk = ||</*||/||6*|| = 1/IIM and

Consequently lim^oo^* = Umk^0Obk/\\bk\\ = b/\\b\\. Since D is closed, we have
d = b/\\b\\eD.

PROPOSITION 3.5. Let D be a pointed cone with a compact base and yo e Y. If
T(Y, y0) n(-D) = [0], then yQ is a local efficient element of Y.

PROOF. Suppose that y0 £ LMin(y, D). Then y0 £ Mm{Y D B(y0, l/n), D) for
all n 6 N. Therefore there exists yn € YDB(y0, l/n) such that yn - y0 e ( - D ) \ {0}.
It follows that yn —> y0-

Let dn = (y0 - yn)l\\yo ~ y»ll. then dn e D and ||rfn|| = 1. From Lemma 3.4,
taking a subsequence, if necessary, we may assume that

lim y " ~ y ° =-d e-D with \\d\\ = 1.
"-0 0 \\yn - yoll

Then, by definition, -d 6 T(Y, y0). But, by the hypotheses, T(Y, y0) n ( - D ) = (0).
Thus d = 0, which is a contradiction.

Another notion of local proper efficiency was introduced by Ishizuka and Tuan [10,
Definition 3.5].

DEFINITION 3.6 (Local Borwein proper efficiency in the sense of Ishizuka-Tuan).
The point y0 € Y is called a local IT-proper efficient element, written y0 e YT(Y, D),
if there exists a neighbourhood V of y0 such that

T(YD V+D,yo)(l(-D)CD. (3.3)
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Clearly, Bor(K, D) C IT(K, D).
It is proved by Ishizuka and Tuan [10, Proposition 3.1] that if/ is continuous at

x0 and y0 = f (x0) verifies (3.3) for Y = f (S), then x0 is a local efficient solution
for (VP). We actually prove that from (3.3) it follows that y0 is a local efficient element
of/ (5), and then Ishizuka and Tuan's result follows from this.

PROPOSITION 3.7. If yo is a local IT-proper efficient element, then y0 is a local
efficient element. That is, YT(Y, D) c LMin(K, D).

PROOF. By definition, there exists a neighbourhood V of y0 such that (3.3) holds,
that is, y0 e Bor(Y n V, D). Then, from Proposition 3.2, y0 e Min(K D V, D),
therefore y0 6 LMin(K, D).

The next corollary follows from this proposition and from Result 4.1 in Corley [4].

COROLLARY 3.8. Let f : Ex -*• E2 be continuous at x0 e S C E\. Iff(x0) is a
local IT-proper efficient element off (S), then x0 is a local efficient solution for (VP).

Now we turn our attention to the relationships between the two notions.

THEOREM 3.9. (a) IT(K, D) C LBor(K, D).
(b) If D is a pointed convex cone with a compact base, then LBor( Y, D) = IT( Y, D).

PROOF, (a) Let y0 be a local IT-proper efficient element, then there exists a neigh-
bourhood V of y0 such that T(Y D V + D, y0) D ( -D) c D. By Proposition 3.7, y0

is a local efficient element.
Since YdVcYDV + D, it follows that

T(Y,y0) = T(YD V,y0) C T(Yn V+D,y0),

and therefore that T(Y, y0) n (—D) c D, that is, y0 is a local Borwein proper efficient
element.

(b) Let us prove that LBor(y, D) c IT(K, D). Suppose that y0 is a local Borwein
proper efficient element, but that it is not a local IT-proper efficient element. Then for
each fl(y0, l/n) there exists -dn e T(YDB(y0, l/n) + D, y0) D (-£)) and dn ^ 0.
We can suppose that \\dn\\ = 1 since the sets T(Y C\ B(y0, l/n) + D, y0) and D are
cones.

