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Abstract

We shall explain here an idea to generalize classical complex analytic Kleinian group theory to any
odd-dimensional cases. For a certain class of discrete subgroups of PGL2n+1(C) acting on P2n+1, we
can define their domains of discontinuity in a canonical manner, regarding an n-dimensional projective
linear subspace in P2n+1 as a point, like a point in the classical one-dimensional case. Many interesting
(compact) non-Kähler manifolds appear systematically as the canonical quotients of the domains. In the
last section, we shall give some examples.

2010 Mathematics subject classification: primary 32J18; secondary 30F40, 32F10, 32F17, 53C56.
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Notation

• M(p × q,C): the set of matrices of size p × q with coefficients in C.
• Mp(C): the set of matrices of size p × p with coefficients in C.

1. Introduction

The theory of discrete subgroups of PGL2(C) has a long history. Let Γ be a discrete
subgroup of PGL2(C). We say that the action of Γ at a point z ∈ P1 is discontinuous if
there is a neighborhood W of z such that γ(W) ∩W = ∅ for all but finitely many γ ∈ Γ.
Following Maskit [11], we call a subgroup Γ ⊂ PGL2(C) whose action is discontinuous
at some point z ∈ P1 a Kleinian group.

Let Γ ⊂ PGL2(C) be a Kleinian group. The set Ω(Γ) of points z ∈ P1 at which
Γ acts discontinuously is called the set of discontinuity of Γ. The set Ω(Γ) is a Γ-
invariant open subset in P1 on which Γ acts properly discontinuously. The geometry
of the quotient space Ω(Γ)/Γ is one of the main themes in the classical Kleinian group
theory.

If we seek a higher-dimensional version of the Kleinian group theory, we must first
define the set of discontinuity for a given discrete subgroup. Let n ≥ 2. Take a discrete
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subgroup Γ ⊂ PGLn+1(C) acting of Pn. Consider, as above, the set Ω(Γ) of points z ∈ Pn

at which Γ acts discontinuously. Then it is true that Γ acts on Ω(Γ), but the action is
not properly discontinuous in general. Therefore, we must find another definition of
the set of discontinuity to get a good quotient space.

In this paper, we consider a class of discrete subgroups in PGL2n+2(C) (n ≥ 1), that
is, the class of type L groups (Definition 4.5). A type L group Γ has the nonempty set
of discontinuity Ω(Γ), which is defined in a canonical manner. The set Ω(Γ) contains
a subdomain W ⊂ P2n+1, which is biholomorphic to

{z ∈ P2n+1 : |z0|
2 + · · · + |zn|

2 < |zn+1|
2 + · · · + |z2n+1|

2} (1.1)

and satisfies
γ(W) ∩W = ∅ for any γ ∈ Γ \ {1},

where z = [z0 : · · · : zn : zn+1 : · · · : z2n+1].
For type L groups, n-dimensional projective linear subspaces in P2n+1 play the same

role as points do in one-dimensional Kleinian group theory. In the following, an n-
dimensional projective linear subspace is called an n-plane for short. The paper is
organized as follows.

In Section 2, we shall make some preparations on the Grassmannian Gr(m, 2m) of
m-dimensional subspaces in C2m. As is well known, Gr(m, 2m) can be embedded
into the projective space PN , N = 2mCm − 1, by Plücker coordinates. We remark
that the embedded Gr(m, 2m) is contained in a PGLm(C)-invariant hyperquadric
(Proposition 2.3). This fact plays an important role in studying limit sets of type L
groups. In Section 3, we study some convergence properties of infinite sequences
of projective transformations. In Section 4, we define the set of discontinuity Ω(Γ)
for a type L group Γ (Definitions 4.3, 4.5), and show that the action of Γ on Ω(Γ) is
properly discontinuous (Theorem 4.11). Hence the quotient Ω(Γ)/Γ becomes a good
space. A domain Ω ⊂ P2n+1 is said to be large if Ω contains an n-plane. The definition
of the term ‘large’ is different from [10], where a domain Ω ⊂ P2n+1 is said to be
large if the 4n-dimensional Hausdorff measure of its complement vanishes. Any
holomorphic automorphism of a large domain extends to an element of PGL2n+2(C)
(Ivashkovich [4]). Using this, we show in Section 5, that a large domain which
covers a compact manifold is a connected component of Ω(Γ) of some type L group
Γ (Theorem 5.5). This may justify our definition of Ω(Γ). There are many groups of
type L. As an example, we explain briefly an analogue of Klein combinations and
handle attachments in Section 6. See also [6] on this topic. In Section 7, an analogue
of the Ford region is defined. We prove that this region gives a fundamental set of a
type L group under some additional conditions. In Section 8, we shall give examples
of type L groups and their quotient spaces Ω(Γ)/Γ.

2. The Grassmannian Gr(m, 2m)

Let Gr(m, 2m), m ≥ 2, be the Grassmannian of the m-dimensional subspaces in C2m.
The aim of the section is to show that Gr(m, 2m) is embedded in a quadric hypersurface
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in a big projective space by Plücker coordinates. This is a well-known fact. But
since this is important for the later argument, we will explain it here for the reader’s
convenience.

Let {e1, . . . , e2m} be a basis of C2m and let I be the set of multiindices

I = {i1, . . . , im} ⊂ {1, . . . , 2m}, i1 < · · · < im,

of cardinality m. In the set of multiindices I = {I}, we introduce the lexicographic
order. Namely, for multiindices I = {i1, . . . , im}, J = { j1, . . . , jm}, I , J, we write I < J,
if iµ < jµ for µ = min{λ : iλ , jλ}. We put

δJK = δKJ =

{
(−1)ν if J ∩ K = ∅,

0 if J ∩ K , ∅,

where ν = #{(p, q) ∈ J × K : p > q}, and

δI
J =

{
1 if I = J,
0 if I , J.

Then we have δIJ = (−1)mδJI , δIJ = (−1)mδJI , and

δIJδ
JK =

{
1 if I = K,
0 if I , K. (Einstein’s convention)

As a basis of Λm(C2m) of the space of m-vectors, we use {eI}I , where

eI = ei1 ∧ · · · ∧ eim , I = {i1, . . . , im} ∈ I.

Then
eJ ∧ eK = δJKe1 ∧ · · · ∧ e2m. (2.1)

Any w ∈ Λm(C2m) is written uniquely as a linear combination over C,

w = wIeI , wI ∈ C, (Einstein’s convention).

If w , 0, it determines a point [wI] ∈ PN , regarding {wI}I as a homogeneous
coordinates, where N = 2mCm − 1.

Let X be an m-dimensional subspace in C2m spanned by 2m-vectors {x1, . . . , xm}.
Then X corresponds to the m-vector X̂ = x1 ∧ · · · ∧ xm ∈ Gr(m, 2m). Letting x j = xk

jek,

X̂ = xk1
1 ek1 ∧ · · · ∧ xkm

m ekm = XKeK , (2.2)

where

XK = det


xk1

1 · · · xk1
m

...
...

xkm
1 · · · xkm

m

 .
The set of numbers {XK}K∈I determines the point [xK] ∈ PN , which are the Plücker
coordinates of the vector subspace X.
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Let A ∈ M2m(C) be any element. Put Ae j = ak
jek. Then

AeJ = Ae j1 ∧ · · · ∧ Ae jm = ak1
j1

ek1 ∧ · · · ∧ akm
jm

ekm = AK
J eK ,

where

AK
J = det


ak1

j1
· · · ak1

jm
...

...

akm
j1
· · · akm

jm

 .
Hence, for J,K ∈ I with J ∩ K = ∅,

A(eJ ∧ eK) = AL
J eL ∧ AM

K eM = δLMAL
J AM

K e1 ∧ · · · ∧ e2m.

On the other hand,
A(eJ ∧ eK) = δJK det(A)e1 ∧ · · · ∧ e2m.

Thus
δLMAL

J AM
K = δJK det A. (2.3)

Define a bilinear form Q(z,w) on CN+1 by

Q(z,w) = δJKzJwK , z = (zJ), w = (wK).

Put
Âz = (AK

I zI), z = (zI).

Then, by (2.3),
Q(Âz, Âw) = (det A)Q(z,w).

For Â, we define Â∗ ∈ MN+1(C) by

(Â∗)I
J = δIKδLJAL

K . (2.4)

Then

Q(Âz,w) = Q(z, Â∗w), (2.5)
Â∗Â = (det A)IN+1. (2.6)

Proposition 2.1. Let X, Y ⊂ C2m be m-dimensional vector subspaces. Put X = XKeK
and Y = YKeK . Then dim(X ∩ Y) ≥ 1 holds if and only if

Q((XK), (YK)) = 0.

In particular, the equation
Q((XK), (XK)) = 0

holds for any m-dimensional subspace X of C2m.

Proof. This is clear from (2.2) and (2.1). �

We apply the above argument to the case Gr(n + 1, 2n + 2). Set N =2n+2 Cn+1 − 1.
Then, by Proposition 2.1, we have easily the following proposition.
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Proposition 2.2. Let Q(z,w) be the quadratic form defined by

Q(z,w) = δJKzJwK

defined on CN+1 × CN+1. Let `1, `2 be n-planes in P2n+1 and let [xI], [yI] be their
Plücker coordinates. Then `1 and `2 intersect if and only if the equality

Q([xI], [yI]) = 0

holds. In particular, for an n-plane with the Plücker coordinates [xI],

Q([xI], [xI]) = 0.

We have also the following proposition.

Proposition 2.3. The quadric hypersurface Q = {Q(z, z) = 0} in PN is invariant by the
image group of the group representation

ρ : PGL2n+2(C)→ PGLN+1(C), ρ(A) = Â,

and the Grassmannian Gr(n + 1, 2n + 2) is contained in Q.

3. Limit of projective transformations

Let N ≥ 1 and let Γ be a discrete infinite subgroup of PGLN+1(C) that acts on
the projective space PN . Consider an infinite sequence {σν} of elements of Γ. Let
σ̃ν ∈ GLN+1(C) be a representative of σν such that |σ̃ν| = 1, where, for a matrix
A = (a jk) of size N + 1, we put |A| = max0≤ j,k≤N |a jk|. We say that {σν} is a normal
sequence if the following conditions are satisfied.

(1) The sequence {σν} consists of distinct elements of Γ.
(2) The sequence of matrices {σ̃ν} can be chosen to be convergent to a matrix

σ̃ ∈ MN+1(C).

