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WEIGHTED GENERALIZED HARDY INEQUALITIES 
FOR NONINCREASING FUNCTIONS 

Dedicated to Professor EG. Rooney in honour of his sixty-fifth birthday. 

KENNETH F. ANDERSEN 

ABSTRACT. The nonnegative weight function pairs u, v for which the operator Tf(x) 
= JQ° a(t)f{xt) dt maps the nonnegative nonincreasing functions in LP(v) boundedly 
into weak Lq(u) are characterized. This result is used, in particular, both to generalize 
and to provide an alternate proof of certain strong type inequalities recently obtained 
by Arino and Muckenhouptfor the Hardy averaging operator restricted to nonnegative 
nonincreasing functions. 

1. Introduction. Weighted inequalities for the Hardy averaging operator P and its 
adjoint P defined for locally integrable functions/ on (0, oo) by 

Pf(x) = - [fit)du P'm = [°°f(t) ^ , x > 0 
X JO Jx t 

have been widely studied. Given 1 < p < q < oo, the nonnegative weight pairs w, v 
for which these operators are bounded from Lp(v) to Lq(u) were characterized in [2]; 
a characterization of the corresponding weak type inequalities were also given there. 
Mazja [9] considered the range 1 < q < p < oo. 

The operators P, Pf, and their variants when restricted to nonnegative nonincreasing 
functions occur naturally in certain rearrangement inequalities for other operators satis­
fying appropriate weak type estimates, see [4,§ 3.5]. Thus, Arino and Muckenhoupt [3] 
recently obtained boundedness results for the Hardy-Littlewood maximal operator in the 
classical Lorentz spaces Ap(u) by characterizing, for 1 < p < oo, the single weight 
functions u for which P restricted to nonnegative nonincreasing functions maps If(u) 
boundedly into itself. A different characterization for nonincreasing u had been given 
by Boyd [5]. Sawyer [12] and Stepanov [13] have extended these results by character­
izing, for various ranges of/? and q the pairs (w, v) for which P restricted to nonnegative 
nonincreasing functions is bounded from LP(y) to Lq(u). Neugebauer [10,11] obtained 
weighted estimates, including some weak type inequalities, for the restriction to mono­
tone functions of P, /y, and some of their variants. 
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1122 KENNETH F. ANDERSEN 

The operators P and P/ are particular members of the family of operators T with non-
negative measurable kernel a(f) given by 

TOO 

Tf(x) = jo a(t)f(xt)dt, x> 0. 

The Stieltjes transform, the fractional integrals of Riemann-Liouville and Weyl, and the 
Laplace transform are further examples of operators that are either of this form, or are 
related in a simple way to an operator of this form. 

The main purpose of this paper is to obtain, given 0 < /?, q < oo, a simple char­
acterization of the weight pairs u, v for which T restricted to nonnegative nonincreasing 
functions/ satisfies the weak type inequality 

(1.1) \ [ u(x)dx) < - f [°°f(xfv{x)dx) 

for some constant C independent of/ and À > 0. 
Except for special choices of the kernel a(t), a simple characterization of the cor­

responding strong type inequalities seems not to be known. It is a pleasant occurrence 
therefore to find that the weak type inequalities can be given a simple characterization 
for arbitrary kernels. These are not only of interest in their own right, but can often be 
used to derive strong type inequalities by interpolation; this approach is illustrated below 
in Theorems 2, 3 and 4. 

The main result is the following Theorem. For convenience we use the notation U(x) 
= Jo u(0 dt, v(x) = Jo VW dt, A(x) = Jo a(t) dt for x > 0 and for 1 < p < oo, 
Pf=p/(P-1). 

