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THE GROUPS OF THE REGULAR STAR-POLYTOPES

With best wishes to H. S. M. (Donald) Coxeter for his 90th birthday

PETER MCMULLEN

ABSTRACT. The regular star-polyhedron f5Ò 5
2g is isomorphic to the abstract poly-

hedron f5Ò 5 j3g, where the last entry “3” in its symbol denotes the size of a hole,
given by the imposition of a certain extra relation on the group of the hyperbolic hon-
eycomb f5Ò 5g. Here, analogous formulations are found for the groups of the regular
4-dimensional star-polytopes, and for those of the non-discrete regular 4-dimensional
honeycombs. In all cases, the extra group relations to be imposed on the corresponding
Coxeter groups are those arising from “deep holes”; thus the abstract description of
f5Ò 3kÒ 5

2g is f5Ò 3kÒ 5 j3g for k = 1 or 2. The non-discrete quasi-regular honeycombs in
E3, on the other hand, are not determined in an analogous way.

1. Introduction. The regular 4-dimensional star-polytopes were discovered by
Schläfli and Hess in the last century (we refer the reader to [2] for historical details).
They all share the symmetry group of the regular convex polytope f3Ò 3Ò 5g, which is the
Coxeter group [3Ò 3Ò 5], and so in one sense there is nothing more to be said about them.
However, Coxeter observed in [1] that the regular star-polyhedron f5Ò 5

2g is isomorphic
to the abstract regular polyhedron f5Ò 5 j3g. This is obtained from the regular hyperbolic
honeycomb f5Ò 5g by a certain identification, which forces some three of its edges to
form a “hole” (we shall be more precise in Section 3).

In this paper, we investigate the regular 4-dimensional star-polytopes in the same
spirit. We shall show that, regarded as abstract regular polytopes (see, for example,
[9, 11, 13] for background material), they fall into two classes. Those which contain
f5Ò 5

2g or its dual as a facet or vertex-figure inherit their group structure from the
lower-dimensional components; for example, f3Ò 5Ò 5

2g is isomorphic to the universal
regular polytope

n
f3Ò 5gÒ f5Ò 5 j3g

o
. The two remaining examples, which are dual (and

combinatorially self-dual), are obtained by identifications from the corresponding regular
hyperbolic honeycomb, which again forces some three of its edges to form a “deep
hole”; thus f5Ò 3Ò 5

2g is isomorphic to an abstract regular polytope, which will be denoted
f5Ò 3Ò 5 j3g.

A similar pattern is maintained for the non-discrete regular honeycombs in E4. That
is, all these honeycombs are universal amalgamations (in the sense of [16]) of their facets
and vertex-figures in the expected way, except that f5Ò 3Ò 3Ò 5

2g and its dual are isomorphic
to an abstract regular 5-apeirotope which is denoted f5Ò 3Ò 3Ò 5 j3g. The problem which
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arises here is that the groups are infinite, so that proving universality poses a certain
challenge.

A contrast is provided by the closely related non-discrete quasi-regular honeycombs
in E3. For example, the honeycomb (

5Ò35
2

)

occurs as a cut of f5Ò 3Ò 3Ò 5
2g. But this honeycomb is not determined by the extra relation

on (
5Ò3

5

)

which forces f5Ò 5g 7! f5Ò 5 j3g ≤ f5Ò 5
2g, even though the same relation applied to the

corresponding cut of f5Ò 3Ò 3Ò 5g does collapse it onto f5Ò 3Ò 3Ò 5
2g. In other words, the cut

here is not universal in the sense of [12, Section 3].

2. Abstract regular polytopes. We shall discuss regular polytopes here largely on
the geometric level, and so we shall pay little attention to the underlying theory of abstract
regular polytopes. For this, we refer the reader to, for example, [10], and the forthcoming
monograph [13]. Except in Section 7, we shall work exclusively in euclidean spaces;
hence our polytopes will always be realized in the sense of [6, 8] (if we slightly extend
the definition to permit realizations in hyperbolic spaces as well). These polytopes may
be thought of as “classical”, because for the most part they were the object of the central
text [2].

For our purposes, an n-polytope P consists of faces of each dimension 0, 1,    , n�1;
we also talk about vertices for 0-faces, edges for 1-faces, and, for a k-polytope, its facets
and ridges will be faces of codimension 1 and 2, respectively. (Strictly speaking, we
should use the term “rank” instead of “dimension”, but here the concepts will coincide.)
We may think of a polytope as built up recursively: each face is composed of its facets,
and these fit two around each ridge. Two faces of P , one of which contains the other,
are called incident. Under inclusion, P is a partially ordered set; in fact, in all instances
here, it will be a lattice, if we adjoin two improper faces, a unique minimum F�1 and
maximum Fn.

It may happen that P is infinite; we then often refer to P as an apeirotope. In this
case, P will sit naturally in an (n� 1)-dimensional space; it may or may not be discrete.
The terms polygon or apeirogon will also be used for a 2-polytope, and polyhedron or
apeirohedron for a 3-polytope.

For two faces F and G of P with F � G (here we allow improper faces), the family
GÛF := fJ 2 P j F � J � Gg is called a section of P ; it is the lattice of faces of
a polytope of dimension dim G � dim F � 1. The most important case is when F = v
(= F0) is a vertex and G = Fn is the maximal improper face; in this case, FnÛv is the
vertex-figure of P at v. Geometrically, we shall always be able to think of a vertex-figure
as follows: the vertices of FnÛv will be the other vertices w of edges of P which contain
v; the j-faces of FnÛv will then be the vertex-figures, in the obvious recursive sense, of
the ( j + 1)-faces of P which contain v.
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A flag of an n-polytope P is a set à = fF0ÒF1Ò    ÒFn�1g of mutually incident faces
(the convention is that Fj has dimension j). In view of the recursive formulation above,
for each j = 0Ò    Ò n � 1, there is a unique flag which differs from à in its j-face; we
denote this flag by à j, and say that it is adjacent to à. The technical conditions for a
poset P to be a polytope are then that every chain Gj(1) Ú Ð Ð Ð Ú Gj(s) of faces of P
be contained in a flag, that the adjacent flag à j to à be unique, and that P is strongly
flag-connected, meaning that, if à and â are any two flags, then they can be joined by
some sequenceà = à0Ò à1Ò    Ò àk = â of flags, each containingà\â, and such that ài

is adjacent to ài�1 for each i = 1Ò    Ò k.
The symmetry group Ä(P ) consists of the isometries of the ambient space which take

P into itself (that is, which permute its faces of each dimension); again, we frequently
confuse this with its (abstract) automorphism group, since the action of the symmetry
group will necessarily be faithful; in any event, we often refer merely to the group of P .
We then call P regular if Ä(P ) is transitive on the family F (P ) of flags of P .

Let à := fF0Ò    ÒFn�1g be a fixed or base flag of P ; its faces are also called the base
faces. It is easy to show (see, for example, [9, 10, 13]) that the group Ä(P ) of a regular
n-polytope P is generated by distinguished generators ö0Ò    Ò ön�1 (with respect to à),
where öj is the unique automorphism such that à j = àöj for j = 0Ò    Ò n � 1. These
generators satisfy relations (öjök)pjk = ¢ for 0 � j � k � n� 1, where

pjk =

8><
>:

1Ò if j = k,
pk ½ 3Ò if j = k � 1,
2Ò if j � k � 2.

(2.1)

Further, Ä(P ) has the intersection property (with respect to the distinguished generators),
namely, if IÒ J ² f0Ò    Ò n � 1g, then

höj j j 2 Ii \ höj j j 2 Ji = höj j j 2 I \ Ji(2.2)

The numbers pk := pk�1Òk (k = 1Ò    Ò n� 1) determine the (Schläfli) type f p1Ò    Ò pn�1g
of P .

Observe that, in a natural way, the group of the base facet of P is hö0Ò    Ò ön�2i,
while that of the vertex-figure at the base vertex is hö1Ò    Ò ön�1i. (By the way, we shall
usually refer to the facet or the vertex-figure of a regular polytope, since all the facets
or vertex-figures are equivalent.) Further, the given conditions are easily seen to imply
that the group Ä(P ) is simply transitive on the flags of P , so that there is a one-to-one
correspondenceâ $ ç between flags and group elements, given by â = àç.