From Lemma 3.4, taking a subsequence if necessary, we deduce that

Urn dn = d e D with ||rf|| = 1 and -de T(YC)B(y0, 1) + D, y0)

since this last set is closed and

-dne T(YnB(yo,l/n) + D,yo) C T(Y n B(y0, 1) + D, y0).
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From the definition of a tangent cone, for each n there exist

yB,k e YnB(y0, 1/n) and dn,k e D, k = 1, 2 , . . . , (3.4)

such that

yn,k + dn<k ->• y0 when k -+ oo (3.5)

and

lim Xn.k{yn,k + dnM - y0) - -dn with knX > 0. (3.6)
k->oo

From (3.6), given e = 1/n, there exists kn e N such that

\\Kx(yn,kn + dnX - y0) + dn\\ < 1/n.

Therefore

lim K,kn(y»,k. + dn,K - y0) = -d. (3.7)
n—••oo

Set yn = yn,kn, d'n = dnX and kn = knX. From (3.4) it follows that l i m , , ^ yn = y0.
From this result and from (3.5) we have limn_oo d'n = 0.

We rewrite (3.7) in the following form:

\ima(Xn(yn-y0)+Kd'n) = -d. (3.8)

The sequence dn = Xnd'n which appears in (3.8) may be: (i) bounded or (ii) unbounded.
Case (i). Let {dn} be bounded. From Lemma 3.4, we may suppose that

lim -^- =de D with \\d\\ = 1. (3.9)
»-<» H4.ll

Since \\dn\\ is bounded, there exists a subsequence which converges. Then we sup-
pose that lim^oo \\dn\\ = k. Hence linv-nx,dn = kd. From (3.8) it follows that
lim^oo kn(yn— y0) = v e T(Y, y0). Then v + kd = —d, that is, v = —d — kd 6 — D,
since D is convex. From the hypotheses, T(Y, y0) n (—D) = {0}. Hence v = 0 and
d e D n (— D) = {0}, that is, a contradiction.

Case (ii). If [dn] is unbounded, taking a subsequence, let us assume that

lim KM = +oo.
n-»oo

From Lemma 3.4, (taking a subsequence, if necessary) we have that (3.9) holds.
From (3.8), it follows that Hmn_oo[Xn(yft — y0) + 4 J / H 4 J = 0. Hence

114,11 114.
Therefore Hm)I_>0oA.ll(y(1 - yo)/\\dn\\ = -d e T(Y,y0) D ( - D ) = {0}, from the

hypotheses, and we again have a contradiction and the theorem is proved.
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4. Local proper efficiency

In this section two new notions of a local proper efficient solution are proposed and
we study the relationships between them, those from the previous section and others.
We give a sufficient condition which is very close to a necessary condition for a point
to be an efficient element.

In the rest of the paper, the cone D is pointed.

DEFINITION 4.1. (1) The point x0 € S is said to be a local proper Borwein
efficient solution of type 1 for problem (VP), written x0 e BoTt(f, S), if there exists
a neighbourhood U of x0 such that

T(f(SDU) + DJ(xo))n(-D) = [O}. (4.1)

(2) The point x0 € S is said to be a local proper Borwein efficient solution of type 2
for problem (VP), written x0 € Bor2(/\ S), if jr0 is a local efficient solution for (VP)
and there exists a neighbourhood U of x0 such that

T(f(SnU),fM)n(-D) = [O). (4.2)

From Proposition 3.5, if D is a cone with a compact base, then (4.2) yields/ (x0) e
LMin(/(SD U),D).

PROPOSITION 4.2. (a) ^0 e Bor2(/, 5) if and only if there exists U, a neighbour-
hoodofx0, such that f (x0) e Min(f(Sn U), D)andT(f(SD U)J(xo))D (-D) =
{0}.
(b) / / / (jt0) 6 IT(/ (5), D) andf is continuous at x0, then x0 e Bor, (f, S).
(c) / / / (*0) e LBor(/ (5), D), then x0 e Bor2(/\ S).
(d) Ifx0 e BoTi(f, S) andf is continuous atx0, then there exists a neighbourhood
U ofxQ such thatf (x0) e lT(f (S D U), D).
(e) Ifx0 e BOT2(J, S), then there exists a neighbourhood U ofx0 such thatf (x0) e

LBor(/(Sn U),D).

(f) Ifx0 e BoTi(f, S) andf is continuous at x0, thenx0 e Bor2(f, S).
(g) Ifx0 e Bor2(f, 5), / is continuous atx0 and D is a convex cone with a compact

base, then xQ € Bori (f, 5).

