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The role of gravity

The view of physics that is most generally accepted at the moment is
that one can divide the discussion of the universe into two parts. First,
there is the question of the local laws satisfied by the various physical
fields. These are usually expressed in the form of differential equations.
Secondly, there is the problem of the boundary conditions for these
equations, and the global nature of their solutions. This involves
thinking about the edge of space-time in some sense. These two parts
may not be independent. Indeed it has been held that the local laws
are determined by the large scale structure of the universe. This view
is generally connected with the name of Mach, and has more recently
been developed by Dirac (1938), Sciama (1953), Dicke (1964), Hoyle
and Narlikar (1964), and others. We shall adopt a less ambitious
approach: we shall take the local physical laws that have been experi-
mentally determined, and shall see what these laws imply about the
large scale structure of the universe.

There is of course a large extrapolation in the assumption that the
physical laws one determines in the laboratory should apply at other
points of space-time where conditions may be very different. If they
failed to hold we should take the view that there was some other
physical field which entered into the local physical laws but whose
existence had not yet been detected in our experiments, because it
varies very little over a region such as the solar system. In fact most of
our results will be independent of the detailed nature of the physical
laws, but will merely involve certain general properties such as the
description of space-time by a pseudo-Riemannian geometry and the
positive definiteness of^nergy density.

The fundamental interactions at present known to physics can be
divided into four classes: the strong and weak nuclear interactions,
electromagnetism, and gravity. Of these, gravity is by far the weakest
(the ratio Gm2/e2 of the gravitational to electric force between two
electrons is about 10~40). Nevertheless it plays the dominant role in
shaping the large scale structure of the universe. This is because the
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2 THE ROLE OF GRAVITY

strong and weak interactions have a very short range (~ 10~13 cm or
less), and although electromagnetism is a long range interaction, the
repulsion of like charges is very nearly balanced, for bodies of macro-
scopic dimensions, by the attraction of opposite charges. Gravity on
the other hand appears to be always attractive. Thus the gravitational
fields of all the particles in a body add up to produce a field which, for
sufficiently large bodies, dominates over all other forces.

Not only is gravity the dominant force on a large scale, but it is a
force which affects every particle in the same way. This universality
was first recognized by Galileo, who found that any two bodies fell
with the same velocity. This has been verified to very high precision
in more recent experiments by Eotvos, and by Dicke and his collabo-
rators (Dicke (1964)). It has also been observed that light is deflected
by gravitational fields. Since it is thought that no signals can travel
faster than light, this means that gravity determines the causal
structure of the universe, i.e. it determines which events of space-time
can be causally related to each other.

These properties of gravity lead to severe problems, for if a suffi-
ciently large amount of matter were concentrated in some region, it
could deflect light going out from the region so much that it was in fact
dragged back inwards. This was recognized in 1798 by Laplace, who
pointed out that a body of about the same density as the sun but
250 times its radius would exert such a strong gravitational field that
no light could escape from its surface. That this should have been
predicted so early is so striking that we give a translation of Laplace's
essay in an appendix.

One can express the dragging back of light by a massive body more
precisely using Penrose's idea of a closed trapped surface. Consider
a sphere y surrounding the body. At some instant let &" emit a flash
of light. At some later time t, the ingoing and outgoing wave fronts
from y will form spheres ^ and ^"2 respectively. In a normal situa-
tion, the area of ^ will be less than that of^ (because it represents
ingoing light) and the area of «̂ > will be greater than that of 3~
(because it represents outgoing light; see figure 1). However if a suffi-
ciently large amount of matter is enclosed within ^", the areas of 3"x

and «̂ "2 will both be less than that of J^. The surfaced is then said to
be a closed trapped surface. As t increases, the area of ^2 will get
smaller and smaller provided that gravity remains attractive, i.e. pro-
vided that the energy density of the matter does not become negative.
Since the matter inside &~ cannot travel faster than light, it will be
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THE ROLE OF GRAVITY 3

trapped within a region whose boundary decreases to zero within a
finite time. This suggests that something goes badly wrong. We shall
in fact show that in such a situation a space-time singularity must
occur, if certain reasonable conditions hold.

One can think of a singularity as a place where our present laws of
physics break down. Alternatively, one can think of it as representing
part of the edge of space-time, but a part which is at a finite distance
instead of at infinity. On this view, singularities are not so bad, but one
still has the problem of the boundary conditions. In other words, one
does not know what will come out of the singularity.

FIGURE 1. At some instant, the sphere y emits a flash of light. At a later time,
the light from a point p forms a sphere £f around p, and the envelopes 3~x and
Ĵ ~2 form the ingoing and outgoing wavefronts respectively. If the areas of both

~2
 a r e less than the area of <̂ ~, then 3T is a closed trapped surface.

