Proceedings of the Edinburgh Mathematical Society (2010) **53**, 393–413 © DOI:10.1017/S0013091508001004 Printed in the United Kingdom

HOMOGENEOUS KÄHLER AND SASAKIAN STRUCTURES RELATED TO COMPLEX HYPERBOLIC SPACES

P. M. GADEA¹ AND J. A. OUBIÑA²

¹Instituto de Física Fundamental, CSIC, Serrano 113-bis, 28006 Madrid, Spain (pmgadea@iec.csic.es)
²Departamento de Xeometría e Topoloxía, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain (ja.oubina@usc.es)

(Received 7 October 2008)

Abstract We study homogeneous Kähler structures on a non-compact Hermitian symmetric space and their lifts to homogeneous Sasakian structures on the total space of a principal line bundle over it, and we analyse the case of the complex hyperbolic space.

Keywords: homogeneous Riemannian structures; homogeneous Kähler structures; homogeneous almost-contact Riemannian manifolds; non-compact Hermitian symmetric spaces; Sasakian spaces

2010 Mathematics subject classification: Primary 53C30

Secondary 53C25; 53C35; 53C55

1. Introduction

The general theory of homogeneous Kähler manifolds is well known, as is the relation between homogeneous symplectic and homogeneous contact manifolds (see, for example, [6, 10, 11]).

As is also widely known, a connected, simply connected and complete Riemannian manifold is a symmetric space if and only if its curvature tensor field is parallel. Ambrose and Singer [2] extended this result to obtain a characterization of homogeneous Riemannian manifolds in terms of the existence of a tensor field S of type (1, 2) on the manifold, called a homogeneous Riemannian structure (see [28], where a classification of such structures is also given), satisfying certain properties (see (2.1); if S = 0, one has the symmetric case). Moreover, Sekigawa [26] obtained the corresponding result for almost-Hermitian manifolds, defining homogeneous almost-Hermitian structures (among them the homogeneous Kähler structures), which were classified in [1]. Its odd-dimensional version, the almost-contact-metric case, has also been studied (see, for example, [8, 12, 15, 21]).

In §2, we give basic results about homogeneous Riemannian and homogeneous Kähler structures. In particular, we consider these structures on Hermitian symmetric spaces of non-compact type. Besides the trivial homogeneous structure S = 0 associated to

the description of one such space as a symmetric space, other structures can be obtained associated to other descriptions as a homogeneous space and, in particular, to its description as a solvable Lie group given by an Iwasawa decomposition (see § 2.2). We also give a construction of homogeneous Sasakian structures on the bundle space of a principal line bundle over a Hermitian symmetric space of non-compact type, endowed with a connection 1-form that is the contact form of a Sasakian structure on the total space (Proposition 2.5).

The complex hyperbolic space $\mathbb{CH}(n) = \mathrm{SU}(n, 1)/\mathrm{S}(\mathrm{U}(n) \times \mathrm{U}(1))$ with the Bergman metric is an irreducible Hermitian symmetric space of non-compact type, and, up to homotheties, is the simply connected complete complex space form of negative curvature. It has been characterized in [14] in terms of the existence of certain type of homogeneous Kähler structure on it, and in [7] a Lie-theoretical description of its homogeneous structure of linear type is found. From an alternate point of view, in §3 we study the homogeneous Kähler structures on $\mathbb{CH}(n)$, which, in particular, provide an infinite number of descriptions of $\mathbb{CH}(n)$ as non-isomorphic solvable Lie groups. Moreover, we consider the principal line bundle over $\mathbb{CH}(n)$, with its Sasakian structure given in a natural way from a connection form on the bundle, and we obtain the families of homogeneous Sasakian structures on its bundle space following our previous general construction. In summary, we obtain the following.

- (a) All the homogeneous Kähler structures on $\mathbb{CH}(n) \equiv AN$: these are given in terms of some 1-forms related by a system of differential equations on the solvable Lie group AN (Theorem 3.1).
- (b) The explicit description of a multi-parametric family of homogeneous Kähler structures on $\mathbb{CH}(n)$, given by using the generators of $\mathfrak{a} + \mathfrak{n}$ (Proposition 3.6), and the corresponding subgroups of the full isometry group $\mathrm{SU}(n, 1)$ of AN (Theorem 3.7).
- (c) The explicit description of a one-parametric family of homogeneous Sasakian structures on the bundle space of the line bundle $\overline{M} \to \mathbb{C}H(n)$, given in terms of the horizontal lifts of the generators of $\mathfrak{a} + \mathfrak{n}$ and the fundamental vector field ξ on \overline{M} (Proposition 3.9), and their associated reductive decompositions (Propositions 3.11 and 3.12). One of them describes \overline{M} as the complete simply connected φ -symmetric Sasakian space $\widetilde{SU}(n, 1) / SU(n)$, which is also a Sasakian space form.

On the other hand, complex hyperbolic space was the first target space-time where Nishino's [22] alternative (i.e. neither necessarily hyper-Kähler nor quaternion-Kähler) N = (4,0) superstring theory proved to work. This model has some interesting features, among them not having the incompatibility (which is a trait common to heterotic σ -models) between the torsion tensor and quaternion-Kähler manifolds found by de Wit and van Nieuwenhuizen [9]. Another peculiarity is that, in this case, one of the two scalars of the relevant global multiplet is promoted to coordinates on $\mathbb{CH}(n)$, while the other plays the role of a tangent vector under the holonomy group $S(U(n) \times U(1))$.

2. Homogeneous Riemannian structures

Ambrose and Singer [2] proved that a connected, simply connected and complete Riemannian manifold is homogeneous if and only if there exists a tensor field S of type (1,2) on M such that the connection $\tilde{\nabla} = \nabla - S$ satisfies the following equations:

$$\tilde{\nabla} g = 0, \qquad \tilde{\nabla} R = 0, \qquad \tilde{\nabla} S = 0,$$
(2.1)

where ∇ is the Levi-Cività connection of g and R is its curvature tensor field, for which we adopt the conventions

$$R_{XY}Z = \nabla_{[X,Y]}Z - \nabla_X\nabla_YZ + \nabla_Y\nabla_XZ, \qquad R_{XYZW} = g(R_{XY}Z, W).$$

Such a tensor field S is called a homogeneous Riemannian structure [28]. We also denote by S the associated tensor field of type (0,3) on M defined by $S_{XYZ} = g(S_XY, Z)$.

2.1. Homogeneous Kähler structures

An almost-Hermitian manifold (M, g, J) is said to be a homogeneous almost-Hermitian manifold if there exists a Lie group of holomorphic isometries which acts transitively and effectively on M. Sekigawa proved the following theorem.

Theorem 2.1 (Sekigawa [26]). A connected, simply connected and complete almost-Hermitian manifold (M, g, J) is homogeneous if and only if there is a tensor field S of type (1, 2) on M which satisfies Equations (2.1) and $\tilde{\nabla}J = 0$.

A tensor S satisfying the Equations (2.1) and $\tilde{\nabla}J = 0$ is called a homogeneous almost-Hermitian structure. The almost-Hermitian manifold (M, g, J) is Kähler if and only if J is integrable and the fundamental 2-form Ω on M, given by $\Omega(X, Y) = g(X, JY)$, is closed, or equivalently $\nabla J = 0$. In this case, a homogeneous almost-Hermitian structure is also called a homogeneous Kähler structure, and we have the following proposition.

Proposition 2.2. A homogeneous Riemannian structure S on a Kähler manifold (M, g, J) is a homogeneous Kähler structure if and only if $S \cdot J = 0$ or, equivalently, $S_{XYZ} = S_{XJYJZ}$ for all the vector fields X, Y, Z on M.

Corollary 2.3. A connected, simply connected and complete Kähler manifold (M, g, J) is a homogeneous Kähler manifold if and only if there exists a homogeneous Kähler structure on M.

If (M = G/H, g) is a homogeneous Riemannian manifold, where G is a connected Lie group acting transitively and effectively on M as a group of isometries and H is the isotropy group at a point $o \in M$, then the Lie algebra \mathfrak{g} of G may be decomposed into a vector-space direct sum $\mathfrak{g} = \mathfrak{h} + \mathfrak{m}$, where \mathfrak{h} is the Lie algebra of H and \mathfrak{m} is an $\operatorname{Ad}(H)$ -invariant subspace of \mathfrak{g} . If G is connected and M is simply connected, then H is connected, and the condition $\operatorname{Ad}(H) \mathfrak{m} \subset \mathfrak{m}$ is equivalent to $[\mathfrak{h}, \mathfrak{m}] \subset \mathfrak{m}$. The vector space \mathfrak{m} is identified with $T_o(M)$ by the isomorphism $X \in \mathfrak{m} \to X_o^* \in T_o(M)$, where X^* is the Killing vector field on M generated by the one-parameter subgroup $\{\exp tX\}$ of G acting on M. If $X \in \mathfrak{g} = \mathfrak{h} + \mathfrak{m}$, we write $X = X_{\mathfrak{h}} + X_{\mathfrak{m}}, X_{\mathfrak{h}} \in \mathfrak{h}, X_{\mathfrak{m}} \in \mathfrak{m}$. The canonical connection $\tilde{\nabla}$ of M = G/H (with regard to the reductive decomposition $\mathfrak{g} = \mathfrak{h} + \mathfrak{m}$) is determined by

$$(\tilde{\nabla}_{X^*}Y^*)_o = [X^*, Y^*]_o = -[X, Y]_o^* = -([X, Y]_{\mathfrak{m}})_o^*, \quad X, Y \in \mathfrak{m}.$$
(2.2)

Then $S = \nabla - \tilde{\nabla}$ satisfies the Ambrose–Singer Equations (2.1), and it is the homogeneous Riemannian structure associated to the reductive decomposition $\mathfrak{g} = \mathfrak{h} + \mathfrak{m}$. If (M, g) is endowed with a compatible almost-complex structure J invariant by G (so that (M = G/H, g, J) is a homogeneous almost-Hermitian manifold), restricting J to $T_o(M) \equiv \mathfrak{m}$, we obtain a linear endomorphism J_o of \mathfrak{m} such that $J_o^2 = -1$, and $J_o \operatorname{ad}_{\mathfrak{h}} = \operatorname{ad}_{\mathfrak{h}} J_o$. Moreover, J is integrable if and only if

$$[J_oX, J_oY]_{\mathfrak{m}} - [X, Y]_{\mathfrak{m}} - J_o[X, J_oY]_{\mathfrak{m}} - J_o[J_oX, Y]_{\mathfrak{m}} = 0$$

for all $X, Y \in \mathfrak{m}$ (see [20, Chapter 10, Proposition 6.5]).

Conversely, suppose that (M, g) is a connected, simply connected and complete Riemannian manifold, and let S be a homogeneous Riemannian structure on (M, g). We set $\mathfrak{m} = T_o(M)$, where $o \in M$. If \tilde{R} is the curvature tensor of the connection $\tilde{\nabla} = \nabla - S$, the holonomy algebra $\tilde{\mathfrak{h}}$ of $\tilde{\nabla}$ is the Lie subalgebra of the Lie algebra of antisymmetric endomorphisms $\mathfrak{so}(\mathfrak{m})$ of (\mathfrak{m}, g_o) generated by the operators \tilde{R}_{XY} , where $X, Y \in \mathfrak{m}$. A Lie bracket is defined [23] in the vector-space direct sum $\tilde{\mathfrak{g}} = \tilde{\mathfrak{h}} + \mathfrak{m}$ by

$$\begin{aligned} & \begin{bmatrix} U, V \end{bmatrix} = UV - VU, & U, V \in \tilde{\mathfrak{h}}, \\ & \begin{bmatrix} U, X \end{bmatrix} = U(X), & U \in \tilde{\mathfrak{h}}, & X \in \mathfrak{m}, \\ & \begin{bmatrix} X, Y \end{bmatrix} = \tilde{R}_{XY} + S_X Y - S_Y X, & X, Y \in \mathfrak{m}, \end{aligned}$$
 (2.3)

and $\tilde{\mathfrak{g}} = \tilde{\mathfrak{h}} + \mathfrak{m}$ is the reductive decomposition corresponding to the homogeneous Riemannian structure S. Let \tilde{G} be the connected, simply connected Lie group whose Lie algebra is $\tilde{\mathfrak{g}}$ and let \tilde{H} be the connected Lie subgroup of \tilde{G} whose Lie algebra is $\tilde{\mathfrak{h}}$. Then \tilde{G} acts transitively on M as a group of isometries and M is diffeomorphic to \tilde{G}/\tilde{H} . If Γ is the set of the elements of \tilde{G} which act trivially on M, then Γ is a discrete normal subgroup of \tilde{G} , and the Lie group $G = \tilde{G}/\Gamma$ acts transitively and effectively on M as a group of isometries, with isotropy group $H = \tilde{H}/\Gamma$. Then M is diffeomorphic to G/H. Now, if J is a compatible almost-complex structure on (M, g) and S is a homogeneous almost-Hermitian structure, then the holonomy algebra $\tilde{\mathfrak{h}}$ is a subalgebra of the Lie algebra $\mathfrak{u}(\mathfrak{m}) = \{A \in \mathfrak{so}(\mathfrak{m}) : A \cdot J = 0\}$ of the unitary group, and $M \approx \tilde{G}/\tilde{H} \approx G/H$ is a homogeneous almost-Hermitian manifold.

