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0. Introduction. A general theory of Hankel forms over domains in one or
several variables has been set forth in [6]. In [7] the study of Hankel forms over an
annulus in the complex plane C was begun. (An extension of the results of [7] to multiply
connected domains was given in [4].) The present paper amplifies the results of [7] in
various respects. First of all we define and study more general Hankel forms associated
with a one parameter family of projective structures on the annulus. This displays several
new features. For instance, we are now dealing with quadratic integral metrics which do
not correspond to integration of the square of the function with respect to a weight.
Furthermore, whereas in [7] essentially only the issue of the boundedness of Hankel
forms was studied, we obtain here rather satisfactory Sp-results, even for 0 < p < 1. The
question which remains is, of course, to which extent all this extends to multiply
connected domains (or more general (open) Riemann surfaces).

The plan of the paper is roughly the following.
Section 1 gives preliminaries on projective structures in general.
In Section 2 we then specialize to the case of an annulus Q = QR = {z: 1 < \z\ <R}.

In particular, we single out a one parameter family of projective structures on Q. To any
of these projective structures and an integer "order" a > 0 there corresponds an integral
metric. Up to equivalence of norm these spaces for a given a do not depend on the
projective structure and we get the usual Dzhrbashyan (or weighted Bergman) spaces
Aaa = Aa-2(Q).

In Section 3 we study the boundedness of the corresponding Hankel forms.
Section 4 is devoted to the 5p-theory, 1 ^p < °°.
In Section 5 we prove a decomposition theorem for the spaces Aa'2{Q). In this as

well as in the previous Section we largely follow the general scheme layed down in the
work of Rochberg (cf. [11], [12]).

With the aid of the latter we can then in Section 6 extend the results of Section 4 to
the case 0 < / ? < l . However, for technical reasons we require here the restriction
a + 2 > Up.

Finally, in the last Section we study the case when the order a is non-integer ( > - l ) .
Here our result are somewhat less complete.

Note that in order to keep the paper within reasonable size, we have been forced to
omit many technical details. Thus, some of our proofs are mere sketches.

1. Preliminaries on projective structures. Let us say a few words about projective
structures in general. Let Q be any Riemann surface. A projective structure on Q is given
by a covering of Q by open subsets denoted U,U',... together with corresponding
coordinate functions denoted £ , £ ' , . . . : in the overlap (/fi t / ' of any two of these
open subsets it is assumed that the corresponding coordinate functions £, £' are related

by a fractional linear transformation, i.e. £' = — with ad — be = 1.
CQ + a
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REMARK. For the reader's convenience we add here also a few informal words
concerning the language of holomorphic line bundles. We say that we have a holomorphic
line bundle § over our Riemann surface Q if there is given a covering of Q by open
subsets denoted Vi, V2,. . . and non-vanishing holomorphic functions gX2,. . . ("transition
functions") defined in the overlaps V, D V2,. . . ; it is required that gx2g23 = g ) 3 , . . . . In
other words, these data determine an element of the cohomology group / / ' ( Q , Cx),
where Cx is the sheaf of germs of non-vanishing holomorphic functions on Q. In
particular, it follows that any two holomorphic line bundles can be multiplied with each
other, which again amounts to multiplication of the respective transfer functions. The
fiber §z of § at a point z e Q consists of all collections of complex numbers xx,x2,...,
which are related by relations xx = gX2(z)x2,.... Thus a (holomorphic) section 5 of £ is
determined by a family of holomorphic functions sx,s2,..., defined in VX,V2,...
respectively, such that sx = gx2s2,... in the overlaps Vi D V2,. . . . As an example of a
holomorphic line bundle, we mention the canonical bundle K of Q. In this case, we can
take the covering Vi, V2,. . . to be coordinate neighborhoods zx,z2,...; if any two
coordinates zx and 22 are related by an equation zx = cp(z2) we take the corresponding
transfer function to be gX2=(p'. If we consider K2 then we have instead to take
812 = (<P')2> ar>d similarly for higher powers Km. Sections of Km are known as (differential)
forms of degree m. For more details concerning these matters see e.g. [2].