PROOF. Let us suppose that/ (x0) = yo, we have:
(a) If x0 e Bor2(/, 5), then there exist two neighbourhoods U and U" oix0 such that

yo€Min(f(SnU'),D) and T(f (S D U"),yQ) <1 (-D) = {0}.

Taking U = U' H U", we obtain this result. The converse is evident.
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(b) From the hypotheses, there exists a neighbourhood V of y0 such that

T(f(S)H V+D,yo)n(-D) = [O}. (4.3)

Due to the continuity of/, there exists a neighbourhood U of x0 such that/ ((/) c V.
Hence / (S D U) c / (5) D V and therefore f (S (~\ U) + D C f (S) D V + D.
Then 7"(/(5 n (/) + D, y0) C 7*(/ (S) D V + D, y0). From (4.3), it follows that
T(f(Sn U) + D,yo)r\(-D) = {O},thatis,;to e Bor,(/, 5).
(c) It is clear.
(d) From the hypotheses, there exists a neighbourhood U of x0 such that

ni/) + D,yo)n(-D) = [O). (4.4)

Given the neighbourhood of y0, V = [y e E2 '• \\y — yo\\ < 1}, by continuity we
have that/ (£/") c V for some neighbourhood £/" of x0. If we define U = U' n U",
then / (5 n LO C V and therefore/ (5 n £ / ) n V = / ( S n £ / ) C / ( S n £/')• Hence
from (4.4) it follows that T(f (S D U) n V + D, y0) D (-D) = {0}.
(e) It follows from (a).
(f) From (d), we have y0 e lT(f(SniT), D). Besides, from Theorem 3.9 (a) it follows
that y0 e LBor(/ (5 n £/), D), and from (c) that x0 e Bor2(/, 5).
(g) To prove this result, we apply successively (e), Theorem 3.9 (b) and (b).

Hence the two notions introduced in Definition 4.1 are equivalent for/ continuous
at x0 and D a convex cone with a compact base.

The next example shows that the converses of (b) and (c) in the above proposition
are false.

EXAMPLE 4.3. Let E, = £2 = U2, D = U.2+ the usual cone, the function/ (JC , y) =
(x - x2,y - y2), the set 5 = {(x,y) : 0 < x < 2, 0 < y < 2} and the point
x0 = (0,0). In this case, T(S,x0) = {(x,y) : x > 0, y > 0} and / (5 ) contains
the sets [-2, 1/4] x {0}, {0} x [-2, 1/4] and {(x,x) : -2 < x < 1/4), which are
the images of the subsets of S {(x, 0) : 0 < x < 2}, {(0, y) : 0 < y < 2} and
[(x,x) : 0 < x < 2}, respectively. Then yQ = f (x0) is not an efficient element of
Y = / (5), nor is it a local efficient element of Y, that is, y0 <£ Min( Y D V, D) for all
neighbourhoods V of y0.

However, x0 is a local efficient solution for (VP). It is sufficient to take U,
the neighbourhood of ^0. to be {(x,y) : — 1 < x < 1, — 1 < y < 1}. Then
f(Snif) c [0, l]x[0, 1], and here yo is an efficient element: yo e Min(/ (SHU), D).

Clearly, y0 £ LBor(/(5), D) = IT(/(5), D). However, we have that x0 6
Bori(/, 5) = Bor2(/\ 5) since (4.1) holds for the neighbourhood U above.

General optimality conditions for a point to be an efficient element have been
collected by Corley [4] considering an arbitrary set Y. In Corley's Theorem 3.1 the
following is established:
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(a) Let D be a closed cone in the finite-dimensional space E2. If yo 6 Y and
T{Y, y0) PI ( -D) = {0} then y0 e LMin(K, D).

Corley points out that it is an open question whether the closedness of D or the
finite dimensionality of E2 can be relaxed. We have shown in Proposition 3.5 that (a)
holds for E2 being infinite dimensional but requires that D has a compact base. The
next example shows that the closedness and the existence of a compact base cannot
be relaxed.

