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1. Introduction

The general theory of homogeneous Kéahler manifolds is well known, as is the relation
between homogeneous symplectic and homogeneous contact manifolds (see, for example,
(6,10,11]).

As is also widely known, a connected, simply connected and complete Riemannian man-
ifold is a symmetric space if and only if its curvature tensor field is parallel. Ambrose and
Singer [2] extended this result to obtain a characterization of homogeneous Riemannian
manifolds in terms of the existence of a tensor field S of type (1,2) on the manifold, called
a homogeneous Riemannian structure (see [28], where a classification of such structures
is also given), satisfying certain properties (see (2.1); if S = 0, one has the symmetric
case). Moreover, Sekigawa [26] obtained the corresponding result for almost-Hermitian
manifolds, defining homogeneous almost-Hermitian structures (among them the homo-
geneous Kahler structures), which were classified in [1]. Its odd-dimensional version, the
almost-contact-metric case, has also been studied (see, for example, [8,12,15,21]).

In § 2, we give basic results about homogeneous Riemannian and homogeneous Kéahler
structures. In particular, we consider these structures on Hermitian symmetric spaces
of non-compact type. Besides the trivial homogeneous structure S = 0 associated to
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the description of one such space as a symmetric space, other structures can be obtained
associated to other descriptions as a homogeneous space and, in particular, to its descrip-
tion as a solvable Lie group given by an Iwasawa decomposition (see §2.2). We also give
a construction of homogeneous Sasakian structures on the bundle space of a principal
line bundle over a Hermitian symmetric space of non-compact type, endowed with a
connection 1-form that is the contact form of a Sasakian structure on the total space
(Proposition 2.5).

The complex hyperbolic space CH(n) = SU(n,1)/S(U(n) x U(1)) with the Bergman
metric is an irreducible Hermitian symmetric space of non-compact type, and, up to
homotheties, is the simply connected complete complex space form of negative curvature.
It has been characterized in [14] in terms of the existence of certain type of homogeneous
Kéhler structure on it, and in [7] a Lie-theoretical description of its homogeneous struc-
ture of linear type is found. From an alternate point of view, in §3 we study the homo-
geneous Kéahler structures on CH(n), which, in particular, provide an infinite number of
descriptions of CH(n) as non-isomorphic solvable Lie groups. Moreover, we consider the
principal line bundle over CH(n), with its Sasakian structure given in a natural way from
a connection form on the bundle, and we obtain the families of homogeneous Sasakian
structures on its bundle space following our previous general construction. In summary,
we obtain the following.

(a) All the homogeneous Kéhler structures on CH(n) = AN: these are given in terms
of some 1-forms related by a system of differential equations on the solvable Lie
group AN (Theorem 3.1).

(b) The explicit description of a multi-parametric family of homogeneous Kéhler struc-
tures on CH(n), given by using the generators of a4 n (Proposition 3.6), and the
corresponding subgroups of the full isometry group SU(n, 1) of AN (Theorem 3.7).

(c) The explicit description of a one-parametric family of homogeneous Sasakian struc-
tures on the bundle space of the line bundle M — CH(n), given in terms of the
horizontal lifts of the generators of a+n and the fundamental vector field £ on M
(Proposition 3.9), and their associated reductive decompositions (Propositions 3.11
and 3.12). One of them describes M as the complete simply connected @-symmetric
Sasakian space SU(n, 1)/ SU(n), which is also a Sasakian space form.

On the other hand, complex hyperbolic space was the first target space-time where
Nishino’s [22] alternative (i.e. neither necessarily hyper-K&hler nor quaternion-Kéahler)
N = (4,0) superstring theory proved to work. This model has some interesting fea-
tures, among them not having the incompatibility (which is a trait common to heterotic
o-models) between the torsion tensor and quaternion-Kéhler manifolds found by de Wit
and van Nieuwenhuizen [9]. Another peculiarity is that, in this case, one of the two scalars
of the relevant global multiplet is promoted to coordinates on CH(n), while the other
plays the role of a tangent vector under the holonomy group S(U(n) x U(1)).
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2. Homogeneous Riemannian structures

Ambrose and Singer [2] proved that a connected, simply connected and complete Rie-
mannian manifold is homogeneous if and only if there exists a tensor field S of type (1, 2)
on M such that the connection V = V — S satisfies the following equations:

Vg=0, VR=0, VS§=0, (2.1)

where V is the Levi-Civita connection of g and R is its curvature tensor field, for which
we adopt the conventions

RxyZ =V xy)Z —VxVyZ +VyVxZ, Rxyzw = g(Rxy Z,W).

Such a tensor field S is called a homogeneous Riemannian structure [28]. We also denote
by S the associated tensor field of type (0,3) on M defined by Sxvyz = ¢(SxY, Z).

2.1. Homogeneous Kihler structures

An almost-Hermitian manifold (M, g, J) is said to be a homogeneous almost-Hermitian
manifold if there exists a Lie group of holomorphic isometries which acts transitively and
effectively on M. Sekigawa proved the following theorem.

Theorem 2.1 (Sekigawa [26]). A connected, simply connected and complete almost-
Hermitian manifold (M, g,J) is homogeneous if and only if there is a tensor field S of
type (1,2) on M which satisfies Equations (2.1) and V.J = 0.

A tensor S satisfying the Equations (2.1) and V.J = 0 is called a homogeneous almost-
Hermitian structure. The almost-Hermitian manifold (M, g, J) is Kéhler if and only if
J is integrable and the fundamental 2-form {2 on M, given by 2(X,Y) = g(X,JY), is
closed, or equivalently VJ = 0. In this case, a homogeneous almost-Hermitian structure
is also called a homogeneous Kéhler structure, and we have the following proposition.

Proposition 2.2. A homogeneous Riemannian structure S on a Ké&hler manifold
(M,g,J) is a homogeneous Kéhler structure if and only if S - J = 0 or, equivalently,
Sxvyz = Sx vz for all the vector fields X, Y, Z on M.

Corollary 2.3. A connected, simply connected and complete K&hler manifold
(M,g,J) is a homogeneous Kéhler manifold if and only if there exists a homogeneous
Kahler structure on M.