2.2. Hermitian symmetric spaces of non-compact type

Suppose that (M = G/K, g, J) is a connected Hermitian symmetric space of noncompact type, where $G = I_0(M)$ is the identity component of the group of (holomorphic) isometries and K is a maximal compact subgroup of G. Then M is simply connected and the Hermitian structure is Kähler. We consider a Cartan decomposition $\mathfrak{g} = \mathfrak{k} + \mathfrak{p}$ of

the Lie algebra \mathfrak{g} of G, and the Iwasawa decomposition $\mathfrak{g} = \mathfrak{k} + \mathfrak{a} + \mathfrak{n}$, where \mathfrak{k} is the Lie algebra of K, $\mathfrak{a} \subset \mathfrak{p}$ is a maximal \mathbb{R} -diagonalizable subalgebra of \mathfrak{g} and \mathfrak{n} is a nilpotent subalgebra. Let A and N be the connected abelian and nilpotent Lie subgroups of G whose Lie algebras are \mathfrak{a} and \mathfrak{n} , respectively. The solvable Lie group AN acts simply transitively on M, so M is isometric to AN equipped with the left-invariant Riemannian metric defined by the scalar product $\langle \cdot, \cdot \rangle$, induced on $\mathfrak{a} + \mathfrak{n} \cong \mathfrak{g} / \mathfrak{k} \cong \mathfrak{p}$ by a positive multiple of $B|_{\mathfrak{p} \times \mathfrak{p}}$, where B is the Killing form of \mathfrak{g} .

Now, let \hat{G} be a connected closed Lie subgroup of G which acts transitively on M. The isotropy group of this action at $o = K \in M$ is $H = \hat{G} \cap K$. Then M = G/K has also the description $M \equiv \hat{G}/H$, and $o \equiv H \in \hat{G}/H$. Let $\hat{\mathfrak{g}} = \mathfrak{h} + \mathfrak{m}$ be a reductive decomposition of the Lie algebra $\hat{\mathfrak{g}}$ of \hat{G} corresponding to $M \equiv \hat{G}/H$.

We have the isomorphisms of vector spaces

$$\mathfrak{p} \cong \mathfrak{g}/\mathfrak{k} \cong \hat{\mathfrak{g}}/\mathfrak{h} \cong \mathfrak{m} \cong T_o(M) \cong \mathfrak{a} + \mathfrak{n},$$

with

$$\xi: \mathfrak{p} \xrightarrow{\cong} \mathfrak{m}, \qquad \mu: \mathfrak{m} \xrightarrow{\cong} T_o(M), \qquad \zeta: T_o(M) \xrightarrow{\cong} \mathfrak{a} + \mathfrak{n},$$

given by

$$\xi^{-1}(Z) = Z_{\mathfrak{p}}, \quad \mu(Z) = Z_o^*, \quad \zeta^{-1}(X) = X_o^*, \quad Z \in \mathfrak{m}, \ X \in \mathfrak{a} + \mathfrak{n}.$$

For each $X \in \mathfrak{g}$, we have $(X_{\mathfrak{k}})_o^* = 0$ and $(\nabla(X_{\mathfrak{p}})^*)_o = 0$, and since the Levi-Cività connection ∇ has no torsion, for each $X, Y \in \mathfrak{g}$, we have

$$(\nabla_{X^*}Y^*)_o = (\nabla_{(X_{\mathfrak{p}})^*}(Y_{\mathfrak{k}})^*)_o = [(X_{\mathfrak{p}})^*, (Y_{\mathfrak{k}})^*]_o = -[X_{\mathfrak{p}}, Y_{\mathfrak{k}}]_o^*.$$
(2.4)

The reductive decomposition $\hat{\mathfrak{g}} = \mathfrak{h} + \mathfrak{m}$ defines the homogeneous Riemannian structure $S = \nabla - \tilde{\nabla}$, where $\tilde{\nabla}$ is the canonical connection of $M \equiv \hat{G}/H$ with respect to $\hat{\mathfrak{g}} = \mathfrak{h} + \mathfrak{m}$, which is \hat{G} -invariant and uniquely determined by $(\tilde{\nabla}_{X^*}Y^*)_o = -[X,Y]_o^*$, for $X, Y \in \mathfrak{m}$ (see (2.2)). The tensor field S is also uniquely determined by its value at o because $M \equiv \hat{G}/H$ and S is \hat{G} -invariant. Since J is \hat{G} -invariant, from [**20**, Chapter 10, Proposition 2.7], it follows that $\tilde{\nabla}J = 0$ and, by Theorem 2.1, S is a homogeneous Kähler structure.

We have

$$(S_{X^*}Y^*)_o = (\nabla_{X^*}Y^*)_o + [X,Y]_o^* = \nabla_{Y_o^*}X^*, \quad X,Y \in \mathfrak{m}.$$
(2.5)

By (2.4) and (2.5), S is given by

$$S_{X_o^*}Y_o^* = [X_{\mathfrak{k}}, Y_{\mathfrak{p}}]_o^*, \quad X, Y \in \mathfrak{m}.$$

Then, for each $X, Y \in \mathfrak{a} + \mathfrak{n}$, we have

$$S_{X_o^*}Y_o^* = S_{\xi(X_{\mathfrak{p}})_o^*}\xi(Y_{\mathfrak{p}})_o^* = [(\xi(X_{\mathfrak{p}}))_{\mathfrak{k}}, Y_{\mathfrak{p}}]_o^*.$$

The complex structure J on M = G/K is defined by an element E_J in the centre of \mathfrak{k} , and it defines the complex structure $J \in \operatorname{End}(\mathfrak{a} + \mathfrak{n})$ such that the following diagram

is commutative, and $(\mathfrak{a} + \mathfrak{n}, \langle \cdot, \cdot \rangle, J)$ becomes a Hermitian vector space isomorphic to $(T_o(M), g_o, J_o)$:

$$\begin{array}{c|c} \mathfrak{p} & \xrightarrow{\xi} & \mathfrak{m} & \xrightarrow{\mu} & T_o(M) & \xrightarrow{\zeta} & \mathfrak{a} + \mathfrak{n} \\ \end{array} \\ \operatorname{ad}_{E_J} & & J_o & & & J_J \\ & & & & J_o & & & \\ \mathfrak{p} & \xrightarrow{\xi} & \mathfrak{m} & \xrightarrow{\mu} & T_o(M) & \xrightarrow{\zeta} & \mathfrak{a} + \mathfrak{n} \end{array}$$

Let A and N be the connected abelian and nilpotent Lie subgroups of G whose Lie algebras are \mathfrak{a} and \mathfrak{n} , respectively. The solvable Lie group AN acts simply transitively on M. Then M is isometric to AN equipped with the left-invariant Riemannian metric defined by the scalar product induced on $\mathfrak{a} + \mathfrak{n} \cong \mathfrak{g}/\mathfrak{k} \cong \mathfrak{p}$ by a positive multiple of $B|_{\mathfrak{p}\times\mathfrak{p}}$, where B is the Killing form of \mathfrak{g} , so that AN equipped with the left-invariant almost-complex structure defined by J is a Kähler manifold.

2.3. Homogeneous almost-contact Riemannian manifolds

An almost-contact structure on a (2n+1)-dimensional manifold \overline{M} is a triple (φ, ξ, η) , where φ is a tensor field of type (1,1), ξ is a vector field (called the characteristic vector field) and η is a differential 1-form on \overline{M} such that

$$\varphi^2 = -\mathrm{id} + \eta \otimes \xi, \quad \eta(\xi) = 1.$$

Then $\varphi \xi = 0$, $\eta \circ \varphi = 0$ and φ has rank 2*n*. If \bar{g} is a Riemannian metric on \bar{M} such that $\bar{g}(\varphi \tilde{X}, \varphi \tilde{Y}) = \bar{g}(\tilde{X}, \tilde{Y}) - \eta(\tilde{X})\eta(\tilde{Y})$ for all vector fields \tilde{X} and \tilde{Y} on \bar{M} , then $(\varphi, \xi, \eta, \bar{g})$ is said to be an almost-contact-metric structure on \bar{M} . In this case, $\bar{g}(\tilde{X}, \xi) = \eta(\tilde{X})$. The 2-form Φ on M defined by $\Phi(\tilde{X}, \tilde{Y}) = \bar{g}(\tilde{X}, \varphi \tilde{Y})$ is called the fundamental 2-form of the almost-contact-metric structure $(\varphi, \xi, \eta, \bar{g})$. If $d\eta(\tilde{X}, \tilde{Y}) = \tilde{X}\eta(\tilde{Y}) - \tilde{Y}\eta(\tilde{X}) - \eta([\tilde{X}, \tilde{Y}]) = 2\Phi(\tilde{X}\tilde{Y})$, then $(\phi, \xi, \eta, \bar{g})$ is called a contact metric (or contact Riemannian) structure; in particular, $\eta \wedge (d\eta)^n \neq 0$, that is, η is a contact form on \bar{M} . If

$$(D_{\tilde{X}}\varphi)\tilde{Y} = \bar{g}(\tilde{X},\tilde{Y})\xi - \eta(\tilde{Y})\tilde{X},$$
(2.6)

where D is the Levi-Cività connection of \bar{g} , then $(\varphi, \xi, \eta, \bar{g})$ is called a Sasakian structure, and the manifold \bar{M} with such a structure is a Sasakian manifold. Sasakian manifolds can also be characterized as normal contact metric manifolds and they are in some sense odd-dimensional analogues of Kähler manifolds [3, 4].

If $(\varphi, \xi, \eta, \bar{g})$ is an almost-contact-metric structure on \bar{M} and $(\bar{M} = \bar{G}/H, \bar{g})$ is a homogeneous Riemannian manifold such that φ is invariant under the action of the connected Lie group \bar{G} (and hence so are ξ and η), then $(\bar{M}, \varphi, \xi, \eta, \bar{g})$ is called a homogeneous almost-contact Riemannian manifold [8, 15, 21]. Let \bar{R} be the curvature tensor field of the Levi-Cività connection D of \bar{g} . Let S be a homogeneous Riemannian structure on \bar{M} , that is $\tilde{D}\bar{g} = 0$, $\tilde{D}\bar{R} = 0$ and $\tilde{D}S = 0$, where $\tilde{D} = D - S$. If S satisfies the additional condition $\tilde{D}\varphi = 0$ (and hence $\tilde{D}\xi = 0$ and $\tilde{D}\eta = 0$), then S is called a homogeneous almost-contact-metric structure on $(\bar{M}, \varphi, \xi, \eta, \bar{g})$. From the results of Kiričenko [18] on homogeneous Riemannian spaces with invariant tensor structure, we have the following.

Theorem 2.4. A connected, simply connected and complete almost-contact-metric manifold $(\bar{M}, \varphi, \xi, \eta, \bar{g})$ is a homogeneous almost-contact Riemannian manifold if and only if there exists a homogeneous almost-contact-metric structure on \bar{M} .

A homogeneous almost-contact-metric structure on a Sasakian manifold will also be called a homogeneous Sasakian structure.

2.4. Principal 1-bundles over almost-Hermitian manifolds

Let (M, g, J) be an almost-Hermitian manifold and let \overline{M} be the bundle space of a principal 1-bundle over M. Let η be a connection (form) on the principal bundle $\pi: \overline{M} \to M$, and let ξ be the fundamental vector field on \overline{M} defined by the element 1 of the Lie algebra \mathbb{R} of the structure group of the bundle. Then $\eta(\xi) = 1$. For each vector field X on M, we denote by X^{H} the horizontal lift of X with respect to η . If \overline{X} is a vector field on \overline{M} , its vertical part is $\eta(\overline{X})\xi$. Then, for any vector fields X and Y on M, we have

$$[X^{\rm H}, Y^{\rm H}] = [X, Y]^{\rm H} + \eta([X^{\rm H}, Y^{\rm H}])\xi.$$

Moreover, $[X^{\rm H}, \xi] = 0$, because $X^{\rm H}$ is invariant under the action of the structural group. We define a tensor field φ of type (1, 1) and a Riemannian metric \bar{g} on \bar{M} by

$$\varphi X^{\mathrm{H}} = (JX)^{\mathrm{H}}, \qquad \varphi \xi = 0, \qquad \bar{g} = \pi^* g + \eta \otimes \eta,$$

$$(2.7)$$

where X and Y are vector fields on M. Clearly, $(\varphi, \xi, \eta, \bar{g})$ is an almost-contact-metric structure on \bar{M} , and we have $\bar{g}(X^{\mathrm{H}}, Y^{\mathrm{H}}) = g(X, Y) \circ \pi$ and $\bar{g}(X^{\mathrm{H}}, \xi) = 0$. Let Φ be its 2-fundamental form. If Ω is the fundamental 2-form of the almost-Hermitian manifold (M, g, J), then $\pi^*\Omega = \Phi$.

