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ON SOME FRACTIONAL INTEGRALS AND
THEIR APPLICATIONS

by J. S. LOWNDES
(Received 4th May 1984)

1. The symmetric operators

In previous papers [3, 4] the author has discussed the symmetric generalised Erdélyi—
Kober operators of fractional integration defined by

3,0, ) F(x) =224 "2~ 2‘“*"’]‘ w2 — ) VRy QS —uR)}Fu)du, (1)
0

R).('l’ cx)F(x) =21 —axl'lT ul~ 2(a+'l)(u2 _x2)(a - 1)/2Ja__ L {A\/(uz - x2)}F(u) du, (2)

where & >0, 120 and the operators J;,(#,«) and &;,(n, «) defined as in equations (1) and
(2) respectively but with J,_, the Bessel function of the first kind replaced by I,_,, the
modified Bessel function of the first kind.

In this paper we introduce two new operators of fractional integration and discuss
some of their properties together with a number of their applications.

2. The unsymmetric operators

In the definitions (1) and (2) A20 is a constant. If we now set A=kx, k=0 we find,
after a simple change of variables, that they become the unsymmetric operators defined
by

X—Uu

Ik(n,a>f(x)=2“-‘k"“x““*'”fu"[ ](d_mlaql{k\/(xz—xu)}f(u)du, 3)
0

X

u—Xx

Ko 109 =2~ e 22 [T e, o

where a>0 and the operators I,,(n,a) and K;,(n,o) defined by equations (3) and (4)
respectively with J,_ replaced by I,_,.
When k=0 the above operators reduce to the familiar Erdélyi—-Kober operators of
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fractional integration given by

Io(n, o) f(x)=1%2f(x) =x"C*P2x" f(x), (5)
Ko(n,0) f(x) =K% *f(x) =x"Kix ™ f(x), (6)

where
I f(x) =ﬁ:\;(x—-u)“‘l fw)dy, «>0, 7
K‘;f(x)—f_—(—)_[(u—x)“ f(wdu, a>0. (8)

From the definitions (3) to (8) it can easily be shown that the unsymmetric operators
have the following properties,

1(n,0)x°f(x) = x° (1 + 0,0) f (), )
K, (n,0)x"f (x) = x’K (1 — g, @) f(x), (10)
L(n, )7 PP f(x)=1,(n—B,a+ B) f(x), (11)
K, (n, ) K12 f(x)=K,(n, 0+ B) f (%), (12)

where a, >0 and p=k or p=ik, k=0.
In this paper we shall confine our attention to the operators I,(n,a) and postpone a
consideration of the operators K (1, a) until a later date.

3. The operators I(y,x), x>0

We shall now show that there is a useful connection between the operators I,(n,a)
and the differential operator M{? defined by

M{;":x”("—“Dx”“ 1D=x2D?+x(y+1)D, (13)
h
where D d
Tdx

Theorem 1. If a>0, feC?0,b), b>0, x"*"D"f(x), m=0,1,2 are integrable at the
origin and x"*'f(x)—0 as x—»0+; then

p(n: a)MZ(a+q)f(x) = [M(;:z)z +n) +(px)2]1p('7’ oz)f(x), x> 0’ (14)

where p=k or p=ik, k=0.
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Proof. We set

H(x)=I(n,0) f (x) =2°" (k)" ”“i (1= DRI, _ (&) f(xt) dt, (15)
0

where >0 and £=kx\/(1 —1).
Since H(x) is differentiable we have

H'(x)= —2*~ k(kx)* -af £1(1 —£)*/2 (&) f(xt) dt
0

£ M)t o L — ) 2, (8 f () e (16)

An application of the operator x "~ DDx"*! to both sides of the above equation yields
the expression

MPH(x)=1(n, ) M f(x)

+2°7 (kx)? ‘“i (1~ )*2[8J 4 1(E) — (n +2)T L)1 f (xt) dt

0

—2“x(kx)2’“i 1L =) J (&) f'(xt) dt. 17

0

Integrating the last integral by parts and noting that by assumption the integrated part
vanishes, we find, after some manipulation, that equation (17) can be brought to the
form

M H(x) + (kx)2H(x) = 1,(n, ) M{? f(x)

+277 Y kx)?2 "2+ n)i t"(1—)*2J (&) f (xt) dt. (18)
0
Finally, on using equation (16), we have
M H(x) + x(20+ 1) H'(x) + (kx)> H(x) = L(n, ) LM £ (x) + %20t + 1) £ ()], (19)

which is the required result.
Similarly we can prove the theorem when p=ik.
4. Applications