By a string C-group, we mean a group with generators öj which satisfy (1) and (2). The
group of a regular polytope is a string C-group. Conversely, given a string C-group, there
is an associated (abstract) regular polytope of which it is the automorphism group ([10]).
In verifying that a given group is a C-group, it is usually only the intersection property
which causes difficulty. Note that Coxeter groups are examples of C-groups (see [10, 17]).
For abstract regular polytopes, we may have pj = 2 for some j; this leads to polytopes
which we can think of as degenerate. In the present context, the fact that the groups will
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be generated by hyperplane reflexions will ensure that the intersection property must
hold, and so they will automatically be C-groups.

The identification of regular polytopes with string C-groups shows that presentations
of groups play an important rôle. (For the time being, we are discussing regular polytopes
on the abstract level, but this context provides the appropriate language.) While in practice
we do usually work with the groups, it is very convenient to have some alternative
notation. Let P be a regular polytope, with group Ä := Ä(P ) = hö0Ò    Ò ön�1i as above,
where the öj are the distinguished generators associated with the base flagà. Now for any
flag â, any j = 0Ò    Ò n � 1 and any ç 2 Ä, we clearly have â jç = (âç) j . In particular,
(àç) j = àjç = àöjç, and it follows that

àöj(1)öj(2) Ð Ð Ð öj(m) = àj(m)ÐÐÐj(2)j(1)Ò

for any j(1)Ò    Ò j(m) 2 f0Ò    Ò n�1g. In other words, an elementç = öj(1)öj(2) Ð Ð Ð öj(m) 2
Ä corresponds to an adjacency sequence w = j(m) Ð Ð Ð j(2)j(1). Note that ç�1 then cor-
responds to the reverse sequence w�1 := j(1)j(2) Ð Ð Ð j(m). More particularly, a relation
on Ä corresponds to an adjacency cycle; such a cycle may be started at any point in
the sequence, which corresponds to conjugacy or a different choice of the base flag, or
reversed, since each öj is an involution. Thus a relation öj(1)öj(2) Ð Ð Ð öj(m) = ¢ in Ä corre-
sponds to the adjacency cycles j(m) Ð Ð Ð j(2)j(1), j(1)j(2) Ð Ð Ð j(m), j(2) Ð Ð Ð j(m)j(1), and so
on.

There is an obvious equivalence relation on adjacency sequences, corresponding to
conjugacy of group elements. In particular, equivalent sequences can be obtained by
inserting or deleting terms such as ( jk)pjk ; we may also allow equivalence modulo other
(previously) known adjacency cycles. Similarly, if w is an adjacency cycle, then so
is s�1ws for any adjacency sequence s. However, since we work below with mixing
operations (that is, changing generators), for the reader’s convenience we shall keep to
group elements when manipulating relations.

Now suppose that Q is a quotient polytope of P , so that Q is also a regular n-
polytope, whose group Ä(Q ) is a quotient Ä(P )ÛÜ of Ä(P ) by some normal subgroup
Ü. IfÜ is the normal closure of the relators in Ä(P ) associated with the adjacency cycles
w1Ò    Òwm, then we shall use the notation

Q := PÛhhw1Ò    Òwmii(2.3)

For the most part, P will be the universal polytope f p1Ò    Ò pn�1g with a given Schläfli
symbol; we shall postpone until later examples of the notation. Observe, though, one
advantage of the notation—it avoids having to use circumlocutions such as “the polytope
whose group is the Coxeter group [ p1Ò    Ò pn�1] = hö0Ò    Ò ön�1i, with the additional
relations    ”; in other words, it is independent of any notation for the underlying group.

Given regular n-polytopes P and Q such that the vertex-figure of P is isomorphic to
the facet of Q , we denote by hP ÒQ i the class of all regular (n + 1)-polytopes R with
facet isomorphic to P and vertex-figure isomorphic to Q . If hP ÒQ i 6= ;, then any such
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R is a quotient of a universal member of hP ÒQ i; this universal polytope is denoted by
fP ÒQ g (see [10, 13, 15, 16]). In practical terms, universality means that no additional
relations are imposed on the resulting automorphism group of the polytope other than
those inherited from the groups of the facet and vertex-figure. The determination of
whether, for given P and Q , the universal fP ÒQ g exists, and if it does whether it is
finite, are central questions in the theory of abstract regular polytopes.

We end the general discussion of regular polytopes and their groups with a useful
remark. Let Ä = hö0Ò    Ò ön�1i be the group of a regular n-polytope P , and suppose that
ç 2 Ä. Then we can express ç in the form

ç = ã0ö0ã1ö0 Ð Ð Ð ãm�1ö0ãmÒ

with ãi 2 Ä0 := hö1Ò    Ò ön�1i, the group of the vertex-figure of P at its base vertex
v := F0, for i = 0Ò    Òm. With ç, we can associate a path in P with m edges leading
from v to vç. If m = 0, the path consists of v (= vã0) alone. For m Ù 0, let (E0

1Ò    ÒE0
m�1)

be an edge-path associated with ã0ö0ã1ö0 Ð Ð Ð ãm�1. With ç is then associated the path
(E1Ò    ÒEm), given by

Ei :=
(

Eãm (= Eö0ãm)Ò if i = 1,
E0

i�1ö0ãm if i = 2Ò    Òm,

where E := F1 is the base edge of P . Of course, this path will not generally be unique,
since it depends on the particular expression for ç.

Conversely, an edge-path (E1Ò    ÒEm) from v corresponds to such an element ç 2 Ä,
in which ö0 occurs m times. If m Ù 0, then there is an ãm 2 Ä0 such that E1 = Eãm. The
shorter path (E0

1Ò    ÒE0
m�1), given by

E0
i := Ei+1ã�1

m ö0

for i = 1Ò    Òm � 1, also starts at v, and we can repeat to obtain ç as above, with a free
choice of ã0.

In the context of group presentations, we deduce the following, whose condition is
called the circuit criterion.

PROPOSITION 2.4. Let P be a regular polytope. Then the group Ä = Ä(P ) of P
is determined by the group of its vertex-figure, and the relations on the distinguished
generators of Ä induced by the edge-circuits of P which contain the initial vertex.

PROOF. A relation on Ä can be written in the form

ã0ö0ã1ö0 Ð Ð Ð ãm�1ö0 = ¢Ò

with ãi 2 Ä0 for i = 0Ò    Òm � 1, which corresponds to an edge-circuit starting and
ending at v. Conversely, such an edge-circuit is equivalent under Ä0 to one beginning
with E, and this gives rise to a relation as above (now the element ã0 will be determined
by the circuit). This is the result.
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3. Deep holes. We first consider the finite regular star-polytopes in E4. Our aim
is to give presentations for their symmetry groups in terms of the natural generators.
However, our starting point is Coxeter’s observation in [1] thatn

5Ò 5
2

o
≤ f5Ò 5 j3g

We must begin by explaining and generalizing this notation.
For any n ½ 2, the Coxeter group [ p1Ò    Ò pn�1] has the presentation

[ p1Ò    Ò pn�1] :=
D
ö0Ò    Ò ön�1 j (öjök)pjk = ¢(0 � j � k � n� 1)

E
Ò

where the relations of (2.1) hold, namely

pjk =

8><
>:

1Ò if j = k,
pkÒ if j = k � 1,
2Ò if j � k � 2.

A Coxeter group has to satisfy the intersection property (2.2). We shall always use this no-
tation; in the sense of Section 2, the öj are the distinguished generators of [ p1Ò    Ò pn�1].

We now define a new group [ p1Ò    Ò pn�1 jh] by imposing on [ p1Ò    Ò pn�1] the
single extra relation

(ö0ö1 Ð Ð Ð ön�1ön�2 Ð Ð Ð ö1)h = ¢
If this new group is indeed a C-group in the sense of Section 2 (and in our applica-
tions, we may take this for granted), then we denote the associated regular polytope by
f p1Ò    Ò pn�1 jhg. In other words, in terms of the notation we introduced in Section 2,

f p1Ò    Ò pn�1 jhg := f p1Ò    Ò pn�1gÛ
DD�

01 Ð Ð Ð (n � 2)(n � 1)(n � 2) Ð Ð Ð 1
�hEE

We observe that the extra relation is preserved under duality, so that the dual polytope
is f pn�1Ò    Ò p1 jhg. Henceforth, we shall only consider one out of each dual pair of
polytopes.