Continuing the main discussion, a general method of generating projective structures
is to give a second order differential operator on Q. Let it be given, in terms of a general

d2

local coordinate 2, by L = -p2- + q{z). If r]x and r\2 are any two independent null

solutions, then a projective coordinate is obtained by setting £ = — . We agree that

solutions of Lr\ = 0 transform like sections of the inverse of a spin bundle A over Q (a
square root of K, SO that K2 = A). If w is another local coordinate related to 2 by the
equation 2 = q>(w), then 6(w) = r){<p{w))(p'{w)~m is in the kernel of the operator L, =

—5 + <7i(w), where
dw

qx(w) = q(w)((p'(w))2 + {q>, w}
and

r 1 def 1 »/ \i/2 r 1/ \ "\n 11/ \ i /*> 1 1 * ..* \

{q>, w) = 5<p (H>) ~~j~[<P Kw) <P KW)\ (Schwarz derivative).

The operator L may be viewed as the second Bol operator. One can also introduce
Bol operators of higher order. The null solutions to the juth order Bol operator LM are, in
terms of the projective coordinate £, precisely 1, £, £2, . . . , f~\ and, in terms of 2, they
are f]2~

x, f?2~2f?i> • • • > Vi1- Now they may be viewed as sections of A1"*1. Thus the
operator reads

— respectively — + A2 ——r + . . . + A , ,
dc, dz dz

where A2,. . . ,A^ are certain "universal" polynomials in q and its derivatives [3]. It is
clear that Lx = d and L2 = L.
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From the above it is clear that the projective structures on a given Riemann surface
Q form an affine space over the vector space of quadratic differentials (sections of K2). ' If
we have two different second order Bol operators then their difference is a quadratic
differential. We obtain a vector space by selecting as base point the projective structure
which corresponds to the universal cover Q of Q.

EXAMPLE 1. Assume that Q is compact of genus g. Then this space is finite
dimensional. Denoting its (finite) dimension by d we have (in view of the Riemann-Roch
theorem)

fo ifg = O
\ ifg = l.

3 i fg>l

2. Projective structures on an annulus. Integral metrics. Let now Q be the annulus
Q = {z: 1< \z\ < R} in the complex plane C. It is natural to consider together with it the
universal cover Q of its Schottky double Q. This amounts to introducing a "uniformizing"
parameter u given by z = e~'u. We are interested in those projective structures on Q
which come from this universal cover. We know (Section 1) that a projective structure on
any Riemann surface is determined by its second Bol operator L2. In the case at hand we

d2

thus have L2 = —^ + q (q = constant). The corresponding null solutions are (unless q = 0)

77, = e^~*" and rj2 = e~v/=*". It follows that the corresponding uniformizing parameter is

EXAMPLE 2. The universal cover Q of Q itself corresponds to
f- _/jr/log R _ 'm log z/log R ^/jr(—/u)/log R finu/iog R

It follows that in this case

EXAMPLE 3. Consider the projective structure corresponding to the "circular"
realization of Q (=the given one). Then the Bol operator is, using z as a parameter,

L2 = -pz-or, passing to u, L2 = -j-2- + -:, that is, q = \.

EXAMPLE 4. The case q = 0 corresponds to the universal cover of the double.
The higher order Bol operators are, using the parameter u, given by

1 Strictly speaking, this formulation is not entirely correct. To render this statement correct we must
interpret the word "projective structure" in a stricter sense, a projective structure in the previous sense + a
choice of a spin bundle.
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REMARK 1. Occasionally, it is also convenient to use, besides /x (the degree), another
two parameters a = (i — 1 (the order) and v = ju + 1 (the weight). Thus, in terms of a,

(i = a + 1, v= a + 2

and, in terms of v,

a = v — 2, ju = v— 1.