If (M = G/H,g) is a homogeneous Riemannian manifold, where G is a connected
Lie group acting transitively and effectively on M as a group of isometries and H is
the isotropy group at a point o € M, then the Lie algebra g of G may be decomposed
into a vector-space direct sum g = h+m, where b is the Lie algebra of H and m is an
Ad(H)-invariant subspace of g. If G is connected and M is simply connected, then H is
connected, and the condition Ad(H)m C m is equivalent to [h, m] C m. The vector space
m is identified with T,(M) by the isomorphism X € m — X} € T,(M), where X* is
the Killing vector field on M generated by the one-parameter subgroup {exptX} of G
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actingon M. If X € g = h+m, we write X = Xy + X, Xy € h, X\, € m. The canonical
connection V of M = G/H (with regard to the reductive decomposition g = h+m) is
determined by

(Vx-Y")o = [X*, V"], = —[X, Y] = —([X,Y]w)’, X,Y €m. (2.2)

Then S = V—V satisfies the Ambrose-Singer Equations (2.1), and it is the homogeneous
Riemannian structure associated to the reductive decomposition g = h+m. If (M, g) is
endowed with a compatible almost-complex structure J invariant by G (so that (M =
G/H,g,J) is a homogeneous almost-Hermitian manifold), restricting J to T,(M) = m,
we obtain a linear endomorphism J, of m such that Jg = —1, and J,ady = ady J,.
Moreover, J is integrable if and only if

[JoX, JoY]m = [X,Y]m = Jo[X, JoY ] — Jo[JoX,Y]m = 0

for all X,Y € m (see [20, Chapter 10, Proposition 6.5]).

Conversely, suppose that (M, g) is a connected, simply connected and complete Rie-
mannian manifold, and let S be a homogeneous Riemannian structure on (M g). We set
m = T,(M), where o € M. If R is the curvature tensor of the connection V = V — 8,
the holonomy algebra h of V is the Lie subalgebra of the Lie algebra of antisymmetric
endomorphisms so(m) of (m, g,) generated by the operators Rxy, where X,Y € m. A
Lie bracket is defined [23] in the vector-space direct sum g = 6 + m by

U, V]=UV -V, U,V €b,
U, X]=U(X), Ueh, Xem, (2.3)
[X,Y] = Rxy + SxY — Sy X, X,Y €m,

and g = 6 + m is the reductive decomposition corresponding to the homogeneous Rie-
mannian structure S. Let G be the connected, simply connected Lie group whose Lie
algebra is § and let H be the connected Lie subgroup of G whose Lie algebra is [) Then
G acts transitively on M as a group of isometries and M is diffeomorphic to G / H.If
I is the set of the elements of G which act trivially on M, then I' is a discrete normal
subgroup of G, and the Lie group G = G /T acts transitively and effectively on M as a
group of isometries, with isotropy group H = H/I'. Then M is diffeomorphic to G/H.
Now, if J is a compatible almost-complex structure on (M, g) and S is a homogeneous
almost-Hermitian structure, then the holonomy algebra 6 is a subalgebra of the Lie alge-
bra u(m) = {4 € so(m) : A-J = 0} of the unitary group, and M ~ G/H ~ G/H is a

homogeneous almost-Hermitian manifold.

2.2. Hermitian symmetric spaces of non-compact type

Suppose that (M = G/K,g,J) is a connected Hermitian symmetric space of non-
compact type, where G = Iy(M) is the identity component of the group of (holomorphic)
isometries and K is a maximal compact subgroup of G. Then M is simply connected
and the Hermitian structure is Kahler. We consider a Cartan decomposition g = £+ p of
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the Lie algebra g of GG, and the Iwasawa decomposition g = €+ a+n, where ¢ is the Lie
algebra of K, a C p is a maximal R-diagonalizable subalgebra of g and n is a nilpotent
subalgebra. Let A and N be the connected abelian and nilpotent Lie subgroups of G
whose Lie algebras are a and n, respectively. The solvable Lie group AN acts simply
transitively on M, so M is isometric to AN equipped with the left-invariant Riemannian
metric defined by the scalar product (-,-), induced on a+n = g/ € = p by a positive
multiple of B, x p, where B is the Killing form of g.

Now, let G be a connected closed Lie subgroup of G which acts transitively on M. The
isotropy group of this action at o = K € M is H = GNK. Then M = G/K has also the
description M = G/H7 ando=H € @/H Let § = h+m be a reductive decomposition
of the Lie algebra § of G corresponding to M = G /H.

We have the isomorphisms of vector spaces

p=g/t=g/b=m=T,(M)=a+n,

with

given by
YD =2y, w2)=2: ¢'X)=X Zem, Xc€a+n.

For each X € g, we have (X¢)5 =0 and (V(X,)*), =0, and since the Levi-Civita
connection V has no torsion, for each X,Y € g, we have

(VYo = (Vi (Vo) )o = [(Xo), (Ye)*lo = —[Xp, VAI2. (2.4)

The reductive decomposition § = h + m defines the homogeneous Riemannian structure
S =V —V, where V is the canonical connection of M = G‘/H with respect to g = h+m,
which is G-invariant and uniquely determined by (Vx-Y*), = —[X,Y]*, for X,Y € m
(see (2.2)). The tensor field S is also uniquely determined by its value at o because M =
G/H and S is G-invariant. Since J is G-invariant, from [20, Chapter 10, Proposition 2.7],
it follows that VJ = 0 and, by Theorem 2.1, S is a homogeneous Kahler structure.

We have

(Sx+Y")o = (Vx:Y*)o + [X, Y]], =Vy- X", X, Y em. (2.5)
By (2.4) and (2.5), S is given by
Sx: Yy = [Xp, Y5, XY em.
Then, for each X,Y € a+n, we have
Sx: Yy = Se(x,):6(Vp)o = [(€(Xp))e, Yoo

The complex structure J on M = G/K is defined by an element E; in the centre of
€, and it defines the complex structure J € End(a+n) such that the following diagram
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is commutative, and (a+n,(-,-),JJ) becomes a Hermitian vector space isomorphic to
(TO(M)7 Yo, Jo):

pi>mL>TO(M)*C>a+n

w| TR TF

p—s>m—LsT, (M)—>a+n
Let A and N be the connected abelian and nilpotent Lie subgroups of G whose Lie
algebras are a and n, respectively. The solvable Lie group AN acts simply transitively
on M. Then M is isometric to AN equipped with the left-invariant Riemannian metric
defined by the scalar product induced on a+n = g/ ¢ = p by a positive multiple of
B, x p, where B is the Killing form of g, so that AN equipped with the left-invariant

almost-complex structure defined by J is a Kahler manifold.