If n = 3, the extra group relation has an appealing geometric interpretation. Edge-
paths in the polyhedron P := f pÒ q jhgwhich leave vertices by the next edge from which
they entered obviously trace out faces f pg of P . Edge-paths which leave by the second
edge similarly trace out a polygon fhg, which is called a hole. The polyhedron P is
completely determined by its Schläfli type f pÒ qg, and its hole fhg.

For larger n, the geometry is usually less intuitive, though by Proposition 2 the relation
still gives the length h of a certain edge-circuit in the polytope, which we shall call a
deep hole. (In this case, the associated edge-circuit is fairly clear, since the relation gives
the period of the product of ö0, which interchanges the two vertices of the base edge E,
with a certain conjugate of ön�1, which leaves fixed the base vertex v of E.)

The following result is one to which we shall frequently appeal. Ifå and ç are elements
of a group, we shall write å ™© ç to mean that å and ç commute (that is, åç = çå). We
also denote by ¾ conjugacy in a group.

LEMMA 3.1. Let Ä be a group, and let ö, õ and ú 2 Ä be involutions such that
(öõ)3 = ¢ and ö ™© ú. Then

öõúõ ¾ õú
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PROOF. The proof is easy. We have

öõúõ ¾ õöõú
= öõöú
= öõúö
¾ õúÒ

as claimed.
There is an important special case of holes, which is a corollary of Lemma (3.1), to

whose proof we shall need to refer later. Here and elsewhere, we denote by rk a string
rÒ    Ò r of length k.

COROLLARY 3.2. The deep hole of an n-polytope of type f3n�2Ò qg is a q-gon fqg.

PROOF. This result follows from applying Lemma (3.1) n� 2 times. We obtain

ö0ö1 Ð Ð Ð ön�2ön�1ön�2 Ð Ð Ð ö1 ¾ ön�2ön�1Ò

which proves the corollary.
More generally, when p2 = Ð Ð Ð = pn�2 = 3, so that the facet f p1Ò 3Ò    Ò 3g is simple

when it is finite, then we have the following picture of the deep hole. When two facets
FÒF0 of the polytope P (say) meet on a common (n � 2)-face G containing a vertex v,
there are two edges of P through v which do not lie in G, one in F, and the other in F0.
At the other end of the edge in F0 is another (n � 2)-face G0, and then a further edge in
a facet F00 which meets F0 in G0. We can continue in this way, and the deep hole is then
the resulting polygon. The general picture is only a little more complicated than this, but
we shall not encounter it.

We shall see below how deep holes occur in the regular star-polytopes and hon-
eycombs. However, let us first give one example in a different context. For s ½ 2, the
regular toroidal (n+1)-polytope f4Ò 3n�2Ò 4g(sÒ0n�1) is obtained from the cubic honeycomb
f4Ò 3n�2Ò 4g, whose vertices are all vectors with integer cartesian coordinates in En, by
identification under the lattice generated by (sÒ 0n�1) and its images under permutation
of coordinates. Comparison with [12, Theorem 3.2] shows that an alternative notation
for this polytope is f4Ò 3n�2Ò 4 j sg.

4. Regular star-polytopes. As we said in Section 3, we need only consider one of
each pair of dual polytopes. Further, the regular (or quasi-regular) star-polytopes and
honeycombs in E3 and E4 occur in isomorphic pairs, obtained by interchanging 5 and 5

2 in
their Schläfli symbols, and so we may also confine our attention to one of each such pair.
(In fact, we shall implicitly verify this isomorphism in the section.) As a result, the only
(finite) 4-dimensional polytopes we need look at are f3Ò 5Ò 5

2g, f5Ò 5
2 Ò 5g and f5Ò 3Ò 5

2g.
The regular star-polytopes are abstractly described by

THEOREM 4.1. The regular 4-dimensional star-polytopes satisfy the following iso-
morphisms:
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(a) f3Ò 5Ò 5
2g ≤

n
f3Ò 5gÒ f5Ò 5 j3g

o
= f3Ò 5Ò 5gÛhh(1232)3ii;

(b) f5Ò 5
2 Ò 5g ≤

n
f5Ò 5 j3gÒ f5Ò 5 j3g

o
= f5Ò 5Ò 5gÛhh(0121)3Ò (1232)3ii;

(c) f5Ò 3Ò 5
2g ≤ f5Ò 3Ò 5 j3g.

PROOF. All these polytopes have groups isomorphic to [3Ò 3Ò 5] = hö0Ò ö1Ò ö2Ò ö3i,
with the convention introduced in Section 3. We therefore choose new generators for
[3Ò 3Ò 5], guided by the process of systematic vertex-figure replacement described in [5];
the dissection theorems of [4] are also relevant in this context. In each case, we shall have
an invertible (mixing) operation (ö0Ò ö1Ò ö2Ò ö3) 7! (õ0Ò õ1Ò õ2Ò õ3) in the sense of [10].

(a) The first operation is

(ö0Ò ö1Ò ö2Ò ö3) 7! (ö0Ò ö1Ò ö2ö3ö2Ò ö3) =: (õ0Ò õ1Ò õ2Ò õ3)

Most of the relations satisfied by the new generators are obvious (for example, they
are all involutions), and so we concentrate on those which are not. We first observe that
õ2õ3 = (ö2ö3)2, reflecting the change from 5 to 5

2 in the Schläfli symbol; thus (õ2õ3)5 = ¢.
Further,

õ1õ2 = ö1ö2ö3ö2 ¾ ö2ö3Ò

by Lemma (3.1), since (ö1ö2)3 = ¢.
The inverse operation is

(õ0Ò õ1Ò õ2Ò õ3) 7! (õ0Ò õ1Ò õ2õ3õ2õ3õ2Ò õ3) = (ö0Ò ö1Ò ö2Ò ö3)

It follows that the automorphism group Ä(f3Ò 5Ò 5
2g) of f3Ò 5Ò 5

2g is obtained from the
Coxeter group [3Ò 5Ò 5] by imposing the single extra relation arising from (ö1ö2)3 = ¢.
Now

ö1ö2 = õ1õ2õ3õ2õ3õ2

= õ1õ3õ2õ3õ2õ3

= õ3õ1õ2õ3õ2õ3

¾ õ1õ2õ3õ2

Here we have used (õ2õ3)5 = ¢. That is,

n
3Ò 5Ò 5

2

o
≤ f3Ò 5Ò 5gÛhh(1232)3ii =

n
f3Ò 5gÒ f5Ò 5 j3g

o
Ò

as claimed.
(b) The next operation is

(ö0Ò ö1Ò ö2Ò ö3) 7! (ö0Ò ö1ö2ö3ö2ö1Ò ö3Ò ö2) =: (õ0Ò õ1Ò õ2Ò õ3)

We observe that
õ0õ1 = ö0ö1ö2ö3ö2ö1 ¾ ö2ö3Ò
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by two applications of Lemma (3.1) (compare Corollary (3.2)). Next,

õ1õ2 = ö1ö2ö3ö2ö1ö3

= ö1ö2ö3ö2ö3ö1

¾ (ö2ö3)2

As before, this reflects the change from 5 to 5
2 in the Schläfli symbol. Finally

õ1õ3 = ö1ö2ö3ö2ö1ö2

= ö1ö2ö3ö1ö2ö1

= ö1ö2ö1ö3ö2ö1

= ö2ö1ö2ö3ö2ö1

= õ3õ1

The inverse operation is

(õ0Ò õ1Ò õ2Ò õ3) 7! (õ0Ò õ3õ2õ1õ2õ1õ2õ3Ò õ3Ò õ2) = (ö0Ò ö1Ò ö2Ò ö3)

It thus follows that Ä(f5Ò 5
2 Ò 5g) is obtained from [5Ò 5Ò 5] by imposing the two extra

relations arising from (ö0ö1)3 = ¢ = (ö1ö2)3. Now

ö0ö1 = õ0õ3õ2õ1õ2õ1õ2õ3

= õ3õ2õ0õ1õ2õ1õ2õ3

¾ õ0õ1õ2õ1Ò

while

ö1ö2 = õ3õ2õ1õ2õ1õ2õ2
3

= õ3õ2õ1õ2õ1õ2

= õ3õ1õ2õ1õ2õ1

= õ1õ3õ2õ1õ2õ1

¾ õ3õ2õ1õ2

¾ õ1õ2õ3õ2

That is, f5Ò 5
2 Ò 5g ≤ f5Ò 5Ò 5gÛhh(0121)3Ò (1232)3ii =

n
5Ò 5 j3gÒ f5Ò 5 j3g

o
, as claimed.