The projective linear subspace defined by the image of the linear map σ̃ : CN+1 →

CN+1 is called the limit image of the normal sequence {σν} and denoted by I({σν}).
Similarly, the projective linear subspace defined by the kernel of σ̃ is called the limit
kernel of {σν} and is denoted by K({σν}). Here r = rank σ̃ is called the rank of the
normal sequence. Note that I({σν}), K({σν}) and r are determined independently of the
choice of representatives σ̃ν. Obviously, dim I({σν}) = r − 1 and dim K({σν}) = N − r.

Theorem 3.1 [12, Satz 2]. Let {σν} ⊂ Γ be a normal sequence. Suppose that the
sequence of representatives {σ̃ν} converges to σ̃ : CN+1 → CN+1. Let I be its limit
image and let K be the limit kernel. Then the sequence {σν} converges uniformly on
compacts in PN \ K to the projection σ : PN \ K → I defined by σ̃.

Theorem 3.2. Let {σν}ν ⊂ Γ be a normal sequence such that the sequence {σ̂ν}ν is also
normal. Then the limit image of {σ̂ν}ν is contained in Q, and the limit kernel coincides
with the orthogonal subspace (with respect to Q(z, z)) of the limit image of {σ̂−1

ν }ν.
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Proof. Let Sν ∈ GLN+1(C) be a representative of σ̂ν. We can assume that |Sν| = 1
and that the sequence {Sν} converges to S ∈ MN+1(C). Since Γ is discrete, det S =

limν det Sν = 0. Therefore

Q(Sνz, Sνz) = (det Sν)Q(z, z) and Q(S z, S z) = 0,

by Proposition 2.3. Hence the limit image of {σ̂ν} is contained in Q. Since

(Im S ∗)⊥ = {z ∈ CN+1 : Q(z, S ∗w) = 0 ∀w ∈ CN+1}

= {z ∈ CN+1 : Q(S z,w) = 0 ∀w ∈ CN+1}

= Ker S ,

we have
Ker S = (Im S ∗)⊥.

By (2.6), we see that the projection PN · · · → PN defined by S ∗ is the limit of the
normal sequence {σ̂−1

ν }ν. Thus we have the theorem. �

4. Discontinuous groups in the projective (2n + 1)-space

Let Γ ⊂ PGL2n+2(C) be a discrete subgroup. Put N = 2n+2Cn+1 − 1 and G = Gr(n +

1, 2n + 2). We shall say, from now on, that a sequence {σν} ⊂ Γ is normal if not
only the original sequence {σν} is normal but also is the corresponding sequence {σ̂ν},
σ̂ν = ρ(σν), of PGLN+1(C). Thus a normal sequence {σν} ⊂ Γ defines also I({σ̂ν}) and
K({σ̂ν}) in PN . Note that any normal sequence in the old sense contains a subsequence
that is normal in the new one.

Definition 4.1. An n-plane ` in P2n+1 is called a limit n-plane of Γ if there is a normal
sequence {σν} of Γ with ˆ̀ ∈ G ∩ I({σ̂ν}).

Let L(Γ) ⊂ G denote the set of points that correspond to limit n-planes of Γ.

Definition 4.2. The union
Λ(Γ) =

⋃
ˆ̀∈L(Γ)

|`|

of the support of limit n-planes of Γ is called the limit set of Γ.

Here we indicate by |`| the support of an n-plane ` in P2n+1 in order to express
explicitly the set of points on the n-plane.

Definition 4.3. The set
Ω(Γ) = P2n+1 \ Λ(Γ)

is called the set of discontinuity of the group Γ.

Definition 4.4. A domain Ω in P2n+1 is said to be large if Ω contains an n-plane.

There are examples of Γ with nonempty Ω(Γ), but which contain no n-planes.
For example, in the case P3, let Γ be the infinite cyclic group generated by
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σ =
( I 0

A I
)
∈ PGL4(C), A =

( 1 0
0 0

)
. Then Ω(Γ) = P3 \ {z0 = 0}. Thus we define type

L groups as follows.

Definition 4.5. A discrete subgroup in PGL2n+2(C) is said to be of type L if Ω(Γ)
contains a large domain.

From now on, we assume that Γ ⊂ PGL2n+2(C) is of type L, if not stated otherwise
explicitly. This is our higher-dimensional complex analytic analogue of Kleinian
groups.

Lemma 4.6. G ∩ I({σ̂ν}) consists of a single point for any normal sequence {σν} in Γ.

Proof. Let {σν}ν be any normal sequence in Γ ⊂ PGL2n+2(C) and let {Sν}ν ⊂ GLN+1(C)
be any convergent sequence of representatives of {σ̂ν}ν with |Sν| = 1. Put S = lim Sν.
Let I = [Im S ] = I({σ̂ν}),K = [Ker S ] = K({σ̂ν}) ⊂ PN be the limit image and the limit
kernel of {Sν}, respectively. If the algebraic set I ∩ G is of positive dimension, then
B =

⋃
ˆ̀∈I∩G |`| is an algebraic manifold contained in Λ(Γ) with dimension more than n.

This is absurd since Ω(Γ) contains an n-plane which does not intersect B. Hence I ∩ G
is a finite set. Consequently, I ∩ G consists of a single point since it is the set of limit
points of G \ K, which is connected. �

Proposition 4.7. The limit image I({σ̂ν}) consists of a single point in G for any normal
sequence {σν} in Γ.

Proof. We use the notation in the proof of the lemma above. By the lemma, we have
I ∩ G = { ˆ̀} for some point ˆ̀ ∈ G. Suppose that dim I > 0. The linear map S defines the
projection S : PN − K → I. Since G is not contained in any proper linear subspace in
PN , there is a point w ∈ I \ G. The fiber S −1(w) does not intersects G outside K since,
otherwise, for x ∈ G \ K, we have w = S (x) = limν Sν(x) ∈ G. This is absurd. Thus
G ⊂ K ∪ S −1( ˆ̀). This contradicts again the fact that the manifold G is not contained in
any proper linear subspace in PN . Hence we have I = I ∩ G = { ˆ̀}. Thus we have the
proposition. �

Theorem 4.8. Let {σν} be a sequence of distinct elements of Γ. Then there are limit
n-planes `I , `K and a subsequence {τν} of {σν} such that {τν} is uniformly convergent
to `I on P2n+1 \ `K in the sense that, for any compact subset M ⊂ P2n+1 \ `K and for
any neighborhood V of `I , there is an integer m0 such that τν(M) ⊂ V for any m > m0.

Proof. Choose a normal subsequence {τν} of {σν} such that {τ−1
ν } also has a convergent

sequence of representatives. Let {Tν} ⊂ GLN+1(C) be the convergent sequence corre-
sponding to {τ̂ν}. Put T = limν Tν. Note that {T ′ν}, T ′ν = |T ∗ν |

−1T ∗ν , is a convergent
sequence of representatives of {τ̂−1

ν } by (2.4) and (2.6). Hence {τ−1
ν } is also a normal

sequence. Put T ′ = limν T ′ν. By Proposition 4.7, [Im T ] is a single point in G, which
corresponds to a limit n-plane, denoted by `I , in P2n+1. On the other hand, since
[Im T ′] is the limit image of the normal sequence {τ̂−1

ν }, [Im T ′] consists of a single
point corresponding to a limit n-plane in P2n+1 by Proposition 4.7, which we denote
by `K . Note that [Im T ′]⊥ is the set of points parameterizing n-planes intersecting
`K by Proposition 2.2. Since Ker T = (Im T ′)⊥ by Theorem 3.2, and {τ̂ν} converges
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uniformly on compact sets in PN \ [Ker T ] to [Im T ] by Theorem 3.1, we see that {τν}
converges uniformly compact on sets on P2n+1 \ `K to `I . This proves the theorem. �

In the course of the proof, we have shown the following proposition.

Proposition 4.9. Let `0 be a limit n-plane of Γ. Then there is a limit n-plane `∞ and a
normal sequence {σν} ⊂ Γ such that {σν} is uniformly convergent to `0 on any compact
set in P2n+1 \ `∞ and that {σ−1

ν } is uniformly convergent to `∞ on any compact set in
P2n+1 \ `0.

Next we shall show the following theorem.

Theorem 4.10. For a type L group Γ, Λ(Γ) is a closed, nowhere dense Γ-invariant
subset in P2n+1.

Proof. To show that Λ(Γ) is Γ-invariant, we take any point x ∈ Λ(Γ). Since x is on
a limit n-plane, say, `0, there is a normal sequence {σν} of Γ with I({σ̂ν}) = ˆ̀0 by
Proposition 4.9. Then {σ ◦ σν} is a normal sequence with I({σ̂ ◦ σ̂ν}) = σ̂( ˆ̀0). Since
the limit n-plane σ(`0) passes through the point σ(x), Λ(Γ) is Γ-invariant.

To show that Λ(Γ) is closed, let {xν} be a sequence of points of Λ(Γ) such that
limν xν = x for some point x ∈ P2n+1. Let `ν be a limit n-plane through xν. By
Proposition 4.9, for each ν, we can find a limit n-plane `ν,∞ and a normal sequence
{σν,k}k such that I({σ̂ν,k}k) = ˆ̀

ν and that the sequence {σν,k}k is uniformly convergent to
`ν on compact sets in P2n+1 \ `ν,∞. Taking a subsequence of {`ν}, we can assume that
the `ν are all distinct and that { ˆ̀ν} and { ˆ̀ν,∞}ν are convergent in G.

Since { ˆ̀ν,∞}ν is convergent, there is an n-plane `a which is disjoint from the closure
of

⋃
ν |`ν,∞|. Take a small tubular neighborhood W of `a, which is biholomorphic to the

domain (1.1), such that the closure [W] is still disjoint from the closure of
⋃
ν |`ν,∞|.

Fix a metric on G and consider the distance of points on G. Let δν be the minimal
distance from ˆ̀

ν to any other ˆ̀
µ in G. Obviously, limν δν = 0. Set

Nδν( ˆ̀
ν) = {z ∈ G : distance(z, ˆ̀

ν) < δν}.

Choose k(ν) such that
σ̂ν,k(ν)([Ŵ]) ⊂ Nδν( ˆ̀

ν)

and that the σν,k(ν), ν = 1, 2, 3, . . . , are all distinct, where Ŵ = { ˆ̀ ∈ G : ` ⊂W}. Put
ˆ̀ = limν

ˆ̀
ν. Take any δ > 0. Then there is ν0 such that Nδν( ˆ̀

ν) ⊂ Nδ( ˆ̀) holds for
any ν > ν0. Thus, for ν > ν0, we have σ̂ν,k(ν)([Ŵ]) ⊂ Nδ( ˆ̀). This implies that {σν,k(ν)}

converges to ` uniformly on W. Thus ` is a limit n-plane passing through x. Hence
Λ(Γ) is closed.