2.3. Homogeneous almost-contact Riemannian manifolds

An almost-contact structure on a (2n + 1)-dimensional manifold M is a triple (¢, &, ),
where ¢ is a tensor field of type (1, 1), £ is a vector field (called the characteristic vector
field) and 7 is a differential 1-form on M such that

P’ =—-id+n®¢ nE) =1

Then & = 0, o ¢ = 0 and ¢ has rank 2n. If § is a Riemannian metric on M such that
G(eX,0Y) =g(X,Y) —n(X)n(Y) for all vector fields X and Y on M, then (p,&,7,3) is
said to be an almost-contact-metric structure on M. In this case, §(X, &) = n(X). The
2-form @ on M defined by #(X,Y) = G(X,¢Y) is called the fundamental 2-form of the
almost-contact-metric structure (¢, &,7,7). If dp(X,Y) = Xn(Y) = Yn(X) —n([X,Y]) =
20(XY), then (¢,€,n,7) is called a contact metric (or contact Riemannian) structure;
in particular, n A (dn)™ # 0, that is, 1 is a contact form on M. If

(Dgp)Y =g(X,Y)E —n(Y)X, (2.6)

where D is the Levi-Civita connection of g, then (¢, &, 7, §) is called a Sasakian structure,
and the manifold M with such a structure is a Sasakian manifold. Sasakian manifolds
can also be characterized as normal contact metric manifolds and they are in some sense
odd-dimensional analogues of Kéhler manifolds [3,4].

If (¢, &, 7, 9) is an almost-contact-metric structure on M and (M = G/H, g) is a homo-
geneous Riemannian manifold such that ¢ is invariant under the action of the connected
Lie group G (and hence so are ¢ and 7), then (M, ,&,7,9) is called a homogeneous
almost-contact Riemannian manifold [8,15,21]. Let R be the curvature tensor field of
the Levi-Civita connection D of g. Let S be a homogeneous Riemannian structure on
M, that is Dg =0, DR =0 and DS = 0, where D = D — S. If S satisfies the additional
condition Dy = 0 (and hence D¢ = 0 and D = 0), then S is called a homogeneous
almost-contact-metric structure on (M, o, &, 7, ). From the results of Kiricenko [18] on
homogeneous Riemannian spaces with invariant tensor structure, we have the following.
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Theorem 2.4. A connected, simply connected and complete almost-contact-metric
manifold (M, p,€,n,g) is a homogeneous almost-contact Riemannian manifold if and
only if there exists a homogeneous almost-contact-metric structure on M.

A homogeneous almost-contact-metric structure on a Sasakian manifold will also be
called a homogeneous Sasakian structure.

2.4. Principal 1-bundles over almost-Hermitian manifolds

Let (M,g,J) be an almost-Hermitian manifold and let A be the bundle space of
a principal 1-bundle over M. Let n be a connection (form) on the principal bundle
m: M — M, and let ¢ be the fundamental vector field on M defined by the element 1 of
the Lie algebra R of the structure group of the bundle. Then 1(¢) = 1. For each vector
field X on M, we denote by X! the horizontal lift of X with respect to 1. If X is a
vector field on M, its vertical part is (X )&, Then, for any vector fields X and Y on M,
we have

[XH’ YH] = [X, Y]H + 77([XH7 YH])E

Moreover, [XH,¢] = 0, because X is invariant under the action of the structural group.
We define a tensor field ¢ of type (1,1) and a Riemannian metric g on M by

X =(JX)H,  pt=0, g=r'g+nen, (2.7)

where X and Y are vector fields on M. Clearly, (,&,n,g) is an almost-contact-metric
structure on M, and we have (X" YH) = g(X,Y) o and g(X™, &) = 0. Let & be its
2-fundamental form. If (2 is the fundamental 2-form of the almost-Hermitian manifold
(M,g,J), then 7*2 = .

If V and D are the Levi-Civita connections of g and g, respectively, then [24]

Dxn Y™ = (V)" + In((X", YT))E = (VxY)! = 2dn(x™, YT)E,

and Dyné = De X" = —p X" Now, if 2¢ = dn, Equation (2.6) is satisfied, as one can
easily see by replacing (X,Y) by (X", yH), (X" ¢) and (&, Y™), respectively. Then, if
the almost-contact-metric structure (p,&,n, g) is a contact structure, it is also Sasakian.

Suppose now that the structural group of the principal 1-bundle 7 : M — M is R
and that the base manifold is a 2n-dimensional connected Hermitian symmetric space of
non-compact type (M = G/K, g, J), so that M is isometric to the solvable Lie group AN
as in §2.2. Then M is holomorphically diffeomorphic to a bounded symmetric domain,
i.e. to a simply connected open subset of C™ such that each point is an isolated fixed point
of an involutive holomorphic diffeomorphism of itself [16, Chapter VIII, Theorem 7.1].
Since m : M — M is a principal line bundle over the paracompact manifold M, it
admits a global section [19, Chapter I, Theorem 5.7], so there exists a diffeomorphism
M — M x R, and the bundle space M may be identified with AN x R, with 7 being
the projection on AN. On the other hand, since the fundamental 2-form {2 associated to
the Kéhler structure (g, J) is closed, £2 = d¢ for some real analytic 1-form ¢ on AN. We
consider the connection form 1 = 27*¢ 4+ dt on M, where t is the coordinate of R. The
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vertical vector field £ with n(¢) = 1 can be identified with d/d¢, and we consider ¢ and
g given by (2.7). Then 2¢ = 27*(2 = 27*d¢ = dn, and hence (p,&,7,g) is a Sasakian
structure on M.

If S is a homogeneous almost-contact-metric structure on M, and D =D — S, then
D¢ =0, and hence Syné = Dyné = —pXH. We have the following proposition.

Proposition 2.5. Let (M = G/K,g,J) be a connected Hermitian symmetric space of
non-compact type. Let m : M — M be a principal line bundle with connection form n such
that the almost-contact-metric structure (¢,&,m,g) on M defined by (2.7) is Sasakian.

(a) If S is a homogeneous Kihler structure on M, then the tensor field S on M defined
by

Sxn Y = (SxYV)" —g(X", o¥™M)e,  Sxué = —pX" =S X", S =0,
for all vector fields X and Y on M, is a homogeneous Sasakian structure on M.
(b) {S*:t € R}, defined by
SinYH = —g(X", oY), Ghué = —pXH,
SeXM = —tox™, 5¢€ =0,
is a family of homogeneous Sasakian structures on M.