Notice that we have used (õ1õ2)5 = ¢ here.
(c) The final operation is

(ö0Ò ö1Ò ö2Ò ö3) 7! (ö0Ò ö1ö2ö3ö2ö1Ò ö3ö2ö3Ò ö2) =: (õ0Ò õ1Ò õ2Ò õ3)

We see that

õ0õ1 = ö0ö1ö2ö3ö2ö1

¾ ö2ö3Ò
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as in case (b). Next,

õ0õ2 = ö0ö3ö2ö3

= ö3ö2ö3ö0

= õ2õ0

Then we have

õ1õ2 = ö1ö2ö3ö2ö1ö3ö2ö3

= ö1ö2ö3ö2ö3ö1ö2ö3

¾ ö1ö2ö3ö1ö2ö3ö2ö3

= ö1ö2ö1ö3ö2ö3ö2ö3

= ö2ö1ö2ö3ö2ö3ö2ö3

¾ ö1ö2ö3ö2ö3ö2ö3ö2

= ö1ö3ö2ö3

= ö3ö1ö2ö3

¾ ö1ö2

We also have õ1õ3 = õ3õ1 as in case (b), and õ2õ3 = (ö3ö2)2 ¾ (ö2ö3)2, so that
(õ2õ3)5 = ¢.

The inverse operation is

(õ0Ò õ1Ò õ2Ò õ3) 7! (õ0Ò õ1õ2õ3õ2õ1õ2õ3õ2õ1Ò õ3Ò õ2õ3õ2õ3õ2) = (ö0Ò ö1Ò ö2Ò ö3)

It follows that Ä(f5Ò 3Ò 5
2g) is obtained from [5Ò 3Ò 5] by imposing the extra relations

arising from (ö0ö1)3 = ¢ = (ö1ö2)3. Now the second is given by (õ1õ2)3 = ¢; for the first,

ö0ö1 = õ0õ1õ2õ3õ2õ1õ2õ3õ2õ1

= õ0õ1õ2õ3õ1õ2õ1õ3õ2õ1

= õ0õ1õ2õ1õ3õ2õ3õ1õ2õ1

= õ0õ2õ1õ2õ3õ2õ3õ2õ1õ2

= õ2õ0õ1õ2õ3õ2õ3õ2õ1õ2

¾ õ0õ1õ2õ3õ2õ3õ2õ1

= õ0õ1õ3õ2õ3õ2õ3õ1

= õ3õ0õ1õ2õ3õ2õ1õ3

¾ õ0õ1õ2õ3õ2õ1

That is, f5Ò 3Ò 5
2g ≤ f5Ò 3Ò 5gÛhh(012321)3ii = f5Ò 3Ò 5 j3g, as claimed.

Let us emphasize that we have shown that f3Ò 5Ò 5
2g and f5Ò 5

2 Ò 5g are the universal
polytopes of their respective types; in particular, these universal polytopes exist, and
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are finite. Of course, f5Ò 3Ò 5
2g cannot be universal of type f5Ò 3Ò 5g, since the latter is

infinite. Finally, we observe that f5Ò 3Ò 5 j3g is (combinatorially) self-dual, so that the
dual polytopes f5Ò 3Ò 5

2g and f 5
2 Ò 3Ò 5g are isomorphic; this justifies our earlier assertion

that interchange of 5 and 5
2 in Schläfli symbols leads to isomorphic polytopes.

5. Three-dimensional honeycombs. In preparation for dealing with the non-dis-
crete regular honeycombs in Section 6, we now consider the non-discrete quasi-regular
honeycomb

Q :=
(

5
2 Ò

3
5

)

in E3, and its two related honeycombs

Q 0 :=
(

3Ò55
2

)
Ò Q 00 :=

(
5Ò35

2

)
Ò

with the same group. (Combinatorially, Q 0 is actually regular; it is of typen
f3Ò 5gÒ f5Ò 4g6

o
= f3Ò 5Ò 4gÛhh(123)6ii, though not, as we shall see, isomorphic to it.

As in, for example, [3], the notation f pÒ qgr ≤ f pÒ qgÛhh(012)rii refers to a polyhedron
of type f pÒ qg determined solely by the lengths of its Petrie polygons.)

We merely remark here on the rôle played by these honeycombs in the construction
of quasi-periodic tilings of E3; compare [7].

The generating reflexions ö0Ò    Ò ö3 of the symmetry group of Q are as follows. Let
ú := 1

2 (1 +
p

5) be the golden section. For j = 0Ò    Ò 3, the mirror of the reflexion öj

is the plane Hj := fx 2 E3 j hxÒ uji = ãjg, with uj a unit vector and ãj 2 R, so that
xöj = x + 2(ãj � hxÒ uji)uj for x 2 E3. Here we have ã0 = 1, ãj = 0 for j = 1Ò 2Ò 3, and

u0 = (1Ò 0Ò 0)Ò
u1 = 1

2 (�ú�1Ò �úÒ�1)Ò
u2 = (0Ò 0Ò 1)Ò
u3 = (0Ò 1Ò 0)

In other words, the group is that with Coxeter diagram

�
�
�
�

T
T
T
T

t t

t

t

5
2

5

0 1

2

3

The label “j” against a node denotes the reflexion öj.
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The three quasi-regular honeycombs have the same vertices and edges, and are related
to each other by replacement of (quasi-regular) vertex-figures with the same vertices and
groups. In fact, the following operations yield the groups of the other two. First,

(ö0Ò    Ò ö3) 7! (ö0Ò ö1ö3ö1Ò ö3Ò ö2) =: (õ0Ò    Ò õ3)

gives the group of Q 0; the inverse operation is

(õ0Ò    Ò õ3) 7! (õ0Ò õ1õ2õ1õ2õ1Ò õ3Ò õ2) = (ö0Ò    Ò ö3)

Second,
(ö0Ò    Ò ö3) 7! (ö0Ò ö1ö3ö1ö2ö1ö3ö1Ò ö3Ò ö2) =: (õ0Ò    Ò õ3)

gives the group of Q 00; the inverse operation is

(õ0Ò    Ò õ3) 7! (õ0Ò õ1õ3õ1õ3õ1õ2õ1õ3õ1õ3õ1õ2õ1õ3õ1õ3õ1Ò õ3Ò õ2) = (ö0Ò    Ò ö3)

We shall see in the course of proving Theorems (6.3) and (6.6) that the 4-dimensional
honeycomb f 5

2 Ò 3Ò 3Ò 5g has Q as a section; similarly, f3Ò 5Ò 5
2 Ò 3g has Q 0 as a section,

and f5Ò 3Ò 3Ò 5
2g has Q 00 as a section.

Using this description of the group, we see that we may take the vertices of the
icosidodecahedral vertex-figure of Q at its initial vertex o = (0Ò 0Ò 0) to be the cyclic
permutations of (š2Ò 0Ò 0) and (šúÒš1Ò šú�1), giving 6 + 24 = 30 points in all. Since
this vertex-figure is centrally symmetric, it easily follows that the complete vertex-set of
Q is the set É3 of the integer linear combinations of these 30 points.

LEMMA 5.1. The vertex-set É3 of Q is an additive subset of E3 of rank 6.

PROOF. This can be seen directly. However, the following approach is more trans-
parent. Consider the double-size integer lattice 2Z6 in E6, generated by the points 2ej

for j = 1Ò    Ò 6, where fe1Ò    Ò e6g is the standard basis of E6. The 12 points š2ej,
for j = 1Ò    Ò 6, are thus the vertices of a regular 6-crosspolytope C . There is obvi-
ously a (scaled) orthogonal projection, mapping these 12 vectors onto the 12 vertices of
the regular icosahedron J of edge-length 2ú�1, with vertices all cyclic permutations of
(š2Ò 0Ò š2ú�1) (the scaling factor is actually 21Û2ú�1Û251Û4; compare [14]). The comple-
mentary projection take the vectors onto another icosahedron, and we then deduce that
the additive group generated by the 12 vertices of J has rank 6. (If it had smaller rank,
then it would lift to a lattice of rank less than 6.)