THEOREM 1. Let q > 0 and suppose u, v are nonnegative weight functions defined 
on (0, oo). If I < p < oo, there is a constant C such that (1.1) holds for all nonnegative 
nonincreasing f if and only if there is a constant K such that 

0.2) Uir)1^^!"A(x/ rf'V(xrP'v(x)dx^ + ^a^j (jf°° vj } < K 

for all r > 0. The smallest constants C in (1.1) and Kin (1.2) satisfy [(p')l/pp+ l]~lK < 
C < max[l,(p'/p)l/p]K. IfO < p < 1, there is a constant C such that (1.1) holds for 
all nonnegative, nonincreasing f if and only if there is a constant K such that 

(1.3) U(r)l/qV(sTl/pA(s/r) < K 

for allO < s,r < oo. The smallest constants C in (1.1) and K in (1.3) are equal. 

As usual, in (1.2) and (1.3) products of the form 0 • oo are taken to be zero. 
If </> (0 > 0 and O(x) = JQ <j> (i) dt satisfies O(x) < oo for all x > 0 with l i n v ^ O(x) 

= oo, then the generalized Hardy averaging operator P^ and its adjoint P1, defined by 

1 rx . r°° dt 
P*f(x) =^J0 /(')</>(0dt, fy(x) = I f(t)<t>(t)—, x>0 
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WEIGHTED GENERALIZED HARDY INEQUALITIES 1123 

are related to P and Pf by P^f(x) = P\f o O^KOW) and /*/(*) = Pf\f o O - 1 ](<&(*)). 
Since the operators P and P' are given by the kernels a(t) = X(o,i](0> an (i a(0 = 
f_1X[i,oo)(0 respectively, the following corollaries for the case <j>{i) — 1 are immedi­
ate consequences of Theorem 1 and the general case follows from that by a change of 
variable. 

COROLLARY 1. The weak type inequality (1.1) for T — P^ holds for all nonnegative 
nonincreasing functions f in the case 1 < p < oo if and only if there is a constant K 
such that 

(1.4) U(r)[/i>[{jo{^Ê) V(x)~''*x)dx) +V(rr'/"J<A: 

for all r > 0 while for 0 < p < 1 it holds if and only if there is a constant K such that 

(1.5) U(r)xlqV{s)-llp^\<K 
<D(r) 

for all 0 < s < r < oo. 

COROLLARY 2. Ifjg0 u ^ 0 ««J 7 = /^ , f/i67z r/ze wea& type inequality (1.1) holds 
for all nonnegative nonincreasing functions f in the case 1 < p < oo if and only if 
Jo° v(0 dt — oo a/id f/zere w a constant K such that 

(1.6) t / ( r ) 1 / *( / 0 0 ( l 0 8S(§) yW"P'vW^) ^K 

for all r > 0 while for 0 < p < I it holds if and only if there is a constant K such that 

(1.7) U(r)l^V(srl'nog^l<K 
O(r) 

/or allO < r <s < oo. 

Note that the conditions (1.2) and (1.3) depend on A rather than a. Thus, the weight 
pairs (w, v) satisfying (1.1) for an operator with kernel a\ coincide with those satisfying 
(1.1) for an operator with kernel «2 provided there are positive constants c\, Q such that 
c\A\(s) < A2(s) < C2A\(s) for all s > 0. In particular, this is the case for the operator P, 
the Riemann-Liouville fractional integral operator Ra, 0 < a < 1, given by 

Raf(x) = x~a J*(x - t)a-lf(t)dt 

and the operator L associated with the Laplace Transform given by 

dt roo i at 
Lf(x) = fo e-''xf{t)™. 

This may also be seen directly since elementary estimates show that Pf(x) < Raf(x) < 
a~xPf(x) and e~lPf(x) < Lf(x) < Pf(x) for nonnegative nonincreasing/. 
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Some other features of the weight conditions may also be noted. If <j> (t) = \,q = p 
and u(t) = v(t) = ta~\ then (1.4) holds if and only if 0 < a < p while (1.5) holds 
if and only if 0 < a < p. Thus the simpler condition (1.5) is not in general equivalent 
to (1.4). Hence also (1.3) is generally not equivalent to (1.2). Further, it may be noted 
that the weight condition (1.4) is closely related to that which characterizes certain weak 
type inequalities for the (unrestricted) Stieltjes transformation [1, Theorem 4]. Indeed, 
if JQ° v(t)dt = oo and p ^ 1, then (1.4) with <f>(i) = 1 is a necessary and sufficient 
condition for the Stieltjes transform to map lf(w) boundedly into weak Lq(u) where 

w(x) = x~pV(xfv{x)x~p. Note also that in Corollary 2, the requirement that J™ v(t) dt = 
oo is implied by (1.7) so this is in fact a necessary condition for all 0 < p < oo. 