The most natural parameter is perhaps the weight, because the weight is additive when

forming tensor products, (in Berezin's theory of quantization (see e.g. [1], [8]) the

inverse of the weight has the interpretation of "Planck's constant", that is, h =

- = . I The table below summarizes the two most important cases.
v a + 2 / F

TABLE

Szego

Bergman

order a-

- 1 *

0

degree \i

0

1

weight v

1

2

We can define an integral metric by requiring that

(/,£)/= f L?fc

Let us make this more precise, noting that the same definition makes sense also,
more generally, for multiply connected planar domains (not only for connectivity two).

First of all, / and g are viewed as (holomorphic) sections of A*1"1"1 (forms of degree

— — or "differentials") so that, in particular, F = L~lf is a section of A1"*1 (form of

1 — n \
degree —-— or "integral"!. Then the integral of Fg, that is, of

F(z)(dz)~("~l)/2). g(z)(dz)ifi+1)/2, being a form of degree 1, extended over any path c, is
well-defined. It depends, however, if n is odd, on orientation. Let z = cp(t) be any
parametrization of c. If fi is even (a odd) then the integrand is

'(t)\"/2

)

and if n is odd {a even)

<PV)dt

dz

In the case at hand we have to integrate over the boundary dQ which consists of two
circles r \ = {z: \z\ = 1}, TR = {z: \z\ = R}. If fi is odd they have to be taken with opposite
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orientation. To begin with, let us consider any concentric circle Fr = {\z\ = r} (r > 0) with
the parametrization z = q>(t) = re" (that is, u = — r + tlogr). Then (p'(t) = ire", cp'(t) =
—ire~" so we find the integrand Fge~mdt in both cases.

To proceed, we must give a meaning to L~\ We begin by discussing the kernel of
LM. We observe that

Ltt(e
imu)=Ull(m)eimu,

where we have put

f

This is a polynomial of degree fi = a + 1 in m satisfying the symmetry condition

This reflects the fact that LM intertwines with the actions of the automorphism group
Aut Q on "integrals". The latter group is generated by the following two types of
transformations:

1° rotations about the origin (z>-»ze'e), ...
2° inversion about the circle rys(z''-$7?/z).

REMARK 2. If we employ the parameter z instead of u we have the canonical basis
{z"}neZ. Then z"(dz)-("-1)/2 corresponds to e-'(»-(M-iV2)(£/M)-(»«-i)«)l-(i.-iy2 a n d
z"(dz)("+1)/2 corresponds to e-'(»+(i'+iy2)(rfu)(M+iy2l-(#.+iy2- I t f o U o w s t h a t

where now

*=o

The symmetry condition now reads

ZM(-/i) = ( - l ) % ( n + ar + 2). (1)

From this we can in particular read off that the kernel (we are only interested in
global solutions) is spanned by all functions zn+li such that ZM(n) =£0. If q < 0 (and below

we will concentrate on that case) we see that Z^(«) = 0 iff n = — = —. Then

u + 1
LM is well-defined except when n = :
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As /i is an integer, n — can occur only if ju is odd, that is, a is even. We now find

aa

= 6nM RN+»ei(n+>l)'Rne-in'Re-i>" dt + (-!)"[

ntl' r-T / \ TUX' ry / \

Z^) Z^)

As ZJn) is real for all n and positive for n > — we conclude from (1) that the
2

metric is positive definite. In particular,

\\zn\\l = (zn,zn)li>0.
Finally, we complete the definition by putting (if (i is odd (a- even))

where a\\ = a.(a-2) 4 .2.

Every function /can be uniquely written as / = / + + / _ + cz~(tl+m where /+ contains

only terms z" with n > — and /_ contains only terms z" with n < and c is a

constant. (Unless ju is odd (or even), the last term is absent.) Thus

Introduce (radial) measures M+ and ^{_ on Q+ = {0 < \z\ < R} and Q_ = {1< \z\ < 00}
respectively, with densities

w+(z) = C( - l )* r a s in a (2V^ logr - 2\[^q log«) - (if r < l)Crasin^V11

and

w_(z) = Cr" s i n ^ V 3 ? log r) - (if r > fl)(-l)arO°'sinar(2VZ<7 log r)

respectively. C is a constant which will be determined later (see (2)).