Lastly, we shall show that Λ(Γ) is nowhere dense. Let x be any point in Λ(Γ). By
Proposition 4.9, there are n-planes `0, `∞ in P2n+1 and a normal sequence {σν} such that
x ∈ `0 and that limν σ̂ν(K̂) = ˆ̀0 for any compact set K ⊂ P2n+1 \ `∞. By the property
L, we can set K as a single n-plane ` contained in Ω(Γ). Then, for every neighborhood
W of x, there is an integer ν0 such that W ∩ σν(`) , ∅ for ν ≥ ν0. Thus W contains a
point in Ω(Γ). Hence Λ(Γ) is nowhere dense. �

Theorem 4.11. For a type L group Γ, the action of Γ on Ω(Γ) is properly discontinuous.
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Proof. Take any compact set M in Ω(Γ). Suppose that there is an infinite sequence
{σν}ν of distinct elements of Γ such that M ∩ σν(M) , ∅ for any ν. By Proposition 4.9,
replacing {σν}with its normal subsequence, we can assume that there are limit n-planes
`K and `I such that {σν} converges uniformly on P2n+1 \ `K to `I . Since Ω(Γ) has no
intersection with limit n-planes, we see that M ∩ (`I ∪ `K) = ∅. Therefore {σν(M)}
converges to a subset on `I . This contradicts the assumption that M ∩ σν(M) , ∅ for
any ν. �

By Theorem 4.11, we can define canonically the quotient space Ω(Γ)/Γ, which we
denote by X(Γ),

X(Γ) = Ω(Γ)/Γ.

Remark 4.12. There are examples of Γ for which X(Γ) is not connected. Such an
example can be constructed easily in the case n = 1 by considering a flat twistor space
over a conformally flat four-manifold [7], where every connected component of Ω(Γ)
is large. We do not know, however, whether this is the case for all type L groups or not.

5. Discontinuous group actions on large domains

In this section, we shall show that a large domain that covers a compact manifold is
a connected component of Ω(Γ) of some Γ of type L.

Proposition 5.1. Let Γ be a group of holomorphic automorphisms of a large domain
Ω in P2n+1. Suppose that Γ is torsion free and that the action of Γ on Ω is properly
discontinuous. Then Γ is of type L.

Proof. First we shall prove that Γ is a subgroup of PGL2n+2(C). By a line we shall
mean a one-dimensional projective linear subspace of a projective space. Since every
line in P2n+1 has a tubular neighborhood with a smooth convex–concave boundary, the
following lemma follows immediately from a theorem of Ivashkovich [4].

Lemma 5.2. Let Lν, ν = 1, 2, be lines in Pm (m ≥ 2) and let Uν be a tubular
neighborhood of Lν. Suppose that γ : U1 → U2 is a biholomorphic mapping. Then
γ extends to an element of PGLm+1(C).

Lemma 5.3. Let σ ∈ Γ \ {1} be any element and let σ̃ ∈ GL2n+2(C) be a representative
of σ. Then the inequality

rank (σ̃ − αI) ≥ n + 1 (5.1)

holds for any α ∈ C.

Proof. Consider the subspace

V = {z ∈ C2n+2 : (σ̃ − αI)z = 0}.

Each point of the projectivized linear subspace [V] ⊂ P2n+1 is fixed by σ. Suppose that
rank (σ̃ − αI) ≤ n. Then dim V ≥ n + 2. Therefore any n-plane in Ω intersects [V] and
every point on the intersection is fixed by σ. This is absurd, since Γ is torsion free and
properly discontinuous on Ω. Thus we have the lemma. �
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Lemma 5.4.1 If (5.1) holds for any α ∈ C, then there is an n-plane ` such that
σ(`) ∩ ` = ∅.

Proof. We have to choose a subspace L ⊂ C2n+2 of dimension n + 1 such that σ̃(L) ∩
L = {0}. Put

ρ = min
α∈C

rank (σ̃ − αI).

We can assume that ρ is attained at α = 1 without loss of generality. We put N = σ̃ − I
and then ρ = rank N. Define ϕ : C2n+2 → C2n+2 by ϕ(z) = Nz. Since ρ ≥ n + 1 by
the assumption, there is an (n + 1)-dimensional subspace L1 ⊂ Imϕ. Put L̃1 = ϕ−1(L1).
Then, since dim Kerϕ = 2n + 2 − ρ, we have dim L̃1 = 3n + 3 − ρ. Since dim L1 = n + 1
and dim Kerϕ = 2n + 2 − ρ, we can choose a subspace L ⊂ L̃1 such that dim L = n + 1,
L ∩ L1 = {0} and L ∩ Kerϕ = {0}. We claim that L is the desired linear subspace in
C2n+2. To verify the claim, we choose X ∈ M((2n + 2) × (n + 1),C) with rank X = n + 1
such that

L = {z ∈ C2n+2 : z = Xu, u ∈ Cn+1}.

Then L ∩ σ̃(L) = {0} holds if and only if

det(σ̃X, X) , 0.

This is equivalent to
det(NX, X) , 0.

That L ∩Kerϕ = {0} implies that NX is of maximal rank, and that L ∩ L1 = {0} implies
that the vectors in NX and X span C2n+2. Thus the claim is verified. �

Now we go back to the proof of Proposition 5.1. By the assumption that Ω is large,
there is a relatively compact subdomain W ⊂ Ω which is biholomorphic to U. The
n-planes in W are parametrized by Ŵ ⊂ G ⊂ PN . Since the action of Γ on Ω is properly
discontinuous, the set

S = {σ ∈ Γ \ {1} : σ̂(Ŵ) ∩ Ŵ , ∅}

is finite. Let ` be an n-plane in W. For σ ∈ S , we have Q( ˆ̀, σ̂( ˆ̀)) = 0 when ` intersects
σ(`). By Lemmas 5.3 and 5.4, we see that the set

Yσ = {ζ ∈ G : Q(ζ, σ̂(ζ)) = 0}

is a proper analytic subset of G. Hence the set

V = Ŵ
∖ ⋃
σ∈S

Yσ

is not empty. Take a point ˆ̀′ ∈ V . Then we can choose a neighborhood W ′ of `′ which
is biholomorphic to U and satisfies σ(W ′) ∩W ′ = ∅ for all σ in S and hence in Γ. �

1Compare with [10, Lemma 1.6], which is for 1-planes in Pm.
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Theorem 5.5. Let Ω ⊂ P2n+1 be a large domain which is an unramified cover of a
compact complex manifold. Then there is a type L group Γ such that Ω(Γ) contains Ω

as a connected component.

Proof. By Lemma 5.2, there is a group Γ ⊂ PGL2n+2(C) of holomorphic
automorphisms of Ω such that Ω/Γ is compact. Since Γ is finitely generated, we can
assume that Γ is torsion free by Selberg’s lemma. Hence, by Proposition 5.1, Γ is of
type L.

We claim that Ω ⊂ Ω(Γ). To verify this, suppose, on the contrary, that there is a point
x ∈ Ω ∩ Λ(Γ). Then there are limit n-planes `I , `K such that x ∈ `I and a sequence
{σm} of distinct elements of Γ such that {σm} converges uniformly on P2n+1 \ `K to
`I . Let ` be an n-plane contained in Ω. Displacing ` a little, if necessary, we can
assume that ` ∩ `K = ∅. Let Kx be a compact neighborhood of x contained in Ω. Put
K = Kx ∪ `, which is a compact set contained in Ω. Since {σm(`)} converges to `I , we
see that σm(K) ∩ K , ∅ for infinitely many m. This contradicts the assumption that Γ

is properly discontinuous on Ω. Thus the claim is verified.
Now Ω is contained in a connected component, say, Ω0, of Ω(Γ). Since Ω is Γ-

invariant, so is Ω0. Therefore, by Theorem 4.11, Ω0/Γ is a connected complex space
that contains Ω/Γ. Since Ω/Γ is compact, we infer that Ω/Γ = Ω0/Γ. Hence Ω = Ω0. �

Proposition 5.6. Let X be a compact Kähler manifold that contains a domain W
biholomorphic to

U = {[z0 : · · · : z2n+1] ∈ P2n+1 : |z0|
2 + · · · + |zn|

2 < |zn+1|
2 + · · · + |z2n+1|

2}.

Then X is unirational. In particular, X is simply connected.

Proof. The proof of [6, Corollary 3.1] works also in this case. Take any n-plane ` ⊂W.
Let B be the irreducible component of the Barlet space which contains the point ˆ̀
corresponding to `. Since X is Kähler, B is compact. Consider the graph

Z = {(x, b) ∈ X × B : x ∈ b}.

Let pX : Z → X and pB : Z → B the natural projections. Fix a point o ∈ `. Since B
is compact, we can apply a theorem of Campana [1, Corollaire 1], which says that
p−1

X (o) is a compact algebraic variety. Hence Bo := pB(p−1
X (o)) is also compact and

algebraic. Put M := p−1
B (Bo) and f = PB|M . Then f : M → Bo is a Pn-fiber space

over a compact algebraic variety Bo. By the choice of o, Bo is nonsingular at o, and
there is a small open neighborhood N ⊂ Bo centered at ˆ̀ and a biholomorphic map
τ : f −1(N)→ N × Pn such that f = p ◦ τ, where p : N × Pn → N is the projection.
Let µ : M∗ → M be a desingularization of M that is a succession of blowing-ups.
Here we can assume that µ is biholomorphic on f −1(N). Thus we have a fiber space
g := f ◦ µ : M∗ → Bo whose general fiber is Pn.

Lemma 5.7. M∗ is an algebraic variety.
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Proof. As in [13, Section 12], we consider the direct image sheaf g∗O(−KM∗), and the
associated projective fiber space P(g∗O(−KM∗)) over Bo. Note that P(g∗O(−KM∗)) is
an algebraic space. Since g∗O(−KM∗) is a locally free sheaf of rank = 2n+1Cn+1 on a
nonempty Zariski open subset of Bo, we have a commutative diagram

M∗
h
−→ P(g∗O(−KM∗))

g↘ ↙ π
Bo,

where h is a meromorphic map whose restriction

h|g−1(b) : g−1(b)→ P(g∗O(−KM∗))b

to a general fiber g−1(b) is the map defined by the linear system |OPn (n + 1)|. Hence we
infer that dim h(M∗) = dim M∗. Since P(g∗O(−KM∗)) is algebraic, so is h(M∗). Hence
M∗ is algebraic. �

Since X = pX(M) = pX(µ(M∗)), we see that X is algebraic by Lemma 5.7. Let
ν : Y → X be a succession of blowing-ups such that Y is projective algebraic. Let
j : U → W be a biholomorphic map. Since any meromorphic function on U extends
to a meromorphic function on P2n+1, ν−1 ◦ j : U → Y extends to a meromorphic map
P2n+1 · · ·> Y . This implies that Y is unirational. Hence X is unirational. �

Theorem 5.8. A compact complex manifold that is covered by a large domain in P2n+1

is non-Kähler, except for P2n+1 itself.