EXAMPLE 4.4. (a) Here D is not closed. Let E2 = R\ D = (intIR*) U {0},
Y = {(x,y) : y > -x2}andy0 = (0,0). It is easy to verify that T(Y, yo)n(-D) = {0}
and yo £LMin(K, D).
(b) Here D is closed without a compact base. Let E2 = E be a Hilbert space with

an orthonormal base 38 = [en : n e N}. Let

D = [d = («„) 6 E : an >0Vn e N) =clcocone«^.

Here D is a pointed, closed, convex cone but it has no compact base. Let Y = D U A,
where A = {(— l/n)en : n € M] and y0 =0 .

We have T(A, y0) = {0}. In fact, take v e T(A, yQ). Then, since

lim(-l /n)en = 0 = y0,
n-*oo

there exists a subsequence and Xn > 0 such that lim,,-,.,*, kn(— \/kn)ekn = v.
Therefore, for each / e N, limn_oo Xn{-\/kn)(ekn, et) — {v, et). But the sequence

within the limit is null (except at the most for a single term). Hence (v, et) = 0 for
all i e N and it follows that v = 0. Then T(Y, y0) = T(D, y0) U T(A,y0) = D
and T(Y, y0) H (—D) = {0}, that is, the hypotheses of (a) are verified. However,
yo £ LMin(y, y0) because for all e > 0 there exists n e N such that

(-l/n)en -yoe(YD B(y0, e) - y0) n ( - D ) .

Corley [4, Result 4.2] also establishes the following necessary condition for a point
to be an efficient solution:

Let f : E\ -» E2 be Frechet differentiable atxoeScEi and D a pointed cone.
Ifx0 is an efficient solution for (VP), then V/ (xo)(T(S, x0)) D ( - int D) = 0, where
V/ (x0) is the Frechet differential off at x0.

This result can easily be generalised for/ Hadamard directionally differentiable at
x0 and XQ a local weak efficient solution for (VP).

In fact, by the hypothesis there exists a neighbourhood U of x0 such that

/ (*o) - yo 6 Min(/ (5 fl if), (int D) U {0}).
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Hence T(f (5 D U), y0) n ( - int D) — 0 [4, Theorem 3.1(a) and remark of page 75].
Now, since 7(5 D U, x0) = 7(5, x0), then

f'(x0, )(7(5, x0)) = /'(*<,, 0(7(5 n U, x0)) cT(f(Sn U), y0).

Therefore f'(x0, -)(T(S,x0)) D (- intD) = 0. Note that, if v 6 T(S,x0), then
f'(x0, v) e T(f (5), / (*„)). In fact, we have vn = (xn - xo)/Xn -» v, with kn -> 0+
and xn = x0 + A.nwn € S. Then

XnVn) — f (XO) v/r/o\ r / w=f (xo,v) e T(f(S),f(x0)).)

Related to Corley's result, we have the next sufficient condition for a point to be a
local proper Borwein efficient solution of type 2 (= type 1 in this case if D also has a
convex compact base).

THEOREM 4.5. Let x0 e S C E\, E\ finite dimensional, D C E2 a cone with
compact base, f : E\ —> E2 Hadamard directionally differentiate at XQ and

') = {veEl:f'(x0,v)e-D}.

IfT(S,x0) nC(f') = {0}, thenx0 e Bor2(/\ 5).

PROOF. Let/ (x0) = yo- It is sufficient to prove (4.2). In fact, from Proposition 3.5,
y0 e LMin(/(5 n U), D). Hence, by definition, y0 e LBor(/(5 n U), D). By
Proposition 4.2 (c), x0 e Bor2(/, 5 D U) = Bor2(/, 5).

Let us prove (4.2). If 7(5, x0) = {0},thenjc0 is an isolated point. Hence there exists
a neighbourhood U of x0 such that 5 n U = {A:0}. Therefore T(f (5 n C/), y0) = {0}
and the conclusion is true.

Let 7(5,x0) £ (0). Then, for all e > 0, 7(5 D B(xo,e),xo) ^ {0}. Suppose
that (4.2) is false. Then for every n we have

T(f (5 n B(x0, 1/n)), >0) n ( -D) ^ {0}.