CLAIM, \\f\\l = J Q + 1/ + | 2 dM+ + JQ_ |/_|2 d^_ + |c|2.

EXAMPLE 5. If 2\f-q • log /? = JT then ,/^+ = ^ _ (both measures are concentrated on
Q and coincide) with the density

This is the only case when such a coincidence occurs. This, incidentally, disproves a
previous conjecture made by us [10]. In what follows, we will refer to this case as the
"weighted" case.
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Proof (of claim). It is sufficient to consider ||z"||^. The case n = is easy so

ju + 1 a + 2 v
consider e.g. the case n = = = — . We have

f \z\2ndM+ = C. (I r2". ra si

- ( - l ) " f r2" • r"sin"(2V^q logr)rdr). 2n.
Jo I

Consider the last integral first. We have

so we find

C.2n(-X 2 (-!)*(") f' r2(n+(a+2>/2)+'2VZ^(a-2^-
\2// =̂o \k/jQ r

« +

Now we invoke the following polynomial identity.

LEMMA.

/2V=^(or - 2A:)

-5[r-=i(-W!)Tr4
k=0

Our integral becomes

C.Jh
a + 2

or simply , if we fix the value of C by
z(n)

In the same way we determine the first integral as

(2)
n2n + a+2

Comparison with the previous formula for ||z"|| completes the proof in this case. The
i" + 1 .case n < — is similar.
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3. Boundedness of Hankel forms. Let us fix a projective structure on the annulus
£2 = QR = {z : 1< \z\ < R} and an integer fi. We can then consider Hankel forms of the
form

Tb{f,g) = (fg,b)ll. (3)

where fi' + 1 = 2(fi + 1) (or a' + 2 = 2(ar + 2) or again v' = 2v). The analytic function 6
is its symbol. We ask when Tfc is bounded on the Hilbert space Aa2(Q) equipped with the
metric || -Ĥ  (all these norms are equivalent irrespective of q <0). As we can write down
explicitly the reproducing kernel K(z, w) in Y4"'2(Q) and work out its weak factorization
(cf. [7] for details) a necessary condition is

z)). (4)

To prove the converse we will use the representation of the metric given in Section 2,
along with some simple facts about Besov space theory (see [9]).

Assume thus that (4) is fulfilled and le t / ,g eAa2(Q). We wish to prove that

(5)

where C depends on b, q, n, R. Set h —fg. Then by Section 2 (see the claim) we have
formally

!"(>(/, g) = b+h+ dM+ + 1 b_h_ dM^ + remainder,

where b = b+ + 6_, h = h+ + h__ and the "remainder" involves only the Taylor coefficients

with exponent —. Let cu(z) = rs in l - — ) = Euclidean dist(z, 3Q). Then (see [7])
2 \ log R I

K(z,z)

so that (4) is equivalent to

logR

1

Similarly by Schwarz's inequality,

(7)L
If we can prove that the functions b+ and 6_ are subject to the estimate (6) and, similarly,
that h+ and /i_ satisfy (7), clearly (5) will follow.

To this end we have also to invoke the quasi-Banach spaces Aa-p = Aa'p(Q)
(0<p =s oo, a> -1) , corresponding (if a + 2 > 2/p) to the quasi-norms

a \l>P
^\f{z)\p(O{z)(a+2^-2dxdy) ;

if a + 2 ^ 2/p we must use instead a derivative of / of sufficiently high order in the
definition of the corresponding quasi-norms. Clearly, by what has been said, the norms
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and Il/H,, (for ft or a fixed) are equivalent, so that this definition agrees with the
previous one if p = 2. Our basic observation is now that a holomorphic function defined
in Q belongs to Aap(Q) iff its distributional boundary values (traces) on the circles FR and

T, belong to the Besov spaces BP
P(TR) and BS

P
P(T^) respectively, where s = —

P
—-—. But the projections/>-*f+ and/>-»/_ are continuous in any Besov space Bs

p
q(rr).