Sawyer [12] obtained his strong type inequalities for P referred to above by consid­
ering the more general problem of characterizing the weight pairs (w, v) for which an 
operator of the form Sf(x) = J™ K(X, t)f(t) dt restricted to nonnegative nonincreasing 
functions maps Lp(v) boundedly into Lq(u). His main result asserts that this occurs if 
and only if a related operator S satisfies a dual inequality with respect to a different, 
but related, pair of weight functions. However, except for very special kernels such as 
that of the operator P, this latter condition does not seem to reduce to simple conditions 
on the weight functions. Lai [7,8] generalized certain results of Neugebauer [10,11] to 
obtain conditions for the boundedness of certain operators of the form S restricted to 
nonnegative nonincreasing functions and has also given conditions which imply that the 
restricted operator is bounded if it is known to be of weak type. The operators considered 
there include some, but not all of those to be treated here. 

As a first application of our weak type result, we will obtain strong type inequalities for 
a class of operators T for which A(s) satisfies a submultiplicative condition. In particular, 
this class includes the operators P, Ra and L. 

THEOREM 2. Let 0 < p < oo and suppose u is a nonnegative weight function 
defined on (0, oo). Suppose the kernel a(t) is integrable on (0, oo) and satisfies Aist) < 
BA(s)A(t) for a constant B and all 0 < s,t <l. The following statements are equivalent. 

(a) There is a constant C depending on p, a and u such that 

/•oo /*oo 

(1.8) J [Tf{x)fu(x)dx<C J f(xfu(x)dx 

for all nonnegative nonincreasing f. 
(b) There is a constant K depending on p, a and u such that 

/
oo 

A(r/xfu(x)dx<KU(r) 

for all r > 0. 
(c) There is 0 < 7 < 1 and a constant K depending onp,l, a and u such that 

(1.10) A(s)lpU{t)<KU(st) 

for all0< s < 1 and t > 0. 
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(d) There is 0 < p\ < p so that for all q > p\ there is a constant C depending on q, a 
and u such that 

(1.11) / u(x) dx < — / f(xfu{x) dx 
V ' J{x>0\Tf(x)>\} W * \Q JO JK ' W 

for all nonnegative nonincreasing f and all À > 0. 

Parts of Theorem 2 are known in the special case that a(t) is nonincreasing. In that 
case, the nonincreasing equimeasurable rearrangement (Tf)* of \Tf\ does not exceed 
Tf*, so (a) is equivalent to the statement that T is bounded on the classical Lorentz space 
Ap(u). Boyd [5; Theorems 3.1 and 4.1] has shown that if u is nonincreasing and 1 < 
p < oo, a sufficient condition for this boundedness is that J™ a(s)h(s) ds < co where 
h(s) = [supr>0 U(t)/ U(st)]xIP. Hence, if (1.10) holds, then 

J a(s)h(s)ds<Kllp J a(s)A(sy1 ds = Kxlp(\ - 7)"1A(1)1"7 < co 

so it follows from Boyd's result that (c) implies (a) in this case. 
The condition (b) was introduced by Braverman [6, Theorem 3] who proved the equiv­

alence of (a) and (b) for 1 < p < co for kernels a(t) supported and nonincreasing on 
(0,1) satisfying a(st) < Ba(s)a(t) for all 0 < s, t, < 1. Since in this case we have 

rs rs rt rs rt 

A(st) = / a(tx)tdx— I I a(tx)dydx< / / a(yx)dydx 

<B J'J'a(y)a(x)dydx = BA(s)A(t) 
for all 0 < sj < 1, it follows that these kernels satisfy the hypothesis of Theorem 2. 