There are two situations in which we expect there to be a sufficient
concentration of matter to cause a closed trapped surface. The first is
in the gravitational collapse of stars of more than twice the mass of
the sun, which is predicted to occur when they have exhausted their
nuclear fuel. In this situation, we expect the star to collapse to a singu-
larity which is not visible to outside observers. The second situation is
that of the whole universe itself. Recent observations of the microwave
background indicate that the universe contains enough matter to
cause a time-reversed closed trapped surface. This implies the exist-
ence of a singularity in the past, at the beginning of the present epoch
of expansion of the universe. This singularity is in principle visible to
us. It might be interpreted as the beginning of the universe.
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4 THE ROLE OF GRAVITY

In this book we shall study the large scale structure of space-time
on the basis of Einstein's General Theory of Relativity. The predic-
tions of this theory are in agreement with all the experiments so far
performed. However our treatment will be sufficiently general to cover
modifications of Einstein's theory such as the Brans-Dicke theory.

While we expect that most of our readers will have some acquain-
tance with General Relativity, we have endeavoured to write this
book so that it is self-contained apart from requiring a knowledge of
simple calculus, algebra and point set topology. We have therefore
devoted chapter 2 to differential geometry. Our treatment is reason-
ably modern in that we have formulated our definitions in a manifestly
coordinate independent manner. However for computational con-
venience we do use indices at times, and we have for the most part
avoided the use of fibre bundles. The reader with some knowledge of
differential geometry may wish to skip this chapter.

In chapter 3 a formulation of the General Theory of Relativity is
given in terms of three postulates about a mathematical model for
space-time. This model is a manifold Jl with a metric g of Lorentz
signature. The physical significance of the metric is given by the first
two postulates: those of local causality and of local conservation of
energy-momentum. These postulates are common to both the General
and the Special Theories of Relativity, and so are supported by the
experimental evidence for the latter theory. The third postulate, the
field equations for the metric g, is less well experimentally established.
However most of our results will depend only on the property of the
field equations that gravity is attractive for positive matter densities.
This property is common to General Relativity and some modifications
such as the Brans-Dicke theory.

In chapter 4, we discuss the significance of curvature by considering
its effects on families of timelike and null geodesies. These represent
the paths of small particles and of light rays respectively. The curva-
ture can be interpreted as a differential or tidal force which induces
relative accelerations between neighbouring geodesies. If the energy-
momentum tensor satisfies certain positive definite conditions, this
differential force always has a net converging effect on non-rotating
families of geodesies. One can show by use of Raychaudhuri's equation
(4.26) that this then leads to focal or conjugate points where neigh-
bouring geodesies intersect.

To see the significance of these focal points, consider a one-dimen-
sional surfaced in two-dimensional Euclidean space (figure 2).
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be a point not o n ^ . Then there will be some curve from^ to p which
is shorter than, or as short as, any other curve from S? to p. Clearly
this curve will be a geodesic, i.e. a straight line, and will intersects
orthogonally. In the situation shown in figure 2, there are in fact three
geodesies orthogonal t o S which pass through p. The geodesic through
the point r is clearly not the shortest curve from Sf to p. One way of
recognizing this (Milnor (1963)) is to notice that the neighbouring

FIGURE 2. The line pr cannot be the shortest line from p to S?t because there is
a focal point q between p and r. In fact either px or py will be the shortest line
from p to SP.

geodesies orthogonal to £P through u and v intersect the geodesic
through r at a focal point q betweenSP and^p. Then joining the segment
uq to the segment qp, one could obtain a curve from £P to p which had
the same length as a straight line rp. However as uqp is not a straight
line, one could round off the corner at q to obtain a curve from Sf to p
which was shorter than rp. This shows that rp is not the shortest curve
fromS to p. In fact the shortest curve will be either xp or yp.

One can carry these ideas over to the four-dimensional space-time
manifold JK with the Lorentz metric g. Instead of straight lines, one
considers geodesies, and instead of considering the shortest curve one
considers the longest timelike curve between a point p and a spaeelike
surface Sf (because of the Lorentz signature of the metric, there will
be no shortest timelike curve but there may be a longest such curve).
This longest curve must be a geodesic which intersects^ orthogonally,
and there can be no focal point of geodesies orthogonal to SP between
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Sf and p. Similar results can be proved for null geodesies. These results
are used in chapter 8 to establish the existence of singularities under
certain conditions.

In chapter 5 we describe a number of exact solutions of Einstein's
equations. These solutions are not realistic in that they all possess
exact symmetries. However they provide useful examples for the suc-
ceeding chapters and illustrate various possible behaviours. In
particular, the highly symmetrical cosmological models nearly all
possess space-time singularities. For a long time it was thought that
these singularities might be simply a result of the high degree of
symmetry, and would not be present in more realistic models. It will
be one of our main objects to show that this is not the case.