This concludes our argument.
Altogether we have now established the following theorem.

THEOREM. The Hankel form Fb with symbol b, corresponding to some projective
structure on the annulus Q, is bounded on the Hilbertspace Aa2(Q) iff b(z) = O(K(z, z)),
where K(z, w) is the reproducing kernel in Aa2(Q).

This generalizes the main result in [7] (the "weighted" case 2\f—<?. log R = JI, see
Example 5 in Section 2).

REMARK 3. (Alternative approach) The boundedness of a Hankel form can also be
proved along the following lines. We observe that if we have any integral metric which is
rotation invariant, then the Hankel form Tb with symbol b formed with this metric
formally can be written

r*(/,g)= 2 N(n+m)S(n + m)f(n)g(m),

where N(n) = ||z"||2 depends only on the metric. Therefore the symbols of one and the
same Hankel form2 but corresponding to different projective structures differ from each
other only by a multiplier transform. Therefore, the question of boundedness of a Hankel
form corresponding to a given projective structure is, in principle, modulo a question of
the boundedness of an appropriate multipler transform in Besov space, reduced to the
"weighted" case.

4. Hankel forms in Sp, 1</?<<». The following theorem will be proved in this
section.

THEOREM. For l</><°°, Fb (considered as a form on Aa2(Q)) is in the Schatten
classes Sp iff b e Aa'"(Q), with a' + 2 = 2(a + 2).

First we consider the "weighted" case, i.e. lV-q. log /? = n. Then we have (up to a
constant)

Tb(f,g) = ^b(z)f(z)g(z)a>"(Z)dm(z)

with dm(z) = dx dy. As in [6] (see especially Appendix 1), it readily follows that

2 Remember that from the abstract point of view (cf. [6]) the characteristic property of a Hankel form is
that its value for given argument functions/and g depends only on the combination/, g.
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Indeed, in the case p = 1 we can use the same argument as in the Proposition on p. 132 of
[6], while the case p=°° is in Section 3 of the present paper. We note also that
reproducing kernel of A"'2 is given in [7], and we have

The remaining cases ( K p <°°) are done by interpolation. For this and the proof of the
converse we need the following auxiliary results.

LEMMA. Let L(z,w) denote the reproducing kernel of A"2. If s>—l, t>0, and
t(a' + 2)>s, then

As shown in [7], e-'(ar+2)("-°)/2L(e-'u,e"1") is an elliptic function with poles of order
a'+ 2 at the points of the lattice G = 2JI~Z + 2(\ogR)Z, so this lemma is an easy
consequence of [11, Lemma 2.5].

PROPOSITION. For p>\, consider the (Lebesgue) space La'p(Q) = {/:coa+2f e
L"(Q,(o~2dm)}. Then there exists a projection P:La'p(£l)-+Aa'p(Q) extending the
orthogonal projection of L" l2(Q) onto Aa >2(Q).

Proof. As shown in [6], the boundedness of the projection P

P:La'-"^Aa''p, Pf(z)=\ L(z,w)f(w)a)(w)a'dm(w),
Ja

is the consequence of the following estimate,

f |L(z, w)\ (o(w)adm(w) < Ca>(z)-(ar+2). (8)

In fact, for p = °°, we see that if / e L" °°(Q), then

|/y(z)| < | | / |k , , [ |L(z, HOI co{w)-^+2^(wr' dm(w) < C
Ja

So

The boundedness of P in the case p = 1 can be proved similarly. By interpolation, it is
true for 1 <p <°o. However, the inequality (8) follows then from the Lemma. This proves
the proposition.

COROLLARY. For p>\, - + - = 1 , we have (Aa'p)* =Aa'-q, with the pairing

{f,g)=\ f(z)g(z)(o(zr'dm(z).
Ja
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REMARK. Of course, this corollary could also have been proved using the theory of
Besov spaces (cf. Section 3).