For some operators of the form T, the equivalence of (a) and (b) for 1 < p < co and 
that of (a) and (d) for 1 < p < co may be deduced from results of Lai, [7, Theorems 3.1 
and 3.2] and [8, Theorem 5.3]. 

On the other hand, for 0 < a < (3 < 1 the kernel a(t) = X(a,p)(t) satisfies the hy­
pothesis of Theorem 2 with B — ((3 — a ) - 1 , but satisfies neither Braverman's hypothesis 
nor those of Lai. 

As a second application of the weak type inequalities, we will prove the following 
strong type results for P^ and P^. 

THEOREM 3. Let 0 < p < co and suppose u is a nonnegative weight function 
defined on (0, co). The following statements are equivalent. 

(a) There is a constant C depending on p, </> and u such that 

(1.12) / [P(f)f(x)]pu(x)dx<Cl f(xfu(x)dx 

for all nonnegative nonincreasing f. 
(b) There is a constant K depending on p, </> and u such that 

(1.13) /°° ^ - dx < K<t>(rrpU(r) 
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for all r> 0. 
(c) There is 0 < 7 < 1 and a constant K depending onp,l y <j> and u such that 

(i.i4) vie) u®^Kuw 
for all 0 < s < 1 and t > 0. 
(d) There is 0 < p\ < p so that for all q > p\ there is a constant C depending on q, a 
and u such that 

(1.15) f u(x) dx<^- [°°f(x)qu(x) dx 
J{x>0\P+f{x)>\} W ~ \4 JO JKJ 

for all nonnegative nonincreasing f and all À > 0. 

For 1 < p < oo, the equivalence of (a) and (b) was proved by Arino and Mucken-
houpt [3, Theorem 1.7] for the case </>(f) = 1 and by Neugebauer [11, Theorem 2.3] for 
the case <j)(t) — t~a, 0 < a < 1. Boyd [5; Theorem 4.1 and Lemma 3.6] proved the 
equivalence of (a) and (c) for <j> (t) = 1,1 < p < oo, under the additional assumption 
that u is nonincreasing. Neugebauer [10, Theorem 7.2] proved the equivalence of (a) and 
(d) for cj)(t) = 1, 1 < p < oo. The equivalence of (a) and (b) for 1 < p < oo and that 
of (a) and (d) for 1 < p < oo may be deduced from results of Lai [7, Theorems 3.1 and 
3.2] and [8, Theorem 5.3]. 

In view of our earlier remarks, the analogue of Theorem 3 for Ra or L may be obtained 
by setting <£ (t) = 1 and replacing P<f> throughout by Ra or L. 

The analogue of Theorem 3 for F', is given by the following theorem which shows 
that when v = u and q = p, not only do the weight functions for the weak type and the 
strong type inequalities coincide, but the weight classes are independent of p > 0. 

THEOREM 4. Suppose u is a nonnegative weight function defined on (0, oo). If for 
some 0 < p < oo one of the following statements holds, then they all hold for all 
0 < p < oo. 
(a) There is a constant K depending on p, <j> and u such that 

(1.16) jTflog | | | j «(x) dx < KU(r) 

for all r > 0. 
(b) There is a constant K depending on p, <j> and u such that 

(1.17) U(r)l'PU(srl'plog^-<K 
O(r) 

for allO < r < s < oo. 
(c) There is a constant C depending on p, <j> and u such that 

(1.18) / u(x) dx < — / f(xfu(x) dx 
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for all nonegative nonincreasing functions f and all À > 0. 
(d) There is a constant C depending on p, <j> and u such that 

J
roo roo 

IQ [^ffu(x)dx<Cjo f(xfu(x)dx 
for all nonnegative nonincreasing functions f \ 

For 4>(t) = 1, Neugebauer [11, Theorem 3.3] proved that (1.19) holds for 1 <p< oo 
if and only if (1.16) holds for/? = 1. For related results, see Lai [7,8]. 