If ∇ and D are the Levi-Cività connections of g and \bar{g} , respectively, then [24]

$$D_{X^{\mathrm{H}}}Y^{\mathrm{H}} = (\nabla_X Y)^{\mathrm{H}} + \frac{1}{2}\eta([X^{\mathrm{H}}, Y^{\mathrm{H}}])\xi = (\nabla_X Y)^{\mathrm{H}} - \frac{1}{2}\mathrm{d}\eta(X^{\mathrm{H}}, Y^{\mathrm{H}})\xi,$$

and $D_{X^{\mathrm{H}}}\xi = D_{\xi}X^{\mathrm{H}} = -\varphi X^{\mathrm{H}}$. Now, if $2\Phi = \mathrm{d}\eta$, Equation (2.6) is satisfied, as one can easily see by replacing (\tilde{X}, \tilde{Y}) by $(X^{\mathrm{H}}, Y^{\mathrm{H}})$, (X^{H}, ξ) and (ξ, Y^{H}) , respectively. Then, if the almost-contact-metric structure $(\varphi, \xi, \eta, \bar{g})$ is a contact structure, it is also Sasakian.

Suppose now that the structural group of the principal 1-bundle $\pi : M \to M$ is \mathbb{R} and that the base manifold is a 2n-dimensional connected Hermitian symmetric space of non-compact type (M = G/K, g, J), so that M is isometric to the solvable Lie group ANas in § 2.2. Then M is holomorphically diffeomorphic to a bounded symmetric domain, i.e. to a simply connected open subset of \mathbb{C}^n such that each point is an isolated fixed point of an involutive holomorphic diffeomorphism of itself [16, Chapter VIII, Theorem 7.1]. Since $\pi : \overline{M} \to M$ is a principal line bundle over the paracompact manifold M, it admits a global section [19, Chapter I, Theorem 5.7], so there exists a diffeomorphism $\overline{M} \to M \times \mathbb{R}$, and the bundle space \overline{M} may be identified with $AN \times \mathbb{R}$, with π being the projection on AN. On the other hand, since the fundamental 2-form Ω associated to the Kähler structure (g, J) is closed, $\Omega = d\zeta$ for some real analytic 1-form ζ on AN. We consider the connection form $\eta = 2\pi^*\zeta + dt$ on \overline{M} , where t is the coordinate of \mathbb{R} . The vertical vector field ξ with $\eta(\xi) = 1$ can be identified with d/dt, and we consider φ and \bar{g} given by (2.7). Then $2\Phi = 2\pi^*\Omega = 2\pi^*d\zeta = d\eta$, and hence $(\varphi, \xi, \eta, \bar{g})$ is a Sasakian structure on \bar{M} .

If \bar{S} is a homogeneous almost-contact-metric structure on \bar{M} , and $\tilde{D} = D - \bar{S}$, then $\tilde{D}\xi = 0$, and hence $\bar{S}_{X^{\mathrm{H}}}\xi = D_{X^{\mathrm{H}}}\xi = -\varphi X^{\mathrm{H}}$. We have the following proposition.

Proposition 2.5. Let (M = G/K, g, J) be a connected Hermitian symmetric space of non-compact type. Let $\pi : \overline{M} \to M$ be a principal line bundle with connection form η such that the almost-contact-metric structure $(\varphi, \xi, \eta, \overline{g})$ on \overline{M} defined by (2.7) is Sasakian.

(a) If S is a homogeneous Kähler structure on M, then the tensor field \bar{S} on \bar{M} defined by

$$\bar{S}_{X^{\mathrm{H}}}Y^{\mathrm{H}} = (S_XY)^{\mathrm{H}} - \bar{g}(X^{\mathrm{H}}, \varphi Y^{\mathrm{H}})\xi, \quad \bar{S}_{X^{\mathrm{H}}}\xi = -\varphi X^{\mathrm{H}} = \bar{S}_{\xi}X^{\mathrm{H}}, \quad \bar{S}_{\xi}\xi = 0,$$

for all vector fields X and Y on M, is a homogeneous Sasakian structure on \overline{M} .

(b) $\{S^t : t \in \mathbb{R}\}, defined by$

$$\begin{split} S^t_{X^{\mathrm{H}}}Y^{\mathrm{H}} &= -\bar{g}(X^{\mathrm{H}},\varphi Y^{\mathrm{H}})\xi, \qquad S^t_{X^{\mathrm{H}}}\xi = -\varphi X^{\mathrm{H}}, \\ S^t_{\xi}X^{\mathrm{H}} &= -t\varphi X^{\mathrm{H}}, \qquad S^t_{\xi}\xi = 0, \end{split}$$

is a family of homogeneous Sasakian structures on \overline{M} .

Proof. (a) If $\tilde{D} = D - \bar{S}$, then since $\bar{S}_{X^H Y^H Z^H} = \bar{g}((S_X Y)^H, Z^H) = g(S_X Y, Z) \circ \pi = -g(Y, S_X Z) \circ \pi = -\bar{g}(Y^H, (S_X Z)^H) = -\bar{S}_{X^H Z^H Y^H}$ and $\bar{S}_{X^H Y^H \xi} = -\bar{S}_{X^H \xi Y^H}$, the condition $\tilde{D}\bar{g} = 0$ is satisfied. On the other hand, if $\tilde{\nabla} = \nabla - S$, we have

$$\tilde{D}_{X^{\rm H}}Y^{\rm H} = (\tilde{\nabla}_X Y)^{\rm H}, \qquad \tilde{D}_{X^{\rm H}}\xi = \tilde{D}_{\xi}X^{\rm H} = 0.$$
(2.8)

We can identify M = G/K with the solvable Lie group AN in an Iwasawa decomposition G = KAN and consider the Lie algebra $\mathfrak{a} + \mathfrak{n}$ of AN. If \tilde{U} , \tilde{V} , \tilde{X} , \tilde{Y} , \tilde{Z} are horizontal lifts of elements of $\mathfrak{a} + \mathfrak{n}$ or some of them are the vertical vector field ξ , then

$$(\tilde{D}_{\tilde{U}}\bar{R})_{\tilde{X}\tilde{Y}\tilde{Z}\tilde{V}} = -\bar{R}_{\tilde{X}\tilde{Y}\tilde{Z}\tilde{D}_{\tilde{U}}\tilde{V}} + \bar{R}_{\tilde{X}\tilde{Y}\tilde{V}\tilde{D}_{\tilde{U}}\tilde{Z}} - \bar{R}_{\tilde{Z}\tilde{V}\tilde{X}\tilde{D}_{\tilde{U}}\tilde{Y}} + \bar{R}_{\tilde{Z}\tilde{V}\tilde{Y}\tilde{D}_{\tilde{U}}\tilde{X}},$$
(2.9)

since $\tilde{U}(\bar{R}_{\tilde{X}\tilde{Y}\tilde{Z}\tilde{V}}) = 0$. Now, if $X, Y, Z, V \in \mathfrak{a} + \mathfrak{n}$, then

$$\bar{R}_{X^{H}Y^{H}Z^{H}V^{H}} = (R_{XYZV} - 2g(X, JY)g(Z, JV)
+ g(X, JV)g(Y, JZ) - g(X, JZ)g(Y, JV)) \circ \pi,
\bar{R}_{X^{H}Y^{H}Z^{H}\xi} = -\bar{g}([X, Y]^{H}, \varphi Z^{H})
+ \bar{g}((\nabla_{X}Z)^{H}, \varphi Y^{H}) - \bar{g}((\nabla_{Y}Z)^{H}, \varphi X^{H}),
\bar{R}_{X^{H}\xi Z^{H}\xi} = \bar{g}(D_{X^{H}}\xi, D_{Z^{H}}\xi).$$
(2.10)

By using (2.8) and (2.10), together with the conditions $\tilde{\nabla}R = 0$ and $\tilde{\nabla}J = 0$ for the homogeneous Kähler structure S on M, and the formula

$$\bar{R}_{\tilde{X}\tilde{Y}}\xi = \eta(\tilde{X})\tilde{Y} - \eta(\tilde{Y})\tilde{X}$$

for the Sasakian manifold $(\overline{M}, \varphi, \xi, \eta, \overline{g})$ [4, Proposition 7.3], one obtains from (2.9) that $D\overline{R} = 0$. Now,

$$(\tilde{D}_{U^{\mathrm{H}}}\bar{S})_{X^{\mathrm{H}}}Y^{\mathrm{H}} = ((\tilde{\nabla}_{U}S)_{X}Y)^{\mathrm{H}}, \quad (\tilde{D}_{U^{\mathrm{H}}}\bar{S})_{X^{\mathrm{H}}}\xi = -((\tilde{\nabla}_{U}J)X)^{\mathrm{H}} \quad \text{and} \quad \tilde{D}_{\xi}S = 0;$$

thus $\tilde{D}S = 0$. Moreover, $(\tilde{D}_{X^{\mathrm{H}}}\varphi)Y^{\mathrm{H}} = ((\tilde{\nabla}_{X}J)Y)^{\mathrm{H}}$ and $(\tilde{D}_{X^{\mathrm{H}}}\varphi)\xi = 0$. Then $\tilde{D}\varphi = 0$, and \bar{S} is a homogeneous Sasakian structure on \bar{M} .

(b) If t = 1, the corresponding tensor S^1 coincides with \bar{S} in (a) for S = 0. For arbitrary t, if $\tilde{D}^t = D - S^t$ we have $\tilde{D}^t_{\xi} X^{\mathrm{H}} = (t-1)(JX)^{\mathrm{H}}$, and we get $\tilde{D}^t \bar{g} = 0$, $\tilde{D}^t \bar{R} = 0$, $\tilde{D}^t \bar{S}^t = 0$, $\tilde{D}^t \varphi = 0$.

3. The complex hyperbolic space $\mathbb{C}H(n)$

3.1. $\mathbb{C}H(n)$ as a solvable Lie group

The complex hyperbolic space $\mathbb{CH}(n)$, which may be identified with the unit ball in \mathbb{C}^n endowed with the hyperbolic metric of constant holomorphic sectional curvature -4, may also be viewed as the irreducible Hermitian symmetric space of non-compact type $\mathrm{SU}(n,1)/\mathrm{S}(\mathrm{U}(n) \times \mathrm{U}(1))$.

The Lie algebra $\mathfrak{su}(n,1)$ of $\mathrm{SU}(n,1)$ can be described as the subalgebra of $\mathfrak{sl}(n+1,\mathbb{C})$ of all matrices of the form

$$X = \begin{pmatrix} Z & P^{\mathrm{T}} \\ \bar{P} & \mathrm{i}c \end{pmatrix}, \tag{3.1}$$

where $Z \in \mathfrak{u}(n), c \in \mathbb{R}$ and $P = (p_1, \ldots, p_n) \in \mathbb{C}^n$. The involution τ of $\mathfrak{su}(n, 1)$ given by $\tau(X) = -\bar{X}^{\mathrm{T}}$ defines the Cartan decomposition $\mathfrak{su}(n, 1) = \mathfrak{k} + \mathfrak{p}$, where

$$\mathfrak{k} = \left\{ \begin{pmatrix} Z & 0\\ 0 & \mathrm{i}c \end{pmatrix} : \operatorname{tr} Z + \mathrm{i}c = 0 \right\} \cong \mathfrak{s}(\mathfrak{u}(n) \oplus \mathfrak{u}(1)), \qquad \mathfrak{p} = \left\{ \begin{pmatrix} 0 & P^{\mathrm{T}}\\ \bar{P} & 0 \end{pmatrix} \right\}.$$

The element A_0 of \mathfrak{p} defined by $P = (0, \ldots, 0, 1)$ generates a maximal \mathbb{R} -diagonalizable subalgebra \mathfrak{a} of $\mathfrak{su}(n, 1)$. Let f_0 be the linear functional on \mathfrak{a} given by $f_0(A_0) = 1$. If n > 1, the set of roots of $(\mathfrak{su}(n, 1), \mathfrak{a})$ is $\Sigma = \{\pm f_0, \pm 2f_0\}$, the set $\Pi = \{f_0\}$ is a system of simple roots and the corresponding positive root system is $\Sigma^+ = \{f_0, 2f_0\}$. If n = 1, then $\Sigma = \{\pm 2f_0\}$ and $\Pi = \Sigma^+ = \{2f_0\}$.