Proof. This follows from Propositions 5.1, 5.6 and Theorem 5.5. �

Note that, for a large domain in Theorem 5.8, we assume nothing on its fundamental
group nor on its complement in P2n+1. Thus our result gives a slight generalization of
[10, Proposition 1.9] for odd-dimensional projective spaces.

6. Klein combinations

Let Ων ⊂ P2n+1, ν = 1,2, be large domains and let Γν ⊂ Aut(Ων) be free and properly
discontinuous groups. Put

U(ε) = {|z0|
2 + · · · + |zn|

2 < ε(|zn+1|
2 + · · · + |z2n+1|

2)} ⊂ P2n+1, ε > 1,

N(ε) = [U(ε)] \ U(ε−1).

Then

σ : N(ε)→ N(ε), σ([z0 : · · · : zn : zn+1 : · · · : z2n+1]) = [zn+1 : · · · : z2n+1 : z0 : · · · : zn]

is a biholomorphic map. Let jν : U(ε) → Xν = Ων/Γν be holomorphic open
embeddings. Then we can consider the gluing

X1#X2 = (X1 \ j1(U(ε−1)))
⋃

(X2 \ j2(U(ε−1)))
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by j2 ◦ σ ◦ j1−1 : j1(N(ε))→ j2(N(ε)) to obtain a new complex manifold. Then

X1#X2 = Ω/Γ

for some large domain Ω ⊂ P2n+1 and Γ [6]. Here we have Γ ' Γ1 ∗ Γ2. X1#X2 is called
the Klein combination of X1 and X2. If the Γν are cocompact then so is Γ on Ω.

The handle attachments can also be defined. In those cases, we have Γ ' Γ1 ∗ Z.
Thus we can get many examples of Γ and X(Γ).

7. An analogue of the Ford region

Fix a system of homogeneous coordinates [z0 : z1 : · · · : zn : zn+1 : · · · : z2n+1] on
P2n+1. Put z′ = (z0, . . . , zn), z′′ = (zn+1, . . . , z2n+1), and write [z′ : z′′] instead of [z0 :
z1 : · · · : zn : zn+1 : · · · : z2n+1] for brevity. Let `′′ be the n-plane defined by z′′ = 0. Put

E = P2n+1 \ `′′,

and define the projection by

π : E → Pn, π([z′ : z′′]) = z′′.

Then E is isomorphic to OPn (1)⊕(n+1) as a vector bundle over Pn.

7.1. Volume form on E. Take the open covering of E =
⋃n+1
α=1 Uα, where

Uα = {[z′ : z′′] ∈ P2n+1 : zn+α , 0} for all 1 ≤ α ≤ n + 1.

On each Uα, we define a system of coordinates by

ζ
j
α =

z j

zn+α
for 0 ≤ j ≤ n,

xk
α =

zn+k

zn+α
for 1 ≤ k < α,

xk−1
α =

zn+k

zn+α
for α < k ≤ n + 1.

Then π|Uα is given by

π(ζ0
α, . . . , ζ

n
α, x

1
α, . . . , x

n
α) = (x1

α, . . . , x
n
α).

On Uα, we define

dζα = dζ0
α ∧ · · · ∧ dζn

α

dxα = dx1
α ∧ · · · ∧ dxn

α

and put
dVα =

√
−1(1 + ‖xα‖2)−2(n+1)dζα ∧ dζα ∧ dxα ∧ dxα,
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where

‖xα‖2 =

n∑
k=1

|xk
α|

2.

It is easy to check that the (2n + 1,2n + 1)-forms dVα patch together to give a global
volume form

dV = dVα on Uα

on E = P2n+1 \ `′′.

Lemma 7.1. Consider the projective transformation of Pm defined by

yλ =
cλµxµ + cλ0
cµxµ + c0

for all 1 ≤ λ, µ ≤ m.

Then
dy1 ∧ · · · ∧ dym =

det C
(cµxµ + c0)m+1 dx1 ∧ · · · ∧ dxm,

where

C =


c0 c1 . . . cm

c1
0 c1

1 . . . c1
m

...
...

cm
0 cm

1 . . . cm
m

 .
Proof. Put

P = cµxµ + c0, Q = cµxµ, pλ = cλµxµ + cλ0, qλ = cλµxµ,

where µ is summed for µ = 1, . . . ,m. Then

dy1 ∧ · · · ∧ dym =

m∧
λ=1

(P−1dqλ − pλP−2dQ)

= P−2m
m∧
λ=1

(Pdqλ − pλdQ)

= P−(m+1)
(
P

m∧
λ=1

dqλ +

m∑
k=1

(−1)k pkdQ ∧ dq1 ∧ · · · ∧ dqk−1 ∧ dqk+1 ∧ · · · ∧ dqm
)
.

Define A and Ak by

Adx1 ∧ · · · ∧ dxm = dq1 ∧ · · · ∧ dqλ,
Akdx1 ∧ · · · ∧ dxm = dQ ∧ dq1 ∧ · · · ∧ dqk−1 ∧ dqk+1 ∧ · · · ∧ dqm.

Then

dy1 ∧ · · · ∧ dym = P−(m+1)
(
(cµxµ + c0)A +

m∑
k=1

(−1)k(ck
µxµ + ck

0)Ak

)
dx1 ∧ · · · ∧ dxm.

(7.1)
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Note that

A = det


c1

1 . . . c1
m

...
...

cm
1 . . . cm

m

 and Ak = det



c1 . . . cm

c1
1 . . . c1

m

...
...

ck−1
1 ck−1

m

ck+1
1 ck+1

m

...
...

cm
1 . . . cm

m


.

Thus

cµA +

m∑
k=1

(−1)kck
µAk = det


cµ c1 . . . cm

c1
µ c1

1 . . . c1
m

...
...

cm
µ cm

1 . . . cm
m


= 0

for µ = 1, . . . ,m, and

c0A +

m∑
k=1

(−1)kck
0Ak = det


c0 c1 . . . cm

c1
0 c1

1 . . . c1
m

...
...

cm
0 cm

1 . . . cm
m


= det C.

Hence, it follows from (7.1) that

dy1 ∧ · · · dym = P−(m+1) det C dx1 ∧ · · · ∧ dxm. �

Lemma 7.2.1 For

g =

(
A B
C D

)
∈ SL2n+2(C), A, B,C,D ∈ Mn+1(C)

with det C , 0, the pull-back of dV is given by

g∗dV = µ4(n+1)
g dV,

where

µg(z) =
‖z′′‖

‖Cz′ + Dz′′‖
.

1This is the corrected version of [8, Lemma 3.2]. There was a mistake in the calculation there. The
results [8, Proposition 3.1, Lemma 3.3] hold true. Calculations in the proofs there should be corrected
accordingly, but need no essential changes. Sublemmas 3.1, 3.2 in [8] and their proofs are correct.
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Proof. We write a square matrix M of size (n + 1) as

M =


m0

0 . . . m0
n

...
...

mn
0 . . . mn

n

 .
Set α = n + 1 and consider the projective transformation g on Uα = Un+1. We omit the
subscript n + 1, for simplicity, and write the local coordinates by (ζ0, . . . , ζn, x1, . . . , xn)
instead of (ζ0

n+1, . . . , ζ
n
n+1, x

1
n+1, . . . , x

n
n+1). Then g sends (ζ j, xk) to (ζ j′, xk′), where

ζ j′ =

∑n
λ=0 a j

λζ
λ +

∑n−1
µ=0 b j

µxµ+1 + b j
n∑n

λ=0 cn
λζ

λ +
∑n−1
µ=0 dn

µxµ+1 + dn
n

for all j = 0, . . . , n,

xk′ =

∑n
λ=0 ck

λζ
λ +

∑n−1
µ=0 dk

µxµ+1 + dk
n∑n

λ=0 cn
λζ

λ +
∑n−1
µ=0 dn

µxµ+1 + dn
n

for all k = 1, . . . , n.

Then, by Lemma 7.1,

dζ′ ∧ dζ′ ∧ dx′ ∧ dx′ =

∣∣∣∣∣ n∑
λ=0

cn
λζ

λ +

n−1∑
µ=0

dn
µxµ+1 + dn

n

∣∣∣∣∣−4(n+1)
dζ ∧ dζ ∧ dx ∧ dx.

Hence

g∗dV =
√
−1

(
1 +

n∑
k=1

∣∣∣∣∣
∑n
λ=0 ck

λζ
λ +

∑n−1
µ=0 dk

µxµ+1 + dk
n∑n

λ=0 cn
λζ

λ +
∑n−1
µ=0 dn

µxµ+1 + dn
n

∣∣∣∣∣2)−2(n+1)

×

∣∣∣∣∣ n∑
λ=0

cn
λζ

λ +

n−1∑
µ=0

dn
µxµ+1 + dn

n

∣∣∣∣∣−4(n+1)
dζ ∧ dζ ∧ dx ∧ dx

=
√
−1

( n∑
k=0

∣∣∣∣∣ n∑
λ=0

ck
λζ

λ +

n−1∑
µ=0

dk
µxµ+1 + dk

n

∣∣∣∣∣2)−2(n+1)
dζ ∧ dζ ∧ dx ∧ dx

=
√
−1‖Cζ + Dx̃‖−4(n+1)dζ ∧ dζ ∧ dx ∧ dx,

where x̃ = (x1, . . . , xn, 1). Thus

g∗dV =

(
‖x̃‖

‖Cζ + Dx̃‖

)4(n+1)
dV =

(
‖z′′‖

‖Cz′ + Dz′′‖

)4(n+1)
dV.

This proves the lemma. �

7.2. F-region. Recall that the norm of u = (u1, . . . , um) ∈ Cm is defined by

‖u‖ = (|u1|
2 + · · · + |um|

2)1/2.

The norm of a matrix A = (ai j) ∈Mm(C) is defined by the operator norm

‖A‖ = sup
z,0,z∈Cm

‖Az‖
‖z‖

.
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Let Γ ⊂ PGL2n+2(C) be a type L group, and set Ω = Ω(Γ), Λ = Λ(Γ). Put Γ∗ =

Γ \ {1}. Recall the proof of Proposition 5.1, where it is shown that Yσ is a proper
analytic subset of G. That proof shows that, moving the n-plane l′′ = {z′′ = 0} slightly,
if necessary, we can choose a positive number R such that the set

VR = {[z′ : z′′] ∈ P2n+1 : ‖z′‖ > R‖z′′‖}

is contained in Ω and that
g(VR) ∩ VR = ∅ (7.2)

holds for any g ∈ Γ∗. Every g ∈ Γ has a representative g̃ ∈ SL2n+2(C), which we write
as

g̃ =

(
Ag Bg

Cg Dg

)
, Ag, Bg,Cg,Dg ∈Mn+1(C).