Proof. (a) If D = D — S, then since Synynzn = g((SxY)H, Z0) = ¢(SxY, Z) o
™ = —g(K~SXZ) o = —g(YH,(SXZ)H) = —ngzng and S’XHYHf = —SngyH, the
condition Dg = 0 is satisfied. On the other hand, if V =V — S, we have

DxnYH = (VxY)H,  Dyné =D X" =0. (2.8)

We can identify M = G/K with the solvable Lie group AN in an Twasawa decomposition
G = KAN and consider the Lie algebra a+n of AN. If U, V, X, Y, Z are horizontal
lifts of elements of a+n or some of them are the vertical vector field &, then

(DgR) vz

since 0(]?)292‘7) =0. Now, if X,Y, Z,V € a+n, then

~Riyvzp,v T Bxvvp,z — Bzvxp,v T Rz0v b, % (2.9)

<t

RxHszHvH = (RXYZV — 2g(X, JY)g(Z, JV)
+§((VXZ)H7¢YH) - g((vyz)HvszH)v
RngzHg = g(Dxn&, Dzng).

By using (2.8) and (2.10), together with the conditions VR = 0 and V.J = 0 for the
homogeneous Kéahler structure S on M, and the formula

Ry =n(X)Y —n(Y)X
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for the Sasakian manifold (M, ¢, &,n,g) [4, Proposition 7.3], one obtains from (2.9) that
DR = 0. Now,

(DUHS)XHYH = ((@US)XY)H, (DUHS)XH€ = —((@UJ)X)H and Dgs = 0;

thus DS = 0. Moreover, (Dxup)YH = ((VxJ)Y)! and (Dxng)¢ = 0. Then Dy = 0,
and S is a homogeneous Sasakian structure on M.

(b) If t = 1, the corresponding tensor S! coincides with S in (a) for S = 0. For
arbitrary ¢, if D' = D — S* we have D{X™ = (t — 1)(JX)", and we get D'g =0, D'R =
0, D!St =0, Dty = 0. O

3. The complex hyperbolic space CH(n)

3.1. CH(n) as a solvable Lie group

The complex hyperbolic space CH(n), which may be identified with the unit ball in C™
endowed with the hyperbolic metric of constant holomorphic sectional curvature —4,
may also be viewed as the irreducible Hermitian symmetric space of non-compact type
SU(n,1)/S(U(n) x U(1)).

The Lie algebra su(n, 1) of SU(n,1) can be described as the subalgebra of sl(n+1,C)

of all matrices of the form
z PT
X p— — .].
(P ic ) ’ (3.1)

where Z € u(n), c € R and P = (p1,...,pn) € C". The involution 7 of su(n,1) given by
7(X) = —XT defines the Cartan decomposition su(n, 1) = €+ p, where

E:{<§ ii):trZ+ic:0}N5(u(n)€Bu(1))v PZ{(; ]T)T>}'

The element Ag of p defined by P = (0,...,0,1) generates a maximal R-diagonalizable
subalgebra a of su(n,1). Let fy be the linear functional on a given by fo(Ag) = 1. If
n > 1, the set of roots of (su(n,1),a) is X' = {xfo, £2fo}, the set II = {fo} is a system
of simple roots and the corresponding positive root system is X = {fo,2fo}. If n = 1,
then X = {+2fy} and IT = X* = {2f,}.

Let E;; be the matrix in gl(n, C) such that the entry at the ith row and the jth column
is 1 and the other entries are all 0. The root vector spaces are

gf[):(ZjaZ]/':]-gjgn*D (ifn>1)a g2f0:<U>7
g—f0:<WJaW]/1<j<n_1> (lfn>1)a g—2f0:<V>a
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where

Zj = Ejn — Ejni1 — Enj — Ent1 4,
Z; =1(Ejn — Ejns1 + Enj + Ent15),
W; =Ejp +Ejpp1 — Eny + Engaj,
W]f =i(Ejp + Ejny1 + Enj — Enyaj),
U=i(Fpwn— Enn+1+ Entin — Entint1)s
V =1(Ewm+ Epnny1 — Enyin — Enging1)-

If n > 2, the centralizer of a in ¢ is Z¢(a) = (Cy, Fji, Hji : 7,5,k =1,....,n—1,j < k) =
u(n — 1), where

Cr =2iE,, —iEpy —iBpni1nt1, Fje = Ejp — By,  Hjp = i(Ejp + Eyy)

and su(n, 1) = (Ze(a) +a) +3_ ;¢ 5, 9 is the restricted-root space decomposition. We also
have the Iwasawa decomposition su(n,1) = € +a+n, where n = gy, + 955, = (U, Z;, 7} :
1<j<n—1).

If n =2, we set C = C; = diag(2i,—i,—1), Z = Z1, Z' = Zj, and in this case C
generates Zg(a), and a+n = (Ag, U, Z,Z"). If n = 1, Ze(a) = 0, we have the restricted-
root space decomposition su(1,1) = a+ (gas, +8_25,) = (Ao) + (U, V), and the solvable
part in the Iwasawa decomposition is a+n = (Ag, U).

By using the Cartan decomposition su(n,1) = €+ p, we express each element X €
su(n,1) as the sum X = X¢ + X, (X € &, X, € p). In particular, we have

Ur = 1(Enn - En+1,n+1)a Up = i(EnJrl,n - En,n+1)7
(Zj)e = Ejn — Enj, (Zj)p = —(Ent1,j + Ejny1),
(Z)e = i(Ejn + Enj), (Z})p = 1(Ent1j — Ejnt1)

From the basis {Ao, U, Z;, Z; : 1 < j < n—1} of a+n and the generators of Z¢(a) above,
we get the basis {Cy, Fji, Hji, Ue, (Zy)e, (Z)e - 7,5,k = 1,...,n—1,j < k} of ¢, and
the basis {Ao, Uy, (Z;)p, (Z})p : 1 < j < n— 1} of p. Notice that if n = 1, £ = (Up)
and p = (Ao, Uy), and if n = 2, we have ¢ = (C, U, Z¢, Zy) and p = (A, Uy, Zy, Z,). We
also decompose ¢ = ¥ +¢, where ¥ = [¢,8] = (C,, — Uy, Fji, Hji, (Zy)e, (Z))e = 7, 4, k =

1,...,n—1,j7 <k) Zsu(n), and ¢ is the centre of £, which is generated by the element
1
E; = Ci+-+Cphe NU
J 2n—|—1(1+ +Cho1 + (n+1)Us)

such that adg, : p — p defines the complex structure on CH(n). By the isomorphisms
p 2 su(n,1)/ €= a+n, we obtain the complex structure J acting on a+n as follows:

JAy = -U, JU = Ay, JZ, = 7!, JZ, = —Z,. (3.2)
We consider the scalar product (-,-) on a+ n defined by the isomorphism a+n 2 p and
1

4(n+1) pxp'
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Then (a+n,(-,-),J) is a Hermitian vector space, and the basis {Ag,U, Z,,Z,. : 1 < r <
n — 1} of a+n is orthonormal. We consider the solvable factor AN (with Lie algebra
a+n) of the Iwasawa decomposition of SU(n, 1) with the invariant metric g and almost-
complex structure J defined by (-,-) and J, respectively.