Let E_{ij} be the matrix in $\mathfrak{gl}(n, \mathbb{C})$ such that the entry at the *i*th row and the *j*th column is 1 and the other entries are all 0. The root vector spaces are

$$\begin{split} \mathfrak{g}_{f_0} &= \langle Z_j, Z'_j : 1 \leqslant j \leqslant n-1 \rangle \text{ (if } n>1), \qquad \mathfrak{g}_{2f_0} = \langle U \rangle, \\ \mathfrak{g}_{-f_0} &= \langle W_j, W'_j : 1 \leqslant j \leqslant n-1 \rangle \text{ (if } n>1), \quad \mathfrak{g}_{-2f_0} = \langle V \rangle, \end{split}$$

P. M. Gadea and J. A. Oubiña

where

$$Z_{j} = E_{jn} - E_{j,n+1} - E_{nj} - E_{n+1,j},$$

$$Z'_{j} = i(E_{jn} - E_{j,n+1} + E_{nj} + E_{n+1,j}),$$

$$W_{j} = E_{jn} + E_{j,n+1} - E_{nj} + E_{n+1,j},$$

$$W'_{j} = i(E_{jn} + E_{j,n+1} + E_{nj} - E_{n+1,j}),$$

$$U = i(E_{nn} - E_{n,n+1} + E_{n+1,n} - E_{n+1,n+1}),$$

$$V = i(E_{nn} + E_{n,n+1} - E_{n+1,n} - E_{n+1,n+1}),$$

If n > 2, the centralizer of \mathfrak{a} in \mathfrak{k} is $Z_{\mathfrak{k}}(\mathfrak{a}) = \langle C_r, F_{jk}, H_{jk} : r, j, k = 1, \ldots, n-1, j < k \rangle \cong \mathfrak{u}(n-1)$, where

$$C_r = 2iE_{rr} - iE_{nn} - iE_{n+1,n+1}, \quad F_{jk} = E_{jk} - E_{kj}, \quad H_{jk} = i(E_{jk} + E_{kj})$$

and $\mathfrak{su}(n,1) = (Z_{\mathfrak{k}}(\mathfrak{a}) + \mathfrak{a}) + \sum_{f \in \Sigma} \mathfrak{g}_{f}$ is the restricted-root space decomposition. We also have the Iwasawa decomposition $\mathfrak{su}(n,1) = \mathfrak{k} + \mathfrak{a} + \mathfrak{n}$, where $\mathfrak{n} = \mathfrak{g}_{f_{0}} + \mathfrak{g}_{2f_{0}} = \langle U, Z_{j}, Z'_{j} : 1 \leq j \leq n-1 \rangle$.

If n = 2, we set $C = C_1 = \text{diag}(2\mathbf{i}, -\mathbf{i}, -\mathbf{i}), Z = Z_1, Z' = Z'_1$, and in this case C generates $Z_{\mathfrak{k}}(\mathfrak{a})$, and $\mathfrak{a} + \mathfrak{n} = \langle A_0, U, Z, Z' \rangle$. If $n = 1, Z_{\mathfrak{k}}(\mathfrak{a}) = 0$, we have the restricted-root space decomposition $\mathfrak{su}(1, 1) = \mathfrak{a} + (\mathfrak{g}_{2f_0} + \mathfrak{g}_{-2f_0}) = \langle A_0 \rangle + \langle U, V \rangle$, and the solvable part in the Iwasawa decomposition is $\mathfrak{a} + \mathfrak{n} = \langle A_0, U \rangle$.

By using the Cartan decomposition $\mathfrak{su}(n,1) = \mathfrak{k} + \mathfrak{p}$, we express each element $X \in \mathfrak{su}(n,1)$ as the sum $X = X_{\mathfrak{k}} + X_{\mathfrak{p}}$ ($X_{\mathfrak{k}} \in \mathfrak{k}$, $X_{\mathfrak{p}} \in \mathfrak{p}$). In particular, we have

$$U_{\mathfrak{k}} = i(E_{nn} - E_{n+1,n+1}), \qquad U_{\mathfrak{p}} = i(E_{n+1,n} - E_{n,n+1}), (Z_j)_{\mathfrak{k}} = E_{jn} - E_{nj}, \qquad (Z_j)_{\mathfrak{p}} = -(E_{n+1,j} + E_{j,n+1}), (Z'_j)_{\mathfrak{k}} = i(E_{jn} + E_{nj}), \qquad (Z'_j)_{\mathfrak{p}} = i(E_{n+1,j} - E_{j,n+1}).$$

From the basis $\{A_0, U, Z_j, Z'_j : 1 \leq j \leq n-1\}$ of $\mathfrak{a} + \mathfrak{n}$ and the generators of $Z_{\mathfrak{k}}(\mathfrak{a})$ above, we get the basis $\{C_r, F_{jk}, H_{jk}, U_{\mathfrak{k}}, (Z_r)_{\mathfrak{k}}, (Z'_r)_{\mathfrak{k}} : r, j, k = 1, \ldots, n-1, j < k\}$ of \mathfrak{k} , and the basis $\{A_0, U_{\mathfrak{p}}, (Z_j)_{\mathfrak{p}}, (Z'_j)_{\mathfrak{p}} : 1 \leq j \leq n-1\}$ of \mathfrak{p} . Notice that if n = 1, $\mathfrak{k} = \langle U_{\mathfrak{k}} \rangle$ and $\mathfrak{p} = \langle A_0, U_{\mathfrak{p}} \rangle$, and if n = 2, we have $\mathfrak{k} = \langle C, U_{\mathfrak{k}}, Z_{\mathfrak{k}}, Z'_{\mathfrak{k}} \rangle$ and $\mathfrak{p} = \langle A, U_{\mathfrak{p}}, Z_{\mathfrak{p}}, Z'_{\mathfrak{p}} \rangle$. We also decompose $\mathfrak{k} = \mathfrak{k}' + \mathfrak{c}$, where $\mathfrak{k}' = [\mathfrak{k}, \mathfrak{k}] = \langle C_r - U_{\mathfrak{k}}, F_{jk}, H_{jk}, (Z_r)_{\mathfrak{k}}, (Z'_r)_{\mathfrak{k}} : r, j, k =$ $1, \ldots, n-1, j < k \rangle \cong \mathfrak{su}(n)$, and \mathfrak{c} is the centre of \mathfrak{k} , which is generated by the element

$$E_J = \frac{1}{2n+1}(C_1 + \dots + C_{n-1} + (n+1)U_{\mathfrak{k}})$$

such that $\operatorname{ad}_{E_J} : \mathfrak{p} \to \mathfrak{p}$ defines the complex structure on $\mathbb{CH}(n)$. By the isomorphisms $\mathfrak{p} \cong \mathfrak{su}(n, 1)/\mathfrak{k} \cong \mathfrak{a} + \mathfrak{n}$, we obtain the complex structure J acting on $\mathfrak{a} + \mathfrak{n}$ as follows:

$$JA_0 = -U, \qquad JU = A_0, \qquad JZ_r = Z'_r, \qquad JZ'_r = -Z_r.$$
 (3.2)

We consider the scalar product $\langle \cdot, \cdot \rangle$ on $\mathfrak{a} + \mathfrak{n}$ defined by the isomorphism $\mathfrak{a} + \mathfrak{n} \cong \mathfrak{p}$ and

$$\left.\frac{1}{4(n+1)}B\right|_{\mathfrak{p}\times\mathfrak{p}}.$$

Then $(\mathfrak{a} + \mathfrak{n}, \langle \cdot, \cdot \rangle, J)$ is a Hermitian vector space, and the basis $\{A_0, U, Z_r, Z'_r : 1 \leq r \leq n-1\}$ of $\mathfrak{a} + \mathfrak{n}$ is orthonormal. We consider the solvable factor AN (with Lie algebra $\mathfrak{a} + \mathfrak{n}$) of the Iwasawa decomposition of SU(n, 1) with the invariant metric g and almost-complex structure J defined by $\langle \cdot, \cdot \rangle$ and J, respectively.

The Lie brackets of the elements of the basis of $\mathfrak{a} + \mathfrak{n}$ are given by

$$[A_0, U] = 2U, \qquad [A_0, Z_j] = Z_j, \qquad [A_0, Z'_j] = Z'_j, \qquad [Z_j, Z'_r] = -\delta_{jr} 2U,$$
$$[U, Z_j] = [U, Z'_j] = [Z_j, Z_r] = [Z'_j, Z'_r] = 0.$$

The Levi-Cività connection ∇ is given by $2g(\nabla_X Y, Z) = g([X, Y], Z) - g([Y, Z], X) + g([Z, X], Y)$ for all $X, Y, Z \in \mathfrak{a} + \mathfrak{n}$. So, the covariant derivatives between generators of $\mathfrak{a} + \mathfrak{n}$ are given by

$$\begin{aligned}
\nabla_{A_{0}}A_{0} &= \nabla_{A_{0}}U = \nabla_{A_{0}}Z_{r} = \nabla_{A_{0}}Z'_{r} = 0, \\
\nabla_{U}A_{0} &= -2U, \quad \nabla_{U}U = 2A_{0}, \quad \nabla_{U}Z_{r} = Z'_{r}, \quad \nabla_{U}Z'_{r} = -Z_{r}, \\
\nabla_{Z_{j}}A_{0} &= -Z_{j}, \quad \nabla_{Z_{j}}U = Z'_{j}, \quad \nabla_{Z_{j}}Z_{r} = \delta_{jr}A_{0}, \quad \nabla_{Z_{j}}Z'_{r} = -\delta_{jr}U, \\
\nabla_{Z'_{j}}A_{0} &= -Z'_{j}, \quad \nabla_{Z'_{j}}U = -Z_{j}, \quad \nabla_{Z'_{j}}Z_{r} = \delta_{jr}U, \quad \nabla_{Z'_{j}}Z'_{r} = \delta_{jr}A_{0}.
\end{aligned}$$
(3.3)

The components of the curvature tensor field R are given by

$$\begin{split} R_{A_{0}U}A_{0} &= -4U, \quad R_{A_{0}U}U = 4A_{0}, \quad R_{A_{0}U}Z_{r} = 2Z'_{r}, \qquad R_{A_{0}U}Z'_{r} = -2Z_{r}, \\ R_{A_{0}Z_{j}}A_{0} &= -Z_{j}, \quad R_{A_{0}Z_{j}}U = Z'_{j}, \quad R_{A_{0}Z_{j}}Z_{r} = \delta_{jr}A_{0}, \qquad R_{A_{0}Z_{j}}Z'_{r} = -\delta_{jr}U, \\ R_{A_{0}Z'_{j}}A_{0} &= -Z'_{j}, \quad R_{A_{0}Z'_{j}}U = -Z_{j}, \quad R_{A_{0}Z'_{j}}Z_{r} = \delta_{jr}U, \qquad R_{A_{0}Z'_{j}}Z'_{r} = \delta_{jr}A_{0}, \\ R_{UZ_{j}}A_{0} &= -Z'_{j}, \quad R_{UZ_{j}}A_{0} = -Z_{j}, \quad R_{UZ_{j}}Z_{r} = \delta_{jr}U, \qquad R_{UZ_{j}}Z'_{r} = \delta_{jr}A_{0}, \\ R_{UZ'_{j}}A_{0} &= Z_{j}, \qquad R_{UZ'_{j}}U = -Z'_{j}, \quad R_{UZ'_{j}}Z_{r} = -\delta_{jr}A_{0}, \qquad R_{UZ'_{j}}Z'_{r} = \delta_{jr}U, \\ R_{Z_{k}Z_{j}}A_{0} &= R_{Z_{k}Z_{j}}U = 0, \qquad R_{Z_{j}Z'_{r}}A_{0} = 2\delta_{jr}U, \qquad R_{Z_{j}Z'_{r}}U = -2\delta_{jr}A_{0}, \\ R_{Z_{k}Z_{j}}Z_{r} &= \delta_{jr}Z_{k} - \delta_{kr}Z_{j}, \qquad R_{Z_{k}Z_{j}}Z'_{r} = \delta_{jr}Z'_{k} - \delta_{kr}Z_{j}, \qquad R_{Z_{k}Z'_{j}} = R_{Z_{k}Z_{j}}, \\ R_{Z_{j}Z'_{j}}Z_{r} &= -2(1 + \delta_{jr}Z'_{r}), \qquad R_{Z_{j}Z'_{j}}Z'_{r} = 2(1 + \delta_{jr})Z_{r}, \end{split}$$

and

$$R_{Z_k Z'_j} Z_r = -\delta_{jr} Z'_k - \delta_{kr} Z'_j, \quad R_{Z_k Z'_j} Z_r = \delta_{jr} Z_k - \delta_{kr} Z_j, \quad \text{where } k \neq j.$$

In particular, we see that the invariant metric on AN has constant holomorphic sectional curvature -4.