(a) As a first example we consider the generalised biaxially symmetric potential
equation (GBSPE)

o*u 0*u 200u 2B ou

ou ou 2u0u 2pou_ 20
Tttty " “F0 (20)
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and confine our attention to solutions u(x,y)e C? in some neighbourhood of the origin
that are even in x and y. In this case we must have u,(0, y)=u,(x,0)=0.
Expressed in polar coordinates x=rcosf,y=rsinf, with u=u(r,6), the above
equation is
d%u du
M‘z'(’a+ﬂ)u+5§2—+2(ﬂcotO—atanB)%=0, (02))

where

d?
M(’)—T 5—2+r(y+1)-—

On separating the variables we find that a complete set of solutions of equation (21)
that are analytic in a neighbourhood of the origin is given by

u,(r,0) =a,r2n P8~ 12.a=Ud(cos 20), n=0,1,2,..., 22)

where the P Y(&) are the Jacobi polynomials [S] and the g, are constants.
In order to obtain a complete set of solutions of the corresponding generalised
biaxially symmetric Helmholtz equation (GBSHE)

v v 2adv 2B v

ﬁ_'-ﬁ-i-x x 1y 6y+kzv—0 k=0, (23)

we can use the result of Theorem 1 in the following way.
Applying the operator I,(f,a) to equations (21) and (22) we find that a complete set
of solutions of the GBSHE

2

d“v
MG g+ —=5+2(Bcotf— atanB) +(kr)zv 0, 24

06*
that are analytic about the origin, is given by
vu(r, 0) = I (B, WJuy(r, 0) = a, P ~ 112 2= 12(cos 20) I, (B, or?" (25)

On using the definition (3) we have that

1
LB, a)r®" =20~ 1p2n(kp)t ~f (P +20(1 — )= VR2] Lk /(1 —1)}dt
0
/2
=2%2"(kr)' = [ J,_ ((krsin ¢)sin® ¢(cos ¢p)*"+2£*1 d¢g
(4]

2 2n+a+p
= (E) L2n+B+1)r72 70 54 04 glkr), (26)

where the integral has been evaluated by using a result in [5].
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In this way we find that the required set of solutions of the GBSHE is
v,(r, 0)=A,r " Py s k) PE 1227 (c0s26), n=0,1,2,..., 27
where the A4, are constants and this agrees with the result found in [1].

(b) We next turn our attention to the generalised axially symmetric potential equation
in (n+ 1)-variables (GASPEN)

" 3*u d*u s ou
27 —1. 28
Laataptys,=0 > (28)

Introducing the zonal coordinates

n 1/2 n
x;=r0;,i=12,...,m p=r|:l—z 0,2] ; rP=pi+ Y X, (29)
we see that the GASPEN becomes [1]

ou n du
(r) 2 _ e il _ =
M u+n(s— 1)u+lz1 70, {60,— 0, [kzl 0, 60k+(s l)u]} 0, (30)

where u=u(r;6) and 0=(0,,0,,...,6,).
By separating the variables it can be shown that the family of functions

up(r; 0) = by V3(0), (31)

where the b,, are constants, form a complete system of solutions of the GASPEN which
is analytic about r=0.
The V{(6) are polynomial functions uniquely determined by their generating function

[1—2(a, 6) + [ja2/21 =" f My(0), (32)
where
(a,6)= i a8, lalf =(a, @), a¥ = [ ] "
= i=1
M=(m1,m2’“ Z Z Z o Z 4
M=0 m =0m,=0 m =0
and
=|M|=m;+my+ - +m,. (33)

Applying the operator I,(—4,4n+13s) to equations (30) and (31) and using Theorem 1
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we find that the solutions of the generalised axially symmetric Helmholtz equation in
(n+ 1)-variables (GASHEN)

" G2w w58
‘_;a—;ﬁa—;%%wzw:o, k20, s>—1, (34)

which are analytic in a neighbourhood of r=0, are of the form
wa(r; 0) = by Vi (0) I —3,3n +3s)r*
=BMVS&)(9)"-("+S_U/2J;1+ 1/2(n +s—1)(kr)’ (35)

where the B, are constants.