Hence there exists

-dn eT(f(SH B(x0, 1/n)), y0) D (-D) with ^ / 0. (4.5)

We can assume that \\dn\\ = 1, dn -+ d, \\d\\ = 1, d e D and -d e 7 ( / (5 f l
B(x0, 1)), >>o) since — dn € 7 ( / (Sr\B(x0, 1)), y0) for every n. From (4.5), there exist

xn.keB(xo.l/n), k = l,2, . . . (4.6)

such that

lim/(*.,*)-/fro) ^̂ ^ = | | / ( J C ) _ / ( , ) | | > 0 . (4.7)
t-oo A.nt
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From (4.7), given e = 1/n, there exists kn e N such that

/(*„.*.)-/(*o) 1

n

Therefore

lim J—LJl^il—i_UH = -d. (4.8)
n—oo Xnkji

Set xn = xn>ka e 5 n B(x0, 1/n) and kn = knkn > 0. Then (4.8) amounts to
Mm^ooif (xn) -f (xo))/kn = -d. From (4.6), lim,,^*,, = x0 and xn ^ x0 since
/ (*«,*) ¥=• f (xo) by (4.7). Since E\ is finite dimensional, we may assume that (taking
a subsequence if necessary)

lim ——— = v e T(SnB(x0, l),x0) with [in = \\xn -xQ\\ and ||u|| = 1.
n-voo f_ln

Then lim^oo^C*,,) -f(xa))/^n =f'(x0, v). Hence

lim = lim — = ||/'(^o. ^)ll = k.

Consequently,

ri, x ,- / (Xn) — f (Xo) .. kn f (Xn) — f (Xo)
f (x0, v) = lim = hm = — kd.

Hence/ '(x0, v) G —D, but this is a contradiction because v G T(S, x0) \ {0} implies
f'(x0, v) <£. —D, from the hypotheses.

The advantage of Theorem 4.5 is that we have to verify a condition in the initial
space Ei. This is, in general, easier than verifying the definition in the final space £2-

The following counterexample shows that the finite dimensionality of Ex cannot
be relaxed.

EXAMPLE 4.6. With the same data as that of Example 4.4 (b), we now take Ex = E,
x0 = 0 and 5 = D U A. We know that 7(5, x0) = D. Let bn = (l/n)en.

It is verified that £ ~ , \\bn\\
2 - £ ~ , l/n2 < oo. Hence by [19, Theorem 12.6],

for all x G E, the series £ ^ 1 , (^n. x) converges.
L e t / : E -> K be defined by f (x) = X^ti(^n> *) = 51^11 «n/« w ' t n x = («n)-

Then / is a continuous linear functional. Therefore / is Frechet differentiable with
f'(xo,v) = V/ (xo)v = f (v) and then

C(f') = {veE :f'(x0, v) = f (u) < 0} = \v = (&) : f^ pn/n < 0 .
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WehaveT(S,;co)nC(/') = {0} since if v 6 T(S, x0), then /?„ > OV/iandu € Of')
implies Y1T= i Pn/n < 0. Hence £„ = 0 for all n, that is, v = 0.

However, x0 is not a local minimum for/ over S, because for the points which
belong to A c 5, one has f ((-l/n)en) = —l/n2 < f (x0) and there are points
belonging to A in every neighbourhood of x0. Therefore we do not even have the
guarantee that x0 be a local minimum for a single-valued function / , and, of course,
the equality T(f (5 n U), x0) (~l (-K+) = {0} is false too.

In [12, Definition 3.1], the first author introduces the notion of a strict local efficient
minimum for the problem (VP) as follows.

DEFINITION 4.7. Let m > 1 be an integer. A point x0 e S is said to be a strict local
efficient minimum of order m for/ : Ex —> E2 over S if there exist a constant a > 0
and a neighbourhood U of x0 such that

(f (x) + D)HB(f (*„), all* - xo\\
m) = 0 V* e 5 n U \ {x0).

If £2 = ^p and D = R+, such a point is called a strict local Pareto minimum of
order m.

Every strict local efficient minimum of order m is a local efficient solution for (VP)
[12, Proposition 3.3].