The Lie brackets of the elements of the basis of a+n are given by

[Ao,U] = 2U, [Ao, Z;] = Z;, [Ao, ZJ/] = Z](, Z;, Zl = —0,;r2U,
U, 21 = U, 2Z}] = (2;, Z,] = (2}, Z,] = 0.
The Levi-Civita connection V is given by 2¢(VxY,Z) = g([X,Y],Z) — ¢([Y, Z], X) +
9([Z,X],Y) for all X,Y,Z € a+n. So, the covariant derivatives between generators of
a+n are given by
VagAo=Va,U=Va,Z, =Va,Z. =0,

VoA = —2U, VyU=24,, VuZ. =2, VuZl =7,

Vo, Ado=—-2;, NpU=2,  VzZ =08A, V72l =—0;U,

VZ§A0 = —ZJ/», VZ](U =—Z; sz’.Zr = 0;.U, VZ]’.Z; = 0jrAo.

(3.3)

The components of the curvature tensor field R are given by
Ra,uAo = —4U, Ra,uU =44y, RauvZr =227, RawZ, = —2Z,,
Rayz;A0 = —Zj, Rayz,U =12, Rayz;Zr =06jpA0, Rayz,Z, = —0;U,
Ra,z1A0 = ~Z;, RayzU=~Zj, Ra,zZy = 0;U, R,z Z; = §jr- Ao,

Ruz;Ao = —Z;, Ruz;Av=—Z;, RuzZ =0;U, Ryz,Z,. = 6+ Ao,
Ryz; Ao = Zj, RyzU==Z2j, RuzZy =—8jrAo, RuzZ; =050,
Rz,z;A0 = Rz,2,U =0, Rz 7z Ao = 26;:U, Ry, 72U = =24, Ao,

Rz,2,2Zr = 0jr Zi — OkrZj, Rz,2,7Z) = 0522}, — O 25, Rz 20 = Rz, z;,
RZJ-Z]’. Zr = —2(1 + (SJTZ;), RZJZ]/' 7 = 2(1 + 6jr)Zr7

and
RZkZ; ZT = —5jTZ]/€ - 5er;-, RZkZ§Zr = (5er;€ - 5k7"Zja where k # j

In particular, we see that the invariant metric on AN has constant holomorphic sectional
curvature —4.

3.2. Homogeneous Kéhler structures on CH(n) = AN

We will determine the homogeneous Kahler structures on CH(n) = AN in terms of
the basis of left-invariant forms «, 8, v/, ¥7, 1 < j < n — 1, dual to Ay, U, Z;, Z}. If
S is a homogeneous Riemannian structure on AN and V = V — S, the condition Vg = 0
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in (2.1) is equivalent to Sxyz + Sxzy = 0 for all X,Y, Z € a+n. Moreover, VR =0is
equivalent to the condition

(VxR)vivavsys = —Rsxvivavsvs — Byisxvavsvy — Byvivasxyavs — Byivavasyv,

for all Y1,Y1,Y3,Y, € a+n. Replacing (Yl, Y, Y3, Y4) by (AQ, U, Ao, Zj), (1407 U, Ao, Z;),
(A0, U, Zy, Zj) and (Ao, U, Zy, Z}), one obtains that Sxyz, = SXAoz§, SXUz; =
—SxA07;5 SXZkZ;. = —Sxz,z; and Sxz,z, = SXZLZ_;, respectively. It is easy to see
that the condition VR = 0 holds if and only if the last four equations are satisfied for
all X € a+n. These equations also show (see (3.2)) that the condition S -J = 0 of
homogeneous Kéhler structures (see Proposition 2.2) is fulfilled. We set

w(X) = Sxau, /(X)=5xa,z = —Sxvz, (X)) = Sxaez; = Sxuz,, (34)
o (X) = Sxz,z; = Sxz;2}; V(X)) = Sxz,z, = Sxzz- (3.5)

We have 0% = 7% and " = —¢7%. Now, we must detefmine the conditions for the
1-forms w, o7, 79, %7 and o*J under which the condition VS = 0 in (2.1) is satisfied.
By (3.3)—(3.5), the connection V =V — S is given by

VAo = —(28+w)(X)U = S (v +07)(X)Z; - S (47 + 79)(X)Z,,

VU = (28+w)(X)do = (7 + ) X)Z + Y (3 + o) (X) 2,

VxZj = (v +09)(X)Ag + (47 + 7)(X)U + (8 - 07)(X) Z}
+ Z(wkj(X)Zk — 0" (X)Z},),
k#j
VxZj= (7 +7)(X)Ag — (¥ + o7 )(X)U + (67 — B)(X)Z;

+ 3204 (X) 2, - oM (X) Z4).
k#j

Now, replacing (Vi,Va) in the equation (VxS)(W,Vi,Va) = 0 by (A0, U), (Ao, Zj),

(Ao, Z3), (Zy, Z;) and (Zy, Z}), respectively, we obtain that the condition VS = 0 is
equivalent to the following conditions:

Vo =23 (v + o) @ — (77 + ) @ o),
j
Vol = —(B+w+ ) @71/ + (77 +77) ® (w+ 67)
+Y @M@t - @+ (v + ) @0 — (vF + oF) @ gM), (3.6)
kg
Vrii=B+w+0) @0 — (v +07) @ (w+ 6)
D Ot + @t — (fF +ah) @0 — (v 4 ) @y,
kg
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VoM = (v + o @t + (P + e - (Y + ) @c" — (vF+ M) @0l
+Y A+ ok A,
l !

Vb = (F + o) ol — (v + o) @of — (Y + ) @ — (v + ) & 7k
T AN N
! !

where 69 = 677, Thus, from (3.4) and (3.5), we have the following.

(3.6 cont.)

Theorem 3.1. All the homogeneous Kahler structures on CH(n) = AN are given by
S=w® (aAp)
n—1
+Y (@@ (@ny = BAY)+ T @ (a Ay + BAY) + 07 @ (47 AyY))
j=1

+ Y @GN AY YA+ 0 @ (P AT 47 Ay,
1<k<j<n—1

where w, o’, 77, % kI (1 < k,j < n— 1), are 1-forms on AN satisfying 7% = %7
Ik = —p*J and Equations (3.6).

