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Abstract

We consider families of general two-point quadrature formulae, using the extension of
Montgomery’s identity via Taylor’s formula. The formulae obtained are used to present
anumber of inequalities for functions whose derivatives are from L, spaces and Bullen-
type inequalities.
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1. Introduction

Let f : [a, b] — R be differentiable on [a, b], and f’: [a, b] — R integrable on [a, b].
Then the Montgomery identity

b b
f(x):ﬁf f(t)dt—i—/ P(x,t)f'(t)dt (1.1

holds [9], where P (x, t) is the Peano kernel defined as

P(x, 1) =
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Suppose w : [a, b] — [0, co) is a probability density function, that is, an integrable
function satisfying fab w#)dt=1, and W(t) = fa[ w(x)dx for tela,b], the
corresponding cumulative distribution function, W(¢) =0 for t < a and W (¢) =1 for
t > b. The identity

b b
f(x)=/ w(t) f(1) dt—}—/ Py(x, t) f(¢) dt (1.2)

(given by Pecari¢ in [10]) is the weighted generalization of the Montgomery identity,
where the weighted Peano kernel is

W), a<t<ux,

Pux, 1) = {W(t)— I, x<t<b.

In a recent paper [1] the following extension of the Montgomery identity via
Taylor’s formula has been proved:

b n=2 (i+1) b
_ S (x)
f(x)—/a w(t)f(f)df—z(i+—l)! ;

i=0

w(s)(s — x)i+1 ds

1

b
—_— ()
HRCESN /a Ty (x, s)f7(s) ds. (1.3)

Here f:1 — R is such that £~ is absolutely continuous for some n >2, I CR
an open interval,a, b€ I, a < b, x € [a, b], w : [a, b] — [0, co) a probability density
function and

S
f w(u)(u—s)”_l du, a<s<x,
Tw,n(xv §) = ¢ b
—/ ww)w — )"V du, x<s<b.
S
If we take w(¢) =1/(b — a), t € [a, b], the equality (1.3) reduces to

b— x)i+2 _ (a _ x)H—Z

1 b n—2 ) (
fe)=— / f@yde =" i)
—4aJa i=0

@+2b—a)
b
(n)
+(’1—1)!/a T,(x,s)f"(s)ds, (1.4)
where x € [a, b] and
1 (a—s5)", a<s<x,
T,(x. s) = nb —a)
— b—-s5)", x<s<b
nb —a)

https://doi.org/10.1017/51446181109000315 Published online by Cambridge University Press


https://doi.org/10.1017/S1446181109000315

[3] Sharp integral inequalities based on two-point formulae 69

Forn =1 (1.4) reduces to Montgomery’s identity (1.1) since Ty, 1 (x, §) = Py (x, 1).
In this paper we study for x €[a, (a + b)/2] the general weighted two-point
quadrature formula

b 1
/ w(t) f(1) dt=§[f(x)+f(a+b—x)]+E(f, w; X) (1.5)

with E (f, w; x) being the remainder. In the special case, for w(t) =1/(b — a),
t € [a, b], (1.5) reduces to the family of two-point quadrature formulae considered
by Guessab and Schmeisser in [5], where they established sharp estimates for the
remainder under various regularity conditions.

The aim of this paper is to establish the general two-point formula (1.5) using the
identities (1.3) and (1.4) and to give various error estimates for the quadrature rules
based on such generalizations. We prove a number of inequalities which give error
estimates for the general two-point formula for functions whose derivatives belong
to L ,-spaces. These inequalities are generally sharp (in the case p =1, the best
possible). Also, we give some examples of the general two-point formula for well-
known weight functions.

We recall that for a convex function f on [a, b] C R, a # b, the double inequality

b
f<a+b>§ ia/ f(t)dtif(a);rf(b)

2

is known in the literature as Hadamard’s inequalities for convex functions. Inequalities

fla)+ f(b) 1 b 1 b a+b
2 _b—(l‘/.u f(t)dtz—b—a/a f(t)dt_f<T>20’ (1.6)

for any convex function f defined on [a, b], were first proved by Bullen in [2]. His
results were generalized for (2n)-convex functions (n € N) in [4].

In the last section we use the obtained results to prove a generalization of Bullen-
type inequalities for (2rn)-convex functions (n > 1).

2. General weighted two-point formula and related inequalities

Let f:[a, b] > R be such that f(”_l) exists on [a, b] for some n>2. We
introduce the following notation for each x € [a, (a + b)/2]:

1
D(x)zi[f(x)—l—f(a—i-b—x)],
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1[2=2 fGtD(yy b .
t [ S M7 _ i+1 d
w,n (X) > |:i:0 S w(s)(s —x) s
n=2 (i+1) b
Fu+ (a+b—x)/ 1
+ - w(s)(s—a—b+x)""ds
; G+ D) g
and
?w,n(xs s)
1
=—3 [Twn(x,s)+ Tyal@a+b—x,s)]
S
—/ w)(u — )"~ du, a<s<x,
a
_ 1 K b
- —3 [/ ww) W —s)"" " du — / ww) W —s)" ! du} , x<s<a+b-—ux,
a S
fsb ww)(u — $)" " du, a+b—x<s<b.

In the next theorem we establish a general weighted two-point formula which plays
the key role in this section.

THEOREM 2.1. Let f : I — R be such that "~V is absolutely continuous for some
n>2 I CR an open interval, a,bel, a<b. If w:la, b] > [0, c0) is some
probability density function, then for each x € [a, (a + b)/2]

b b
[ w0 di= D@ + a0+ s [ Faate e ds. @

PROOF. We put x =x and x =a + b — x in (1.3) to obtain two new formulae. After
adding these two formulae and multiplying by 1/2, we get (2.1). O

REMARK 1. Identity (2.1) holds in the case n = 1. It also can be obtained by taking
x=x,and x =a + b — x in (1.2), adding these two formulae and multiplying by 1/2.
In this special case,

b b
/ w(t) £ (1) di = D(x) + / Tyt (x. )'(s) ds, 22)
where
~ 1
Tui(x,8) = =3 [Twi(x,s) +Tyila+b—x,s)]
1
=—3 [Puw(x,$)+ Pula+b—x,s)]
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—W(s), as<s=x,

1
= E_W(S)’ x<s<a-+b-—x,

1—W(), a+b—x<s<bh.

DEFINITION 2.2. We say p, g with 1 < p, g < oo are conjugate if p~! + ¢~ = 1.

THEOREM 2.3. Suppose that the assumptions of Theorem 2.1 hold. Additionally
assume that (p, q) is a pair of conjugate exponents. Let f™ e L pla, b] for some
n > 2. Then for each x € [a, (a + b)/2]

1 ~
< a0, 7], @3)

b
fa w(r) f(1) dt — D(x) — ty,n(x) D

The constant (1/(n — 1)!)I|fw,n(x, Vg is sharp for 1 < p <oo and the best
possible for p = 1.

PROOF. Applying the Holder inequality we have

1
(n—1)!