The following result establishes the relationship between this notion and that of a
Borwein solution. It follows immediately from [12, Theorem 4.4].

COROLLARY 4.8. Let f : R" -> Rp be a Hadamard directionally differentiable
function atx0 e S C R". Ifx0 is a strict local Pareto minimum of order 1 for f over S,
thenxo 6 Bor2(/, 5).

It is not hard to show that the converse of this corollary is false. Take, for
example, f(x,y) = (x2 + y,x2 - y), S = R2 and x0 = (0,0). Notice that
/ (x0) e LBor(/ (5), R2

+), and, by Proposition 4.2(c), *0 e Bor2(/, 5).
This concludes our study of proper efficiency in the sense of Kuhn-Tucker.
Ishizuka and Tuan [10, Definition 3.6] consider the following notion of proper

efficiency.

DEFINITION4.9. L e t / : E{ -> £2 be a Hadamard directionally differentiable
function at x0 € S C E\. It is said that xQ is a local proper Kuhn-Tucker efficient
solution for (VP), written x0 e KT(/\ S),ifx0 e LMin(/\ 5) and T(S,xQ)nCl(f')=fd,
where C,(/') = [v 6 £, : f'(x0, v)e-D\ {0}}.

PROPOSITION 4.10. Ifx0 e Bor2(/, 5) thenx0 e KT(/, 5).
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PROOF. By the definition of Bor2(/\ S), we have x0 e LMin(/, 5) and there exists
a neighbourhood U of JC0 satisfying (4.2). Suppose that there exists v 6 T(S, x0) (~)
C\ (/')»and, consequently, v e T(SnU,x0). Then there exists 6 SDUandtn -> 0+

such that linin^oo^n — xo)/tn = v. As / is Hadamard directionally differentiable at
x0, we deduce that

/ ( * ) - / ( * „ ) r0co> V)€_D\ {0}> (4 9)

because v e Q(J'). But (4.9) implies w e T(f(SH U), f (x0)) n (-D) with w ^ 0 ,
which contradicts (4.2).

The converse of Proposition 4.10 is false in general as the next example shows.

EXAMPLE 4.11. Consider the set S = {(x, y, z) e K3 : 2xz > x2 + y2,z > 0},
f(x,y,z) = 0c, y), D = WL2

+,x0 = (0,0,0) and v0 = / (x0) = (0, 0). We have:

(1) T(S, x0) fl C\(f') — 0 since T(S, x0) = S is the convex cone generated by the
circle z = 1, (x - I)2 + y2 < 1.
(2) / (S) = {(x, y ) e R 2 : x > 0 } U {(0, 0 ) } .
( 3 ) f(SCi Ue) = {(x,y) e K2 : (x - s)2 + y2 < e2}, where Uc = {(x,y,z) :

Max{|^|, \y\, \z\] < 2e], with e > 0, is a base of neighbourhoods of x0- Therefore
T(f (S D Ue), y0) n (-R2

+) ^ {(0, 0)}, and consequently, x0 £ Bor2(/, 5). However,
x0 e KT(/, 5).

5. Conclusions

We would like to emphasise that Theorem 4.5 provides a sufficient condition for
proper efficient solutions of Bor2 type. This notion, by Corollary 4.8, is related to strict
efficiency, which is in turn a new concept, whose possibilities are still being developed.
Using Proposition 4.10, it follows that every solution of Bor2 type is proper in the
Kuhn-Tucker sense, which, in our opinion, is one of the most important notions of
proper efficiency. The main advantage of Theorem 4.5 is that it can easily be applied,
since if the set 5 is given by constraints h(x) = 0, g(x) < 0 with h : 05" -> W and
g : K" —> IRm differentiable, and the Abadie constraint qualification

T(S, x0) = [v e R" : Vh(xo)v = 0, Vgj (xo)v < 0 V; such that gj (x0) = 0}

holds at x0, then all the hypotheses of the theorem can be easily checked. Furthermore,
this theorem is very close to the necessary condition for a local efficient solution [4,
Result 4.2].

Finally, we find in Theorem 3.9 and Proposition 4.2 that our notions of proper
efficiency solutions are equivalent (in very general conditions) and very similar to two
previous notions.
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