3.2. Homogeneous Kähler structures on $\mathbb{C}H(n) \equiv AN$

We will determine the homogeneous Kähler structures on $\mathbb{CH}(n) \equiv AN$ in terms of the basis of left-invariant forms α , β , γ^j , γ'^j , $1 \leq j \leq n-1$, dual to A_0 , U, Z_j , Z'_j . If S is a homogeneous Riemannian structure on AN and $\tilde{\nabla} = \nabla - S$, the condition $\tilde{\nabla}g = 0$ in (2.1) is equivalent to $S_{XYZ} + S_{XZY} = 0$ for all $X, Y, Z \in \mathfrak{a} + \mathfrak{n}$. Moreover, $\tilde{\nabla}R = 0$ is equivalent to the condition

$$(\nabla_X R)_{Y_1 Y_2 Y_3 Y_4} = -R_{S_X Y_1 Y_2 Y_3 Y_4} - R_{Y_1 S_X Y_2 Y_3 Y_4} - R_{Y_1 Y_2 S_X Y_3 Y_4} - R_{Y_1 Y_2 Y_3 S_X Y_4}$$

for all $Y_1, Y_1, Y_3, Y_4 \in \mathfrak{a} + \mathfrak{n}$. Replacing (Y_1, Y_2, Y_3, Y_4) by $(A_0, U, A_0, Z_j), (A_0, U, A_0, Z'_j), (A_0, Z'_j), (A_0, Z'_j), (A_0, Z'_j), (A_0, Z'_j), (A$ (A_0, U, Z_k, Z_j) and (A_0, U, Z_k, Z'_j) , one obtains that $S_{XUZ_j} = S_{XA_0Z'_j}$, $S_{XUZ'_j} = -S_{XA_0Z_j}$, $S_{XZ_kZ'_j} = -S_{XZ'_kZ_j}$ and $S_{XZ_kZ_j} = S_{XZ'_kZ'_j}$, respectively. It is easy to see that the condition $\tilde{\nabla}R = 0$ holds if and only if the last four equations are satisfied for all $X \in \mathfrak{a} + \mathfrak{n}$. These equations also show (see (3.2)) that the condition $S \cdot J = 0$ of homogeneous Kähler structures (see Proposition 2.2) is fulfilled. We set

$$\omega(X) = S_{XA_0U}, \quad \sigma^j(X) = S_{XA_0Z_j} = -S_{XUZ_j}, \quad \tau^j(X) = S_{XA_0Z_j} = S_{XUZ_j}, \quad (3.4)$$

$$\theta^{kj}(X) = S_{XZ_kZ'_j} = S_{XZ_jZ'_k}, \qquad \psi^{kj}(X) = S_{XZ_kZ_j} = S_{XZ'_kZ'_j}. \tag{3.5}$$

We have $\theta^{kj} = \theta^{jk}$ and $\psi^{kj} = -\psi^{jk}$. Now, we must determine the conditions for the 1-forms $\omega, \sigma^j, \tau^j, \theta^{kj}$ and σ^{kj} under which the condition $\tilde{\nabla}S = 0$ in (2.1) is satisfied. By (3.3)–(3.5), the connection $\tilde{\nabla} = \nabla - S$ is given by

$$\begin{split} \tilde{\nabla}_X A_0 &= -(2\beta + \omega)(X)U - \sum_j (\gamma^j + \sigma^j)(X)Z_j - \sum_j (\gamma'^j + \tau^j)(X)Z'_j, \\ \tilde{\nabla}_X U &= (2\beta + \omega)(X)A_0 - \sum_j (\gamma'^j + \tau^j)(X)Z_j + \sum_j (\gamma^j + \sigma^j)(X)Z'_j, \\ \tilde{\nabla}_X Z_j &= (\gamma^j + \sigma^j)(X)A_0 + (\gamma'^j + \tau^j)(X)U + (\beta - \theta^j)(X)Z'_j \\ &\qquad + \sum_{k \neq j} (\psi^{kj}(X)Z_k - \theta^{kj}(X)Z'_k), \\ \tilde{\nabla}_X Z'_j &= (\gamma'^j + \tau^j)(X)A_0 - (\gamma^j + \sigma^j)(X)U + (\theta^j - \beta)(X)Z_j \\ &\qquad + \sum_{k \neq j} (\theta^{kj}(X)Z_k - \psi^{kj}(X)Z'_k). \end{split}$$

Now, replacing (V_1, V_2) in the equation $(\tilde{\nabla}_X S)(W, V_1, V_2) = 0$ by $(A_0, U), (A_0, Z_j),$ $(A_0, Z'_i), (Z_k, Z_j)$ and (Z_k, Z'_i) , respectively, we obtain that the condition $\tilde{\nabla}S = 0$ is equivalent to the following conditions:

$$\begin{split} \tilde{\nabla}\omega &= 2\sum_{j} ((\gamma^{j} + \sigma^{j}) \otimes \tau^{j} - (\gamma'^{j} + \tau^{j}) \otimes \sigma^{j}), \\ \tilde{\nabla}\sigma^{j} &= -(\beta + \omega + \theta^{j}) \otimes \tau^{j} + (\gamma'^{j} + \tau^{j}) \otimes (\omega + \theta^{j}) \\ &+ \sum_{k \neq j} (\psi^{kj} \otimes \sigma^{k} - \theta^{kj} \otimes \tau^{k} + (\gamma'^{k} + \tau^{k}) \otimes \theta^{kj} - (\gamma^{k} + \sigma^{k}) \otimes \psi^{kj}), \\ \tilde{\nabla}\tau^{j} &= (\beta + \omega + \theta^{j}) \otimes \sigma^{j} - (\gamma^{j} + \sigma^{j}) \otimes (\omega + \theta^{j}) \\ &+ \sum_{k \neq j} (\theta^{kj} \otimes \sigma^{k} + \psi^{kj} \otimes \tau^{k} - (\gamma^{k} + \sigma^{k}) \otimes \theta^{kj} - (\gamma'^{k} + \tau^{k}) \otimes \psi^{kj}), \end{split}$$
(3.6)

Homogeneous Kähler and Sasakian structures

$$\begin{split} \tilde{\nabla}\theta^{kj} &= (\gamma^{j} + \sigma^{j}) \otimes \tau^{k} + (\gamma^{k} + \tau^{k}) \otimes \tau^{j} - (\gamma'^{j} + \tau^{j}) \otimes \sigma^{k} - (\gamma'^{k} + \tau^{k}) \otimes \sigma^{j} \\ &+ \sum_{l} \psi^{lk} \wedge \theta^{jl} + \sum_{l} \theta^{lk} \wedge \psi^{jl}, \\ \tilde{\nabla}\psi^{kj} &= (\gamma^{k} + \sigma^{k}) \otimes \sigma^{j} - (\gamma^{j} + \sigma^{j}) \otimes \sigma^{k} - (\gamma'^{k} + \tau^{k}) \otimes \tau^{j} - (\gamma'^{j} + \tau^{j}) \otimes \tau^{k} \\ &+ \sum_{l} \theta^{lk} \wedge \theta^{jl} - \sum_{l} \psi^{lk} \wedge \psi^{jl}, \end{split}$$

$$(3.6 \ cont.)$$

where $\theta^{j} = \theta^{jj}$. Thus, from (3.4) and (3.5), we have the following.

Theorem 3.1. All the homogeneous Kähler structures on $\mathbb{CH}(n) \equiv AN$ are given by

$$\begin{split} S &= \omega \otimes (\alpha \wedge \beta) \\ &+ \sum_{j=1}^{n-1} (\sigma^j \otimes (\alpha \wedge \gamma^j - \beta \wedge \gamma'^j) + \tau^j \otimes (\alpha \wedge \gamma'^j + \beta \wedge \gamma^j) + \theta^{jj} \otimes (\gamma^j \wedge \gamma'^j)) \\ &+ \sum_{1 \leqslant k < j \leqslant n-1} (\psi^{kj} \otimes (\gamma^k \wedge \gamma^j + \gamma'^k \wedge \gamma'^j) + \theta^{kj} \otimes (\gamma^k \wedge \gamma'^j + \gamma^j \wedge \gamma'^k)), \end{split}$$

where ω , σ^j , τ^j , θ^{kj} , ψ^{kj} $(1 \le k, j \le n-1)$, are 1-forms on AN satisfying $\theta^{jk} = \theta^{kj}$, $\psi^{jk} = -\psi^{kj}$ and Equations (3.6).

If n = 2, we set $\gamma = \gamma^1$, $\gamma' = \gamma'^1$, so that $\{\alpha, \beta, \gamma, \gamma'\}$ is the basis of left-invariant forms on $AN = \mathbb{C}H(2)$ dual to $\{A_0, U, Z, Z'\}$, and we have the following.

Corollary 3.2. All the homogeneous Kähler structures on the complex hyperbolic plane $\mathbb{C}H(2) \equiv AN$ are given by

 $S = \omega \otimes (\alpha \wedge \beta) + \sigma \otimes (\alpha \wedge \gamma - \beta \wedge \gamma') + \tau \otimes (\alpha \wedge \gamma' + \beta \wedge \gamma) + \theta \otimes (\gamma \wedge \gamma'),$

where ω , σ , τ and θ are 1-forms on AN satisfying

$$\begin{split} \bar{\nabla}\omega &= 2(\gamma+\sigma)\otimes\tau - 2(\gamma'+\tau)\otimes\sigma = \bar{\nabla}\theta,\\ \bar{\nabla}\sigma &= -(\beta+\omega+\theta)\otimes\gamma + (\gamma'+\tau)\otimes(\omega+\theta),\\ \bar{\nabla}\tau &= (\beta+\omega+\theta)\otimes\sigma - (\gamma+\sigma)\otimes(\omega+\theta). \end{split}$$

If n = 1, $\{\alpha, \beta\}$ is the basis of 1-invariant forms on the two-dimensional solvable Lie group $AN = \mathbb{C}H(1)$ dual to the basis $\{A_0, U\}$ of $\mathfrak{a} + \mathfrak{n}$, and we have the following.

Corollary 3.3. All the homogeneous Kähler structures on the complex hyperbolic line (or real hyperbolic plane) $\mathbb{C}H(1) \equiv AN$ are given by $S = \omega \otimes (\alpha \wedge \beta)$, where ω is a 1-form on AN satisfying $\tilde{\nabla}\omega = 0$.

Remark 3.4. If $S = \omega \otimes (\alpha \wedge \beta)$ is a homogeneous Kähler structure on $\mathbb{C}H(1)$, and $\omega = \lambda \alpha + \mu \beta$, where λ and μ are functions on $\mathbb{C}H(1)$, the condition $\tilde{\nabla}\omega = 0$ together with the structure equation $[A_0, U] = 2U$ gives $\lambda = \mu = 0$ or $\lambda^2 + \mu^2 = 4$, and we have that there are infinite homogeneous Kähler structures on $\mathbb{C}H(1)$. However, up to

isomorphism [28, Theorem 4.4], there are only two homogeneous structures on the real hyperbolic plane: one of them is S = 0 ($\lambda = \mu = 0$), and the other, which is given by $S_X Y = g(X, Y)\xi_0 - g(\xi_0, Y)X$, with $\xi_0 = 2A_0$ (for $X, Y \in \mathfrak{a} + \mathfrak{n} = \langle A_0, U \rangle$), corresponds to $S = \omega \otimes (\alpha \wedge \beta)$, with $\omega = -2\beta$ ($\lambda = 0, \mu = -2$).

Remark 3.5. For each n > 0, S = 0 is a homogeneous Kähler structure on $\mathbb{C}H(n) \equiv AN$; the corresponding canonical connection is $\tilde{\nabla} = \nabla$, its holonomy algebra is $\mathfrak{k} \cong \mathfrak{s}(\mathfrak{u}(n) \oplus \mathfrak{u}(1))$, the associated reductive decomposition is the Cartan decomposition $\mathfrak{su}(n,1) = \mathfrak{k} + \mathfrak{p}$ and it gives the description of $\mathbb{C}H(n)$ as symmetric space $\mathbb{C}H(n) = \mathrm{SU}(n,1)/\mathrm{S}(\mathrm{U}(n) \times \mathrm{U}(1))$.

Now, our purpose is to obtain non-trivial homogeneous Kähler structures on $\mathbb{CH}(n)$, $n \ge 2$, their associated reductive decompositions, and the corresponding descriptions as homogeneous Kähler spaces.