5. The operators I(,a),a<0

To obtain expressions for the operators I ,(1,«) when o is zero or negative, we write

117001 (x) = glx), f(x)=1I% ~Pg(x), (36)
in equation (11) to find that it becomes
I(n,a)g(x)=1,(n —B, a+ B)I% ~Pg(x)
=Ip(’7 _ﬁ1 a+ﬂ)xﬂ_"1x—ﬂx”g(x)
=x?""1(0,a+B)I; Px"g(x), (37
where we have used the results (5) and (9).
The right hand side of equation (37) is defined when « + f§>0. Therefore taking f=m,
the positive integer for which 0<a+m <1, when «a<0 and noting that I ™=D", we
deduce that when a <0 the operators are defined by

1, (n, 0)g(x) =x™""I ,(0, a + m)D™ x"g(x). (38)

In_particular, when «=0, m=1, Dx"f(x) is integrable at the origin and x"f(x)—0 as
x—0, we have the zero-order operators

L(n,0)f(x) = x' ~"[,(0, 1) Dx"f(x)
= x"’? Jo{k\/(x2 —xu)}Du"f (u) du
0

kxlU2-1x

)= g il w39
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and
L1, 01 (9 =x "] Tofk/(x? = xu)} Duf u) di (40)

Using the Laplace transform we can establish, for suitable functions f, the following
expressions for the inverse operators of zero-order.

J %

17,00 () =x' g fur™ Hofky/(ux —uh)} () du, (41)
Jd x

1,00 /() =x" "= T ™ ofky/(ux — )} £ ) dua (42)

When =0 the operators defined by equations (39) and (41) are identical with those
introduced by Vekua [6, p. 59].

The following theorem can be proved in a fairly straightforward way.

Theorem 2. If feC?*0,b), b>0, x"*™ " 'D™f(x), m=0,1,2, are integrable at the origin
and x"*"D"f(x)—>0 as x—>0+; then

1,(m, 0)MS;) f(x) =[MS}) +(px)*1 (1,0} f(x), x>0, (43)

where p=k or p=ik, k=0.

6. Applications
(a) The generalised axially symmetric potential equation (GASPE)

u  *u 200u

ax2+57+75;—0, >0, (44)

when expressed in the polar coordinates x=rcos @, y=rsin 8 becomes

2

0%u du
) —=0. 45
Muu+602+2acot060 0 (45)

It is well known that a complete set of solutions of this equation that are analytic in
a neighbourhood of the origin is

u,(r,0)=a,r"Ci(cos8), n=0,1,2,..., (46)

where the a, are constants and C%(cos 6) the Gegenbauer polynomials [5].
Applying the operator I,(a,0) to equations (45) and (46) and using Theorem 2, we
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find that the corresponding set of solutions of the generalised axially symmetric

Helmholtz equation (GASHE)

azv 0%v 2udv

+k%v=0, k=
6y+ 6y v= 0,

which are analytic about the origin is given by

v,(r, 6) = a,C%(cos ), O)r"
=a,(o.+n)C%(cos 0)r‘°‘3' Jo{k\/(rZ —ru)hut L dy
0

=A,Cicos Nr™J, . Jfkr), n=0,1,2,...,

where the A, are constants.

(47)

(48)

(b) As a final example we show that the operators can be used to obtain a formal
derivation of the inversion formula for the Kontorovich-Lebedev transform of the

function f(x), 0 = x < oo, which is defined by
F(s)= | K(kx)x"'f(x)dx, Re(s)<0, k=0,
[

where K (kx) is the modified Bessel function of the second kind.
Multiplying both sides of the above equation by

2[r(—s)]‘l<%)_s, 20

and applying the Mellin inversion formula we get
1 cti 2F(s) (kt\™* 1o cHiom g s
Znic—J;'eor(—S) (2) S 27’[i£x f(X) Xc -[001“(1 ) s( )< ) S

t 02 _, etio 3 ke\™*
=2 5s f(x)dxc jiwl"(l—s) K (kx) <7> ds.

Making use of the result

1' c+iom 2

]

27 o T(1— )
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(50)

(51)
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where H(x) is the Heaviside unit function, we find that equation (50) can be written as

1340, O)f(t)——c j'm (%)ﬂ ds, (52)

C lq)

where 1;,%(0,0) is the inverse operator defined by equation (42) when =0.
Applying the operator I;(0,0), defined by equation (40), to both sides of the above
equation we get

ct+ioo

6 =5m | s FOL, 0)( ) ds. (53)

Finally, on using the result

1;,(0,0) <k7x>" =I(1—s)_((kx), Re(s)<0,

we see that an inversion formula for the integral transform (49) is given by

f(x)= +§ " SF(s)_(kx)ds, Re(s)<0 (54)

C 1o

and this agrees with a result given in [2].
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