Lemma 7.3. There is a constant R0 > 0 such that, for any g ∈ Γ∗,
(i) det Cg , 0, (ii) ‖AgC−1

g ‖ ≤ R0, (iii) ‖C−1
g Dg‖ ≤ R0.

Proof. We fix an R0 = R that satisfies (7.2). (i) Suppose that det Cg = 0. Then there is a
point z on l′′ such that g(z) ∈ l′′. Thus g(l′′) ∩ l′′ , ∅. Since g , 1, by assumption, this
contradicts (7.2). (ii) The n-plane g(l′′) is given by z′ = AgC−1

g z′′. Since g(l′′) ∩ VR0 = ∅

by (7.2), we have ‖AgC−1
g ‖ ≤ R0. (iii) The equation of the n plane g−1(l′′) is given by

z′ = −C−1
g Dgz′′. We have ‖C−1

g Dg‖ ≤ R0 by the argument above. �

Put

∆g = {z = [z′ : z′′] ∈ P2n+1 : ‖z′′‖ < ‖Cgz′ + Dgz′′‖},
∆̄g = {z = [z′ : z′′] ∈ P2n+1 : ‖z′′‖ ≤ ‖Cgz′ + Dgz′′‖},
Σg = {z = [z′ : z′′] ∈ P2n+1 : ‖z′′‖ = ‖Cgz′ + Dgz′′‖},
∆c

g = {z = [z′ : z′′] ∈ P2n+1 : ‖z′′‖ ≥ ‖Cgz′ + Dgz′′‖}

and
∆̄ =

⋂
g∈Γ∗

∆̄g.

Definition 7.4. Consider the set of interior points

F = Int∆̄

of ∆̄, which we call the F-region of the type L groups.

This is an analogue of the Ford region in the Kleinian group theory. Indeed, for
some type L groups that satisfy an additional condition (see (♣), (♠) below), F will
give a fundamental set of the action of Γ on Ω. Now we put

F̄ = the closure of F in P2n+1,
∂F̄ = F̄ \ F. (7.3)

We consider the set of positive real numbers,

R = {‖C−1
g ‖ : g ∈ Γ∗},

and consider the conditions on R:
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18 M. Kato [18]

(♣) R is bounded in R; and
(♠) R has no accumulation points other than 0 in R.

Remark 7.5. The number ‖C−1
g ‖ is something like the radius of the isometric circle

of g in Kleinian group theory. The conditions (♣) and (♠) may depend on the choice
of homogeneous coordinates on P2n+1. But they are preserved under the coordinate
change w = τ(z) of the form τ =

( P Q
0 S

)
∈ PGL2n+2(C).

Proposition 7.6. The condition (♣) is satisfied if and only if F̄ contains VR for some
R > 0.

Proof. To prove that (♣) is sufficient, let ρ > 0 be an upper bound of R. Set R = R0 + ρ,
where R0 is the constant in Lemma 7.3(iii). Then, for any point z = [z′ : z′′] ∈ VR and
any g ∈ Γ∗,

‖Cgz′ + Dgz′′‖ ≥
‖z′ + C−1

g Dgz′′‖

‖C−1
g ‖

≥
‖z′‖ − R0‖z′′‖
‖C−1

g ‖
≥
ρ‖z′′‖
‖C−1

g ‖
≥ ‖z′′‖.

To prove that (♣) is necessary, take any n-plane

`Y : z′′ = Yz′, Y ∈Mn+1(C), ‖Y‖ < R−1

in VR. Since `Y ⊂ ∆̄g for any g ∈ Γ∗,

‖Yz′‖ ≤ ‖Cgz′ + DgYz′‖ (7.4)

for any z′ ∈ C2. Put

G = (Cg + DgY)∗(Cg + DgY) − Y∗Y = (I + C−1
g DgY)∗C∗gCg(I + C−1

g DgY) − Y∗Y,

where M∗ = t M̄.
For Hermitian matrices A, B, we write A ≥ B if A − B is positive semidefinite, and

we write A > B if A − B is positive definite.
Note that G ≥ 0 by (7.4) and that det(I + C−1

g DgY) , 0 holds for any Y with
‖Y‖ < min{R−1,R−1

0 } and any g ∈ Γ∗ by Lemma 7.3(iii). Therefore, the inequality

C∗gCg ≥ (I + C−1
g DgY)∗

−1
Y∗Y(I + C−1

g DgY)−1

holds for ‖Y‖ < min{R−1,R−1
0 } and g ∈ Γ∗. Set Y = tI, t = 1

2 min{1,R−1,R−1
0 }. Then

C∗gCg ≥ t2(I + tC−1
g Dg)∗

−1
(I + tC−1

g Dg)−1 >
t2

4
I.

Thus
‖C−1

g ‖ ≤
2
t
. �

Lemma 7.7. Suppose that Γ satisfies (♣). Then, for any normal sequence {gn} ⊂ Γ, the
sequence {Σgn} converges as sets to a single limit n-plane if and only if Γ satisfies (♠).
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Proof. Set g̃n =
( An Bn

Cn Dn

)
∈ SL2n+2(C). By the defining equation ‖Cnz′ + Dnz′′‖ = ‖z′′‖,

Σgn = {[z′ : z′′] ∈ P2n+1 : z′ = (C−1
n U −C−1

n Dn)η, z′′ = η, η ∈ S 2n+1,U ∈ Un+1},

where S 2n+1 is the unit sphere in Cn+1 and Un+1 is the group of unitary matrices
of size n + 1. The sequence {C−1

n Dn} is bounded by Lemma 7.3(iii) and so is
{C−1

n } by assumption (♣). Now consider any subsequence of {gn} such that {C−1
n }

converges. Then take again a subsequence such that {C−1
n Dn} also converges. Put

L = − limn→∞C−1
n Dn and G = limn→∞C−1

n . Then we see that the set Σgn converges to
the set

Σ := {[z′ : z′′] ∈ P2n+1 : z′ = (GU + L)η, z′′ = η, η ∈ S 2n+1,U ∈ Un+1}.

Thus Σ consists of a single n-plane if and only if G = 0. Here z′ = Lz′′ is the limit
n-plane of {g−1

n (`′′)}. This implies the lemma. �

Lemma 7.8. Suppose that Γ satisfies (♣) and (♠). Then, for a ∈ Ω, there can be at most
a finite number of Σg that contain a.

Proof. Suppose that there is an infinite number of gn ∈ Γ, n = 1, 2, . . . , such that
a ∈ Σgn . Then taking a normal subsequence of {gn}, we see that a is on a limit n-plane
by Lemma 7.7, since Γ satisfies (♠). This contradicts a ∈ Ω. �

Now recall the definition of µg for g ∈ Γ∗. We also define

µ1(z) ≡ 1 for g = 1.

Lemma 7.9. For g, h ∈ Γ,

µh◦g(z) = µh(g(z))µg(z), z ∈ P2n+1 \ {g−1(`′′) ∪ (h ◦ g)−1(`′′)}.

Proof. This is easy by Lemma 7.2. �

Lemma 7.10. For any g ∈ Γ, we have g(∆̄) ⊂ ∆c
g−1 .

Proof. By Lemma 7.9, µg−1 (g(z)) = µg(z)−1. Since µg(z) ≤ 1 for z ∈ ∆̄, we have the
lemma. �

Theorem 7.11. Let Γ ⊂ PGL2n+2(C) be a type L group. Assume that Γ is torsion free
and satisfies both (♣) and (♠). Then F has the following properties.

(1) For g ∈ Γ, g(F) ⊂ F holds if and only if g = 1.
(2) For g ∈ Γ∗, g(F) ∩ F = ∅ holds.
(3) For every z ∈ Ω, there is an element g ∈ Γ such that g(z) ∈ Ω ∩ F̄.
(4) Suppose that the equality w = g(z) holds for some z,w ∈ Ω ∩ F̄ and g ∈ Γ∗. Then

both z and w are on Ω ∩ ∂F̄.
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Proof. The following proof is an analogue of [11, pages 33–34].
(1) By Proposition 7.6, F contains a tubular neighborhood W of `′′. Suppose that

g(F) ⊂ F, Then, by Lemma 7.9,

µh◦g(z) = µh(g(z))µg(z) ≤ µg(z) ≤ 1

on W for any h. Letting h = g−1, we see that µg(z) = 1 on W. This implies that Cg = 0.
Hence g(`′′) = `′′. Since `′′ is not a limit n-plane, we see that g is of finite order. Since
Γ is torsion free, by assumption, we see that g = 1. The converse is obvious.

(2) By Lemma 7.10, we have g(∆̄) ⊂ ∆c
g−1 . This implies that g(F̄) ∩ ∆̄g−1 = ∅, since

F is open. Hence g(F) ∩ F ⊂ g(F) ∩ ∆̄ ⊂ g(F) ∩ ∆̄g−1 = ∅.
(3) Take a point z in Ω. If g(z) ∈ `′′ for some g ∈ Γ, then g(z) ∈ Ω ∩ F̄ by the

assumption (♣) and Proposition 7.6. Therefore we can assume that g(z) < `′′ for any g.
Then µg(z) is defined and hence has a finite-value for any g. By the assumptions (♣)
and (♠), µg(z) < 1 holds for all except for finitely many g ∈ Γ. Therefore we can choose
g such that µg(z) is maximal among all g. Then, by Lemma 7.9, we have µh(g(z)) ≤ 1
for any h ∈ Γ. This implies that g(z) ∈ ∆̄. Thus Ω ⊂

⋃
g∈Γ g(∆̄) and hence

Ω =
⋃
g∈Γ

g(Ω ∩ ∆̄). (7.5)

We claim that the set Ω ∩ (∆̄ \ F̄) is empty. To verify this, we suppose, on the
contrary, that a point w ∈ Ω ∩ (∆̄ \ F̄) exists. Since ∆̄ \ F̄ is thin in P2n+1, so is⋃

g∈Γ g(Ω ∩ (∆̄ \ F̄)). Hence, by

Ω

∖⋃
g∈Γ

g(F̄) =
⋃
g∈Γ

g(Ω ∩ ∆̄)
∖⋃

g∈Γ

g(Ω ∩ F̄) ⊂
⋃
g∈Γ

g(Ω ∩ (∆̄ \ F̄)),

we see that the set Ω \
⋃

g∈Γ g(F̄) is thin in Ω. Therefore we can find sequences {wn} ⊂

Ω ∩ F̄ ⊂ ∆̄ and {gn} ⊂ Γ such that limn→∞ gn(wn) = w. Since w < ∂F̄, {gn} can be chosen
to be a sequence of distinct elements. By Lemma 7.3 and the assumptions (♣) and (♠),
we can choose a subsequence of {gn} such that the n-plane gn(`′′) = {z′ + C−1

g−1
n

Dg−1
n

z′′ =

0} converges to a limit n-plane `L = {z′ = Lz′′}, L = −limn→∞C−1
g−1

n
Dg−1

n
, and such that

limn→∞ ‖C−1
g−1

n
‖ = 0 holds. The set ∆c

g−1
n

is the image of the map

ϕn : [0, 1] × Un+1 × S 2n+1 → P2n+1

defined by
ϕn : (t,U, η) 7→ [tC−1

g−1
n

Uη −C−1
g−1

n
Dg−1

n
η : η].