1
(n—D!

b
[ Tt 91701 s < [Tnte ], 1£9],. @4

Using inequality (2.4), from (2.1) we get estimate (2.3). Let’s denote C; (s)=

Twn(x,s). Now, we will prove that the constant (1/(n — D)[ 7 |CX ()14 ds]'?
is optimal. We will find a function f such that

b 1/q b I/p
=</ |C:f(s>|qu) (/ |f<"><s>|Pds) .

For 1 < p < oo take f to be such that £ (s) =sgn C}(s) - |C5(s)|"/P~D. For
p = o< take f(”)(s) =sgn C; (s). For p =1 we shall prove that

b
/ C(s)f " (s) ds

a

b b
/ Ci(s)f™(s)ds| < sup |C:;<s)|( / If(")(s)lds) (2.5)

s€la,b]

is the best possible inequality.
The function Cj, (s) is left continuous and has finite jumps at x and a + b — x. Thus
we have four possibilities.

(1) Suppose |C;(s)| attains its maximum at so € [a, b] and C; (sp) > 0. Then for
& > 0 small enough define f.(s) by

0, a<s=<sy)—¢,
1 n
fe(s) = 5(s—SO+£) ;80— & =5 =50,

1 n—1
—'(S—So+8) , S0 <s<bh.
n!
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Thus

b
/ C(s) £ (s) ds

a

S0 1
/ Cr(s)—ds
s P

0—¢&

1 [
=- / Cy(s)ds.
& Js

0—&
Now, from inequality (2.5),
1 S0 1 S0
- / Cy(s)ds < —C,f(so)/ ds = C; (s0).
€ Jsg—e & S0—¢&

Since

| Y
lim - / C, (s)ds = C; (s0)
N

0—E
the statement follows.

(2) Suppose |C; (s)| attains its maximum at sg € [a, b] and C; (so) < 0. Then for
& > 0 small enough define f;(s) by

;(SO—S)"’I, a<s=<sy)—¢&,

fe(s) =

—— (so—8)", so—€&=s=<s0,
en!
0, so<s<b,

and the rest of the proof is similar to that given in (1).
(3) Suppose |C; (s)| does not attain a maximum on [a, b] and let sy € [a, b] be such
that

sup |Cy ()= lm |f (so+&)l.
s€la,b] e—0t

If lim,_, o+ f(so + &) > 0, we take

0, a=<s <so,
fuls) = Q(S—So)n, 50 <s=<s0+e,

1
—(s—s50)""", so+e<s<b,
n.

and similarly to before we have

so+¢ 1
/ Cy(s)—ds
s &

0

1 so+&
=- / C,(s)ds,
& Js

0

b
/ Cr(s) £ (s) ds

a

1 so+€ 1 so+¢€
- f C2(s) ds < ~C(s0) f ds = C;(s0).
€ Js € S0

0

so+¢
lim - / C; (s)ds = C, (s0)
S0

and the statement follows.
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(4) Suppose |C; (s)| does not attain a maximum on [a, b] and let sy € [a, b] be such
that

sup |C;(s)|= lim |f(so+ ¢&)l.
s€la,b] e—0t

If limg_, g+ f(so + &) <0, we take

—~(s—=so—&)""", a=s=so,
n!
_ 1
fe($) = - (s—s0—8)", s0=<s=<s0+e,
en!
O, S0+8 SS Sba
and the rest of the proof is similar to that shown in (1). d

THEOREM 2.4. Suppose that the assumptions of Theorem 2.3 hold. Additionally
assume that f®V is a differentiable function on (a,b). Then for every x
[a, (a + b)/2] there exists n € (a, b) such that

ORI

b
/a w(t) f(1) dt — D(x) =ty 2n(x) = = ), Twon(x,s)ds. (2.6

PROOF. We apply (2.1) with 2n in place of n. Since —fas w(u)(u — $)*"1 du > 0 for
every s € [a, x], be ww)(u — )"~ du > 0 for every s € (a +b — x, b] and

1

K b
3 [—/ ww)w — )"V du +/ wu)(u — s)>" ! dui| >0

for every s € (x, a + b — x], we have /T\w,zn (x, s) >0 for s € [a, b]. By applying the
integral mean value theorem to fub Twon(x,s)f 1) (s5) ds we obtain (2.6). O

THEOREM 2.5. Suppose that the assumptions of Theorem 2.1 hold for 2n, n € N. If
f is (2n)-convex, then for each x € [a, (a + b) /2] the inequality

J@) + fla+b—x)
2

b
/ w() f(1) dt — —tw2,(x) 20 (2.7)

holds. If f is (2n)-concave, then the inequality (2.7) is reversed.

PROOF. First note that if f®) exists, then f is k-convex (k-concave) if and only if
fO=0(f% <0
From (2.1) we have that

b b
/ w(t) f(t) dt — D(x) — ty 20 (x) = / Twon(x, ) fP(s) ds.

(n—1)!
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Let us consider the sign of the integral

b
/ Tyon(x, $) f P (s) ds
a

when f is 2n-convex. We have f®" >0 and from the proof of Theorem 2.4,
Ty an(x, s) > 0. Hence, [” T,(x, 5) f ™ (s) ds > 0, and (2.7) follows.
The reversed (2.7) can be obtained analogously. O

REMARK 2. If in Theorem 2.3 we set x = (a + b)/2 we get the generalized midpoint
inequality (see [1])

atb b n—2 fU+D (#) b PEANES
‘f( 5 >—/a w(t)f(t)dt—l—;wfa w(s)<s— ) ds

1 b at+b \|[7 \"
R (/ T’”’”( 2 ’s> ds) EA TS

For the generalized trapezoid inequality we apply (2.3) withx =a or x = b:

b b n=2 @i+l b _
J@+/®) er AL —/ wt) f(6)dt+ ) —g(i - i“)l') w(s)(s —a) T ds
a i=0 " Ja

122 pHDpy b
20+ D! g

b 1/q
(/ \Tw,n (a,s) + Tw.n (D, s)|q ds> “f(n) ||p

w(s)(s — b)Yl ds

<
~2(n-1!

where
§ b
Twn(a,s) +Tynb,s)= f w(u)(u — S)n71 du — / w(u)(u — S)nil du.
a N
For the applications to follow we introduce the notation

fiw= Y (DU O ((=ix)  k=0,1,2,
e

3. Application to Gaussian quadrature formulae

Gaussian quadrature formulae are formulae of the type

b k
[ e a~y airan.

i=1

Without loss of generality, we shall restrict ourselves to [a, b] =[—1, 1].
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3.1. The case o(t) = (1/4/1—1¢2), t e[—1,1] In this case we have a Gauss—

Chebyshev formula
——f®dt=) A;f(xi)+ Ex(f), (3.1
/ JL4 ;; ’
where A; =n/k,i=1,...,kand the x; i =1, ..., k are zeros of the Chebyshev

polynomials of the first kind defined as
Ty (x) = cos(k arccos(x)).

The polynomial T;(x) has exactly k distinct zeros, all of which lie in the interval
[—1, 1] (see for instance [13]) and are given by

Cm—nn)
x; =cos| ———— ).
2k

The error of the approximation formula (3.1) is given by

Ex(f) = e, te(-1,1).