If n =2, weset vy =1, v =91, so that {a, 3,7,7'} is the basis of left-invariant forms
on AN = CH(2) dual to {A4,U, Z, Z'}, and we have the following.

Corollary 3.2. All the homogeneous Kahler structures on the complex hyperbolic
plane CH(2) = AN are given by
S=w@(@AB)+0@(aAy=BAY)+T7R (@AY +BAY)+0@(YAY),

where w, o, 7 and 6 are 1-forms on AN satisfying

Vw=2(y+0)@71 -2y +7)®0=V0,
Vo=—-B+w+0) @7+ +7) @ (W+0),
Vi=B+w+0)®@c—(y+0)®(w+9).

If n =1, {«, B} is the basis of 1-invariant forms on the two-dimensional solvable Lie
group AN = CH(1) dual to the basis {4, U} of a+n, and we have the following.

Corollary 3.3. All the homogeneous Kéhler structures on the complex hyperbolic
line (or real hyperbolic plane) CH(1) = AN are given by S = w ® (a A ), where w is a
1-form on AN satisfying Vw = 0.

Remark 3.4. If S = w ® (o A () is a homogeneous Kéhler structure on CH(1), and
w = Aa + pf, where A and p are functions on CH(1), the condition Vw = 0 together
with the structure equation [Ag,U] = 2U gives A = u = 0 or A2 + p? = 4, and we
have that there are infinite homogeneous Kéhler structures on CH(1). However, up to
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isomorphism [28, Theorem 4.4], there are only two homogeneous structures on the real
hyperbolic plane: one of them is S = 0 (A = p = 0), and the other, which is given by
SxY =g(X,Y)¢ — g(&,Y)X, with & = 24 (for X, Y € a+n = (Ag, U)), corresponds
to S=w® (aApf), withw=-28(A=0, p=—-2).

Remark 3.5. For each n > 0, S = 0 is a homogeneous Kéhler structure on
CH(n) = AN; the corresponding canonical connection is V = V, its holonomy alge-
bra is ¢ & s(u(n) @ u(1)), the associated reductive decomposition is the Cartan decom-
position su(n,1) = €+p and it gives the description of CH(n) as symmetric space
CH(n) = SU(n,1)/S(U(n) x U(1)).

Now, our purpose is to obtain non-trivial homogeneous Kéhler structures on CH(n),
n > 2, their associated reductive decompositions, and the corresponding descriptions as
homogeneous Kahler spaces.

We will seek for solutions for which ¢/ = —~J, 79 = —~/7. In this case, we have

VY = (8 -6) 077+ (N @F -0 @),
o

VYT = (07 = B) @y + Y (0% @4" + 9 @),
k2

(Obviously, the last summands on the right hand-side in each of the two equations above
do not appear if n = 2.) By the second and third equations in (3.6), we must have
w = —20, which also satisfies the first equation in (3.6), because

@5:(25+w)®0472(7'j+7j)®’yj+Z(7j+o’j)®7’j:O.
J J

If n = 2, by Corollary 3.2, we have only to determine  such that VO = 0. If we set
0 = aa+bB+cy+c'y, by also using the structure equations of a+n = (Ao, U, Z, Z'), we
obtain that ¢ = ¢’ = 0 and a and b are constant. For n > 2 we set 67 = 677 = aja + b; 3,
0k = cpjo, Y = pia, k # j, with a;j,bj, ckj,pr; € R. Then, if 09 = —9, 77 = —4/
and w = —20, Equations (3.6) are satisfied if and only if one has

Prj(bk — bj) = Cij(br — bj) = 0.
Consequently, we get the following.

Proposition 3.6. For n > 2, the space CH(n) admits the multi-parametric family
of homogeneous Kéhler structures S = §%0i:kiPxi given in terms of the generators of
a+n by Table 1.

The complex hyperbolic plane CH(2) admits the two-parametric family of homoge-

neous Kahler structures S = S%" given in terms of the generators of a+n by Table 2.
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Table 1. Homogeneous Kihler structure S = S§% %3k -Pkj

AU Z; Z
S, 0 0 a;Z;+ Z(pszz +ciZ)  —a;Z; + Z(plez/ = cjiZi)
1435 1#35
Sy —2U 24, b; Z, —b; Z;
Sz, —Zy Z;/C 5@'140 —5ij
SZ’ 7Z]/€ 7Zk (S)WU 51@,7'140

k

Table 2. Homogeneous Kdihler structure S = S*°.

Ao U Z A

Sa, 0 0 aZ'  —aZ
Su —2U 240 bZ' —-bZ
Sz -7 A Ao -U

Sz =7 —Z U Ao

If § = Sa-bicriPri | wwith respect to the basis {Ag, U, Z;, 7%} of a+mn, the connection
V =V — S is given by

VanZi =—a,Z; = > puZi+ ), VuZy=(1-b)7;,
=
VaZj=a;Zi =y (ppZi —cpZ),  VuZj=(bj~1)Z
I

with the rest vanishing. Hence, the components of the curvature tensor field are

Rayw = —Rz,z; =2) (1-b))(Zj @+ - Z; ©4"),
i

and the rest are zero.

Ifb; =1forall j =1,...,n—1, the holonomy algebra of V is trivial and the reductive
decompositions associated to the homogeneous Kahler structures given in Proposition 3.6
are given by g*/*“*"P% = {0} + (a+n). From (2.3), the non-vanishing brackets are given

by
(Ao, Zj] = Z; + a; Z; + > _(puZi+ciZ)),  [Ao, U] =2U,
1#j
’ (3.7)
(A0, Z)) = —a; Z; + Z)+ Y _(ppZi + cuZy), 25,2} = —2U.
1

On the other hand, the element

Ag=MCi+ -4+ X 1Cpy + Z(leHjl —piFj) + Ao
j<l
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of su(n, 1) generates a subspace e:°kiPki of Zg(a) + a, and the structure equations of
the Lie subalgebra ¢*:¢kiPki +n of su(n, 1) are

[Ao, ZJ] =Zj+ (3)\J + Z )\1>ZJ/ + Z(plel + leZl,)v [Ao, U] =2U,
1#j 1# (3.8)
[Ao, Zj] = - (3/\j + )\l> Zi+ Zi+ > (0aZ + ciZ), 2, Z)) = —2U,
1% 1%
with the rest vanishing. From (3.7) and (3.8), it follows that §*/*“**P* is isomorphic to
e ChiPRj |
Now, for the structure S = S§%-Yi:¢i-Pri in Table 1, suppose that b; # 1 for some
j=1,...,n—1. Then,
p=Rau=-Rzz =2> (1-b)(Zjoy - Z;©7"7)
J
generates the holonomy algebra Baj’bj’ckj e
sition associated to S is

of V=V — 8, and the reductive decompo-

gorbrenmn < GBI | (0 ) = (p, Ao, U, 23, 2}).
From (2.3), the structure equations are given by

(A0, Ul =p+2U,  [Ao,Zj] = Zj + a; 2, + > (pjiZi + ¢ Z)),
£
(Ao, Z)) = —a; Z; + Z; + Y (pjZi + cp ),
1#]
U, Z;] = (bj = 1)Z;, U, Zj) = (1 = b;)Zj, 2k, Z}] = =0k (p +20).