In chapter 6 we study the causal structure of space-time. In Special
Relativity, the events that a given event can be causally affected by,
or can causally affect, are the interiors of the past and future light
cones respectively (see figure 3). However in General Relativity the
metric g which determines the light cones will in general vary from
point to point, and the topology of the space-time manifold J( need
not be that of Euclidean space i24. This allows many more possibilities.
For instance one can identify corresponding points on the surfaces
Sfx and Sf^ in figure 3, to produce a space-time with topology B^xS1.
This would contain closed timelike curves. The existence of such a
curve would lead to causality breakdowns in that one could travel into
one's past. We shall mostly consider only space-times which do not
permit such causality violations. In such a space-time, given any
spacelike surface S?, there is a maximal region of space-time (called
the Cauchy development of Sf) which can be predicted from knowledge
of data o n ^ . A Cauchy development has a property ('Global hyper-
bolicity') which implies that if two points in it can be joined by a time-
like curve, then there exists a longest such curve between the points.
This curve will be a geodesic.

The causal structure of space-time can be used to define a boundary
or edge to space-time. This boundary represents both infinity and the
part of the edge of space-time which is at a finite distance, i.e. the
singular points.

In chapter 7 we discuss the Cauchy problem for General Relativity.
We show that initial data on a spacelike surface determines a unique
solution on the Cauchy development of the surface, and that in a
certain sense this solution depends continuously on the initial data.
This chapter is included for completeness and because it uses a number
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FIGURE 3. In Special Relativity, the light cone of an event p is the set of all
light rays through p. The past of p is the interior of the past light cone, and the
future of p is the interior of the future light cone.

of results of the previous chapter. However it is not necessary to read
it in order to understand the following chapters.

In chapter 8 we discuss the definition of space-time singularities.
This presents certain difficulties because one cannot regard the singular
points as being part of the space-time manifold dt.

We then prove four theorems which establish the occurrence of
space-time singularities under certain conditions. These conditions
fall into three categories. First, there is the requirement that gravity
shall be attractive. This can be expressed as an inequality on the
energy-momentum tensor. Secondly, there is the requirement that
there is enough matter present in some region to prevent anything
escaping from that region. This will occur if there is a closed trapped
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surface, or if the whole universe is itself spatially closed. The third
requirement is that there should be no causality violations. However
this requirement is not necessary in one of the theorems. The basic
idea of the proofs is to use the results of chapter 6 to prove there must
be longest timelike curves between certain pairs of points. One then
shows that if there were no singularities, there would be focal points
which would imply that there were no longest curves between the pairs
of points.

We next describe a procedure suggested by Schmidt for constructing
a boundary to space-time which represents the singular points of
space-time. This boundary may be different from that part of the
causal boundary (defined in chapter 6) which represents singularities.

In chapter 9, we show that the second condition of theorem 2 of
chapter 8 should be satisfied near stars of more than 1 \ times the solar
mass in the final stages of their evolution. The singularities which occur
are probably hidden behind an event horizon, and so are not visible
from outside. To an external observer, there appears to be a 'black
hole' where the star once was. We discuss the properties of such black
holes, and show that they probably settle down finally to one of the
Kerr family of solutions. Assuming this to be the case, one can place
certain upper bounds on the amount of energy which can be extracted
from black holes. In chapter 10 we show that the second conditions of
theorems 2 and 3 of chapter 8 should be satisfied, in a time-reversed
sense, in the whole universe. In this case, the singularities are in our
past and constitute a beginning for all or part of the observed universe.

The essential part of the introductory material is that in § 3.1, § 3.2
and § 3.4. A reader wishing to understand the theorems predicting the
existence of singularities in the universe need read further only chap-
ter 4, § 6.2-§ 6.7, and §8.1 and § 8.2. The application of these theorems
to collapsing stars follows in §9.1 (which uses the results of appen-
dix B); the application to the universe as a whole is given in § 10.1, and
relies on an understanding of the Robertson-Walker universe models
(§5.3). Our discussion of the nature of the singularities is contained
in § 8.1, § 8.3-§ 8.5, and § 10.2; the example of Taub-NUT space (§ 5.8)
plays an important part in this discussion, and the Bianchi I universe
model (§ 5.4) is also of some interest.

A reader wishing to follow our discussion of black holes need read
only chapter 4, § 6.2-§ 6.6, § 6.9, and § 9.1, § 9.2 and § 9.3. This discus-
sion relies on an understanding of the Schwarzschild solution (§5.5)
and of the Kerr solution (§5.6).
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Finally a reader whose main interest is in the time evolution
properties of Einstein's equations need read only § 6.2—§ 6.6 and
chapter 7. He will find interesting examples given in §5.1, §5.2 and
§5.5.

We have endeavoured to make the index a useful guide to all the
definitions introduced, and the relations between them.
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