22k— 1(2k)'
In the case k =2 (3.1) reduces to

. (Y2 T @

REMARK 3. If we apply (2.2) with a=—-1, b=1, x:—ﬁ/2 and w(t) =
1/(mv/1 —12),t €[—1, 1], we get

f s f 0 di =T ﬁ + /1R()f/()d
— T 18 N S,
V1 0 -1
where
1 1 , V2
—— — —arcsins, —-1<s<———7
2 7 2
1 2 2
Ri(s) = 1 —— arcsin s, —£<S§£,
T 2 2
| V2
—~ — — arcsin s, — <s<L
2 7 2

COROLLARY 3.1. Let f : I — R be absolutely continuous, I C R an open interval,
[—1, 11C 1, (p, q) a pair of conjugate exponents, and f' € L,[—1, 1]. Then

/ 3 (%)

<z IRl | 7], (3.2)
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PROOF. This is a special case of Theorem 2.3 fora=—1,b=1, x = —«/5/2 and

w(t)=1/(wv1—12),te[-1,1]. O
COROLLARY 3.2. Suppose that all the assumptions of Corollary 3.1 hold. Then
@vV2=2) | ']
2
/ S f0dr - T (2) < lavi-a s,
1 41— 2 2 !
Ll

The constants on the right-hand sides of the first and second inequalities are sharp
and the best possible in the third inequality.

PROOF. We apply (3.2) with p = oo:

1 —V2/2 1 1 V2/2 1
/ |R1(s)|ds=/ —— — —arcsin § ds+/ ——arcsin s| ds
-1 -1 2 7 |l o
/1 1 . 2V/2 -2
+ — — —arcsins|ds = ——
V2/2 2 T T
and the first inequality is obtained. To prove the second inequality we take p = 2:
1 V22 2 v2/2 2
/ |R1(s)|2 ds=f —— — —arcsin s ds—i—/ ——arcsins| ds
—1 —1 2 T —v2/2 T
1 1 . 2 72 —4
+ — — —arcsin § ds:—z.
V2/2 2 i T
If p =1, then Supse(—1,17 [R1(s)| equals
1 1 . 1 . 1 1 .
max sup —5 — — arcsin s| , sup ——arcsi s| , sup — — — arcsin s
se[—l,—g] T SE[ %,%] T .YEI:‘/TE,I]

By an elementary calculation, each of the three suprema is equal to 1/4, and the third
inequality is proved. O

REMARK 4. The first and third inequality from the Corollary 3.2 have also been
obtained in [7].

REMARK 5. If we apply Theorem 2.1 with n =2, a=—1, b=1, x = —+/2/2 and
w(t)=1/(m1—12),t €[—1, 1], we get

2 1
f@)dt= —fl (I) +7T/1R2(S)f"(s) ds,

1
1
/_1 V1 =12
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where
1 1 2
—s+—<sarcsins+ l—sz), —1§s§—£,
2 b4 2
1 2 2
RZ(S)Z‘—<sarcsins+ 1—s2>, —£<S§£,
b4 2 2
1 1 2
—Es-i—; (sarcsins+ l—sz), \/7_ <s<l.
COROLLARY 3.3. Suppose that the assumptions of Theorem 2.3 hold. Then
1
7 |
1/2
fodi x (V2 32+3v27 ’
=2 (5= 1\ T
—1 /1 —12
Var Y2\,
5 |17

The constants on the right-hand sides of the first and second inequalities are sharp
and the right-hand side constant in the third inequality is the best possible.

PROOF. Similarly to the proof of Corollary 3.2, for the first inequality we have

! 1
R ds = —
/_ Rl ds = 5
and for the second

1
3243421
Ry(s)>ds = ——~"—".
/_1| 2()|7 ds 2

To prove the third inequality we calculate

1 1 4 —
sup -5+ — <s arcsin s + v 1 ) ( 71)\/_
2 b4 - 81
se[—l,—ﬁ/Z}
1 4
sup (s arcsin s + v 1 ) ¢ +8n)f
se[—ﬁ/z,ﬁ/z] T
1 1 4 —
sup  |—=s+ — (s arcsins ++/ 1 — s2> @-mv2 n)«/_
2 b4 - 81
se[fz/m]
Finally
4—mV2 G+mV2|  @G+m)V2
sup |Ra(s)| = max , = : O
se[—1,1] 8 8 8
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REMARK 6. If f” is a differentiable function on (—1, 1), by Theorem 2.4 there exists

€ (—1, 1) such that

! d
[ res ()

V1-2 27'\ 2

REMARK 7. If we apply Theorem 2.1 with n =3, a=—1, b=1, x = —+/2/2 and

w(t) = 1/(7:5\/1 —12),t €[—1, 1], we get
2 1
—fz* (%) +2 fl R3(s) f" () ds,

2

where
3 1 /1
—5- 1—s52—— (5 +s2> arcsin s
/1 V2
—=|l=zts7), —1<s<-———,
2\2 2
1 /1 V2 V2
_ ) - —¢2__ | = = -~
R3(s) = znsﬁ - <2+ )arcsms > <s= 5
3 1 /1
——sm— — =+ arcsin §
21 2
LI V2 -
2 2 Ky s 2 <S_ .

COROLLARY 3.4. Suppose that the assumptions of Theorem 2.3 hold. Then

1

= (-8+19v2) |77

I [ —4096 +2505v27 \ 2 .
[

g
2 6750

1 "
Laem |,

1
f(@)dt T
‘ﬁl 2—5ﬁ(3-

1—1t

The constants on the right-hand sides of the first and second inequalities are sharp
and the right-hand side constant in the third inequality is the best possible.

PROOF. For the first and second inequalities
1 1
—8+ 1942 —4096 + 2505427
f |Rs(9)] ds = ———— / IR3(s) > ds = DV
_ 187 1 6750
and for the third
3 1 /1 1 /1 1 3
sup ——sV1—s2— = (= +s*)arcsins — = (= +s5%)| =~ — —,
27 2 2\2 4 4x
se[—l,—ﬁ/Z]
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3 1 /1
—— sV 1 —s2—— (E +s2) arcsin s
T

21

1 3
=_+_7

sup 47" 4x

se[—ﬁ/z,ﬁ/z]

3 1 /1 1 /1 1 3
——s\/l—sz——(—+s2> arcsins—l—z(——i—sZ)‘:———.

2 T \2 2

sup

se[ﬁ/z,l]

Finally

IR3 () LI S o
su s)=max{- — —, -+ —t =—+ —.
sepn 4 474 4z | T3 4

3.2. The case o(t) =+/1—1t2, t €[—1, 1] In this case we have a formula of the
type

1 k
[ VT=rrodi=Y ageo+ B, (33)
- i=1

where the A; are given by

T . AT
= _——sin" ——,
k+1 k+1

and the x; are zeros of the Chebyshev polynomials of the second kind defined as

i

sin[(k + 1) arccos(x)]

Ur(x) = sin[arccos(x)]

The polynomial Ui (x) has exactly k distinct zeros, all of which lie in the interval
[—1, 1] (see for instance [13]) and are given by

im
X; = COS .
k+1

The error of the approximation formula (3.3) is given by

T
22k+1 (2k) !