(3.9)

If u = u(1) is the subspace of Z(a) generated by C = Cy + -+ 4+ Cj,_1, it is easy to see
that the Lie algebra §%°% % *P*i is isomorphic to the Lie subalgebra

ut NP = (C, Ao, U, Z;, Z;)
of su(n,1). We deduce the following.
Theorem 3.7. Let S = §%:b5:¢ki-Pki be the homogeneous Kéhler structure on CH(n),

n > 2, given by Table 1, and let ¢*i:°*i:Pi be the subspace of Zg(a) + a generated by

naj — . al>
K

Ag= " NCi+ > (euHu—piFy) + Ao (Aﬁ T m+2

j 1<i<i<n—1

and u = (Cy + -+ Cp_q). If b; = 1 for all j = 1,...,n — 1, the corresponding
group of isometries is the connected subgroup E*i:ki-Pki N of SU(n, 1) whose lie alge-
bra is e*i*iPri 4-n. If b; # 1 for some j = 1,...,n — 1, the corresponding group of
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Table 3. Homogeneous Sasakian structure S*.

Al Ut VA4S Z; 13
Sigi 0 —£ 0 0 Ut
St 3 0 0 o -A"
Spu 0 0 0 6nE —Zn
S 0 0 —61;& 0 zi

St A ez iz 0

isometries is the connected subgroup U(1)E*i-x:Pxi N of SU(n, 1) whose Lie algebra is
U+ N CRiPRi 4,

If S*° is the homogeneous Kéhler structure on the complex hyperbolic plane CH(2)
given by Table 2, * = (Ay), where Ay = A\C + Ay (A = a/3), and u = (C), then the
corresponding group of isometries is

(i) the subgroup E*N of SU(2,1) generated by the Lie subalgebra ¢* +n of su(2,1),
ifbo=1,

(ii) the subgroup U(1)E*N of SU(2,1) generated by u+e¢* +n, if b # 1.

Remark 3.8. Each structure §%:i:%%i-Pri  with b; = 1 for all j, is also character-
ized by the fact that V = V — §%i:¢kiPkj is the canonical connection for the Lie
group FE*i:%iPri N which is the connection for which every left-invariant vector field
on E*i-¢kiPri N is parallel. Each one of these groups acts simply transitively on CH(n)
and it provides a description of CH(n) as a homogeneous space. If all the parameters
aj, Ckj, Pkj are zero, then e*ixiPri = a and we get the usual description as a solvable
Lie group CH(n) = AN. In this case, the corresponding homogeneous structure is given
by SxY = VxY for all X,Y € a+n. If b; # 1 for some j = 1,...,n — 1, we get the
descriptions as homogeneous space CH(n) = U(1)EXi¢i:Pki N/ U(1).

3.3. Principal line bundle over CH(n)

By (3.2), the fundamental 2-form of the Kéhler structure (J,g) of CH(n) = AN is
given by

n—1

N=aAB-> 7 Ay =—-3dB,

j=1

where {a, 3,77,7"7 : 1 < j < n — 1} is the basis of left-invariant 1-forms on AN dual to
the basis {Ao, U, Z;, Z}} of a+n. We consider the principal line bundle 7 : M — CH(n),
and identify the bundle space M with AN x R and 7 with the projection on AN. The
fundamental vector field £ is identified with d/d¢, and the 1-form n = dt — 7*( is also
regarded as a connection form on the bundle. If ¢ and g are given by (2.7), then (¢, &,7,7)
is a Sasakian structure on M.
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By Proposition 2.5 (a), each homogeneous Kihler structure S%:i:¢kiPki on CH(n)
given in Theorem 3.7 defines a homogeneous Sasakian structure S§%-Yi=¢ki-Pki on M
which gives a description of M as either the connected subgroup FE*i¢kiPki N x R
of SU(n,1) x R (if b; = 1 for all j = 1,...,n — 1), or as the homogeneous space
(U(1)E*i-ckaPei N x R)/ U(1)

On the other hand, from (b) of Proposition 2.5, we get the following.

Proposition 3.9. The bundle space M of the line bundle 7 : M — CH(n) admits the
family of homogeneous Sasakian structures {S* : t € R} given, in terms of the horizontal
lifts of the generators of a+n and the fundamental vector field &, by Table 3.

Remark 3.10. For each p € M, if ¢15(S*), is the map from the tangent space T,(M)

to its dual given by
2n—+1

C12 St X Z S

where {e;} is an orthonormal basis of T,(M), then c15(S*), vanishes for every t € R.
According to Tricerri and Vanhecke’s classification of homogeneous Riemannian struc-
tures in [28], each S is of type T2 @ T3. Moreover, if t = —1, we have S;(f/ + Syff =0.
Then S~ is of type T3, which means that M is a naturally reductive Riemannian space.
If t = 2, then each cyclic sum & 3y ;555 vanishes, and hence M is of type Tz, which
may also be expressed by saying that M is a cotorsionless manifold [13].

We will construct the reductive decomposition g, = f~)t +m associated to each homoge-
neous Sasakian structure S?, where m = T,(M), with o € M, is generated by A= (A,
U= (U"),, Z = (ZH)D, Z’ = (Z’)O, £€=¢,1<j<n-1, and ht is the holonomy
algebra of the connection Dt D — S*. Each connection D' is given by Table 4.