We will seek for solutions for which $\sigma^j = -\gamma^j$, $\tau^j = -\gamma'^j$. In this case, we have

$$\begin{split} \tilde{\nabla}\gamma^{j} &= (\beta - \theta^{j}) \otimes \gamma'^{j} + \sum_{k \neq j} (\psi^{kj} \otimes \gamma^{k} - \theta^{kj} \otimes \gamma'^{k}), \\ \tilde{\nabla}\gamma'^{j} &= (\theta^{j} - \beta) \otimes \gamma^{j} + \sum_{k \neq j} (\theta^{kj} \otimes \gamma^{k} + \psi^{kj} \otimes \gamma'^{k}). \end{split}$$

(Obviously, the last summands on the right hand-side in each of the two equations above do not appear if n = 2.) By the second and third equations in (3.6), we must have $\omega = -2\beta$, which also satisfies the first equation in (3.6), because

$$\tilde{\nabla}\beta = (2\beta + \omega) \otimes \alpha - \sum_{j} (\gamma'^{j} + \tau^{j}) \otimes \gamma^{j} + \sum_{j} (\gamma^{j} + \sigma^{j}) \otimes \gamma'^{j} = 0.$$

If n = 2, by Corollary 3.2, we have only to determine θ such that $\tilde{\nabla}\theta = 0$. If we set $\theta = a\alpha + b\beta + c\gamma + c'\gamma'$, by also using the structure equations of $\mathfrak{a} + \mathfrak{n} = \langle A_0, U, Z, Z' \rangle$, we obtain that c = c' = 0 and a and b are constant. For n > 2 we set $\theta^j = \theta^{jj} = a_j\alpha + b_j\beta$, $\theta^{kj} = c_{kj}\alpha, \ \psi^{kj} = p_{kj}\alpha, \ k \neq j$, with $a_j, b_j, c_{kj}, p_{kj} \in \mathbb{R}$. Then, if $\sigma^j = -\gamma^j, \ \tau^j = -\gamma'^j$ and $\omega = -2\beta$, Equations (3.6) are satisfied if and only if one has

$$p_{kj}(b_k - b_j) = c_{kj}(b_k - b_j) = 0.$$

Consequently, we get the following.

Proposition 3.6. For n > 2, the space $\mathbb{CH}(n)$ admits the multi-parametric family of homogeneous Kähler structures $S = S^{a_j, b_j, c_{kj}, p_{kj}}$ given in terms of the generators of $\mathfrak{a} + \mathfrak{n}$ by Table 1.

The complex hyperbolic plane $\mathbb{CH}(2)$ admits the two-parametric family of homogeneous Kähler structures $S = S^{a,b}$ given in terms of the generators of $\mathfrak{a} + \mathfrak{n}$ by Table 2.

	A_0	U	Z_j	Z_j'
S_{A_0}	0	0		$-a_j Z_j + \sum (p_{jl} Z_l' - c_{jl} Z_l)$
	-2U		$b_j Z_j'$	${}^{l eq j}_{-b_j Z_j}$
	$-Z_k$		$\delta_{kj}A_0$	$-\delta_{kj}U$
$S_{Z'_k}$	$-Z'_k$	$-Z_k$	$\delta_{kj}U$	$\delta_{kj}A_0$

Table 1. Homogeneous Kähler structure $S = S^{a_j, b_j, c_{kj}, p_{kj}}$.

Table 2. Homogeneous Kähler structure $S = S^{a,b}$.

	A_0	U	Z	Z'
S_{A_0}	0	0	aZ'	-aZ
S_U	-2U	$2A_0$	bZ'	-bZ
S_Z	-Z	Z'	A_0	-U
$S_{Z'}$	-Z'	-Z	U	A_0

If $S = S^{a_j, b_j, c_{kj}, p_{kj}}$, with respect to the basis $\{A_0, U, Z_j, Z'_j\}$ of $\mathfrak{a} + \mathfrak{n}$, the connection $\tilde{\nabla} = \nabla - S$ is given by

$$\tilde{\nabla}_{A_0} Z_j = -a_j Z'_j - \sum_{l \neq j} (p_{jl} Z_l + c_{jl} Z'_l), \quad \tilde{\nabla}_U Z_j = (1 - b_j) Z'_j,$$

$$\tilde{\nabla}_{A_0} Z'_j = a_j Z_j - \sum_{l \neq j} (p_{jl} Z'_l - c_{jl} Z_l), \quad \tilde{\nabla}_U Z'_j = (b_j - 1) Z_j,$$

with the rest vanishing. Hence, the components of the curvature tensor field are

$$\tilde{R}_{A_0U} = -\tilde{R}_{Z_k Z'_k} = 2\sum_j (1-b_j)(Z'_j \otimes \gamma^j - Z_j \otimes \gamma'^j),$$

and the rest are zero.

If $b_j = 1$ for all j = 1, ..., n-1, the holonomy algebra of $\tilde{\nabla}$ is trivial and the reductive decompositions associated to the homogeneous Kähler structures given in Proposition 3.6 are given by $\tilde{\mathfrak{g}}^{a_j,c_{k_j},p_{k_j}} = \{0\} + (\mathfrak{a} + \mathfrak{n})$. From (2.3), the non-vanishing brackets are given by

$$[A_0, Z_j] = Z_j + a_j Z'_j + \sum_{l \neq j} (p_{jl} Z_l + c_{jl} Z'_l), \quad [A_0, U] = 2U,$$

$$[A_0, Z'_j] = -a_j Z_j + Z'_j + \sum_{l \neq j} (p_{jl} Z'_l + c_{jl} Z_l), \quad [Z_j, Z'_j] = -2U.$$

$$(3.7)$$

On the other hand, the element

$$\hat{A}_0 = \lambda_1 C_1 + \dots + \lambda_{n-1} C_{n-1} + \sum_{j < l} (c_{jl} H_{jl} - p_{jl} F_{jl}) + A_0$$

of $\mathfrak{su}(n,1)$ generates a subspace $\mathfrak{e}^{\lambda_j,c_{kj},p_{kj}}$ of $Z_{\mathfrak{k}}(\mathfrak{a}) + \mathfrak{a}$, and the structure equations of the Lie subalgebra $\mathfrak{e}^{\lambda_j,c_{kj},p_{kj}} + \mathfrak{n}$ of $\mathfrak{su}(n,1)$ are

$$[\hat{A}_{0}, Z_{j}] = Z_{j} + \left(3\lambda_{j} + \sum_{l \neq j} \lambda_{l} \right) Z_{j}' + \sum_{l \neq j} (p_{jl}Z_{l} + c_{jl}Z_{l}'), \qquad [\hat{A}_{0}, U] = 2U,$$

$$[\hat{A}_{0}, Z_{j}'] = -\left(3\lambda_{j} + \sum_{l \neq j} \lambda_{l} \right) Z_{j} + Z_{j}' + \sum_{l \neq j} (p_{jl}Z_{l}' + c_{jl}Z_{l}), \quad [Z_{j}, Z_{j}'] = -2U,$$

$$(3.8)$$

with the rest vanishing. From (3.7) and (3.8), it follows that $\tilde{\mathfrak{g}}^{a_j,c_{kj},p_{kj}}$ is isomorphic to $\mathfrak{e}^{\lambda_j,c_{kj},p_{kj}} + \mathfrak{n}$.

Now, for the structure $S = S^{a_j, b_j, c_{kj}, p_{kj}}$ in Table 1, suppose that $b_j \neq 1$ for some $j = 1, \ldots, n-1$. Then,

$$\rho = \tilde{R}_{A_0U} = -\tilde{R}_{Z_k Z'_k} = 2\sum_j (1 - b_j) (Z'_j \otimes \gamma^j - Z_j \otimes \gamma'^j)$$

generates the holonomy algebra $\tilde{\mathfrak{h}}^{a_j,b_j,c_{kj},p_{kj}}$ of $\tilde{\nabla} = \nabla - S$, and the reductive decomposition associated to S is

$$\tilde{\mathfrak{g}}^{a_j,b_j,c_{kj},p_{kj}} = \tilde{\mathfrak{h}}^{a_j,b_j,c_{kj},p_{kj}} + (\mathfrak{a} + \mathfrak{n}) = \langle \rho, A_0, U, Z_j, Z_j' \rangle.$$

From (2.3), the structure equations are given by

$$[\rho, A_0] = [\rho, U] = 0, \qquad [\rho, Z_j] = 2(1 - b_j)Z'_j, \qquad [\rho, Z'_j] = 2(b_j - 1)Z_j, \\ [A_0, U] = \rho + 2U, \qquad [A_0, Z_j] = Z_j + a_j Z'_j + \sum_{l \neq j} (p_{jl}Z_l + c_{jl}Z'_l), \\ [A_0, Z'_j] = -a_j Z_j + Z'_j + \sum_{l \neq j} (p_{jl}Z'_l + c_{jl}Z_l), \\ [U, Z_j] = (b_j - 1)Z'_j, \qquad [U, Z'_j] = (1 - b_j)Z_j, \qquad [Z_k, Z'_j] = -\delta_{kj}(\rho + 2U).$$

$$(3.9)$$

If $\mathfrak{u} \cong \mathfrak{u}(1)$ is the subspace of $Z_{\mathfrak{k}}(\mathfrak{a})$ generated by $C = C_1 + \cdots + C_{n-1}$, it is easy to see that the Lie algebra $\tilde{\mathfrak{g}}^{a_j, b_j, c_{kj}, p_{kj}}$ is isomorphic to the Lie subalgebra

$$\mathfrak{u} + \mathfrak{e}^{\lambda_j, c_{kj}, p_{kj}} + \mathfrak{n} = \langle C, \hat{A}_0, U, Z_j, Z_j' \rangle$$

of $\mathfrak{su}(n, 1)$. We deduce the following.

Theorem 3.7. Let $S = S^{a_j, b_j, c_{kj}, p_{kj}}$ be the homogeneous Kähler structure on $\mathbb{CH}(n)$, n > 2, given by Table 1, and let $\mathfrak{e}^{\lambda_j, c_{kj}, p_{kj}}$ be the subspace of $Z_{\mathfrak{k}}(\mathfrak{a}) + \mathfrak{a}$ generated by

$$\hat{A}_{0} = \sum_{j} \lambda_{j} C_{j} + \sum_{1 \leq j < l \leq n-1} (c_{jl} H_{jl} - p_{jl} F_{jl}) + A_{0} \quad \left(\lambda_{j} = \frac{n a_{j} - \sum_{l \neq j} a_{l}}{2n+2}\right),$$

and $\mathfrak{u} = \langle C_1 + \cdots + C_{n-1} \rangle$. If $b_j = 1$ for all $j = 1, \ldots, n-1$, the corresponding group of isometries is the connected subgroup $E^{\lambda_j, c_{kj}, p_{kj}} N$ of $\mathrm{SU}(n, 1)$ whose lie algebra is $\mathfrak{e}^{\lambda_j, c_{kj}, p_{kj}} + \mathfrak{n}$. If $b_j \neq 1$ for some $j = 1, \ldots, n-1$, the corresponding group of

	A_0^{H}	U^{H}	Z_j^{H}	$Z_j^{\prime^{\mathrm{H}}}$	ξ
$S^t_{A^{\mathrm{H}}_{\mathrm{O}}}$	0	$-\xi$	0	0	U^{H}
$S_{U^{\mathrm{H}}}^{t^{\mathrm{O}}}$	ξ	0	0 0	0	$-A^{\mathrm{H}}$
$S_{Z_{L}^{\mathrm{H}}}^{t}$	0	0	0	$\delta_{kj}\xi$	$-Z_k^{\prime^{\mathrm{H}}}$
$S_{z'^{\mathrm{H}}}^{t^{\kappa}}$	0	0	$\begin{array}{c} 0\\ -\delta_{kj}\xi \end{array}$	0	Z_k^{H}
S_{ξ}^{t}	$tU^{\rm H}$	$-tA^{\rm H}$	$-tZ_{j}^{\prime^{\mathrm{H}}}$	$tZ_j^{\rm H}$	0

Table 3. Homogeneous Sasakian structure S^t .

isometries is the connected subgroup $U(1)E^{\lambda_j,c_{kj},p_{kj}}N$ of SU(n,1) whose Lie algebra is $\mathfrak{u} + \mathfrak{e}^{\lambda_j,c_{kj},p_{kj}} + \mathfrak{n}$.

If $S^{a,b}$ is the homogeneous Kähler structure on the complex hyperbolic plane $\mathbb{CH}(2)$ given by Table 2, $\mathfrak{e}^{\lambda} = \langle \hat{A}_0 \rangle$, where $\hat{A}_0 = \lambda C + A_0$ ($\lambda = a/3$), and $\mathfrak{u} = \langle C \rangle$, then the corresponding group of isometries is

- (i) the subgroup $E^{\lambda}N$ of SU(2, 1) generated by the Lie subalgebra $\mathfrak{e}^{\lambda} + \mathfrak{n}$ of $\mathfrak{su}(2, 1)$, if b = 1,
- (ii) the subgroup U(1) $E^{\lambda}N$ of SU(2, 1) generated by $\mathfrak{u} + \mathfrak{e}^{\lambda} + \mathfrak{n}$, if $b \neq 1$.