In the case k = 2 (3.3) reduces to

1
/1 V1—2f@) dt = %fo* (1> + D), Ee(—1,1).

2 768

Ex(f) = fEE), Ee(-1,1).

REMARK 8. If we apply (2.2) with a=—-1, b=1, x=-1/2 and w(t)=
2v1 — 12/, t € [—1, 1], we get

1 1 1
/1 Vi—erwd=2f (5) +3 /1 01(s) f'(s) ds,
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where

1 1 ) 1

————(s 1—s2+arcsms>, —1<s<——,
2 7 2
1 . 1 1

Oi1(s)=1—— (s 1—52+arc51ns), ——<s=<_,

T 2 2

1 1 ) 1

———(s 1—s2+arcsms>, —<s<l1

2 2

COROLLARY 3.5. Suppose that the assumptions of Corollary 3.1 hold. Then
/1 Vi—erwd-Z(5) < 2o, /] (3.4)
. 470\ )| =2 "=Ha )y '

PROOF. This is a special case of Theorem 2.3 for a=—1, b=1, x =—1/2 and

w(t) =2/1—12/m,t € [-1,1]. O

COROLLARY 3.6. Suppose that the assumptions of Corollary 3.1 hold. Then

l(_s+9f_n) 17,

12
5124 135437 — 1572\ ,
- |7

2 (33+27) 7,

2 .

1
f na3a(3)-

N =

The constants on the right-hand sides of the first and second inequalities are sharp
and the right-hand side constant in the third inequality is the best possible.

PROOF. We apply (3.4) with p = oo:

1
/1 101(5)] ds

—-1/2 1 1
:/ ————(s 1—s2—|—arcsins> ds
-1 2 4
12
+/ - (s 1—s2+arcsins) ds
-1/2 T
| , —16 4 18v3 — 27
+ ———<s 1—s2+arcsms) ds =
12 2 T 127
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and the first inequality is obtained. To prove the second inequality we take p = 2:

1 -2 1 1 2
/ |Q1(S)|2dS=/ ————(s l—s2+arcsins) ds
—1 -1 2 T
2 2
+ / — (s 1 — 52 + arcsin s) ds
—1/2 T
1 1 1 2
+/ - — = (s 1—s2 —l—arcsins) ds
1212w
—512 4 13537 — 1572
= 18072 . 3.5

If p =1, we have that the arguments of the three integrals in (3.5) have successive

suprema (1/3) — v/3/4x, (1/6) + /3/4m, (1/3) — /3 /47 so

sup |Q1(s)|=max{l_£,l+£} 1 V3

6 4rm

se[—1,1] 3 47 6

and the third inequality is proved. U

REMARK 9. The first and third inequalities from Corollary 3.6 have also been
obtained in [7].

REMARK 10. If we apply Theorem 2.1 withn =2, a=—-1, b=1, x=—1/2 and
w(t) =21 —t2/m,t € [—1, 1], we get

1 1 1
/ Vi—2rodi=7 g (5) +3 / 0:(5) /" (5) ds,
-1 -1

where
! (2+ 2) 1 2—|—1 arcsin +s 1<s< !
— s -5 —s s+ =, —1<s<-——,
3T T 2 2
_J1 5 1 ) 1 1
02(s) = —(2—|—s> 1 —s2 4+ —s arcsin s, —— <5<,
371 T 2 2
1 1
<2+s>\/ —I——sarcsms al —<s<l.
3 2" 2

COROLLARY 3.7. Suppose that the assumptions of Theorem 2.3 hold. Then

1
rRd A
1 1 373 2048 12
T 1 s
‘/_lmj‘(t)dt—zfl*(§>‘f —<—m 80n+4725n2) I
T

2
343 "
(5 +32) 1

B
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The constants on the right-hand sides of the first and second inequalities are sharp
and the right-hand side constant in the third inequality is the best possible.

PROOF. For the first and second inequalities

1 1
1 1 33 2048
d = -, 2 d = ——  — s
/_1 Q201 ds = /_1 Q27 ds = =72+ Jox T #7252
and for the third
1 1 1 343
sup —<2+s2> 1—s2+—sarcsins+£‘:——+—f,
sel—1,—1/2] | 37 I 2 6 8
1 1 33
sup —(2+s2> 1 —s2 + —s arcsin s :——i—i,
se[—1/2,1/2] | 9T b 12 87
1 1 1 343
sup  |[=— <2+s2> V1—52 4 Zsarcsing — o= —= + —f
se[1/2.1] 137 /4 2 6 87

Finally

O

12+ 87

1 .3/3 1 33| 1 33
se[—1,1] 6 87 ' 12 87 N

sup [Q2(s)] =max{—— +2¥2 2 42V

REMARK 11. If f” is a differentiable function on (—1, 1), by Theorem 2.4, there
exists n € (—1, 1) such that

1 1
/_1 V1—12f(r)dt — %fl*(§> = %f”(n).

REMARK 12. If we apply Theorem 2.1 with n =3, a=—-1,b=1, x =—1/2 and
w(t) =21 —12)m,t € [—1, 1], we get

1 1 1
/ VI—2f@)dt = %f; (5) + % / Q3(s) f"(s) ds,
—1 -1

where

1
—7(135 +257)V1 — 52
T

1(1+42) i 1(1+42) l<s<_1
—_—— arcsin s — — 5 —1=5=-—=,
4 s 7% s =73
1
—— (135 + 2s%)V/1 — 52
127
03(s) = | | |
_E(l —|—4sz) arcsin s, —3 <s< 5

1
—F(m + 2531 — 52
T

1 2 . 1 5 1
——({ +4s%)arcsins + = (1 +4s°), —<s<l1.
4 8 2
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COROLLARY 3.8. Suppose that the assumptions of Theorem 2.3 hold. Then

1
V V1 —tzf(t)dt—£f2*<l)
. 4722
|

2880

1/2
n 7 +4m/§ 65536\ 1]
4 720 56007 49612572 2

T "
8" 128 17711

The constants on the right-hand sides of the first and second inequalities are sharp
and the right-hand side constant in the third inequality is the best possible.

(-128 429743 — 40n) 1"

IA

PROOF. For the first and second inequalities

1 —128 +2974/3 — 407
/ |Q3(s)| ds =

7207 ’
/1 Py 7 +411J§ 65536
S S =——=— - )
R 720 ' 5600m 49612572
and for the third
1 1
sup [13s +2s ] V1—s2— [1 + 4s2] <— arcsin s + —)‘
sel=1,—1/2] C12n 4 8
1 93
6 327’
1 1
sup - [13s + 2s3] V1i—s2— — [1 + 4s2] arcsin s
se—1/2,1/21 1 127 4
1 9V3
- = + ia
12 32
1 1
sup  |——— [13s—l—25 ]\/;4-[1—1-48 ] (—— arcsin s + )‘
sz | 12w 4 8
1 93
6 327
Finally
1 9f 1 93 1 93
= N —+ —. U
o fesI= max{é 7 12 om } N
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4. Nonweighted case of a two-point formula and applications

Here we define

= 1 = i i i
n(x) = 5 ; [f( 'H)(x) +(=1) —Hf( 'H)(a +b —x)]

(b _ x)i+2 _ ((l _ x)i+2

’

(i +2)\0b—a)
T, ) = =3 [Ta(x. ) + Tua+ b —x.9)]
(bia)(a—S)", a<s<x,
:4@[(41—@”—}—([)—5)"], x<s<a+b-—nx,
(bia)(b—s)", a+b—x<s<b.