It follows from [6] that

t r ( r 6 r* )= j I K2(z, T])b(rj)c(z)(o(z)a'o)(t])a'dm(z) dm(i])
Ja Ja

= I ($b)(z)c(z)a>(z)a dm(z),
Ja

where

(^6)(z) = K2(z, r\)b(j))oj(ji)a dm(r]).
Ja

By the Corollary, we see that our theorem will follow from the claim that

is invertible. The operator 3> is a convolution in the sense that

where-i-= E T ^ T T , M = ll^'lll, Ai= ||2'||2a.. So

which can then be expressed as

#~lf{z)= \ G(z,r,)f(r,)o)(r,rdm(r1),
Ja

M
with G(Z, I J ) = E T ^ Z " ^ " . By [6], the boundedness of $~x will follow from

I |G(z,r?)|(«(7?)-dm(»7)<C(y(z)-<a+2>. (9)
Ja

For n >0 , it is shown in [7, Theorem 2, Section 5] that

f[ (log R(2n + a + 2) + ix{a - 2k))

It is easy to see that
a+x
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We also see that if t, s > 0, then

k=a

= Cn'+S+1 + O(n'+S).
So

-2a+3 /M2a+2n2

As

we get

n>0.

Similarly, we can prove the same estimate for n < 0 (with the same constant C, but
this not essential for our proof below). Therefore

= Gi + G2,

Notice that Gx = ^C2(z,»/), so we have

For G2, we have
f OO I > " I I y.

= 2'+ 2",
« even n odd
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and

2'= i ^l^
M

f ^
2n Ja „=_„ M2n

nmax(7?4",l; n" *

, -(a+2)

=£ Cw(z)"(Qr+2).

Since Izl2""1"1 ^ C \z\2n, the second term S" can easily be seen to be dominated by the first
one. So eventually we get the estimate (2). This proves the Theorem in the "weighted
case".

In the general case, q < 0, we see that Tb = F'bl, where I" is the Hankel form in the
"weighted" case, and bx is a convolution of b. In fact;

where Nn, as before, is the norm of z" and N'n is the corresponding quantity in the
weighted case. Using the above technique, we can prove that b eAa'tP iff bt eAa<p. We
omit the details. So this proves the main theorem of this Section.

5. Decomposition theorems. Let d(%, rj) be the Poincare distance on Q. We
1 + R

decompose now Q in the following way: With Rm = —-— , let

QT = \z =

m = l , 2 , . . . ,j = l,2,... ,2m-I.

QJ' = {z = re"':R-(R-R1/2)2
m-1<R-(R1/2-R)2m+1,2m(j-l)2ji<e<2m(j+l)2jt},

m = - l , - 2 , . . . ,y = l , 2 , . . . ,2~m.

Let (of be the centers of Q.J1, and Df the corresponding "squares" with centers mf,
contained in Qf and disjointly decomposing Q. Then we see that it is a 1-lattice. We can
find an e-lattice similarly.

THEOREM. Let z</?<°° and £>0. Let {r/;} be the s-lattice described above.

Then for sufficiently small e, every function f eAa P(Q) can be represented as
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with ||/||V> = inf E |A,IP, where the infimum is taken over the all the families A, arising in
this way.

The proof of the theorem is essentially the same as that of Theorem 2.2 in [11].

Here we only prove the case <p < 1.

Let {rji} be the £-lattice, and D, and £2, be some enumerations of DJ™ and £2™,
respectively. Define the operators 5 and T by the following:

S :/ -> {o>(r/,)-(a+2)^ f(v)co(r,y dm(r,)}, f e Aa>*(Q),

T: {A,} -> 2 KLAz, r,da>(r}da+2, {AJ e /p.
i

Then, using Lemma 1 and subharmonicity, it is easy to prove that Tis bounded from
I" to Aa'-P, and that 5 is bounded from Aa''p to I". Now

(l-TS)f(z)=\ L(z,r,)f(r,)(o(r,r'dm(r,)-^ f /(»/)ai(r,)«' dm(r,)L(z, r?,)

= 2 f L(z,ij)f(ij)a>(i,)«'dm(!,)-2 f f(r,yL(z,Vi)dm(r,)

= S f /(f?)[L(z,i,)-L(z,»/,)]a)(r,)-'dw(i,).