Now the mid-points of the edges of J are the 30 points which generate É3. Since
these mid-points come from among the 60 mid-points šei š ej of the edges of C ,
which generate the lattice usually known as D6 (its points are those of Z6 with an even
sum), we see that É3 has rank at most 6. When we observe that the other 30 images of
the mid-points of the edges of C , namely the cyclic permutations of (š2ú�1Ò 0Ò 0) and
(š1Ò šú�1Ò šú�2), also lie in É3 (for instance, (2ú�1Ò 0Ò 0) = (ú�1Ò úÒ 1) � (�ú�1Ò úÒ 1)),
we conclude that the rank is exactly 6, as claimed.
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The circuit criterion of Proposition (2.4) says that we can find a presentation for the
group of Q from one of its vertex-figure, together with relations arising from its edge-
circuits. (The fact that the vertex-figure is quasi-regular, rather than regular, requires only
a trivial extension of the proposition.) Naturally, we look for basic circuits, corresponding
to the simplest relations which determine the group. A general relation in the group will
arise from concatenating basic circuits, by means of symmetric differences. In the present
case, since the edges are just the projections of those of the semi-regular honeycomb hé7

(in the notation of [2, p. 155]), it will suffice to determine the relations arising from the
equilateral triangular circuits, and those coming from the rhombs given by pairs of radii
(to vertices) of the icosidodecahedron, with angles ôÛ5, ôÛ3, 2ôÛ5 and ôÛ2.

A rhomb with angle ôÛ3 is clearly formed by concatenating two triangles. We must
thus consider the other three kinds.

LEMMA 5.2. The relations in Ä(Q ) which arise from the rhombs with angles ôÛ5,
2ôÛ5 and ôÛ2 are equivalent.

PROOF. What we show first is that two rhombic circuits with angles 2ôÛ5 and ôÛ2
are equivalent, modulo triangles (the latter rhomb is, of course, a square). Consider the
following 9 points oÒ ašÒ bÒ cšÒ dšÒ e of É3, where o = (0Ò 0Ò 0) as usual, and

aš = (šúÒ 1Ò ú�1)Ò b = (0Ò 2Ò 2ú�1)Ò cš = (š1Ò ú2Ò ú)Ò
dš = (š1Ò ú2Ò �ú�2)Ò e = (2Ò 0Ò 0)

Listing polygons by their vertex-sets, the quadrilateral circuits given by foÒ a+Ò bÒ a�g
and fc+Ò c�d�d+g are rhombs with angles 2ôÛ5 and ôÛ2, respectively, while we have
the 10 triangles fa+Ò c+Ò d+g, fa�Ò c�Ò d�g, fa+Ò bÒ d+g, fa�Ò bÒ d�g, fbÒ dšg, foÒ a+Ò eg,
foÒ a�Ò eg, fa+Ò c+Ò eg, fa�Ò c�Ò eg and fcšÒ eg. The equivalence is most easily seen by
noticing that concatenating the two rhombs and the first five triangles yields the regular
pentagon with vertices oÒ a+Ò c+Ò c�Ò a� (in cyclic order), while the last five triangles
concatenate to the same pentagon.

The equivalence of the square circuit with the rhomb of angle ôÛ5 can be seen
similarly; the easiest way is to observe that following the automorphism ú $ �ú�1

of the ring Z[ú] by interchange of the second and third coordinates in E3 induces an
involutory automorphism of É3. This gives the lemma.

Let Ä(Q ) = hö0Ò    Ò ö3 i be the group of Q as above, so that the generators öj satisfy
(among others) the relations (öjök)mjk = ¢, with

mjk =

8>>><
>>>:

1Ò if j = k,
5Ò if ( jÒ k) = (0Ò 1) or (1Ò 3),
3Ò if ( jÒ k) = (1Ò 2),
2Ò if ( jÒ k) = (0Ò 2), (0Ò 3) or (2Ò 3),

(5.3)

together with (ö0ö1ö3ö2)3 = ¢, the last representing the triangular holes of the facets
f 5

2 Ò 5g ≤ f5Ò 5 j3g. The translation çwhich takes the initial vertex o into the other vertex
(2Ò 0Ò 0) (say) of the initial edge may be taken to be

ç := (ö1ö2ö3)5ö2ö3 Ð ö0 = (ö1ö2ö3)4ö1ö0
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(The first part of the product is the reflexion in the plane through o parallel to ö0, and is
itself the product of the central reflexion (ö1ö2ö3)5 in o and the half-turn ö2ö3 about the
initial edge.)

The relation corresponding to a rhomb with angle ôÛ5 expresses the fact that the
translations ç and ö1çö1 commute, that is, that

(çö1)2 = (ö1ç)2

Simplifying the resulting relation (which we leave to the reader) then yields

�
(ö1ö2ö3)3(ö1ö0)2

�2
= ¢(5.4)

In conclusion, putting Lemma (5.2) together with (5.4), we see that we have proved

THEOREM 5.5. The group Ä(Q ) of the non-discrete quasi-regular honeycomb

Q =
(

5
2 Ò

3
5

)

is the Coxeter group

hö0Ò    Ò ö3 i =
"

5Ò3
5

#
Ò

which satisfies (öjök)mjk = ¢ with the numbers mjk given by (5.3), together with the
relations

(ö0ö1ö3ö1)3 =
�
(ö1ö2ö3)3(ö1ö0)2

�2
= ¢

6. The four-dimensional honeycombs. In this section, we shall treat the non-
discrete regular honeycombs with fivefold symmetries in E4, and we shall show that,
somewhat surprisingly perhaps, these are all either universal of their type, or are again
determined by a deep hole.

Before we embark on the formalities, it is instructive to look at the problem from
an heuristic viewpoint. Consider a honeycomb formed from cells f5Ò 3Ò 3g with a fixed
edge-length, embedded in a hyperbolic space H4 of given negative curvature. That is,
we just glue copies of the 120-cell facet against facet, ignoring the fact that the resulting
vertex-figure will usually be infinite, and the honeycomb non-discrete. For the universal
f5Ò 3Ò 3Ò 5g, the cells have dihedral angle 2ôÛ5. As the curvature tends to 0, so the
dihedral angle of the facets f5Ò 3Ò 3g increases. Thus the honeycomb, while remaining
hyperbolic, will pass through f5Ò 3Ò 3Ò 4g (with dihedral angle ôÛ2) and then f5Ò 3Ò 3Ò 3g
(with dihedral angle 2ôÛ3); for the latter, as we have seen, its deep holes will be pentagons
f5g. At the limit, we obtain f5Ò 3Ò 3Ò 5

2g in E4; it is easy to check geometrically (and we
shall do this algebraically below) that the deep holes are now triangles f3g.

Moreover, in the last two cases, the holes in their turn determine the dihedral angles
of the facets, and so, in a sense, their type also. In fact, there will always be edge-paths
corresponding to deep holes, although they will generally not close. Nevertheless, the
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curvature of the space can be calculated from the angle of this polygonal deep hole
(which is planar).

Our task in this section is to show that this heuristic argument can be validated. Among
other things, this will imply that f5Ò 3Ò 3Ò 5

2g ≤ f5Ò 3Ò 3Ò 5 j3g. Our proof will comprise
three stages. First, we show that f5Ò 3Ò 3Ò 5

2g is a quotient of f5Ò 3Ò 3Ò 5 j3g. Next, we
establish presentations of the groups of related honeycombs which are equivalent to
f5Ò 3Ò 3Ò 5

2g ≤ f5Ò 3Ò 3Ò 5 j3g. Finally, we prove that one of these honeycombs does
indeed have the group presentation required.

In fact, we shall find it more convenient to work with the dual honeycombf 5
2 Ò 3Ò 3Ò 5g.

This will enable us to use the previous results about vertex-figure replacement in the
family derived from f3Ò 3Ò 5g, at least to some extent. Of course, the deep hole relation
is symmetric between a polytope and its dual.