We will use the Beta function and the incomplete Beta function of Euler type defined
as

1 r
B(x,y):/ A =), Br(x,y)z/ AN a =0 dr, x, y>0.
0 0

THEOREM 4.1. Let f : I — R be such that "~V is absolutely continuous for some
n>2, 1 CRanopeninterval, a,b € I, a <b. Then for each x € |a, (a + b)/2] we
have the identity

b b
L/ @) dt:D(x)+?n(x)+l/ T, (x, s) f™(s) ds.
b—a J, n!

a

PROOF. We take w(t) = 1/(b — a), t € [a, b] in (2.1). O

THEOREM 4.2. Suppose that the assumptions of Theorem 4.1 hold. Additionally
assume that (p, q) is a pair of conjugate exponents and that f™ e L pla, b] for some
n > 2. Then for each x € [a, (a + b)/2]

1 b ~ 1~
_— — — — . (n)
- / f@dt = D) =) = — [Tt [ £, @D
The constant (1/n!)||7"\n(x, Vg is sharp for 1 < p <00 and the best possible for
p=1
PROOF. We take w(t) =1/(b —a), t € [a, b] in (2.3). O
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COROLLARY 4.3. Suppose that the assumptions of Theorem 4.2 hold. Then for each
x € [a, (a + b)/2] we have

1 b Qoo [ £
'm/ f@)ydt —D(x) = 1,(x)| < {20 | £™],.
Q™.
where
_ 1 (x — a)”“ [2 + (—1)"+1] + (b _ x)n-i—l
CER] b—a
b—al"| (=D +1
B [ 2 ] 2
Q) — 1 (_1)n(b_a)2n71 5 | | . 1 1
T 2 [Z%;(’“L ot 1) — g(n+,n+)]
3(x — a) ! 4 (b — x)2n Tl 172
22n 4+ 1)(b — a)?
1 = ;max{(x _ay, 2 +(b_x)n}.
nl(b —a) )

The constants on the right-hand sides of the first and second inequalities are sharp
and the right-hand side constant in the third inequality is the best possible.

PROOF. We apply (4.1) with p = oo:

b —~
/ |T,,(x,s)|ds
a

). | b—a . 2(b —a)
b
b— n
+/ ( $) ds
a+b—x b—a

(x —a)"t! (@ — x)" 4+ (b — )"+ — (b%a)""'l [(_1)n+1 + 1]

(n+1)(b—a) (n+1D(®—a)
B (x — a)n—H [2 + (_l)n-H] + (- x)n—H b—a\" (_l)n-i-l +1
N (n+ 1 —a) _( 2 ) 2n+ 1)
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and the first inequality is obtained. To prove the second inequality we take p = 2:

b
/ Tw(x, 5)|* ds
a

_/x @—9" [T @ -9
). | b—a . 2(b —a)
b ni|2
b —
+/ ( 5) ds
a+b—x b—a

B 3(x _ a)2n+1 + (b _ x)2n+l (—l)n(b _ a)2n—1
- 2Q2n + 1)(b — a)? 2
X [B—x)/—ay n+ 1,0+ 1) = Bx—ay/p—a) (n + 1, n + D)].

Ifp=1,
sup |Tn(x, )]
s€la,b]
(@a—s)" (@a—s)"+ b —s) b —s)
= max sup , sup s .
se€la,x] b—a selx,a+b—x] 2(b —a) sela+b—x,b] b—a
By an elementary calculation we obtain
(a—9)"] (x—a) b-—9" «-a)"
sup = , sup = .
sela,x] b—a b—a) sela+b—x,b] b—a b—a)

The function y:[a,b]— R, yx)=(a—x)"4+ (b —x)", is decreasing on
{(a, (@ + b)/2) and increasing on ((a + b)/2, b) if n is even, and decreasing on {(a, b)
if n is odd. Thus

@=s)"+®-9"_@-x"+®-x"

etvarsea | 20— a) 26— a) “2
Since x € [a, (a + b)/2]
sup |?n(x, s)| =max{ = a)n’ @—x)"+ = x) }
sela,b] (b—a) 2(b—a)
and the third inequality is proved. O

COROLLARY 4.4. Let f : [a, b] — R be a L-Lipschitzian function on [a, b]. Then for
each x € [a, (a + b)/2]

1 b
'—/ f@)dt — D(x)
b—a J,

— )2 — x)2 _
< (3(x a) 4+ (b —x) B b a)L. 43)
2(b —a) 4

PROOF. We apply the first inequality from Corollary 4.3 withn = 1. O
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REMARK 13. The inequality (4.3) has been proved and generalized for «-L-
Lipschitzian functions by Guessab and Schmeisser in [5]. They also proved that this
inequality is sharp for each admissible x.

COROLLARY 4.5. Let f :[a, b] — R be such that f’ is an L-Lipschitzian function on
[a, b]. Then for each x € [a, (a + b)/2]

1t (b-x)?%—(a—x)?*
—_— t)ydt — D(x) — [ f'(x) — f b—
b_a/a Fo) @ = [0 = fla+b=0] =
- (x —a) + (b —x)3
- 6(b —a)
PROOF. We apply the first inequality from Corollary 4.3 with n = 2. O

COROLLARY 4.6. Let f :[a, b] = R be a continuous function of bounded variation
on [a, b]. Then for each x € [a, (a + b)/2]

b —
‘L/ f(t)dt — D(x) 5(1 M
b—a J,

1 b
T )Va(f). (4.4)

More precisely, if x € [a, 3a + b) /4]

a+b—-2x_,

E—Va (f)

1 b
—b_afa O O T

and if x € [(3a + b) /4, (a + b) /2]

b _
%/ Fdi— D) < Z=2vb(p).
—a J, b—a

PROOF. We apply the third inequality from Corollary 4.3 with n =1 to get

a—+b
<

1 b
‘—/ f @) dt — D(x)
b—a ),

max{x —a,

=2 —x}va’%f).

Using the formula max{A, B} =(1/2) (A+ B + |A — B|) the proof for the first
inequality follows. Since

a+b . 3a+b
—x, ifxela, ,
a+b 2 4
maxqx — da, —Xx¢{=
2 ) 3a+b a+b
X —a, ifx € , ,
4 2
the proofs of the second and third inequalities follow. O
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REMARK 14. The inequalities (4.3) and (4.4) and their generalizations based on
extended Euler formulae via Bernoulli polynomials have been proved by Pecarié, Peri¢
and Vukeli¢ on the interval [0, 1]in [11].