Notice that <w(»?) = ft)(jj,) when rj e Q,, so, by subharmonicity, we have

^ 2 f <o(zy^-2dm(z)\( f(V)[L(z,r1)-L(z,T1i)]co(r,ydm(r))

< C 2 f ft>(2y(ar+2)"2dm(2)

x [ |/(r/)[L(z, i,) - L(z, m)Mri)a'+2\p <o{n)~2 dm(r,)

x f IL

As L(z,w) = L(e-iu,e-iv) = e*a+2Ku-*)/2e(u-v), where c is an elliptic function of
order a' + 2 with poles in the lattice G = 2JVZ + i2AZ, so using Lemma 1 we see that if
JJ e Q,>, then

f \L(z, 77) - L(z, rj,)|p co(zy"-a+2)-2 dm{z)
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Then, because {Q,} intersect at most finitely many times (the maximum number is
independent of e), we get

\f(r,)\pco(vYia+2)-2dm(r,)

< Ce" \ \f(V)\p c^<«+2>-2(i/) dm(r,)

If we choose e sufficient small, then we have ||1 — ST\\ < 1. So 5 is onto, which proves the
theorem.

6. Hankel forms in Sp, 0<p<l. With the help of the result in the last section,

we can give Sp -results for Hankel forms for <p < 1.

THEOREM. For -<p < 1, the Hankel form Tb on Aa'2(Q) is in Spiffbe Aa'-P.
OC *T" Zi

Proof. First we consider the "weighted" case, i.e. 2 V ^ l o g i ? = n. Then we have

Tb(f,g)= \ W)f{z)g{z)co{zY' dm{z)
Ja

with a' = 2a + 2. If b e Aa'-P, then, by Theorem 3,

withE|A,|p<oo. So

where fi(z) = K(z, »7,)«(^)(ar+2)/2- Then it follows that ||rfc||§ < E \kt\
p <oo.

P i

Now suppose, conversely, that r 6 e S p . Writing b = b+ + b_, we will prove that
b+, b_ €Aa'p(Q). The proof of 6_ eAa'p will be the same as that for b+. So we assume
6_ = 0. For any feAaa, /_ = 0, we can extend it naturally to an analytic function on
DR = {z:\z\<R}, and denote it also by / , which is in Aa-2(DR). Let Hb denote the
Hankel form on Aa'2(DR) with the weight a' + 2, i.e.

- ^ J dm(z).

Then direct calculation shows that

b\J ? o / t>\\J ? o / *

with

«=o ' " « n2
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From TbeSp, we see that Hbi e Sp, and then bx e Aa'p(DR) c Aa'p(Q) (see e.g. [5]). On
the other hand, as in Section 4 we have

-^)) dm(w),

_ _ _ _ • — ~i

Nn
 v ' " n n

same method as in Section 4 will give us

with G(z,w) = E Cn^-^-, and a (different) constant Cn = C + — + - § + • • • . The

Then

b = Cbl + Sbu Sb1(z) = j bx{w)Lx{z, w)(l-^-J dm(w).

I zw\~a'~2

As L] has lower singularity than that of 11 ^ I , it is not difficult to prove that

So we get beAa'p(DR)cAa'p(Q). This finishes the proof of the theorem.

In the general case q <0, as noted in Section 3, the reproducing kernel of A" >2 (with
respect to the integral metric) can also be decomposed similarly. Then the same method
as the above will work. So we have proved our theorem.

7. The case a non-integer. Hitherto we have assumed that the parameter a (or,
equivalently, ju or v) is an integer. Now we drop this assumption, assuming only that
a> - 1 . Then we must restrict ourselves to the "weighted" case, because we do not know
how to define the metric otherwise. Thus, from now on Aa-2{Q) denotes the space of all
analytic functions / defined over Q such that

11/111 = J
where z =x + iy, r = \z\.