The proof of Theorem 1 is given in Sections two and three; Theorems 2 and 3 are 
proved in Section four and Theorem 4 is proved in Section five. 

2. Proof of Theorem 1 (Necessity). Consider first the case p > 1. If JQ v(t)dt — oo 
for all x > 0 then the second factor in (1.2) is zero so (1.2) holds. Thus we may assume 
that JQ0 v(0 dt < oo for some xo > 0. We further assume, temporarily, that J™ v(t) dt = 
oo and that the kernel a is integrable with compact support in (0, oo). Fix r > 0 and set 

( r°° > / i V/p 

f(t)=[jt A(y/rrV(y)-p-lv(y)dyj . 
Then/(/) > 0 is nonincreasing and Fubini's Theorem shows that 

roo roo , , 

(2.1) Jo f{tfv(t)dt= yo A(y/rfV(yrpv(y)dy. 

Note that our temporary assumptions about v and a ensure that (2.1) is finite. On the other 
hand, since A(y/ r) is nondecreasing in y 

roo roo ,, ( roo , . \ 

Tf(r)=JQ a(t)f(rt)dt>Jo a{t)A{tf 1?^ V(yTp _ 1 v(y) dy] dt 

= (p'Tl/p J°° a(t)A(tf/pV(rtrp'/p dt 

and upon expressing V{rtyp'lp as 

D' r°° i 
- V(yr»v(y)dy 
P Jrt 

and applying Fubini's Theorem, it follows that 

Tf(r) > (p')xlp'p-x H V(yrp,v(y)(r/ra(t)A(tf'pdt) dy 
(2.2) ^ J 

= (p'Vl/pp-1 l°°A(y/ rf'V{yyp'v{y)dy. 

Thus, with 
A = (l+èrl(pfrl/pP~l J^Aiy/rf'ViyyP'v^dy 

in (1.1), (2.1) and (2.2) yield (1.2) with K = (p')xlppC since 8 > 0 is arbitrary. This 
completes the proof for v and a satisfying our temporary assumptions. 
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We remove the assumption on v first. Note that if Jfi° v(t) dt < oo, (1.1) with/(f) = 1 
shows that 

(2.3) ( J°° u{x)dx) (j°°a(t)dt) < c(j°° v(t)dt) . 

Then, since (1.1) holds with the same constant C if v is replaced by ve(x) = v(x) + e, 
e > 0, and since ve satisfies J£° ve = oo, the above argument and (2.3) shows that 

(2.4) Ulrft<[(fA0c/rf[f%t) %(*)*) " ' + ( f « ) ( f v) ' ^ 

does not exceed [{p')llpp + 1]C. Since (2.4) is not increased if the term ve{x) is replaced 
by V(JC), (1.2) follows from the monotone convergence theorem upon letting e —> 0. 

The assumption on a may now be removed by applying the above argument to the 
operator Tn with kernel an(t) — min[a(t), n]x[{ / n n](t) and then letting n —• oo. This 
completes the proof for p > 1. 

Suppose now that 0 < p ̂  1 and fix r, s > 0. If V(s) = oo or A(s/ r) = 0 then (1.3) 
holds by convention, so we assume V{s) < oo and A(s/ r) > 0. Set/(0 = X(0,s)(0- Then 
Tf(x) > Tf(r) = A(5/ r) for x G (0, r). Hence (1.1) shows that U(r) = 0 if A ( J / r) = oo 
and 

A(s/r) \Jo J A{s/r) 

for ^ > 0 if A(s/ r) < oo. Since 6 > 0 is arbitrary, it follows that (1.3) holds with 
K = C. This completes the proof for 0 < p < 1. 

3. Proof of Theorem 1 (Sufficiency). The monotone convergence theorem shows 
that we need only prove ( 1.1 ) for bounded nonnegative nonincreasing/ with/(0 = 0 for 
large t. Further, since Tf(x) is nonincreasing, it suffices to show that 

(3-D U(r)xl«<-U™f(tyv(t)dt\ 

for all r with (0, r] C { x> 0 | Tf(x) > A }. Thus, we may fix r > 0 with U(r) > 0 
and Tf{f) > X. 