COROLLARY 4.7. Let f:[a, b] = R be such that f' is a continuous function of
bounded variation on [a, b). Then for each x € |a, (a + b)/2]

(b —x)*—(a—x)?
4 — a)

1 b
m/ f®)ydt —Dx) —[f'(x) = f'a+b—x)]

- (x —a)® + (b —x)?
- 4(b —a)

Va ().
PROOF. We apply the third inequality from Corollary 4.3 with n = 2 to get

(b —x)? - (a—x)*

1 b
s [ F0d= D) = [F0) = Fa+ b -]

4(b — a)
1 2 @+ -2 4,
Smmax{(x—a) s 3 }Va(f)
-+ Ob-x? ,
and the proof follows. O

COROLLARY 4.8. Suppose that the assumptions of Theorem 4.2 hold. Then for each
x €la, (a+b)/2]

b
#f f(t)dt — D(x) —1,(x)
b—a J,

~n!

- 1 ( 2(x —a)Mt! ((@a=—x)"4+ b —x)"H)?

1/q
_ )
(g + (b —ayi 20— aya @+b 2x)) (AR

PROOF. We have

b x |4 a+b—x _an h— s\
f lTn(x,s>|qu:/ (@) ds+/ (@a—s)"+b=9""
“ a —a X 2(b —a)
b bh— )2
=
a+b—x b—a
Since
/x (a —S)ﬂ qd /b (b—S)n q (X _a)nq—i-l
s = 5 = ’
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and, by applying (4.2),

/a+b—x
x

a—-—s)"+b-s)"
2(b —a)

q a+b—x v\ v\
s 5/ ((a )"+ (b —x) )q B
; 20— a)

_((@a=x)"+ b -x)")1
B 24(b — a)l

(a+b—2x)

we obtain

/b |T(x s)|q ds < 2(x —a)"t! ((a — )"+ @ _x)n)q
PR =~ (ng +1)(b—a) 24(b — a)l

(a+b—2x). O

REMARK 15. If we set x =a, (2a+ b)/3, Ba + b)/4, (a + b)/2 in Theorem 4.2
and Corollaries 4.3—4.8, we get the generalized trapezoid, two-point Newton—Cotes,
two-point Maclaurin and midpoint inequalities.

REMARK 16. For some related results see [3, 8, 12].

5. Bullen-type inequalities

In this section we use identity (5.1) to prove a generalization of Bullen-type
inequalities (1.6) for (2n)-convex functions (n € N). Also we study for x €
[a, (a + b)/2] the general weighted quadrature formula

b 1
/ WO f @ di = L(F@ + () + f@+b =)+ FO) + G, w0,

where G (f, w; x) is the remainder.
Again, let f : [a, b] — R be such that f n=1) exists on [a, b] for some n > 2. We
introduce the following notation for each x € [a, (a + b)/2]:

D(x) + D(a) _ f@+ fx)+ fla+b—x)+ f(b)

2 4 ’

/fw,n(a’ s) + ?w,n(x, s)
2

D(x) =

Ly, (X) + ty n (@)

Tw,n(xa §) = and ?w,n(x) = ) ,

where D(x), /T\w,,,(x, s) and t,,, ,(x) are as in Section 2.

THEOREM 5.1. Suppose that the assumptions of Theorem 2.1 hold. Then for each
x € la, (a + b)/2] the following identity holds:

b b
fw(r)f(t)d::ﬁ(x)+7w,n(x)+ﬁ/ Twn(x, ) fP(s)ds. (5.1)

PROOF. Weputx=x ,x=a+b —x, x=a and x = b in (1.3) to obtain four new
formulae. After adding these four formulae and multiplying by 1/4, we obtain (5.1). O
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REMARK 17. If in Theorem 5.1 we choose x = (2a + b)/3, (a + b)/2 we obtain
closed Newton—Cotes formulae with the same nodes as Simpson’s 3/8 rule and
Simpson’s rule respectively.

THEOREM 5.2. Suppose that the assumptions of Theorem 2.3 hold. Then for each
x € la, (a + b)/2] the following inequality holds:

1
(n—1)!

b ~ ~ ~
/ w(®) f (1) dt — D(x) = Twn(x)| < | Twn D), £, 52

The constant (1/(n — 1)!)||7"\w,n(x, g is sharp for 1 < p < oo and the best possible
for p=1.
PROOF. The proof is similar to the proof of Theorem 2.3. O

THEOREM 5.3. Suppose that the assumptions of Theorem 2.3 hold. Additionally
assume that f® is a differentiable function on (a,b). Then for every x €
[a, (a + b)/2] there exists n € {(a, b) such that

b - - f(Zn)(n) b _
/ w(t) f@)dt — D(x) —tyom(x) = —= Tywon(x, s)ds.
; ’ en—-nt), "
PROOF. Similarly to Theorem 2.4, we have fw,z,, (x,s) >0 for s € [a, b]. Thus we
can apply the integral mean value theorem to f ab Twon(x,s)f @ (s) ds. O

THEOREM 5.4 (Weighted generalization of Bullen-type inequality). Suppose that the
assumptions of Theorem 5.1 hold for 2n, n> 1. If f is (2n)-convex, then for each
x € [a, (a + b)/2] the following inequality holds:

b _
/ wi feyr — POTTCELZD
b
> [OLT0) / w(t) £ 1) di + ty 20 (@), (5.3)

If f is (2n)-concave, then the inequality (5.3) is reversed.

PROOF. From (5.1) we have that

b —
2/ moroa e f(za OO tw,on(X) — ty2n(a)
a 1 .
T 2n-1)! / Ty.on(x, 8) F PV (s) ds.

Similarly to Theorem 2.5, we have T5,(x, ) > 0 and [* T, (x, 5) f @ (s) ds > 0,
from which (5.3) follows immediately. O
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In the special case w(t) =1/(b — a), t € [a, b], we define

To(x, s) = —% [T, (a.s) + Tp(x.s)+ Ty(a+b —x. 5) + Tp(b, s)]

o= Ba— -] asssx
s lamrro-o], reszaroon
m[(a—s)"%(b—s)”], a+b—x<s<b,
and
E(X)=M. -

2

THEOREM 5.5. Suppose that the assumptions of Theorem 4.1 hold. Then for each
x € la, (a + b)/2] we have the identity

b b
L/ f@) dt:ﬁ(x)—i—?;l(x)—l—l/ T, (x, ) % (s) ds.
b—a ), n!

a

PROOF. We take w(t) = 1/(b — a), t € [a, b] in (5.1). m

THEOREM 5.6. Suppose that the assumptions of Theorem 4.2 hold. Then for each
x € la, (a + b)/2] we have the inequality

1 b - _ 1~
‘b —a /a f(t) dt — D(x) - tn(X) < E ||Tn(x, )”q ||f(”)“p (54)

The constant (1/n!)||fn(x, Vg is sharp for 1 < p <00 and the best possible for
p=1

PROOF. We take w(t) = 1/(b — a), t € [a, b] in (5.2). O

COROLLARY 5.7. Suppose that the assumptions of Theorem 5.6 hold. Then for each

x €la, (@V3+b)/(14/3)]

b
#/ f@)dt — D(x) — 1, (x)
b—a ),

- 1 (D" (x —a)"™ + (b — )" + (b — a) !
T (m+ 1! 2(b —a)