Remark 3.8. Each structure $S^{a_j,b_j,c_{kj},p_{kj}}$, with $b_j = 1$ for all j, is also characterized by the fact that $\tilde{\nabla} = \nabla - S^{a_j,b_j,c_{kj},p_{kj}}$ is the canonical connection for the Lie group $E^{\lambda_j,c_{kj},p_{kj}}N$, which is the connection for which every left-invariant vector field on $E^{\lambda_j,c_{kj},p_{kj}}N$ is parallel. Each one of these groups acts simply transitively on $\mathbb{CH}(n)$ and it provides a description of $\mathbb{CH}(n)$ as a homogeneous space. If all the parameters a_j, c_{kj}, p_{kj} are zero, then $e^{\lambda_j,c_{kj},p_{kj}} = \mathfrak{a}$, and we get the usual description as a solvable Lie group $\mathbb{CH}(n) = AN$. In this case, the corresponding homogeneous structure is given by $S_X Y = \nabla_X Y$ for all $X, Y \in \mathfrak{a} + \mathfrak{n}$. If $b_j \neq 1$ for some $j = 1, \ldots, n-1$, we get the descriptions as homogeneous space $\mathbb{CH}(n) = \mathrm{U}(1)E^{\lambda_j,c_{kj},p_{kj}}N/\mathrm{U}(1)$.

3.3. Principal line bundle over $\mathbb{CH}(n)$

By (3.2), the fundamental 2-form of the Kähler structure (J,g) of $\mathbb{CH}(n) \equiv AN$ is given by

$$\Omega = \alpha \wedge \beta - \sum_{j=1}^{n-1} \gamma^j \wedge \gamma'^j = -\frac{1}{2} \mathrm{d}\beta,$$

where $\{\alpha, \beta, \gamma'^j, \gamma'^j : 1 \leq j \leq n-1\}$ is the basis of left-invariant 1-forms on AN dual to the basis $\{A_0, U, Z_j, Z'_j\}$ of $\mathfrak{a} + \mathfrak{n}$. We consider the principal line bundle $\pi : \overline{M} \to \mathbb{C}H(n)$, and identify the bundle space \overline{M} with $AN \times \mathbb{R}$ and π with the projection on AN. The fundamental vector field ξ is identified with d/dt, and the 1-form $\eta = dt - \pi^*\beta$ is also regarded as a connection form on the bundle. If φ and \overline{g} are given by (2.7), then $(\varphi, \xi, \eta, \overline{g})$ is a Sasakian structure on \overline{M} . By Proposition 2.5 (a), each homogeneous Kähler structure $S^{a_j,b_j,c_{kj},p_{kj}}$ on $\mathbb{CH}(n)$ given in Theorem 3.7 defines a homogeneous Sasakian structure $\bar{S}^{a_j,b_j,c_{kj},p_{kj}}$ on \bar{M} which gives a description of \bar{M} as either the connected subgroup $E^{\lambda_j,c_{kj},p_{kj}}N \times \mathbb{R}$ of $\mathrm{SU}(n,1) \times \mathbb{R}$ (if $b_j = 1$ for all $j = 1, \ldots, n-1$), or as the homogeneous space $(\mathrm{U}(1)E^{\lambda_j,c_{kj},p_{kj}}N \times \mathbb{R})/\mathrm{U}(1)$.

On the other hand, from (b) of Proposition 2.5, we get the following.

Proposition 3.9. The bundle space \overline{M} of the line bundle $\pi : \overline{M} \to \mathbb{C}H(n)$ admits the family of homogeneous Sasakian structures $\{S^t : t \in \mathbb{R}\}$ given, in terms of the horizontal lifts of the generators of $\mathfrak{a} + \mathfrak{n}$ and the fundamental vector field ξ , by Table 3.

Remark 3.10. For each $p \in \overline{M}$, if $c_{12}(S^t)_p$ is the map from the tangent space $T_p(\overline{M})$ to its dual given by

$$c_{12}(S^t)_p(\tilde{X}) = \sum_{i=1}^{2n+1} S_{e_i e_i \tilde{X}},$$

where $\{e_i\}$ is an orthonormal basis of $T_p(\bar{M})$, then $c_{12}(S^t)_p$ vanishes for every $t \in \mathbb{R}$. According to Tricerri and Vanhecke's classification of homogeneous Riemannian structures in [28], each S^t is of type $\mathcal{T}_2 \oplus \mathcal{T}_3$. Moreover, if t = -1, we have $S_{\tilde{X}}\tilde{Y} + S_{\tilde{Y}}\tilde{X} = 0$. Then S^{-1} is of type \mathcal{T}_3 , which means that \bar{M} is a naturally reductive Riemannian space. If t = 2, then each cyclic sum $\mathfrak{S}_{\tilde{X}\tilde{Y}\tilde{Z}}S_{\tilde{X}\tilde{Y}\tilde{Z}}$ vanishes, and hence \bar{M} is of type \mathcal{T}_2 , which may also be expressed by saying that \bar{M} is a cotorsionless manifold [13].

We will construct the reductive decomposition $\tilde{\mathfrak{g}}_t = \mathfrak{h}_t + \bar{\mathfrak{m}}$ associated to each homogeneous Sasakian structure S^t , where $\bar{\mathfrak{m}} = T_o(\bar{M})$, with $o \in \bar{M}$, is generated by $\tilde{A} = (A_0^{\mathrm{H}})_o$, $\tilde{U} = (U^{\mathrm{H}})_o$, $\tilde{Z}_j = (Z_j^{\mathrm{H}})_o$, $\tilde{Z}'_j = (Z'_j)_o^{\mathrm{H}}$, $\bar{\xi} = \xi_o$, $1 \leq j \leq n-1$, and $\tilde{\mathfrak{h}}_t$ is the holonomy algebra of the connection $\tilde{D}^t = D - S^t$. Each connection \tilde{D}^t is given by Table 4.

Let \tilde{R}^t be the curvature of \tilde{D}^t , and let $\{\bar{\alpha}, \bar{\beta}, \bar{\gamma}^j, \bar{\gamma}^{\prime j}, \bar{\eta}\}$ be the basis dual to the basis $\{\tilde{A}, \tilde{U}, \tilde{Z}_j, \tilde{Z}_j^{\prime}, \bar{\xi}\}$ of $\bar{\mathfrak{m}}$. The holonomy algebra $\tilde{\mathfrak{h}}_t$ of \tilde{D}^t is generated by the curvature operators ρ_0 , ρ_r , φ_r , ψ_r , σ_{jk} , τ_{jk} (r, j, k = 1, ..., n - 1, j < k), given by

$$\begin{split} \rho_0 &= \tilde{R}^t_{\tilde{A}\tilde{U}} = 2(t-3)(\bar{\alpha}\otimes\tilde{U}-\bar{\beta}\otimes\tilde{A}) + 2(2-t)\sum_{j=1}^{n-1}(\bar{\gamma}^j\otimes\tilde{Z}'_j-\bar{\gamma'}^j\otimes\tilde{Z}_j),\\ \rho_r &= \tilde{R}^t_{\tilde{Z}_r\tilde{Z}'_r} \\ &= 2(2-t)(\bar{\alpha}\otimes\tilde{U}-\bar{\beta}\otimes\tilde{A}) + 2(t-3)(\bar{\gamma}^r\otimes\tilde{Z}'_r-\bar{\gamma'}^r\otimes\tilde{Z}_r) \\ &\quad + 2(t-2)\sum_{j\neq r}(\bar{\gamma}^j\otimes\tilde{Z}'_j-\bar{\gamma'}^j\otimes\tilde{Z}_j),\\ \varphi_r &= \tilde{R}^t_{\tilde{A}\tilde{Z}_r} = -\tilde{R}^t_{\tilde{U}\tilde{Z}'_r} = -\bar{\alpha}\otimes\tilde{Z}_r + \bar{\beta}\otimes\tilde{Z}'_r + \bar{\gamma}^r\otimes\tilde{A} - \bar{\gamma'}^r\otimes\tilde{U},\\ \psi_r &= \tilde{R}^t_{\tilde{U}\tilde{Z}_r} = \tilde{R}^t_{\tilde{A}\tilde{Z}'_r} = -\bar{\alpha}\otimes\tilde{Z}'_r - \bar{\beta}\otimes\tilde{Z}_r + \bar{\gamma}^r\otimes\tilde{U} + \bar{\gamma'}^r\otimes\tilde{A},\\ \sigma_{jk} &= \tilde{R}^t_{\tilde{Z}_j\tilde{Z}_k} = \tilde{R}^t_{\tilde{Z}_j\tilde{Z}_k} = -\bar{\gamma}^j\otimes\tilde{Z}_k - \bar{\gamma'}^j\otimes\tilde{Z}_k - \bar{\gamma}^k\otimes\tilde{Z}_j + \bar{\gamma'}^k\otimes\tilde{Z}_j. \end{split}$$

	A_0^{H}	U^{H}	Z_j^{H}	$Z_j^{\prime^{\mathrm{H}}}$	ξ
$\tilde{D}_{A_0^{\mathrm{H}}}^t$	0	0	0	0	0
$\tilde{D}_{U^{\mathrm{H}}}^{t}$	$-2U^{\rm H}$	$2A_0^{\mathrm{H}}$	$Z_j^{\prime^{\mathrm{H}}}$	$-Z_j^{\mathrm{H}}$	0
$\tilde{D}_{Z_{k}}^{t}$	$-Z_k^{\mathrm{H}}$	$Z_k^{\prime^{\mathrm{H}}}$	$\delta_{kj}A_0^{\mathrm{H}}$	$-\delta_{kj}U^{\mathrm{H}}$	0
$\tilde{D}^{t}_{Z'^{\mathrm{H}}}$	$-Z_k^{\prime^{\mathrm{H}}}$	$-Z_k^{ m H}$	$\delta_{kj}U^{\mathrm{H}}$	$\delta_{kj} A_0^{\mathrm{H}}$	0
\tilde{D}_{ξ}^{t}	$(1-t)U^{\mathrm{H}}$	$(t-1)A^{\mathrm{H}}$	$(t-1)Z_j^{\prime^{\mathrm{H}}}$		0

Table 4. Connection $\tilde{D}^t = D - S^t$.

(If n = 2, the operators σ_{jk} and τ_{jk} do not appear, that is, $\tilde{\mathfrak{h}}_t = \langle \rho_0, \rho_1, \varphi_1, \psi_1 \rangle$, and if n = 1, then $\tilde{\mathfrak{h}}_t$ is generated by $\rho_0 = \tilde{R}^t_{\tilde{A}\tilde{U}} = 2(t-3)(\bar{\alpha} \otimes \tilde{U} - \bar{\beta} \otimes \tilde{A})$.) The Lie structure of $\tilde{\mathfrak{g}}_t = \tilde{\mathfrak{h}}_t + \bar{\mathfrak{m}}$ is defined by Equations (2.3). If $t \neq (2n+1)/n$, the subalgebra $\tilde{\mathfrak{h}}_t$ is isomorphic to the Lie algebra $\mathfrak{k} = \mathfrak{s}(\mathfrak{u}(n) + \mathfrak{u}(1)) \cong \mathfrak{u}(n)$ in § 3.1, via the map $h : \tilde{\mathfrak{h}}_t \to \mathfrak{k}$ given by $h(\rho_0) = 2U_{\mathfrak{k}}, h(\rho_r) = -(C_r + U_{\mathfrak{k}}), h(\varphi_r) = (Z_r)_{\mathfrak{k}}, h(\psi_r) = (Z'_r)_{\mathfrak{k}}, h(\sigma_{jk}) = F_{jk}, h(\tau_{jk}) = -H_{jk}$. If we set $\hat{\rho}_0 = \frac{1}{2}(\rho_0 - 2\bar{\xi}), \hat{\rho}_r = -\frac{1}{2}\rho_0 - \rho_r - \bar{\xi}$, then

$$\widehat{\mathfrak{su}}(n,1) = \langle \hat{\rho}_0, \hat{\rho}_r, \varphi_r, \psi_r, \sigma_{jk}, \tau_{jk}, \hat{A}, \hat{U}, \hat{Z}_r, \hat{Z}'_r : r, j, k = 1, \dots, n-1, j < k \rangle$$

is an ideal of $\tilde{\mathfrak{g}}_t$, and the map h extends to a Lie algebra isomorphism

$$\widehat{h}:\widehat{\mathfrak{su}}(n,1)\to\mathfrak{su}(n,1)=\mathfrak{k}+\mathfrak{p},$$

given by $\tilde{h}(\hat{\rho}_0) = U_{\mathfrak{k}}, \ \tilde{h}(\hat{\rho}_r) = C_r, \ \tilde{h}(\varphi_r) = (Z_r)_{\mathfrak{k}}, \ \tilde{h}(\psi_r) = (Z'_r)_{\mathfrak{k}}, \ \tilde{h}(\sigma_{jk}) = F_{jk}, \ \tilde{h}(\tau_{jk}) = -H_{jk}, \ \tilde{h}(\tilde{A}) = A_0, \ \tilde{h}(\tilde{U}) = U_{\mathfrak{p}}, \ \tilde{h}(\tilde{Z}_r) = (Z_r)_{\mathfrak{p}}, \ \tilde{h}(\tilde{Z}'_r) = (Z'_r)_{\mathfrak{p}}.$ Moreover, $\tilde{\mathfrak{g}}_t$ is the semidirect product of $\mathfrak{su}(n, 1)$ and the line generated by $\bar{\xi}$ under the homomorphism

$$\delta_t : \langle \bar{\xi} \rangle \to \operatorname{Der}(\widehat{\mathfrak{su}}(n,1)),$$

given by $\delta_t(\bar{\xi})(\tilde{A}) = (t-1)\tilde{U}, \ \delta_t(\bar{\xi})(\tilde{U}) = (1-t)\tilde{A}, \ \delta_t(\bar{\xi})(\tilde{Z}_r) = (1-t)\tilde{Z}'_r, \ \delta_t(\bar{\xi})(\tilde{Z}'_r) = (t-1)\tilde{Z}_r, \ \text{and} \ \delta_t(\bar{\xi})(\langle \hat{\rho}_0, \hat{\rho}_r, \varphi_r, \psi_r, \sigma_{jk}, \tau_{jk} \rangle) = 0.$ So, we have the following.