Let R* be the curvature of D*, and let {a, 3, fyj 7", 71} be the basis dual to the basis
{A,U, Z Z’ ,&} of m. The holonomy algebra ht of D' is generated by the curvature

operators po, pr, Pr, Ur, Ojk, Tik (1, J,k=1,...,n— 1,5 < k), given by
~ ~ ~ n—1 B i B
po=Ri;=20t-3)(a@U-BeA)+22-1)Y F¥eZ -7 ©Z),
j=1
_ Dt
Pr="z.2

=22-t)(a@U-BA)+2(t-3)V 7. -7"® Z,)
+2t-2)) (V8 Z -7 ©2),

J#T
t, =—R.. =-a®Z+B0Z.+7 ®A-7" ®U,
r=RL, =RY, =-a®Z.-BeZ,+7 U +7"® A4,
bn =Rz =V oh-VeZi+7"e0Z+7" 0 Z,

Tk =Ry 5 =Ry ;= VLAV 02 - 0 Zj+ 7" © Z;.
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Table 4. Connection Dt = D — St.

Al U Z8 z ¢
D'y 0 0 0 0 0
Diw  —2U" 2AN z" -Z% 0
Dl —zZH z Sy A 5, UM 0
Dyw 2 —zp 8 U™ A0
Dt (-pU" t-1A" (t-1)Z] (1-t)Z% 0

(If n = 2, the operators o) and 7, do not appear, that is, f)t = <p0,p1,ap1,w1> and if
n =1, then b, is generated by py = Rt~ - =2(t-3)(@a®U - f® A).) The Lie structure
of §, = b, + m is defined by Equatlons (2.3). If t # (2n + 1)/n, the subalgebra b, is
isomorphic to the Lie algebra ¢ = s(u(n) +u(1)) = u(n) in §3.1, via the map h : h, — ¢
given by h(po) = 2U, h(p;) = —(Cy + U), h( r) = (Zr)e, h(Yr) = (Z})e, h(oji) = Fjr,
h(Tjr) = —H,. If we set pg = ( po —26), p %po — pp — &, then

ﬁl(n, 1) = <ﬁ0aﬁ’ra Pr, w’m Ok, Tjk7147 U? ZT7 Z; : Taj7 k= 1a ceey N — 17.] < k>
is an ideal of g,, and the map h extends to a Lie algebra isomorphism
h:su(n,1) — su(n,1) = t+p,

given by h(po) = U, h(p,) = Cr, hlior) = (Z)e, h(Wr) = (Z])e, h(oji) = Fje, h(7j1,) =
—Hji, h(A) = Ay, W(U) = Uy, MZ,) = (Z:)p, h(Z.) = (Z.)p. Moreover, g, is the
semidirect product of su(n, 1) and the line generated by ¢ under the homomorphism

8¢+ (€) — Der(su(n, 1)),
given by 8,(&)(A) = (L~ DO, 6.(&)0) = (1 - A, 8.&)(Z) = (1 )21, E)(Z}) =
(t —1)Z,, and 6:(£)({po, pr, Prs ¥r,0jks Tjk)) = 0. So, we have the following.

Proposition 3.11. The reductive decomposition associated to the homogeneous
Sasakian structure S*, t # (2n +1)/n, on the total space of the line bundle M — CH(n)
is §, = b, + m, where b, 2 s(u(n) +u(1)) = u(n) C su(n, 1), and

rﬁ:p+<§> <A0aUp»( )P’(ZI)Pag 1 n71>

Moreover, g, is the semidirect product g, = (€) x5, su(n, 1), where 6;(§ )(AO) = (t-1)U,,
01()(Up) = (1 =)Ao, :()((Zr)p) = (1 = 1)(Z})p, 0:(E)((Z0)p) = (t = 1)(Z)p, and
6:(£)(b;) = 0.

If n >2and ¢t = (2n+1)/n, then it is easy to see that po = p1 +- -+ pn—1, and we set
pr = 5(po+pr), 1 <7 < n—1. In this case, B2nt1)/n = b(2n+1)/n + m coincides with the
reductlve decomposition su(n,1) = E’—!—m’, where ¢ = [¢,€] = su(n), and m’ = p+(c),
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¢ being the centre of ¢, which is generated by the element E; such that adg, : p — p
defines the complex structure of CH(n). In fact, we have the isomorphism

f : @(Qn—&-l)/n - SU(’n,, 1)

given by f(p ) = 35U = Cp), flor) = (Z)e, F(r) = (Z)es floji) = Fjk, f(Tjn) =
ks [(A) = Ao, f(U) = Uy, [(Z:) = (Zy)p, [(Z;) = (Z}), and

_ n+1 1
- E,=—— e+ O 1
f(& " J 2n(C1 + +Choy1 + (n+1)Us)
and, in particular, f(6(2n+1)/n) =t and f(f) = If n =1 and t = 3, then pg = 0.

In this case, by =0, &' = [£,§] =0, ¢ = (E,), E; = %U 93 = {0} +m is the reductive
decomposition su(1,1) = {0} + m’, where m = (4, U, €), m' = (A, U,,Up), and f: g5 —
su(1,1) such that f(A) = Ao, f(U) = Uy, f(€) = —Us. Hence, we have obtained the

following.

Proposition 3.12. The reductive decomposition associated to the homogeneous
Sasakian structure S, with t = (2n + 1)/n, on the total space of the line bundle
M — CH(n) is su(n,1) = ¢ +m’/, where ¢ = [£,§] = su(n) and m’ = p+c, ¢ = (Ey)
being the centre of ¢.

Remark 3.13. The reductive decomposition su(n,1) = ¥ +m’ associated to the
homogeneous Sasakian structure St with t = (2n + 1)/n, provides the description of
M as the homogeneous space SU(n,1)/K’, where SU(n, 1) is the universal covering of
SU(n 1), and K’ = SU(n) is the connected subgroup of éIVJ(n, 1) whose Lie algebra

s € = su(n). (In particular, if n = 1, M is the universal covering space of SI(2,R).)
Thebe spaces appear in the classification by Jiménez and Kowalski [17] of complete sim-
ply connected p-symmetric Sasakian manifolds, and they are also Sasakian space forms
(they have constant @-sectional curvature —7). Notice that for a Sasakian manifold the
condition of being a locally symmetric space is too strong, because in this case it is a
space of constant curvature [25]. For this reason, Takahashi [27] introduced ¢-symmetric
spaces in Sasakian geometry as generalizations of Sasakian space forms. They are also
analogues of Hermitian symmetric spaces. A p-symmetric space is a complete connected
regular Sasakian manifold M that fibres over a Hermitian symmetric space M so that
the geodesic involutions of M lift to involutive automorphisms of the Sasakian struc-
ture on M. Moreover, each complete simply connected p-symmetric space is a naturally
reductive homogeneous space [5].
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