; (_1)n+1+1 .
6o [2—]) 1o
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and for x € [(a/3 4+ b)/(1 + /3), (a + b)/2]

b
#/ f@)dt — D(x) =T, (x)
b—a J,

- (x _ a)n-i-l [3 + 2(_1)n+1] + (b _ x)n-i-l [2 + (_l)n-i-l] + (b _ a)n-i-l
2(b —a)

. N T G D e B AN ) T
—emo [3<1+V§> +2—H 2 ]) CES

Also, for each x € [a, (a + b)/2]

/ f) dt = D(x) =B (x )‘ @2 | ;.
Il A P
where
1 (5(.76 _ a)2n+1 +3(b— x)2n+l + (- a)2n+1 (=" — a)Zn—l
2= 2 T
n! 82n+ 1)(b —a) 4
172
X [ZB(b_x)/(b_a)(l’l +Ln+1D+Bu—ayp-am+1,n+ 1)] ) ,
1 :(b—a)" (@—x)" + (b —x)" |3(x—a)"+(x—b)”|}
o = max , , .
n!'(b —a) 4 2 4

The constants on the right-hand sides of the first, second and third inequalities are
sharp and the right-hand side constant in the last inequality is the best possible.

PROOF. We apply (5.4) with p = oo:

b [T 3a=8)"+ (b —s9)"
/a |Tn(x,s)|ds—/a 26— ds
a+b—x o\ o\
+/ (a—s)"+ b —ys) s
. 2(b —a)
b n n
+/ (@ s 430 =" 4
a+b—x 4(b —a)
The second integral is
/a+bx (a _ S)n + (b _ S)n
x 2(b —a)
(@—x)"""+ (b —x)"t — (b —a)/2)" [(=D)" + 1]

(n+1D0b—a)
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Now, we suppose n is even. The first and the third integrals are

3(x —a)"t — (b — )"+ (b — a)"T!
4n+1)(b —a) )

Now, we suppose n is odd. There are two possible cases.
(1) If x € [a, (a¥/3 + b)/(1 + ¥/3)], the first and third integrals are

3(x —a)"t — (b — )" 4 (b — a)" !
4(n 4+ 1)b —a) ’

(2) If x € [(a¥/3 +b)/(1 + ¥3), (a + b)/2]

r

3a—s)"+ b —s)"
4(b — a)

ds

/(“ V3+b)/(1+33) =3(s —a)" + (b — s)"
a

= ds
4 —a)

+/x 3(s—a)"—(b—s)”ds
(@¥3+b)/(14+ %/3) 4(b — a)

3(x —a)"+1 + (b _x)n—i-l + (b _a)n-i-l _ 6(1 + \,,/5) (1Z_§§)n+l
= 4n+ 1) —a)

k]

and the transformation s — t = a + b — s shows that

/b
a+b—x

Now, in case (1), fab |fn (x, 5)| ds has value

(a—=s)"+30b—-s)
4(b —a)

ds

has the same value.

3(—1)”()( _ a)n—i-l — (- x)n-i-l + (- a)n-i-l
2n+1)(b—a)
4 (@—x)"+ b —x)"t — (b —a)/2)" [(=1)" +1]
(n+ 1 —a)

_ED e ) o D
= 2n+ (b —a) B ey
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while, in case (2), its value is

3x — a)"! 4 (=) (b — )t 4 (b — q)r ! [1 _3 (Hl%)" (=)™ + 1)]
2+ 1)(b —a)
(@ — )™ 4 (b — xy™ — (b — a)/2" " [(=1y* +1]
- (n+ 1 —a)
(x — )"t [3 + 2(_1)n+1] 4 (b —x)'t! [2 + (_1)n+1] + (b —a)'t!
- 2(n+ (b —a)

; 1 17 (=D 41
~ oo [i(=15) }[ Sl ]

Therefore, the first and the second inequalities are obtained. To prove the third
inequality we take p = 2:

b~ 2
/ ’Tn(x,s)‘ ds
a

X o\ _oan 2 a+b—x Y/ oan 2
_ /‘ 3(a—s5)"+ (b —ys) ds + / + (a—s)"+ (b —ys) s
a 4(b —a) . 2(b —a)
N /b (a—s)"+30b—s)"|?
a+b—x 4(b —a)

O S5(x — a)? 43 — ) (b — a)¥t!
B 82n +1)(b — a)?
Db — 2n—1
n (=D"(b —a)
4
X [ZB(b—x)/(b—a)(n +1,n+1)+ B(x_a)/<b_a)(n +1,n+ 1)] .

Ifp=1,
sup |i,(x, s)|
s€la,b]
3a—s)"+ b —s)" (a=—s)"+ b —s)"
=max{ sup . sup :
sela,x] 4(b —a) se[x,a+b—x] 2(b—a)
(a—s)"+3(b—s)"
sup )
sela+b—x,b] 4(b —a)

Carrying out the same analysis as in Corollary 4.3 we obtain that the first and last
suprema take the common values

{(b—a)" 3(x—a)"+(x—b)”}
max , )
4(b —a) 4 — a)
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b—a) 3x—a)+(x—Db)"|
max ,
4(b — a) 4(b — a)
according as n is even or odd. Also
(a—s)"+b—s)"
2(b —a)

:(a—x)"—l—(b—x)”

1P 2(b—a)

s€[x,a+b—x]

for each n. Since x € [a, (a + b)/2] we have

sup |T,,(x, s)’
s€la,b]

{ b—a)"! (a—x)"+b-x)" [3x—a) + x—b)"|
= max

4 ’ 2(b —a) ’ 4(b —a)
and the last inequality is proved. O

COROLLARY 5.8. Let f :[a, b] > R be an L-Lipschitzian function on [a, b]. Then
for each x € [a, (3a + b) /4]

—(x—a)’+ —x)zL
4(b — a)

=

1 b ~
—/ f(@)dt — D(x)
b—a J,
and for each x € [(3a + b)/4, (a + b)/2]
5 (5(x —a)’ +3(b—x)? 3(b—a))L‘

1 b ~
‘—/ f@)dt — D(x)
b—a J,

4(b —a) 8

PROOF. We apply the first and second inequality from Corollary 5.7 withn =1. O

COROLLARY 5.9. Let f : [a, b] — R be such that f’ is an L-Lipschitzian function on

la, b). Then for each x € [a, (a + b)/2]

(b—x)* = (a—x)*
8(b —a)

1 b ~
m/ f(ydt — D(x) = [f'(x) = flla+b—x)]

(b—a)
- [f@-rm]—
_ 3 3 3
- x—a)y+b—-—x)+0b-a) L
- 12(b — a)
PROOF. We apply the first and second inequality from Corollary 5.7 withn =2. O

COROLLARY 5.10. Let f : [a, b] — R be a continuous function of bounded variation
on [a, b]. Then for each x € [a, (a + b)/2]

1 a+b—2x |4x —3a — b|

- b
Smax{4’ 2b—a) = 4b—a) }V“(f)'

1 b ~
'—/ Jf @) dt — D(x)
b—a J,
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More precisely, if x € [a, (3a + b)/4]

! ’ Ddi— Doy < AP 2X
m/a f@® — D(x) _2(b— (f)
and if x € [3a + b)/4, (a + b) /2]
! ’ 1) dt — D( <Ly )
E/a f@® Xx) =7 W ().