Our first result is then

LEMMA 6.1. The honeycomb f 5
2 Ò 3Ò 3Ò 5g is of type f5Ò 3Ò 3Ò 5 j3g.

PROOF. To prove this, all we have to do is choose appropriate generators for the
group, and check that the hole relation holds. Each generator öj of the (geometric) group
hö0Ò    Ò ö4 i of f 5

2 Ò 3Ò 3Ò 5g is the reflexion in some hyperplane Hj := fx 2 E4 j hxÒ uji =
ãjg, where ã0 = 1, ãj = 0 for j = 1Ò    Ò 4, and

u0 = (1Ò 0Ò 0Ò 0)Ò
u1 = 1

2 (�ú�1Ò �1Ò 0Ò �ú)Ò
u2 = (0Ò 1Ò 0Ò 0)Ò

u3 = 1
2 (0Ò �1Ò �úÒ ú�1)Ò

u4 = (0Ò 0Ò 1Ò 0)Ò

with ú := 1
2 (1 +

p
5) as before. These uj are chosen so that, with initial vertex o =

(0Ò 0Ò 0Ò 0), the vertex-figure has vertices all 120 points derived from (2Ò 0Ò 0Ò 0), (1Ò 1Ò 1Ò 1)
and (úÒ 1Ò ú�1Ò 0) by applying even permutations and arbitrary changes of sign to their
coordinates.

An important feature to note for the future is that the 24 points so derived from
(2Ò 0Ò 0Ò 0) and (1Ò 1Ò 1Ò 1) form the vertices of the 24-cell f3Ò 4Ò 3g. Actually, this occurs
in the guise of the polytope denoted by

8>><
>>:

3
3
3

9>>=
>>; =

�
�

��

T
T

TT

t t

t

t

i

(compare [2, Section 11.6]), whose group is a subgroup of [3Ò 3Ò 5].
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Since ö1ö2ö3ö4ö3ö2ö1 is the conjugate of ö4 by ö3ö2ö1, it follows that it is the reflexion
in the hyperplane fx 2 E4 j hxÒ ui = 0g, with

u := u4ö3ö2ö1 = 1
2 (�1Ò 0Ò �ú�1Ò ú)

Thus hu0Ò ui = � 1
2 , and it follows at once that ö0ö1ö2ö3ö4ö3ö2ö1 has period 3.

Let É4 denote the vertex-set of f 5
2 Ò 3Ò 3Ò 5g, that is, É4 is the set of integer linear

combinations of the 120 vertices of f3Ò 3Ò 5g described above. Our analysis will depend
crucially on a well-known important fact about É4.

LEMMA 6.2. The vertex-set É4 of f 5
2 Ò 3Ò 3Ò 5g is an additive set of rank 8.

PROOF. The idea of the proof is similar to that of Lemma (5.1), and so we shall not give
many details. This time, the basic observation is that the 240 vertices of the semi-regular
Gosset polytope 42Ò1 (see [2, 11.8]) project orthogonally onto two copies of the vertices
of f3Ò 3Ò 5g, one set being ú�1 as large as the other (compare [7, 14]). Moreover, just as in
the proof of Lemma (5.1), each vertex in the “small” copy is an integer combination of
vertices in the “big” one. The complementary projection has the same property; naturally,
the 120 vertices which go into the “big” f3Ò 3Ò 5g in one projection go into the “small”
f3Ò 3Ò 5g in the other. These 240 points are all permutations of (š2Ò š2Ò 06), and all points�
(š1)8

�
with an even number of minus signs. They generate the lattice often called E8; it

has the vertices of the semi-regular honeycomb 52Ò1. The assertion about the rank follows
immediately.

Before we proceed further, we shall list the ten (non-discrete) regular honeycombs
derived from f 5

2 Ò 3Ò 3Ò 5g. In fact, they all have the same vertex-set (and, indeed, the same
edges), and among the relationships between them are those obtained from the process
of vertex-figure replacement (see [5]); that is, we change the vertex-figure of a given
regular polytope (whose symmetry group is generated by reflexions in hyperplanes) for
another regular polytope with the same vertices, while keeping the same edges.

We arrange the new vertex-figures after the pattern of [5, Table 2]. This gives

f 5
2 Ò 3Ò 3Ò 5g

f 5
2 Ò 3Ò 5Ò 5

2g f3Ò 5
2 Ò 5Ò 3g

f 5
2 Ò 5Ò 5

2 Ò 5g
f 5

2 Ò 5Ò 3Ò 5
2g f5Ò 5

2 Ò 3Ò 5g
f5Ò 5

2 Ò 5Ò 5
2g

f3Ò 5Ò 5
2 Ò 3g f5Ò 3Ò 5

2 Ò 5g
f5Ò 3Ò 3Ò 5

2g
The honeycombs in the same column have the same 2-faces as well; in addition, in each
of the two columns of four, the first two honeycombs have the same 3-faces, as have the
last two.

To determine the groups of these honeycombs, it will be convenient to base our
analysis on f3Ò 5

2 Ò 5Ò 3g instead. Our next step therefore is to find presentations of the
groups of certain of the other honeycombs, which are equivalent to f 5

2 Ò 3Ò 3Ò 5g ≤
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f5Ò 3Ò 3Ò 5 j3g. The notation of (2.3) which we introduced in Section 2 will prove usful
here.

THEOREM 6.3. The following isomorphisms are equivalent:
(a) f 5

2 Ò 3Ò 3Ò 5g ≤ f5Ò 3Ò 3Ò 5 j3g;
(b) f 5

2 Ò 3Ò 5Ò 5
2g ≤ f5Ò 3Ò 5Ò 5gÛhh(012321)3Ò (2343)3ii;

(c) f 5
2 Ò 5Ò 5

2 Ò 5g ≤ f5Ò 5Ò 5Ò 5gÛhh(0121)3Ò (1232)3Ò (2343)3ii.
(d) f3Ò 5

2 Ò 5Ò 3g ≤ f3Ò 5Ò 5Ò 3gÛhh(1232)3ii;

PROOF. Before we start the details of the proof, let us observe the advantage of our
notation over the standard one for universal polytopes. Theorem (6.3)(c) is equivalent to

n
5
2 Ò 5Ò 5

2 Ò 5
o
≤
²n
f5Ò 5 j3gÒ f5Ò 5 j3g

o
Ò
n
f5Ò 5 j3gÒ f5Ò 5 j3g

o¦
Ò

while Theorem (6.3)(d) is equivalent to

n
3Ò 5

2 Ò 5Ò 3
o
≤
²n
f3Ò 5gÒ f5Ò 5 j3g

o
Ò
n
f5Ò 5 j3gÒ f5Ò 3g

o¦
Ò

which is nearly as bad. These expressions are clumsy and difficult immediately to
comprehend. (Of course, we deliberately chose the worst two examples, although (b) is
not much better.)

What we must do is trace the operations which yield the group generators for one
of these honeycombs in terms of another, and the corresponding presentations. (For
practical reasons, we work with the groups, since we are employing mixing operations.)
The only case which involves anything going beyond what we did in Section 4 is
f3Ò 5

2 Ò 5Ò 3g—naturally, since this is the one in which we are most interested.
Let us treat first the easier cases of the equivalence of (a), (b) and (c). We have already

seen the appropriate operations; they are those in the proof of Theorem (4.1), with the
indices increased by 1, and a new generator ö0 which remains unchanged. In each case,
we begin with (a).

(b) The operation here is

(ö0Ò ö1Ò ö2Ò ö3Ò ö4) 7! (ö0Ò ö1Ò ö2Ò ö3ö4ö3Ò ö4) =: (õ0Ò õ1Ò õ2Ò õ3Ò õ4)

It is inverted by

(õ0Ò õ1Ò õ2Ò õ3Ò õ4) 7! (õ0Ò õ1Ò õ2Ò õ3õ4õ3õ4õ3Ò õ4) = (ö0Ò ö1Ò ö2Ò ö3Ò ö4)

The verification of the equivalence largely follows Theorem (4.1)(a). Indeed, we may
just add 1 to the appropriate indices, for the relations which do not involve ö0 = õ0.
Moreover, öj = õj for j = 1Ò 2 also.