Therefore the sequence {∆c
g−1

n
} of sets converges to the image of the limit map

ϕ : [0, 1] × Un+1 × S 2n+1 → P2n+1, (t,U, η) 7→ [Lη : η],
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which is `L. Since gn(`′′) ⊂ gn(∆̄) ⊂ ∆c
g−1

n
holds by Lemma 7.10, {gn(∆̄)} also converges

to `L. Hence w is on the limit n-plane `L. Since w ∈ Ω, this is absurd. Thus our claim
is verified. Now, by (7.5),

Ω =
⋃
g∈Γ

g(Ω ∩ F̄).

This proves (3).
(4) By (2), either z ∈ ∂F̄ or w ∈ ∂F̄. Replacing g with g−1, if necessary, we can

assume that z ∈ ∂F̄. Since z,w ∈ F̄, µ f (z) ≤ 1 and µ f (w) ≤ 1 hold for any f ∈ Γ∗.
Hence, by the equality

1 = µ1(z) = µg−1g(z) = µg−1 (g(z))µg(z) = µg−1 (w)µg(z),

we have µg−1 (w) = µg(z) = 1. Hence, in particular, we have w ∈ Σg−1 . On the other
hand, there can be at most a finite number of Σ f with w ∈ Σ f by Lemma 7.8. This
implies that w ∈ ∂F̄. �

Remark 7.12. For type L groups, both conditions (♣) and (♠) are automatically
satisfied if the series ∑

g∈Γ∗
‖C−1

g ‖
δ

is convergent for some constant δ > 0.

Theorem 7.11 is useful when we check whether the quotient space Ω(Γ)/Γ becomes
compact or not. See examples in Section 8.2.

8. Examples

8.1. Type L groups in general dimension. Suppose that we are given two groups
Γν ⊂ PGL2n+1(C), ν = 1, 2, of type L which satisfy (♣) and (♠). Applying a Klein
combination, we can construct another group Γ of type L which is isomorphic to the
free product Γ1 ∗ Γ2. In this subsection, we show that, replacing Γν with their suitable
conjugate subgroups in PGL2n+1(C), we can make Γ also satisfy both (♣) and (♠).

Let Fν the F-region of Γν with respect to [z] = [z′ : z′′]. Let ρν > 0 be the numbers
such that ‖C−1

g ‖ ≤ ρν for all g ∈ Γ∗ν.

Lemma 8.1. Let a ∈ R be a positive constant, and consider the new system of
coordinates [ζ′ : ζ′′] on P2n+1 defined by

ζ′ = az′, ζ′′ = a−1z′′.

Let α =
( aI 0

0 a−1I
)
∈ PGL2n+2(C). Then, for a given number r > 0, we can choose a > 0

so that the following are satisfied simultaneously.

(i) α(F1 ∩ F2) contains the set V = {‖ζ′‖ ≥ r‖ζ′′‖}.
(ii) ‖C−1

g ‖ ≤ 1 for all g =
( Ag Bg

Cg Dg

)
∈ αΓ∗να

−1, ν = 1, 2.
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Proof. Since Fν contains a tubular neighborhood of z′′ = 0, there is r1 > 0 such that

{‖z′‖ ≥ r1 ‖z′′‖} ⊂ F1 ∩ F2.

Choose a > 0 satisfying
a2 ≤ r−1

1 r. (8.1)

Take any [ζ′ : ζ′′] ∈ V , and set [z′ : z′′] = α−1([ζ′ : ζ′′]). Then z′ = a−1ζ′ and z′′ = aζ′′,
and

‖z′‖ = a−1‖ζ′‖ ≥ a−1r‖ζ′′‖ = a−2r‖z′′‖ ≥ r1 ‖z′′‖.

Hence [z′ : z′′] ∈ F1 ∩ F2. This shows that [ζ′ : ζ′′] ∈ α(F1 ∩ F2). Thus (i) is satisfied
for a > 0 with (8.1).

Let γ =
( A B

C D
)
∈ Γ∗ν. Then by g = αγα−1 =

( A a2B
a−2C D

)
, we have ‖C−1

g ‖ = a2 ‖C−1‖.
Therefore the number a > 0 with

a2 ≤ ρ−1
ν , ν = 1, 2 (8.2)

satisfies (ii). Thus it is enough to choose a > 0 which satisfies (8.1) and (8.2). �

Fix a > 0 such that (i) and (ii) in the lemma above hold and replace the original
coordinates [z′ : z′′] with [ζ′ : ζ′′], Γν with αΓνα

−1 and Fν with α(Fν). We use
the original notation such as [z′ : z′′], Γν and Fν to avoid abuse of notation. Let
Ur = {‖z′‖ ≤ r‖z′′‖}. Then γ(Fν) ⊂ Ur for γ ∈ Γ∗ν, (ν = 1, 2).

Put σ =
( 0 I

I 0
)
∈ PGL2n+2(C), and consider the sets F1 and σ(F2) as two subsets in

the same projective space P2n+1. Note that the set {r‖z′′‖ ≤ ‖z′‖ ≤ r−1‖z′′‖}, 0 < r < 1,
is contained in F1 ∩ σ(F2) and that γ(σ(F2)) ⊂ σ(Ur) for γ ∈ σΓ2σ

−1.
Put τ =

( I I
−I I

)
∈ PGL2n+2(C). Introduce a new coordinate system [w] = [w′ : w′′] by

w = τ(z). Put Γ′1 = τΓ1τ
−1 and Γ′2 = τ(σΓ2σ

−1)τ−1. Let Γ be the group generated by Γ′1
and Γ′2. This subsection is devoted to proving the following theorem.

Theorem 8.2. Γ is a group of type L which satisfies (♣) and (♠) with respect to [w].

Proof. By the construction, we see that τ(F1 ∩ σ(F2)) is a fundamental set of Γ. The
n-plane {w′′ = 0} has a tubular neighborhood contained in τ(F1 ∩ σ(F2)). Thus, by
Proposition 7.6, it is enough to show that (♠) is satisfied. �

Lemma 8.3. Let `P : w′ = Pw′′ and `Q : w′ = Qw′′ be n-planes in τ(Ur) and τσ(Ur),
respectively. Then there is a positive constant Kr such that

‖(P − Q)−1‖ ≤ Kr,

where
lim
r→0

Kr = 2−1.

Proof. Take the n-planes `X : z′ = Xz′′ in Ur and `Y : z′′ = Yz′ in σ(Ur) such that
τ(`X) = `P and τ(`Y ) = `Q, respectively. Then

P = (I + X)(I − X)−1, Q = −(I + Y)(I − Y)−1.

https://doi.org/10.1017/S1446788718000344 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788718000344


[23] On odd-dimensional complex analytic Kleinian groups 23

Since `P ∩ `Q = ∅, det(P − Q) , 0 holds. Hence

‖(P − Q)−1‖ = ‖((I + X)(I − X)−1 + (I + Y)(I − Y)−1)−1‖.

Set
Kr = sup

{‖X‖≤r,‖Y‖≤r}
‖((I + X)(I − X)−1 + (I + Y)(I − Y)−1)−1‖.

It is clear that Kr is finite for 0 ≤ r < 1 and that limr→0 Kr = 2−1. This implies the
lemma. �

Any element f ∈ Γ∗ can be written in the normal form [11, page 136].

f = gm · · · g1.

Here either g2 j+1 ∈ Γ′∗1, g2 j ∈ Γ′∗2, or g2 j+1 ∈ Γ′∗2, g2 j ∈ Γ′∗1. The number m is called the
length of f , which is denoted by | f |.

Lemma 8.4. Take any element f ∈ Γ∗, and write f in the normal form as

f = gm · gm−1 · · · g1.

Then

‖C−1
f ‖ ≤ Km−1

r

m∏
j=1

‖C−1
g j
‖,

where

f =

(
A f B f

C f D f

)
, g j =

(
Ag j Bg j

Cg j Dg j

)
.

Proof. Set g = gm and h = gm−1 · · · g1. Comparing the components of f = gh gives

C f = CgAh + DgCh = Cg(AhC−1
h + C−1

g Dg)Ch. (8.3)

First, assume that g1 ∈ Γ′∗1. If g ∈ Γ′∗1, then | f | = m is odd. Since g−1 ∈ Γ∗1, we have

g−1({w′′ = 0}) = {w′ = −C−1
g Dgw′′} ⊂ τ(Ur).

Since |h| is even, we see that h({w′′ = 0}) = {w′ = AhC−1
h w′′} ⊂ τσ(Ur). Since τ(Ur) ∩

τσ(Ur) = ∅, we see that det(AhC−1
h + C−1

g Dg) , 0. Hence C f is also nonsingular and,
by (8.3),

C−1
f = C−1

h (AhC−1
h + C−1

g Dg)−1C−1
g . (8.4)

By Lemma 8.3, it follows that

‖(AhC−1
h + C−1

g Dg)−1‖ ≤ Kr.