PROOF. We apply the last inequality from Corollary 5.7 with n = 1 to get

1 a+b—-2x |4x —3a
4 2(b—a) 4 -

‘—/ f(@t)dt — D(x)

< max:

—b
|}Vab(f).
a)

Now, carrying out the same analysis as in Corollary 4.6 we obtain the second and the
third inequality.

COROLLARY 5.11. Let f :[a, b] — R be such that f’' is a continuous function of
bounded variation on [a, b]. Then for each x € [a, (a + b) /2]

(b—x)*—(a—x)?

1 b ~
m/ f)ydt— D) —[f'x)= flla+b—x)]

8(b —a)
@] “)

(a—x)z—l—(b—x) b oo
< 20 —a) Vi (f).

PROOF. We apply the last inequality from Corollary 5.7 with n = 2 to get

(b—x)?—(a—x)?

1 b ~
m/ fydi —Dx) —[f'x) = fla+b—x)]

8(b —a)
b —
~[F@ - ) ”)
1 {(b—a)2 (@a—x)*+ (b —x)?
< — max R R
2(b —a) 4 2
36— “)2: (x ~ by } Vo)
C@=-x)*+b-x% ,
- 4(b . a) Va (f)
and the proof follows. O
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COROLLARY 5.12. Suppose that the assumptions of Theorem 4.2 hold. Then for each
x € [a, (a + b)/2] we have

b
#/ £y di = D) =T (0)
b—a ),

Lo (2 <§>q(x ~a)+ (a +b—ZX)>1/q 7]
- 2.n! 2 "

PROOF. We have

b o *13(a—s)"+ (b —s)"
q _
/{; |Tn(x,s)| ds—/a ‘ 106 —a)

q

a+b—x o\ A\
n / (a—s)"+ b —s) s
Y 2(b —a)
b o\ _ g
n / (a—s)"+30b-ys) Js.
a+b—x 4(b —a)

It is easy to check that the function y : [a, b] = R, y(x) = (x — a)"* + (b — x)" attains
its maximal values on the boundary, so (x — a)" 4+ (b — x)" < (b — a)". Using this
fact we obtain

Bla—9"+G—=9"=3(s—-a)"+b-9"<30b—-a)

r

Similarly, we have

/b
a+b—x

and thus

3a—s)"+ b —s)"
4(b —a)

q 3 q
ds < <é_l(b — a)"1> (x —a).

(a—s)"+30b—-s)"

q 3 q
ds < (Z(b — a)"_1> (x —a)

4(b — a)
and
a+b—x n n|q q
(@a—s)"+ (@b —s) Lo _
/; 206 —a) dsf(z(b a) ) (a +b—2x).
Now,

b~ 1 7 3\?
/ |Tn(x,s)|qu§(§(b—a)"_1> (2 (5) (x—a)+(a+b—2x))

and the proof follows. O
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THEOREM 5.13 (Nonweighted generalization of Bullen-type inequalities). Suppose
that the assumptions of Theorem 5.5 hold for 2n, n > 1. If f is (2n)-convex, then for
each x € [a, (a + b)/2] we have the inequality

b —
[ roa - FOTIEEEED g )
b
] T ) (55)
If f is (2n)-concave, then inequality (5.5) is reversed.
PROOF. We take w(¢) =1/(b — a), t € [a, b] in (5.3). O

REMARK 18. Generalizations of Bullen-type inequalities (1.6) for (2nr)-convex
functions (n € N) and x € [a, (a +b)/2 — (b — a)/4\/8] U {(a + b)/2} (of the same
type as in Theorem 5.13) were first proved by Klaric¢i¢ and Pecari¢ in [6].

COROLLARY 5.14. Suppose that the assumptions of Theorem 5.13 hold. If f is 2-
convex, then for each x € [a, (a + b) /2] the following inequality holds:

/ Foydr — f(x)+f(a +b — x) )
—a
> f(a);rf(b) / £0) dr. 5.6)
where
P = (£~ fa+b—0) T () - ) T
If f is 2-concave, then inequality (5.6) is reversed.
PROOF. This is a special case of Theorem 5.13 for n = 1. O

COROLLARY 5.15. Suppose that the assumptions of Theorem 5.13 hold. If f is 4-
convex, then for each x € [a, (a + b)/2] we have the inequality

_a/f(t)dt f(JC)+f(a+b—X) )
2f(a);rf(b) /f(t)dt 5.7)

https://doi.org/10.1017/51446181109000315 Published online by Cambridge University Press


https://doi.org/10.1017/S1446181109000315

[33] Sharp integral inequalities based on two-point formulae 99

where

b—2 b
GEPTI L (@) - £ b))

(@a—x)2+@—x)b—x)+ (b —x)?
12

(f///( ) — fw(b))

(a —x)2+(b—x)2
48 '

r(x) = (')~ flla+b—-x)

+(f)+ fa+b-x)

(b ) (b - a)3

+ (f"@ + (b))

+ (") = f"a+b - x))<a +b —2x)

If f is 4-concave, then inequality (5.7) is reversed.

PROOF. This is a special case of Theorem 5.13 for n = 2. |

REMARK 19. If we apply Theorem 5.4 withn =1, a =—1, b= 1, x = —/2/2 and
w(t) =1/(w/1—12),t € [—1, 1], inequality (5.3) reduces to

£ dr — %fo (7) —r) > %fom —/

f(@)dt,

1 1 1
/1v1—t2 11 =12

where

r(x) =—— zv2 [f ( %) —f (?)}Jr%[f’(—l)—f/(l)].

REMARK 20. If we apply Theorem 5.4 withn=1,a=—-1,b=1, x=—1/2 and
w(t) =2+1—1%/7, t € [—1, 1], inequality (5.3) reduces to

1 1 1
/lx/l—tzf(t)dt—%fék <5> —r(x)z%f(;k(l)—/lx/l—tzf(t)dt,

r(x) = % [f/ (—%) —f <%)} + % [F'=D = f'(].

REMARK 21. If we apply Theorem 5.4 withn =2, a=—1,b=1, x = —/2/2 and
w(t) = 1/m/1 —t2,t € [—1, 1], inequality (5.3) reduces to

2
fd ”f* (i) — ) > %f&( ) —

where

£ () dt,

2 [ o=

[ o=
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where
r(x)-”Tﬁ f —? —f g + 3 [F=n-rm)
+ 5|7 —? + 1" ? sad 5 LD+ )
+% I —? — 1" ? +52—Z[f’”(—1)—f’”(1)].

REMARK 22. If we apply Theorem 5.4 withn =2, a=—-1,b=1, x=—1/2 and
w(t) =21 —1t2/m, t € [—1, 1], inequality (5.3) reduces to

! 1
/lx/l—tzf(t)dt—%fo* (§>—r(x)>—f0(1)—/ V1—12f(@)dt,

where

NI*—‘
N—
N
o
N——
| I |
_|_
| oummmn |
=
~
o
p—
=
~
-
p—
| S—
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