Suppose 1 < p < oo and (1.2) holds. We may assume that JQ° a ^ 0 for otherwise 
Tf = 0. Set t0 = inf{ t > 0 | A(t) > 0 }. Then (1.2) shows that 

\p'~lf r Yp,/P 

and 

Hence 
/

oo , 1 , 

A(y/ rf " ' V(y)-p v(y) rfy < oo, t > t0. 

h(t)=i[J™A(y/rf'-lV(y)-'>'v(y)dy + (p/p')[fo
C<>a] ^ ° ° vj } 
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is nonincreasing and finite for all t > to. Fubini's Theorem shows 

^ a(t)h{tf dt = j[o a(f)(/rt A(y/ryf"V(y)-pv(y)dy\dt 

= Jo A(y/rfV(yrpv(y)dy 

< mxi[l,p/p'] { f£°A(y/ rf'V(y)-i>'v(y) dy\ 

. -P'IP 

-P'IP 

V(y)-pv(y)dy\ 

-VP^P' 

P'IP^-P/P' 

vl 

+ 1 

and hence 

( r™ > V/p' 
(3.2) Ijf a(t)h(tf dt\ Û max[l,(p/p')l/p]KU(r)-l/q 

by (1.2). Since A is nondecreasing, for t > to we have 

( 3 3 ) A W ^ A W - ' j ^ V(y)-"v(y)dy + {p/p'yo 

= (j>'/pf/p'A(tr1V(rt). 

Now, integrating by parts and discarding negative terms we have 

/ a{t)f{rtfh(trpdt<- A(t)h(t)-P df{rtf 
Jt0 Jt0 

and then (3.3) shows that this does not exceed 

-(P'/Py/P'j™ V{rt)df{rty < -(p'/pr/p'J0°° V{rt)df{rtf 

= {p'lpflp' j™f(tfv(t)dt. 

Hence 

(3.4) yj" a{t)f(rtfh(tTp dt^ < ( P 7 P ) 1 / P ' ^ /(OMO^J . 

Holder's inequality, (3.2) and (3.4) then show 

Tf(r) < mzx[\Ap'Ip)Xlp'}KU(r)-ll«[j™f(tfv(t)d^ 

Using this estimate in 

I/to1/» < U{r)ll"^-
A 

MP 
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yields (3.1) with C < max[l9(p'/p)l/p']K. This completes the proof for/? > 1. 
Now suppose 0 < p < 1 and (1.3) holds. Integration by parts and (1.3) show that 

Tm = JQ a(t)f(rt)dt<-jo A(t)df(rt) 

< KU(rrl^lo°° ( j T v(y) dy^j [~df(rt)] 

and Minkowski's inequality for integrals shows that this does not exceed 

UP 
KU{r)~xl^f(yfv(y)d^ 

Thus 

U{rfl« < Uir)1^1^ < ^y™f(yy>v(y)dy 

so we have (3.1) with C — K. 
This completes the proof. 

4. Proofs of Theorems 2 and 3. The proofs of Theorems 2 and 3 require the fol­
lowing lemma, the first part of which was proved for the particular case //(r, 0 = rj t, 
1 < p < oo, in [3, Lemma 2.1]; a different proof was given in [11, Theorem 2.4] for 
0 < p < oo. The proof given here is quite different than either of these and seems to be 
more direct. 

LEMMA 1. Suppose //(r, t) > 0 is defined and measurable on { (r, t) \ t > r > 0 } 
and satisfies: 

(i) H(t, t) < H\ for a constant H\ and all t > 0, 
(ii) H(r, t) is nonincreasing in tfor t > r, 

(Hi) //(r, t) < #2 H(r, s)H(s, t) for a constant H2 and all 0 < r < s < t. 
If 0 < p < 00 and u is a nonnegative weight function defined on (0,00), then the 
following statements are equivalent. 