Proposition 3.11. The reductive decomposition associated to the homogeneous Sasakian structure S^t , $t \neq (2n+1)/n$, on the total space of the line bundle $\overline{M} \to \mathbb{C}H(n)$ is $\tilde{\mathfrak{g}}_t = \tilde{\mathfrak{h}}_t + \bar{\mathfrak{m}}$, where $\tilde{\mathfrak{h}}_t \cong \mathfrak{s}(\mathfrak{u}(n) + \mathfrak{u}(1)) \cong \mathfrak{u}(n) \subset \mathfrak{su}(n, 1)$, and

$$\bar{\mathfrak{m}} = \mathfrak{p} + \langle \bar{\xi} \rangle = \langle A_0, U_{\mathfrak{p}}, (Z_r)_{\mathfrak{p}}, (Z'_r)_{\mathfrak{p}}, \bar{\xi} : 1 \leq r \leq n-1 \rangle.$$

Moreover, $\tilde{\mathfrak{g}}_t$ is the semidirect product $\tilde{\mathfrak{g}}_t = \langle \bar{\xi} \rangle \ltimes_{\delta_t} \mathfrak{su}(n, 1)$, where $\delta_t(\bar{\xi})(A_0) = (t-1)U_{\mathfrak{p}}$, $\delta_t(\bar{\xi})(U_{\mathfrak{p}}) = (1-t)A_0$, $\delta_t(\bar{\xi})((Z_r)_{\mathfrak{p}}) = (1-t)(Z'_r)_{\mathfrak{p}}$, $\delta_t(\bar{\xi})((Z'_r)_{\mathfrak{p}}) = (t-1)(Z_r)_{\mathfrak{p}}$, and $\delta_t(\bar{\xi})(\tilde{\mathfrak{h}}_t) = 0$.

If $n \ge 2$ and t = (2n+1)/n, then it is easy to see that $\rho_0 = \rho_1 + \cdots + \rho_{n-1}$, and we set $\tilde{\rho}_r = \frac{1}{2}(\rho_0 + \rho_r), 1 \le r \le n-1$. In this case, $\tilde{\mathfrak{g}}_{(2n+1)/n} = \tilde{\mathfrak{h}}_{(2n+1)/n} + \bar{\mathfrak{m}}$ coincides with the reductive decomposition $\mathfrak{su}(n,1) = \mathfrak{k}' + \mathfrak{m}'$, where $\mathfrak{k}' = [\mathfrak{k},\mathfrak{k}] \cong \mathfrak{su}(n)$, and $\mathfrak{m}' = \mathfrak{p} + \langle \mathfrak{c} \rangle$,

 \mathfrak{c} being the centre of \mathfrak{k} , which is generated by the element E_J such that $\mathrm{ad}_{E_J} : \mathfrak{p} \to \mathfrak{p}$ defines the complex structure of $\mathbb{CH}(n)$. In fact, we have the isomorphism

$$f: \tilde{\mathfrak{g}}_{(2n+1)/n} \to \mathfrak{su}(n,1)$$

given by $f(\tilde{\rho}_r) = \frac{1}{2}(U_{\mathfrak{k}} - C_r), \ f(\varphi_r) = (Z_r)_{\mathfrak{k}}, \ f(\psi_r) = (Z'_r)_{\mathfrak{k}}, \ f(\sigma_{jk}) = F_{jk}, \ f(\tau_{jk}) = -H_{jk}, \ f(\tilde{A}) = A_0, \ f(\tilde{U}) = U_{\mathfrak{p}}, \ f(\tilde{Z}_r) = (Z_r)_{\mathfrak{p}}, \ f(\tilde{Z}'_r) = (Z'_r)_{\mathfrak{p}} \ \text{and}$

$$f(\bar{\xi}) = -\frac{n+1}{n}E_J = -\frac{1}{2n}(C_1 + \dots + C_{n-1} + (n+1)U_{\mathfrak{k}})$$

and, in particular, $f(\tilde{\mathfrak{h}}_{(2n+1)/n}) = \mathfrak{k}'$ and $f(\bar{\mathfrak{m}}) = \mathfrak{m}'$. If n = 1 and t = 3, then $\rho_0 = 0$. In this case, $\tilde{\mathfrak{h}}_3 = 0$, $\mathfrak{k}' = [\mathfrak{k}, \mathfrak{k}] = 0$, $\mathfrak{c} = \langle E_J \rangle$, $E_J = \frac{1}{2}U_{\mathfrak{k}}$, $\tilde{\mathfrak{g}}_3 = \{0\} + \bar{\mathfrak{m}}$ is the reductive decomposition $\mathfrak{su}(1, 1) = \{0\} + \mathfrak{m}'$, where $\bar{\mathfrak{m}} = \langle \tilde{A}, \tilde{U}, \bar{\xi} \rangle$, $\mathfrak{m}' = \langle A_0, U_{\mathfrak{p}}, U_{\mathfrak{k}} \rangle$, and $f : \tilde{\mathfrak{g}}_3 \to \mathfrak{su}(1, 1)$ such that $f(\tilde{A}) = A_0$, $f(\tilde{U}) = U_{\mathfrak{p}}$, $f(\bar{\xi}) = -U_{\mathfrak{k}}$. Hence, we have obtained the following.

Proposition 3.12. The reductive decomposition associated to the homogeneous Sasakian structure S^t , with t = (2n + 1)/n, on the total space of the line bundle $\overline{M} \to \mathbb{C}H(n)$ is $\mathfrak{su}(n,1) = \mathfrak{k}' + \mathfrak{m}'$, where $\mathfrak{k}' = [\mathfrak{k}, \mathfrak{k}] \cong \mathfrak{su}(n)$ and $\mathfrak{m}' = \mathfrak{p} + \mathfrak{c}$, $\mathfrak{c} = \langle E_J \rangle$ being the centre of \mathfrak{k} .

Remark 3.13. The reductive decomposition $\mathfrak{su}(n,1) = \mathfrak{k}' + \mathfrak{m}'$ associated to the homogeneous Sasakian structure S^t , with t = (2n+1)/n, provides the description of \overline{M} as the homogeneous space SU(n,1)/K', where SU(n,1) is the universal covering of SU(n,1), and $K' \cong SU(n)$ is the connected subgroup of SU(n,1) whose Lie algebra is $\mathfrak{t}' \cong \mathfrak{su}(n)$. (In particular, if n = 1, M is the universal covering space of $Sl(2,\mathbb{R})$.) These spaces appear in the classification by Jiménez and Kowalski [17] of complete simply connected φ -symmetric Sasakian manifolds, and they are also Sasakian space forms (they have constant φ -sectional curvature -7). Notice that for a Sasakian manifold the condition of being a locally symmetric space is too strong, because in this case it is a space of constant curvature [25]. For this reason, Takahashi [27] introduced φ -symmetric spaces in Sasakian geometry as generalizations of Sasakian space forms. They are also analogues of Hermitian symmetric spaces. A φ -symmetric space is a complete connected regular Sasakian manifold M that fibres over a Hermitian symmetric space M so that the geodesic involutions of M lift to involutive automorphisms of the Sasakian structure on M. Moreover, each complete simply connected φ -symmetric space is a naturally reductive homogeneous space [5].

Acknowledgements. This research was partly supported by the Ministry of Science and Innovation, Spain, under Project no. MTM2008-01386.

References

- E. ABBENA AND S. GARBIERO, Almost-Hermitian homogeneous structures, *Proc. Edinb.* Math. Soc. **31** (1988), 375–395.
- W. AMBROSE AND I. M. SINGER, On homogeneous Riemannian manifolds, *Duke Math. J.* 25 (1958), 647–669.

- 3. D. E. BLAIR, Contact manifolds in Riemannian geometry (Springer, 1976).
- 4. D. E. BLAIR, *Riemannian geometry of contact and symplectic manifolds* (Birkhäuser, 2002).
- D. E. BLAIR AND L. VANHECKE, New characterizations of φ-symmetric spaces, Kōdai Math. J. 10 (1987), 102–107.
- 6. W. M. BOOTHBY AND H. C. WANG, On contact manifolds, Annals Math. 68 (1958), 721–734.
- 7. M. CASTRILLÓN LÓPEZ, P. M. GADEA AND A. F. SWANN, Homogeneous structures on real and complex hyperbolic spaces, *Illinois J. Math.* **53**(2) (2009), 561–574.
- D. CHINEA AND C. GONZÁLEZ, An example of an almost cosymplectic homogeneous manifold, in *Differential geometry*, Lecture Notes in Mathematics, Volume 1209, pp. 133– 142 (Springer, 1986).
- 9. B. DE WIT AND P. VAN NIEUWENHUIZEN, Rigidly and locally supersymmetric twodimensional nonlinear σ -models with torsion, *Nucl. Phys.* B **312** (1989), 58–94.
- A. DÍAZ MIRANDA AND A. REVENTÓS, Homogeneous contact compact manifolds and homogeneous symplectic manifolds, *Bull. Sci. Math.* 106(4) (1982), 337–350.
- J. DORFMEISTER AND K. NAKAJIMA, The fundamental conjecture for homogeneous Kähler manifolds, Acta Math. 161 (1988), 23–70.
- 12. A. FINO, Almost contact homogeneous structures, Boll. UMI A 9 (1995), 299–311.
- P. M. GADEA AND J. A. OUBIÑA, Reductive homogeneous pseudo-Riemannian manifolds, Monatsh. Math. 124 (1997), 17–34.
- P. M. GADEA, A. MONTESINOS AMILIBIA AND J. MUÑOZ MASQUÉ, Characterizing the complex hyperbolic space by Kähler homogeneous structures, *Math. Proc. Camb. Phil.* Soc. 27 (2000), 87–94.
- 15. C. GONZÁLEZ AND D. CHINEA, Quasi-Sasakian homogeneous structures on the generalized Heisenberg group H(p, 1), Proc. Am. Math. Soc. **105** (1989), 173–184.
- S. HELGASON, Differential geometry, Lie groups, and symmetric spaces (Academic Press, New York, 1978).
- J. JIMÉNEZ AND O. KOWALSKI, The classification of φ-symmetric Sasakian manifolds, Monatsh. Math. 115 (1993), 83–98.
- V. F. KIRIČENKO, On homogeneous Riemannian spaces with an invariant structure tensor, Sov. Math. Dokl. 21 (1980), 734–737.
- 19. S. KOBAYASHI AND K. NOMIZU, Foundations of differential geometry, Volume I (Wiley, 1963).
- 20. S. KOBAYASHI AND K. NOMIZU, Foundations of differential geometry, Volume II (Wiley, 1969).
- T. KODA AND Y. WATANABE, Homogeneous almost contact Riemannian manifolds and infinitesimal models, *Boll. UMI* B 11 (supplement) (1997), 11–24.
- 22. H. NISHINO, Alternative N = (4, 0) superstring and σ -models, *Phys. Lett.* B **355** (1995), 117–126.
- K. NOMIZU, Invariant affine connections on homogeneous spaces, Am. J. Math. 76 (1954), 33–65.
- K. OGIUE, On fiberings of almost contact manifolds, Kōdai Math. Sem. Rep. 17 (1965), 53–62.
- M. OKUMURA, Some remarks on spaces with a certain contact structure, *Tohoku Math. J.* 14 (1962), 135–145.
- K. SEKIGAWA, Notes on homogeneous almost Hermitian manifolds, *Hokkaido Math. J.* 7 (1978), 206–213.
- 27. T. TAKAHASHI, Sasakian φ -symmetric spaces, Tohoku Math. J. **29** (1997), 91–113.
- F. TRICERRI AND L. VANHECKE, Homogeneous structures on Riemannian manifolds (Cambridge University Press, 1983).