To determine the reproducing kernel Ka{z,w) in Aa\Q) we must compute the
integral

log R

for n € Z.
We notice that

nW ) = ( - ) = ( - )
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Introduce the new variable of integration
£ _ g<(2« log r/log R) _ 2jii71og /?

so that

dt, _ 2ni dr

Then our integral can be written

"||2 _ 1°8^ f S-)ogR(n +

where we integrate over the unit circumference counterclockwise starting at the point

Consider, quite generally, the integral

f <^£

where a, /S are complex numbers with Re a> — 1, (1 — £)" is a branch of that function
defined in C cut along the interval (I,00) which takes real values on (—I,00), t,^ is a
branch defined in C cut along (0, °°) which has a real limit when £ approaches a point on

(0, °°) through values with positive imaginary part (i.e. lim £^ = %p whenever §>0J
lm £>0

and, finally, we integrate along any "contour" in C cut along (0, °°), connecting 1 with
itself, starting with values of £ with positive imaginary part and ending with values with
negative imaginary part (e.g. the unit circumference taken counterclockwise).

FACT. / = {e2"ip - l)B(/3, a + 1) where B is the Euler beta function.

NOTE. 7 = 0 if j8 = 1,2,3,

log R ( a + 2\ a
In our case we have /S = —— I n H—-— I - —. As, quite generally,

m \ 2 / 2

where F is the Euler gamma function, we obtain

2 V
2

In particular, it follows from Stirling's formula that

1
Hz" II*

na+1'
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For o- = 0 ,1 ,2 , . . . this agrees with what was done in [7]. As

we can now, in principle, write down a "closed" expression for the reproducing kernel.
From it one can read off that it has a singularity of the type (1 — zw>)~(ar+2), as expected.

The same method as in Section 4 will give the Sp-results for the Hankel forms,
Kp < w. Furthermore we have the following weak factorization.

THEOREM. There exist finitely many functions w, and u, such that

L(z, H>) = X UI(Z, w)Vi(z, w)
i

and

where uiw(z) = u,(z, w), viw(z) = u,(z, w).

We will prove the theorem by using the methods in Section 4.

Write L = L+ + L_, K = K+ + K_, with K+ = E ^ r r - , K- = E }L-r7L, and the

same for L. By Stirling's formula,

m \ 2 II ^ _a_J^ ,CXC

a + 2\(a \ogR I a + 2\ \
r\2+^r\n+~i~)+1)

where C, are constants. So we get

n n2

For n ^ 0 , as —£,-*0, for any /, we have for a positive m . s a y m s —-—.
R 2

n n2

Define M!(z,iv)= E 2n (ziv)". Then the same calculation as in Section 4 gives us
oR

n

,w) with r,(z,w)=2 Cn-^(zvv)n, |Cn|<C,
n=0 «
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and

f |u,(z, w)\2 (o(z)adm(z) < Ca)(w)-(a+2).

Writing u\{z, w) = £ —-=r— , we then have (see Section 4)
n = 0

where as before Nn = ||z"||^. So

n=0NnMn

with
1 -_2or-+-2

V
Define M 2 ( 2 , W ) = S - ^ ( Z I V ) " . Then essentially the same arguments will imply

with

Continuing this process, until the 5-th step, with s s , we get (with different «,)

and

L%\Z, W) = J C n ^ - ^ (2M>)", Cn = C

Let MS(Z, w) = ^(z, w), vs = l. Then we see that

2(2«+3-s)+l

n=0

Therefore

l«w||l=f \us(z,w)\2(o(zydm(z)

2 =2' + 2".
n odd n even
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On the other hand

'^C2 ^ \z\2"a>{zydm{w)
n=0 « ->a

and the same holds for £" (see Section 4). So we have

\\u II2 < Ca>(w>)~(a+2)

Similarly, we can work out the weak factorization for L_. Then we have proved the
theorem.

The Sp-results for Hankel forms then follows immediately, more or less as we have
done before.

THEOREM. Forl<p<°°, the Hankel form Fb is in Sp iff b e Aa'-P(Q).
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