(a) There is a constant K depending on p, H and u such that 

/
oo 

H(rjfu(t)dt<KU(r) 

for all r > 0. 
(b) There is è > 0 such that for all p\ > p — 6 there is a constant K depending on 

p\, H and u such that 

/
oo 

H(r,tTu(t)dt<KU(r) 

for all r > 0. 
(c) There is 0 < 7 < 1 and a constant K depending onp, 7, H and u such that 

(4.3) H(r,t)lpU{t)<KU(r) 
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for allt> r> 0. 

PROOF OF LEMMA 1. We begin by showing that (a) implies (b). Suppose (a) holds. 
Then, if p\ > p, since (i) and (ii) show that H(r, t) < H\ for t > r, it follows from (4.1) 
that 

H(r, tfxu(t)dt < HPl~pKU(r) 

for all r > 0 so (4.2) holds for p\ > p. It remains to show that (4.2) holds for some 
p\ < p. Fix r > 0 with U(r) < oo. Then for 0 < 6 < p (4.1) and (ii) show that 
J? H(r, xf~8 u(x) dx < oo for all R > r with H(r, R) > 0. Integration by parts shows 

J H(r,xf~8u(x)dx 

= H(nr)~6 J H(r,t?u(t)dt 

and in view of (iii), after replacing H(r, t) in the inner integral by Hj H(r,x)H(x, t), (4.1) 
shows that this is bounded by 

K Œ(r, r)~è U{r) + Hp J* U(x)H(r9xf dH(r,x)~6 j 

and a further integration by parts in the last term shows that this does not exceed 

Hence (i) and (iii) yield 

J H(r,xf-8u(x)dx 

since //(r, r) > H(r, R) > 0 and (iii) show that H(r, r) ^ H^1. Transposing the last term 
and letting R—>oo yields (4.2) with px = p - S provided 0 < 8 < pj (1 + }f2K). This 
completes the proof that (a) implies (b). 

Now for t > r > 0, (ii) and (i) show that 

//(r, tf U(t) < H(r, tf U(r) + H(r, tfl j * u(x) dx 

< //(r, rf] U(r) + j * //(r, xf u(x) dx. 

Thus (i) and (4.2) yield 
//(r, tfl U(t) < (HPl + K)U(r) 

so (b) implies (c). 
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Finally, if (c) holds, then 

J°° H(r, tfu(t) dt < [KU(r)]1^ j™ U(tyl^u(t) dt 

<Kl'1-^-U(r) 
1 - 7 

so (a) holds. 

This completes the proof of the lemma. 

PROOF OF THEOREM 2. Note first that H(r, t) = A(r/ t),t > r > 0, satisfies the 
hypothesis of Lemma 1 with H\ = A(l) and H^ — B. 

Now, if (a) holds and r > 0, we obtain (b) by choosing f(t) = X(0,r](0 and reducing 
the range of integration on the left of ( 1.8) to (r, oo). 

Lemma 1 shows that (b) and (c) are equivalent. 

Suppose (c) holds. We shall show that (d) holds with p\ — lp. Suppose q > 

max [1,7/?]. Then 

f A(x/r)q'U(x)-q'u(x)dx < [KU{rTlf 'l{lp) f U(x)(-l+l/lp)q'u(x)dx 

= Kq'l{lp)lp(q - I)/ (q - lp)U(r)x~q' 

so 

U(r)^{(fA{x/r)«'U(Xr*u(x)dxf
q +{fa)(fu) " ' j 

is bounded by 

[rfl ùp)lp(q -\)l(q-lp) + (/o°° a j / (q1 - 1 )j + J™ a. 

Hence Theorem 1 shows that T satisfies (d) in this case. On the other hand, if lp < q < 1, 
Lemma 1 shows that (1.10) holds with lp replaced by q. Hence Theorem 1 yields (d) in 
this case also. Thus, (c) implies (d). 

Finally, if (d) holds, then (a) holds by an application of the Marcinkiewicz interpola­
tion theorem. 