Hence, by (8.4),
‖C−1

f ‖ ≤ Kr‖C−1
g ‖ · ‖C

−1
h ‖. (8.5)
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If g ∈ Γ′∗2, then | f | = m is even. Since g−1 ∈ Γ∗2, g−1({w′′ = 0}) = {w′ = −C−1
g Dgw′′} ⊂

τσ(Ur). Since |h| is odd, we see that h({w′′ = 0}) = {w′ = AhC−1
h w′′} ⊂ τ(Ur). Then, by

the same argument as the case g = gm ∈ Γ′∗1, we obtain (8.5).
Next, assume that g1 ∈ Γ′∗2. If g ∈ Γ′∗1, then | f | = m is even. Since g−1 ∈ Γ∗1,

g−1({w′′ = 0}) = {w′ = −C−1
g Dgw′′} ⊂ τ(Ur). Since |h| is odd, we see that h({w′′ = 0}) =

{w′ = AhC−1
h w′′} ⊂ τσ(Ur). Then the rest of the argument is the same as above, and we

obtain (8.5).
If g ∈ Γ′∗2, then | f | = m is odd. Since g−1 ∈ Γ∗2, g−1({w′′ = 0}) = {w′ = −C−1

g Dgw′′} ⊂
τσ(Ur). Since |h| is even, we see that h({w′′ = 0}) = {w′ = AhC−1

h w′′} ⊂ τ(Ur). Then
the rest of the argument is the same as above, and we obtain (8.5).

The lemma follows from (8.5) by induction on m. �

Proof of Theorem 8.2 (continued). It remains to show that Γ satisfies (♠). By
Lemma 8.1, we can assume that ρν ≤ 1, ν = 1, 2. By Lemma 8.3, we fix small r,
0 < r < 1, such that Kr < 1 holds. Now we shall show that Γ satisfies (♠).

Suppose that (♠) does not hold. Then there is a sequence { fm}m ⊂ Γ∗ such that

lim
m→∞

‖C−1
fm ‖ = ε > 0. (8.6)

If there is a subsequence {hm} of { fm} such that limm→∞ |hm| =∞, then limm→∞ ‖C−1
hm
‖ =

0 follows from Kr < 1 and ρν ≤ 1, by Lemma 8.4. This contradicts (8.6). Therefore
the sequence {| fm|}m of lengths is bounded. Let b be a bound of {| fm|}m, that is, | fm| ≤ b
for all m. Write fm in the ‘extended’ normal form,

fm = gm,bgm,b−1 · · · gm,1,

where gm,| fm | · · · gm,1 is the normal form of fm and gm, j = 1 for | fm| < j ≤ b. Since both
Γ∗1 and Γ∗2 satisfy (♣) and (♠), we can find some k, 1 ≤ k ≤ b, such that {‖C−1

gm,k
‖}m

contains a subsequence which converges to zero. This implies that the corresponding
subsequence of {‖C−1

fm
‖}m also converges to zero. This again contradicts (8.6). �

Remark 8.5. A typical higher-dimensional example treated in this subsection is
a Schottky group. Let Γ be the infinite cyclic group generated by g =

( A 0
0 B

)
∈

PGL2n+2(C). Let α j be the eigenvalues of A and let βk be the eigenvalues of B.
Assume that |α j| < |βk| holds for any pairs (α j, βk). Then Γ is a type L group,
where Ω(Γ) = P2n+1 \ ({z′ = 0} ∪ {z′′ = 0}). Introduce a new coordinate [w′ : w′′] by
w′ = z′ + z′′ and w′′ = −z′ + z′′. Then Γ satisfies (♣) and (♠) with respect to [w′ : w′′].
By successive Klein combinations, we can get type L groups with (♣) and (♠) with
respect to some coordinate system.

8.2. Type L groups in dimension three. In this subsection, we shall give three
examples of type L groups. If a finitely generated discrete infinite subgroup Γ ⊂

PGL4(C) admits an invariant surface S in P3 and never admits invariant planes, then
S is necessarily one of the following: (i) the tangential surface of a twisted cubic
curve; (ii) a nonsingular quadric surface; or (iii) a cone over a nonsingular conic [9].
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Each case has examples of type L groups with (♣) and (♠). In the cases (i) and (ii),
there are examples with compact connected canonical quotients. The example for the
case (ii) is due to Fujiki [2]. For the case (iii), we have only one example at present,
whose canonical quotient is connected and noncompact, but it has an invariant plane.

8.2.1. Kleinian groups acting on a twisted cubic curve. Fix a twisted cubic curve
C ⊂ P3, which is defined to be the image of the map

τ : P1 → P3, τ([s : 1]) = [s3 : s2 : s : 1].

Then τ determines a group representation

τ∗ : PSL2(C)→ PSL4(C)

such that τ ◦ g = τ∗(g) ◦ τ. Explicitly, for g = ±
( a b

c d
)
∈ PSL2(C), τ∗(g) is given by

τ∗(g) = ±τ̃∗(g) ∈ PSL4(C), where

τ̃∗(g) =


a3 3a2b 3ab2 b3

a2c a2d + 2abc 2abd + b2c b2d
ac2 2acd + bc2 ad2 + 2bcd bd2

c3 3c2d 3cd2 d3

 ∈ SL4(C).

The group PGL4(C) acts on the set of lines in P3, that is, on Gr(2, 4). Using Plücker
coordinates, we can embed Gr(2, 4) into P5 = P(∧2C4). Since any A ∈ GL4(C) defines
a linear automorphism on ∧2C4 ' C6, we have the group homomorphism

ρ : GL4(C)→ GL6(C).

Let e0 = t(1, 0, 0, 0), e1 = t(0, 1, 0, 0), e2 = t(0, 0, 1, 0), e3 = t(0, 0, 0, 1) and e j ∧ ek the
linear two-space spanned by {e j, ek}, where e j ∧ ek = −ek ∧ e j. In this subsection, in
the following, we write g̃ = ρ ◦ τ̃∗(g) ∈ GL6(C), which is well defined for g = ±

( a b
c d

)
∈

PSL2(C). Then, with respect to the basis

{e0 ∧ e1, e0 ∧ e2, e0 ∧ e3, e1 ∧ e2, e1 ∧ e3, e2 ∧ e3},

in C6, g̃ = ρ ◦ τ̃∗(g) ∈ GL6(C) is given by

g̃ =



a4 2a3b a2b2 3a2b2 2ab3 b4

2a3c a2(ad + 3bc) ab(ad + bc) 3ab(ad + bc) b2(3ad + bc) 2b3d
3a2c2 3ac(ad + bc) a2d2 + abcd + b2c2 9abcd 3bd(ad + bc) 3b2d2

a2c2 ac(ad + bc) abcd a2d2 + abcd + b2c2 bd(ad + bc) b2d2

2ac3 c2(3ad + bc) cd(ad + bc) 3cd(ad + bc) d2(ad + 3bc) 2bd3

c4 2c3d c2d2 3c2d2 2cd3 d4


.

Limit sets. In the following, in this subsection, we let Γ ⊂ PSL2(C) be a Kleinian
group whose set of discontinuity ΩP1 contains [1 : 0] ∈ P1. Put ΛP1 = P1 \ ΩP1 . We
consider the group Γ̃ = τ∗(Γ), which we regard as a subgroup of PGL4(C).
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Let {γn} ⊂ Γ be a normal sequence. Let

gn =

(
an bn

cn dn

)
∈ SL2(C) for all n = 1, 2, . . .

be a sequence of representatives of {γn} such that {c−1
n gn} converges to a matrix of the

form h =
( µ −λµ

1 −λ
)
∈ M2(C), λ, µ ∈ C, since {anc−1

n } and {c−1
n dn} are bounded (compare

with Lemma 7.3). Put
Gn = c−4

n τ̃∗(gn) ∈ GL6(C).
Then

G := lim
n

Gn =



µ4 −2λµ4 λ2µ4 3λ2µ4 −2λ3µ4 λ4µ4

2µ3 −4λµ3 2λ2µ3 6λ2µ3 −4λ3µ3 2λ4µ3

3µ2 −6λµ2 3λ2µ2 9λ2µ2 −6λ3µ2 3λ4µ2

µ2 −2λµ2 λ2µ2 3λ2µ2 −2λ3µ2 λ4µ2

2µ −4λµ 2λ2µ 6λ2µ −4λ3µ 2λ4µ

1 −2λ λ2 3λ2 −2λ3 λ4


.

The limit G defines a projection to the limit image

P5 \ H → I := {[µ4 : 2µ3 : 3µ2 : µ2 : 2µ : 1]}.

The limit kernel H is the four-plane defined by

{ζ = [ζ j] ∈ P5 : ζ0 − 2λζ1 + λ2ζ2 + 3λ2ζ3 − 2λ3ζ4 + λ4ζ5 = 0}.

Let `µ be the tangent line to the curve C at [µ : 1]. Then ˆ̀
µ ∈ Gr(2, 4) ⊂ P5 is given by

(3µ2e0 + 2µe1 + e2) ∧ (µ3e0 + µ2e1 + µe2 + e3)
= µ4e0 ∧ e1 + 2µ3e0 ∧ e2 + 3µ2e0 ∧ e3 + µ2e1 ∧ e2 + 2µe1 ∧ e3 + e2 ∧ e3,

which is nothing but the limit image I = [µ4 : 2µ3 : 3µ2 : µ2 : 2µ : 1] ∈ P5. Hence `µ is
the limit image of the sequence {τ∗(γn)}. Here the limit kernel H ∩ Gr(2, 4) is the set
of lines in P3 that intersect the tangent line to C at the limit point τ([λ : 1]). Thus we
have the following theorem.

Theorem 8.6. Let Γ ⊂ PSL2(C) be a Kleinian group. Then

Γ̃ = τ∗(Γ) ⊂ PGL4(C)

is a group of type L. The limit set is given by

Λ(Γ̃) =
⋃
λ∈ΛP1

|`λ|,

where |`λ| is the support of the tangent line `λ to the twisted cubic curve at τ([λ : 1]).

Proposition 8.7. Let Γ ⊂ PSL2(C) be a Kleinian group whose set of discontinuity
contains the point [1 : 0] ∈ P1. Then the series∑

g̃∈Γ̃∗

‖C−1
g ‖

δ

is convergent for any δ ≥ 4. Thus Γ satisfies (♣) and (♠).
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Proof. By our choice of coordinates on P1, we see that cg , 0 for g , 1 and
{ag/cg}g, {bg/cg}g, {dg/cg}g are uniformly bounded. Since

Cg =

(
agc2

g 2agcgdg + bgc2
g

c3
g 3c2

gdg

)
= c3

g

(
ag/cg 2agdg/c2

g + bg/cg

1 3dg/cg

)
,

we see that
‖C−1

g ‖ ≤ M| det Cg|
−1|cg|

3 = M|cg|
−1

holds for some M > 0. It is well known that, for Kleinian groups, the series
∑

g∈Γ∗ |cg|
−4

is convergent [11, Theorem II.B.5]. Hence we have the proposition. �

Compact quotients. As an application of Theorem 7.11, we obtain the following
theorem.

Theorem 8.8. If Γ is convex-cocompact1, then (P3 \ Λ(Γ̃))/Γ̃ is compact.