The only relation not so far explored is that for the deep hole. Here, we have

ö0ö1ö2ö3ö4ö3ö2ö1 = õ0õ1õ2õ3õ2õ1
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Thus the deep hole in the facet of f5Ò 3Ò 5Ò 5gÛhh(012321)3Ò (2343)3ii is equivalent to
that of f5Ò 3Ò 3Ò 5 j3g.

(c) Now the operation is

(ö0Ò ö1Ò ö2Ò ö3Ò ö4) 7! (ö0Ò ö1Ò ö2ö3ö4ö3ö2Ò ö4Ò ö3) =: (õ0Ò õ1Ò õ2Ò õ3Ò õ4)
Its inverse is

(õ0Ò õ1Ò õ2Ò õ3Ò õ4) 7! (õ0Ò õ1Ò õ4õ3õ2õ3õ2õ3õ4Ò õ4Ò õ3) = (ö0Ò ö1Ò ö2Ò ö3Ò ö4)
Again, the equivalence of the various relations which do not involve ö0 = õ0 follow as
in Theorem (4.1)(b). We also have ö1 = õ1, and so once again we are left with the deep
hole relation. Finally, then,

ö0ö1ö2ö3ö4ö3ö2ö1 = õ0õ1 Ð õ4õ3õ2õ3õ2õ3õ4 Ð õ4õ3õ4 Ð õ4õ3õ2õ3õ2õ3õ4 Ð õ1

= õ0õ1õ4õ3õ2õ3õ2õ3õ2õ3õ2õ3õ4õ1

= õ0õ1õ4õ2õ4õ1

¾ õ0õ1õ2õ1Ò
which is the hole relation for the 3-face of f5Ò 5Ò 5Ò 5gÛhh(0121)3Ò (1232)3Ò (2343)3ii.

(d) For the equivalence of (a) and (d), we actually have the same operation on
(ö1Ò    Ò ö4) as in case (b), except that we must then follow it by duality, and conjugate
to make the initial vertex of the new vertex-figure the same as that of the original. The
intermediate operation (case (b) followed by duality) gives

(ö1Ò ö2Ò ö3Ò ö4) 7! (ö4Ò ö3ö4ö3Ò ö2Ò ö1) =: (ú1Ò ú2Ò ú3Ò ú4)
Conjugating these elements új by ö3ö2ö1 and adjoining ö0 = õ0 finally gives the operation

(ö0Ò ö1Ò ö2Ò ö3Ò ö4) 7! (ö0Ò ö1ö2ö3ö4ö3ö2ö1Ò ö4Ò ö3Ò ö2) =: (õ0Ò õ1Ò õ2Ò õ3Ò õ4)
(We could have produced the operation like a rabbit out of a hat, but this approach seems
more instructive.)

The inverse operation is now

(õ0Ò õ1Ò õ2Ò õ3Ò õ4) 7! (õ0Ò õ4õ3õ2õ1õ2õ1õ2õ3õ4Ò õ4Ò õ3Ò õ2) = (ö0Ò ö1Ò ö2Ò ö3Ò ö4)
The equivalence between the relations for hõ0Ò    Ò õ4 i and those for hö0Ò    Ò ö4 i

is easily checked. Note that (õ0õ1)3 = ¢ is equivalent to the deep hole relation for
hö0Ò    Ò ö4 i. Further, observe that õ1õ2 ¾ (ö3ö4)2 = (õ3õ2)2, reflecting the change from
5 to 5

2 in the Schläfli symbol.
Now we must return to f 5

2 Ò 3Ò 3Ò 5g.

LEMMA 6.4. The mixing operation on the group [5Ò 3Ò 3Ò 5] = hö0Ò    Ò ö4 i given by

(ö0Ò    Ò ö4) 7!
�
ö0Ò ö1Ò ö2Ò (ö3ö2ö4)4ö3

�
=: (õ0Ò õ1Ò õ2Ò õ3)

yields the group "
5Ò3

5

#
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PROOF. Geometrically, this is clear; we are taking the cut(
5Ò3

5

)
² f5Ò 3Ò 3Ò 5g

determined by the central section (
3
5

)
² f3Ò 3Ò 5gÒ

which lies in the mirror ö4. To see what is happening algebraically, we begin by noting
that we can write õ3 in the form

õ3 = (ö2ö3ö4)5 Ð ö2ö4Ò

the first term being the central involution in the group hö2Ò ö3Ò ö4i = [3Ò 5], so that,
first, the order of the elements ö2, ö3 and ö4 in the bracket is immaterial, and, second,
öj ™© (ö2ö3ö4)5 for j = 2Ò 3Ò 4, where as before we use “™©” to mean “commutes with”.
(Of course, we also have ö2 ™© ö4.)

The subgroup of the statement of the lemma is that with diagram

�
�
�
�

T
T
T
T

t t

t

t

5

5

0 1

2

3

As before, the label “j” against a node denotes the involution õj. It is straightforward
to verify that hõ0Ò õ1Ò õ2Ò õ3 i satisfies most of the implied relations; indeed, only those
involving õ3 need to be checked. First, õ3 is an involution, from the above remarks about
it. Second,õ3 ™© õ0 = ö0, since õ3 2 hö2Ò ö3Ò ö4i. Next,õ3 ™© õ2, again an easy deduction
from the remarks. Finally, freely using öi ™© öj if ji � jj Ù 1 and öj�1öjöj�1 = öjöj�1öj

for j = 2Ò 3, we have

õ1õ3 = ö1ö3ö4ö2ö3ö2ö4ö3ö4ö2ö3ö2ö4ö3

¾ ö1ö3ö2ö3ö4ö3ö4ö3ö2ö3

¾ ö1ö2ö4ö3ö4ö3ö4ö2

¾ ö1ö2ö3ö4ö3ö2

¾ ö3ö4Ò

as in Lemma (3.2). Observe that we had to use (ö3ö4)5 = ¢ in the course of the proof.
We now wish to consider the effect of imposing hole relations.

LEMMA 6.5. In the subgroup hõ0Ò õ1Ò õ2Ò õ3 i � hö0Ò    Ò ö4 i of Lemma (6.4),

õ0õ1õ3õ1 ¾ ö0ö1ö2ö3ö4ö3ö2ö1
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PROOF. We have

õ0õ1õ3õ1 = ö0ö1ö3ö4ö2ö3ö2ö4ö3ö4ö2ö3ö2ö4ö3ö1

¾ ö0ö1ö2ö3ö2ö4ö3ö4ö2ö3ö2ö1

= ö0ö1ö3ö2ö3ö4ö3ö4ö3ö2ö3ö1

¾ ö0ö1ö2ö4ö3ö4ö3ö4ö2ö1

¾ ö0ö1ö2ö3ö4ö3ö2ö1Ò

as required. Again, we have used (ö3ö4)5 = ¢ in the course of the proof.
From Lemma (6.5), it follows that the effect of imposing the relation (õ0õ1õ3õ1)3 =

¢ on the subgroup hõ0Ò    Ò õ3 i, is that of imposing (ö0ö1ö2ö3ö4ö3ö2ö1)3 = ¢ on
hö0Ò    Ò ö4 i. In turn, the effect on the corresponding apeirotopes is to obtain the cut

(
5
2 Ò

3
5

)
²
n

5
2 Ò 3Ò 3Ò 5

o
Ò

with which we began this discussion. It should be observed that our choices of generating
reflexions of the two groups are such that the cut is given by the section by the hyperplane
f(ò1Ò    Ò ò4) 2 E4 j ò4 = 0g, with the last coordinate then dropped.

However, it is important to recall Theorem (5.5), which says that the group of the cut
is not obtained merely by imposing the given relation; in other words, the cut

(
5Ò3

5

)
² f5Ò 3Ò 3Ò 5g

is not universal with respect to the relation (õ0õ1õ3õ1)3 = ¢.
The discussion is now completed by proving Theorem (6.3)(d), namely

THEOREM 6.6. f3Ò 5
2 Ò 5Ò 3g ≤ f3Ò 5Ò 5Ò 3gÛhh(1232)3ii.