This completes the proof of Theorem 2. 

PROOF OF THEOREM 3. The proof is entirely similar to that of Theorem 2 except 
that now in the proof that (b) implies (c), Lemma 1 is applied to the function H(r, t) = 
O(r)/ 0(0 , t > r > 0, and in the proof that (c) implies (d) an appeal is made to Corol­
lary 1 rather than to Theorem 1. The details are omitted. 

5. Proof of Theorem 4. The main ingredient of the proof is the following lemma. 
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LEMMA 2. If for some 0 < p < oo (1.16) holds, then (1.16) holds for all p with 
0 < p < oo. 

PROOF OF LEMMA 2. Suppose (1.16) holds for/? = p0 > 0. Then for 0 < p < p0 

(5.1) 
r f l o g — 1 u(x)dx< f 
M 0(JC) J - ./o 

1+ log 
0(r)V 

•®(*)J 
<(C+\) f u(x)dx 

u(x) dx 

so (1.16) holds for 0 < p < p0. Now, let 0 < S < min[l,/?0]. For 0 < x < r a change 
of variable shows that 

where the Beta function B(6,po + 1) = T(è)T(po + l)/T(S + po + 1). Hence Fubini's 
Theorem and (1.16) show that 

, Po+Ô 

K 8ôôôJ M(x) 

"0 \ _ ^ _ 

<D(?) 
= ^ , p 0 + l)-7;(log||) " (i'(logfg) °«W*)*<0 

<*«,«, +!)-'<:£(logfg)' ' ( j(>)*)*(0^ 

= [SBQ.po + 1 ) ] - ' C j j ^ l o g | ^ j M(jc)dr 

< [6B(6,po + l)]~lC(C+l)fu(x)dx 

where we have used (5.1) wifhp = S to obtain the last inequality. Thus (1.16) holds for 
P = Po +Û • Iterating this argument shows that (1.16) holds for all/? > p0 and completes 
the proof of the lemma. 

PROOF OF THEOREM 4. We first prove the equivalence of (a) and (b). Fix p > 0 and 
suppose (1.16) holds. Then for 0 < r < s 

(iog W)) Jou(x) dx ̂  r( i o g Iw)u(x) dx 

^Jo{i°ëW))u(x)dx 

< C / u(x) dx 

so (1.17) holds. Conversely, if 0 < e < p, (1.17) shows 

/"flog — 1 u(x) dx < Ç<P-^IP fr[U(r)/ Uix^-^Puix)dx 
Jo y &(x)J Jo 

= (p/e)C(p-e)/pU(r) 
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so (1.16) holds for/7 — e, and hence by Lemma 2, also for p. Thus (a) holds if and only 
if (b) holds. 

Now suppose (b) holds. If 0 < p < 1, (1.17) and Corollary 2 show that (c) holds. If 
1 < p < oo, then since (1.17) also holds for p\ > p, 

r (iog f(rt )u( t rPu( t ) dt - cp,'px rm)/ u^p,/pi vivait) & 
= {l-plp\YXCp'I^U(r)-p'lp 

so Corollary 2 shows that (c) holds in this case also. This completes the proof that (b) 
implies (c). Conversely, if 1 < p < oo, 0 < t < r, and (c) holds, then Corollary 2 
shows JQ° U(X) dx — oo and hence 

( ®(r)V fpf roof <3>(r)V' , V/p' 

ll0g W) J m =Ufr ll0g W) J UiXr" U(X) H V{r)m 

fn' roof Q>(x)\P' / YIP' 

<(p7/7r/^/7(r) 

again by Corollary 2, so (1.17) holds. Since for 0 < p < 1 (1.17) and (1.7) with v — w, 
q — p coincide, this completes the proof that (c) implies (b). 

Finally, since we have shown that (a) and (c) are equivalent, if (c) holds then by 
Lemma 2 it also holds for all p > 0 and hence the Marcinkiewicz Theorem shows that 
(d) holds. Since (d) always implies (c), the proof is complete. 
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