Proof. Let Γ ⊂ SL2(C) be a convex-cocompact Kleinian group. It is known
that every limit point of a convex-cocompact group is a point of approximation
[5, Definitions 4.43, 4.71 and 4.76]. We can assume, further, that Γ is torsion free
without loss of generality. By Theorem 7.11, it is enough to show that the set F̄
defined by (7.3) is a compact subset contained in Ω(Γ̃). If ∆̄ is contained in Ω(Γ̃),
then the quotient Ω(Γ̃)/Γ̃ becomes compact, since F̄ ⊂ ∆̄ and ∆̄ is compact. Thus it
sufficient to show the following proposition. �

Proposition 8.9. Any limit line does not intersect ∆̄.

Proof. Let `λ be any limit line, which is the tangent line to C at τ([λ : 1]), λ = [λ : 1] ∈
ΛP1 . More explicitly, `λ is given by z′ = Lλz′′, where z = [z′ : z′′] ∈ P3 and

Lλ =

(
3λ2 −2λ3

2λ −λ2

)
.

Recall that every limit point of Γ is a point of approximation. Hence, there is a
sequence {gm} of distinct elements of Γ and a constant δ > 0 such that

|gm(λ) − gm(∞)| ≥ δ (8.7)

for any m. Let

gm =

(
am bm

cm dm

)
∈ SL2(C).

The inequality (8.7) is equivalent to∣∣∣∣∣amλ + bm

cmλ + dm
−

am

cm

∣∣∣∣∣ ≥ δ.
This implies that

|cm(cmλ + dm)| ≤ δ−1. (8.8)

1Geometrically finite and no parabolic elements [5, page 95].

https://doi.org/10.1017/S1446788718000344 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788718000344


28 M. Kato [28]

Since ∞ = [1 : 0] ∈ ΩP1 , we know that limm→∞ |cm| =∞. Hence, it follows from (8.8)
that

lim
m→∞

|cmλ + dm| = 0, lim
m→∞

|cm(cmλ + dm)2| = 0. (8.9)

Again, since∞ = [1 : 0] ∈ Ω(Γ), there is a positive constant M such that∣∣∣∣∣amλ + bm

cmλ + dm

∣∣∣∣∣ ≤ M,
∣∣∣∣∣am

cm

∣∣∣∣∣ ≤ M.

Hence, also
lim

m→∞
|amλ + bm| = 0 (8.10)

and
lim

m→∞
|am(cmλ + bm)2| = 0. (8.11)

Put

τ̃∗(gm) =

(
Am Bm

Cm Dm

)
. �

Lemma 8.10. limm→∞ ‖CmLλ + Dm‖ = 0.

Proof. We calculate the components of CmLλ + Dm. Put CmLλ + Dm =
( α11 α12
α21 α22

)
. Then

α11 = am(cmλ + dm)2 + 2(amλ + bm)cm(cmλ + dm)

α12 = (amλ + bm)(cmλ + dm)2 − amλ(cmλ + dm)2 − 2(amλ + bm)cmλ(cmλ + dm)

α21 = 3cm(cmλ + dm)2

α22 = (cmλ + dm)3 − 3cmλ(cmλ + dm)2.

Then
lim

m→∞
αi j = 0

follows easily from (8.9), (8.10) and (8.11). �

Proof of the Proposition (continued). Suppose that `λ ∩ ∆̄ contains a point
a = [a′ : a′′] ∈ P3, where a′ = Lλa′′. Then,

‖(CgLλ + Dg)a′′‖ ≥ ‖a′′‖

for any g ∈ Γ. Since a′′ , 0, this contradicts Lemma 8.10. �

Remark 8.11. The condition that Γ should not contain parabolic elements is
indispensable. Indeed, the group Γ̃ induced by the rank two abelian group Γ = {τ1, τ2},
τ1(z) = z + 1, τ2(z) = z + i, gives a counter example.
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8.2.2. Kleinian groups acting on a quadric surface. Let S ∈ P3 be the quartic
surface S : z0z3 − z1z2 = 0, and let

q : P1 × P1 → S

be the Segre map q([u0 : u1], [v0 : v1]) = [u0v0 : u0v1 : u1v0 : u1v1]. We consider the
case where a subgroup Γ ⊂ PSL2(C) acts trivially on the second component of P1 × P1.
This case was studied by Fujiki [2] and Guillot [3]. Here we shall reprove a theorem
of Fujiki, as an application of Theorem 7.11.

Then the Segre map q defines a group representation

q∗ : Γ→ PGL4(C),

which is induced by the following commutative diagram.

P1 × P1 q
−→ P3

g × 1 ↓ ↓ q∗(g)
P1 × P1 q

−→ P3

Explicitly, for g = ±
( a b

c d
)
∈ PSL2(C), g̃ = q∗(g) is given by

g̃ = ±

(
aI bI
cI dI

)
∈ PGL4(C), (8.12)

where I denotes the identity matrix of size two.

Limit sets. Let Γ ⊂ PSL2(C) be a Kleinian group whose set of discontinuity ΩP1

contains [1 : 0] ∈ P1. Put ΛP1 = P1 \ΩP1 and Γ̃ = q∗(Γ).

Proposition 8.12. The limit set of Γ̃ is given by

Λ(Γ̃) = q(ΛP1 × P1).

Thus Γ̃ is of type L and satisfies (♣) and (♠).

Proof. As in Section 8.2.1, we embed Gr(2, 4) into P5 = P(∧2C4), and we consider the
group homomorphism

ρ̄ : PGL4(C)→ PGL6(C).

Let g = ±
( a b

c d
)
∈ PSL2(C). With respect to the basis

{e0 ∧ e1, e0 ∧ e2, e0 ∧ e3, e1 ∧ e2, e1 ∧ e3, e2 ∧ e3}

of ∧2C4 = C6, the matrix

G(a, b, c, d) :=



a2 0 ab −ab 0 b2

0 1 0 0 0 0
ac 0 ad −bc 0 bd
−ac 0 −bc ad 0 −bd

0 0 0 0 1 0
c2 0 cd −cd 0 d2


∈ SL4(C)
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represents ρ̄(g̃) ∈ PGL6(C). Let {γn} ⊂ Γ be a normal sequence. Let

gn =

(
an bn

cn dn

)
∈ SL2(C) for all n = 1, 2, . . .

be a sequence of representatives of {γn}. Since [1 : 0] ∈ ΩP1 , {c−1
n gn} converges to a

matrix of the form h =
( µ −λµ

1 −λ
)
∈ M2(C), λ, µ ∈ C. Letting Gn = c−2

n G(an, bn, cn, dn), we
calculate the limit: that is,

G := lim
n

Gn =



µ2 0 −λµ2 λµ2 0 λ2µ2

0 0 0 0 0 0
µ 0 −λµ λµ 0 λ2µ

−µ 0 λµ −λµ 0 −λ2µ

0 0 0 0 0 0
1 0 −λ λ 0 λ2


.

Thus G defines a projection to a single point,

P5 \ H → I = {[µ2 : 0 : µ : −µ : 0 : 1]},

where H is the four-plane defined by

H = {ζ ∈ P5 : ζ0 − λζ2 + λζ3 + λ2ζ5 = 0}.

Note that I is contained in Gr(2, 4) and corresponds to the line

( µe0 + e2) ∧ (µe1 + e3) = {z′ = µz′′} (8.13)

in P3. This line coincides with q([µ : 1] × P1). That Γ̃ satisfies (♣) and (♠)
follows from (8.12) and the fact that

∑
g∈Γ∗ |cg|

−4 < +∞ in the Kleinian group theory
[11, Theorem II.B.5]. �

Compact quotients. As an application of Theorem 7.11, we have the following
theorem.

Theorem 8.13 [2]. If Γ is convex-cocompact, then (P3 \ Λ(Γ̃))/Γ̃ is compact.

Proof. The outline of the proof is the same as that of Theorem 8.8. As in that proof, it
is sufficient to prove the following proposition. �

Proposition 8.14. Any limit line does not intersect ∆̄.

Proof. A limit line `λ is given by z′ = λz′′ by (8.13), where [λ : 1] ∈ P1 is the limit point
of Γ. Now suppose that there exits a limit line `λ such that `λ ∩ ∆̄ is nonempty. Take
a point [a′ : a′′] ∈ `λ ∩ ∆̄. Then, by a′ = λa′′, g̃ =

( agI bgI
cgI dgI

)
and ‖Cga′ + Dga′′‖ ≥ ‖a′′‖,

we have ‖(cgλ + dg)a′′‖ ≥ ‖a′′‖ for any g ∈ Γ. Since a′′ , 0, this contradicts (8.9). �
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8.2.3. Kleinian groups acting on a cone over a conic. For the moment, we have
only a very simple example of type L in this case. Many discrete subgroups acting on
the cone can be constructed by the method used in [9, page 278]. It is plausible that
some of them are of type L, but their canonical quotients will be noncompact.

Example 8.15. Let Γ ⊂ SL4(C) be an infinite cyclic group generated by

g =


α2 0 0 0
0 1 0 0
0 0 α−2 0
p q r 1

 for |α| > 1.

With respect to the basis

{e0 ∧ e1, e0 ∧ e2, e1 ∧ e2, e0 ∧ e3, e1 ∧ e3, e2 ∧ e3},

we have

ρ(gn) =



α2n 0 0 0 0 0
0 1 0 0 0 0
0 0 α−2n 0 0 0

nα2nq
1 − α2n

α−2 − 1
r 0 α2n 0 0

−
α2n − 1
α2 − 1

p 0
α−2n − 1
α−2 − 1

r 0 1 0

0 −
1 − α−2n

α2 − 1
p −nα−2nq 0 0 α−2n


∈ PGL6(C).

This implies that the limit image of the sequence {ρ(gn)}, n→ +∞/−∞, is a point if
and only if q , 0. If q , 0, there are exactly two limit lines, which are

`1 = e0 ∧ e3 and `2 = e2 ∧ e3.

Thus Γ is of type L if and only if q , 0. The cone S = {z0z2 − z2
1 = 0} contains `1 and `2,

and they are invariant by Γ. Note that the quotient space Ω(Γ)/Γ = (P3 \ {`1 ∪ `2})/Γ
contains a noncompact surface (S \ {`1 ∪ `2})/Γ as a closed submanifold, which is
a C-bundle over the elliptic curve C∗/〈α〉. Therefore Ω(Γ)/Γ is not compact. The
group satisfies (♣) and (♠) with respect to a new system [w] of coordinates, such as
w0 = z0 + z1 − z2 − z3,w1 = −z0 + z1 + z2 − z3,w2 = z0 − z1 + z2 + z3,w3 = z3.
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