PROOF. We already know from Lemma (6.1) and Theorem (6.3) that f3Ò 5
2 Ò 5Ò 3g is

of type Q := f3Ò 5Ò 5Ò 3gÛhh(1232)3ii (that is, it is a quotient of the latter). First, we have
f 5

2 Ò 5Ò 3g ≤ f5Ò 5Ò 3gÛhh(0121)3ii, and hence (with a shift of 1 in the indices) the vertex-
figure of Q will have the same vertices and edges as f 5

2 Ò 5Ò 3g (there is an ambiguity
about the 2-faces, since there is no combinatorial way of distinguishing between f 5

2 Ò 5Ò 3g
and f5Ò 5

2 Ò 3g). However, the central feature is that the triangular holes determined by the
adjacency cycle (1232)3 (or by (ö1ö2ö3ö2)3 = ¢ in its group hö0Ò    Ò ö4 i) are the same
for both polytopes.

We now come to the crux of the argument: every edge-circuit in the graph of
f3Ò 5

2 Ò 5Ò 3g can be built up from triangles, which are either 2-faces or holes in its
vertex-figure. In fact, we already noted that among the 120 vertices of f3Ò 3Ò 5g are the 24
of f3Ò 4Ò 3g, and actually its edges are among those of f 5

2 Ò 5Ò 3g ≤ f5Ò 5Ò 3gÛhh(0121)3ii.
Thus the vertices and edges of the honeycomb f3Ò 3Ò 4Ò 3g occur among those of
f3Ò 5

2 Ò 5Ò 3g. More specifically, of the four 2-faces of the initial 3-face f3Ò 3g, those
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which contain the initial vertex o are faces of f3Ò 5
2 Ò 5Ò 3g, while the fourth is a hole of

the vertex-figure.
We saw in Lemma (6.2) that the vertex-set of f3Ò 5

2 Ò 5Ò 3g forms an additive set of
rank 8. From this, it follows that the basic edge-circuits in the edge-graph of f3Ò 5

2 Ò 5Ò 3g
are all obtained by concatenating those in triangles, or rhombs with angle ôÛ5, ôÛ3,
2ôÛ5 or ôÛ2, these being the angles between diameters of f3Ò 5

2 Ò 5Ò 3g.
Now each of these rhombs is represented in the section

(
3Ò55

2

)


The key observation is that we already know from Theorem (5.5) what the group of the
section looks like; it is just obtained from that of Q by permuting ö0, ö2 and ö3 cyclically.
More to the point, Lemma (5.2) tells us that rhombs of angle ôÛ3 come from triangles,
while the other three kinds of rhomb are equivalent modulo triangles.

In view of this, the proof is easily completed. A rhomb of angle ôÛ2 is a diametral
square of a facet f3Ò 3Ò 4g of the honeycomb f3Ò 3Ò 4Ò 3g whose vertices, edges and 2-
faces occur among those of f3Ò 5

2 Ò 5Ò 3g. It is therefore formed by concatenating four
triangles in a diametral octahedral section f3Ò 4g of f3Ò 3Ò 4g.

7. Hyperbolic honeycombs. For completeness, we briefly discuss the discrete reg-
ular star-honeycombs in the hyperbolic spaces H3 and H4. A natural restriction is that
such honeycombs should have finite vertices; however, we should not insist that the
facets also be finite.

If the vertex-figure of a regular hyperbolic honeycomb is a star-polytope (in which
case it belongs to one of the families of 3- or 4-polytopes considered in Section 4),
then we may apply the process of vertex-figure replacement of [5] in exactly the same
way, to obtain a new regular honeycomb whose vertex-figures are convex. Indeed, the
only difference in the proof is that now the Schläfli determinant (which is negative) will
increase strictly.

With a suitable regular honeycomb as starting point, the process can also be reversed;
a convex regular vertex-figure is replaced by any regular star-polytope with the same
vertices. Moreover, if the replacement has the same edges as the original vertex-figure,
then the new regular honeycomb will have the same vertices, edges and 2-faces as the
starting honeycomb. Where the argument departs from that of [5] is that the new facets
may not be finite, and so we cannot dualize and repeat the process.

Indeed, this last is the only procedure which will actually yield any new regular
honeycombs. If the new vertex-figure does not have the same edges as the old one, then
in most instances, the new honeycomb will have apeirogonal (infinite) 2-faces. Except
for a couple of examples for illustration, we shall ignore such cases.

In H3, we can begin to apply the process of vertex-figure replacement to f pÒ 3Ò 5g for
p = 4Ò 5Ò 6. We obtain f pÒ 5Ò 5

2g ≤
n
f pÒ 5gÒ f5Ò 5 j3g

o
≤ f pÒ 5Ò 5gÛhh(1232)3ii, which

is universal of its type, with a universal facet. The proof of this assertion exactly follows
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that of Theorem (4.1)(a), which never involved ö0. However, if we go further, and attempt
to replace f3Ò 5g by f 5

2 Ò 5g or f3Ò 5
2g, then we obtain apeirogonal 2-faces. Indeed, the

mixing operations which yield these apeirotopes are just as in Theorem (4.1)(b,c). They
show that the facets are of type f1Ò 5 jpg for f1Ò 5

2 Ò 5g. For the other case, the same
discussion will show that the resulting relation again gives a deep hole corresponding
to the original 2-face, so that the apeirotope is f1Ò 3Ò 5 jpg. (Note that the argument
never mentioned the period of õ0õ1; by the way, this indicates that the first entry “5” in
f5Ò 3Ò 5 j3g is redundant!)

The only other possible example in H3 to which we might attempt to apply vertex-
figure replacement is f3Ò 5Ò 3g. Comparison with the discussion of Theorem (6.3)(d)
shows that, once again, the deep hole determines the apeirotope, and we obtain
f1Ò 5

2 Ò 3g ≤ f1Ò 5Ò 3 j3g.
We now move on to H4, where there are many more examples. Here, we start with

f pÒ 3Ò 3Ò 5g for p = 3Ò 4Ò 5. We first obtain f pÒ 3Ò 5Ò 5
2g, f pÒ 5Ò 5

2 Ò 5g and f pÒ 5Ò 3Ò 5
2g, all

of whose group presentations are determined purely by the vertex-figures. For p = 4
or 5, the facets are always infinite; f pÒ 3Ò 5g is the universal hyperbolic honeycomb,
and f pÒ 5Ò 5

2g ≤ f pÒ 5Ò 5gÛhh(1232)3ii as in the examples in H3. In addition, the facet
of f3Ò 5Ò 3Ò 5

2g ≤ f3Ò 5Ò 3Ò 5gÛhh(123432)3ii is the universal hyperbolic honeycomb
f3Ò 5Ò 3g.

Except when p = 3, if we replace the vertex-figure f3Ò 3Ò 5g by any of the other
six regular star-polytopes with the same vertices, then the resulting apeirotopes have
apeirogonal 2-faces; we shall therefore not consider them further. When p = 3, replacing
f3Ò 3Ò 5g by f 5

2 Ò 5Ò 3g gives f5Ò 5
2 Ò 5Ò 3g, the dual of f3Ò 5Ò 5

2 Ò 5g, and replacing it by
f5Ò 5

2 Ò 3g (with the same edges as f 5
2 Ò 5Ò 3g) gives an apeirotope f5Ò 5Ò 5

2 Ò 3g, with facets
of type f5Ò 5Ò 5gÛhh(1232)3ii. Employing any of the other four polytopes with the same
vertices as f3Ò 3Ò 5g gives apeirogonal 2-faces.

Only in case p = 3 do we get apeirotopes with finite facets, where we can dualize,
and try to interate vertex-figure replacement; these are f3Ò 3Ò 5Ò 5

2g and f3Ò 5Ò 5
2 Ò 5g. In

f 5
2 Ò 5Ò 3Ò 3g, we may only replace the vertex-figure by f 5

2 Ò 3Ò 3g, and the 2-faces become
infinite. In f5Ò 5

2 Ò 5Ò 3g, the vertex-figure can be replaced by any of the other nine regular
star-polytopes with the same vertices as f3Ò 3Ò 5g; however, we have just seen that
this polytope is already obtainable directly from f3Ò 3Ò 3Ò 5g, and so this family is now
complete.

Since there are no more regular honeycombs in H4 to which the method of replacing
vertex-figures can be applied, this completes the discussion.
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