SHARP INTEGRAL INEQUALITIES BASED ON GENERAL TWO-POINT FORMULAE VIA AN EXTENSION OF MONTGOMERY'S IDENTITY

A. AGLIĆ ALJINOVIĆ^{⊠1}, J. PEČARIĆ² and M. RIBIČIĆ PENAVA³

(Received 13 July, 2007; revised 27 July, 2009)

Abstract

We consider families of general two-point quadrature formulae, using the extension of Montgomery's identity via Taylor's formula. The formulae obtained are used to present a number of inequalities for functions whose derivatives are from L_p spaces and Bullentype inequalities.

2000 *Mathematics subject classification*: primary 26D15; secondary 26D20, 41A55. *Keywords and phrases*: Taylor's formula, Montgomery's identity, two-point formulae, Bullen-type inequalities.

1. Introduction

Let $f : [a, b] \to \mathbb{R}$ be differentiable on [a, b], and $f' : [a, b] \to \mathbb{R}$ integrable on [a, b]. Then the Montgomery identity

$$f(x) = \frac{1}{b-a} \int_{a}^{b} f(t) dt + \int_{a}^{b} P(x, t) f'(t) dt$$
(1.1)

holds [9], where P(x, t) is the Peano kernel defined as

$$P(x, t) = \begin{cases} \frac{1}{b-a}(t-a), & a \le t \le x, \\ \frac{1}{b-a}(t-b), & x < t \le b. \end{cases}$$

¹Department of Applied Mathematics, Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, 10 000 Zagreb, Croatia; e-mail: andrea.aglic@fer.hr.

²Faculty of Textile Technology, University of Zagreb, Pierottijeva 6, 10 000 Zagreb, Croatia; e-mail: pecaric@hazu.hr.

³Department of Mathematics, University of Osijek, Trg Ljudevita Gaja 6, 31 000 Osijek, Croatia; e-mail: mihaela@mathos.hr.

[©] Australian Mathematical Society 2010, Serial-fee code 1446-1811/2010 \$16.00

Suppose $w : [a, b] \to [0, \infty)$ is a probability density function, that is, an integrable function satisfying $\int_a^b w(t) dt = 1$, and $W(t) = \int_a^t w(x) dx$ for $t \in [a, b]$, the corresponding cumulative distribution function, W(t) = 0 for t < a and W(t) = 1 for t > b. The identity

$$f(x) = \int_{a}^{b} w(t)f(t) dt + \int_{a}^{b} P_{w}(x,t)f'(t) dt$$
(1.2)

(given by Pečarić in [10]) is the weighted generalization of the Montgomery identity, where the weighted Peano kernel is

$$P_w(x, t) = \begin{cases} W(t), & a \le t \le x, \\ W(t) - 1, & x < t \le b. \end{cases}$$

In a recent paper [1] the following extension of the Montgomery identity via Taylor's formula has been proved:

$$f(x) = \int_{a}^{b} w(t)f(t) dt - \sum_{i=0}^{n-2} \frac{f^{(i+1)}(x)}{(i+1)!} \int_{a}^{b} w(s)(s-x)^{i+1} ds + \frac{1}{(n-1)!} \int_{a}^{b} T_{w,n}(x,s) f^{(n)}(s) ds.$$
(1.3)

Here $f: I \to \mathbb{R}$ is such that $f^{(n-1)}$ is absolutely continuous for some $n \ge 2$, $I \subset \mathbb{R}$ an open interval, $a, b \in I$, $a < b, x \in [a, b]$, $w : [a, b] \to [0, \infty)$ a probability density function and

$$T_{w,n}(x,s) = \begin{cases} \int_{a}^{s} w(u)(u-s)^{n-1} du, & a \le s \le x, \\ -\int_{s}^{b} w(u)(u-s)^{n-1} du, & x < s \le b. \end{cases}$$

If we take w(t) = 1/(b - a), $t \in [a, b]$, the equality (1.3) reduces to

$$f(x) = \frac{1}{b-a} \int_{a}^{b} f(t) dt - \sum_{i=0}^{n-2} f^{(i+1)}(x) \frac{(b-x)^{i+2} - (a-x)^{i+2}}{(i+2)!(b-a)} + \frac{1}{(n-1)!} \int_{a}^{b} T_{n}(x,s) f^{(n)}(s) ds,$$
(1.4)

where $x \in [a, b]$ and

$$T_n(x, s) = \begin{cases} \frac{-1}{n(b-a)} (a-s)^n, & a \le s \le x, \\ \frac{-1}{n(b-a)} (b-s)^n, & x < s \le b. \end{cases}$$

For n = 1 (1.4) reduces to Montgomery's identity (1.1) since $T_{w,1}(x, s) = P_w(x, t)$.

In this paper we study for $x \in [a, (a+b)/2]$ the general weighted two-point quadrature formula

$$\int_{a}^{b} w(t)f(t) dt = \frac{1}{2} \left[f(x) + f(a+b-x) \right] + E(f,w;x)$$
(1.5)

with E(f, w; x) being the remainder. In the special case, for w(t) = 1/(b-a), $t \in [a, b]$, (1.5) reduces to the family of two-point quadrature formulae considered by Guessab and Schmeisser in [5], where they established sharp estimates for the remainder under various regularity conditions.

The aim of this paper is to establish the general two-point formula (1.5) using the identities (1.3) and (1.4) and to give various error estimates for the quadrature rules based on such generalizations. We prove a number of inequalities which give error estimates for the general two-point formula for functions whose derivatives belong to L_p -spaces. These inequalities are generally sharp (in the case p = 1, the best possible). Also, we give some examples of the general two-point formula for well-known weight functions.

We recall that for a convex function f on $[a, b] \subset \mathbb{R}$, $a \neq b$, the double inequality

$$f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_{a}^{b} f(t) \, dt \le \frac{f(a)+f(b)}{2}$$

is known in the literature as Hadamard's inequalities for convex functions. Inequalities

$$\frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_{a}^{b} f(t) \, dt \ge \frac{1}{b-a} \int_{a}^{b} f(t) \, dt - f\left(\frac{a+b}{2}\right) \ge 0, \quad (1.6)$$

for any convex function f defined on [a, b], were first proved by Bullen in [2]. His results were generalized for (2n)-convex functions $(n \in \mathbb{N})$ in [4].

In the last section we use the obtained results to prove a generalization of Bullentype inequalities for (2n)-convex functions $(n \ge 1)$.

2. General weighted two-point formula and related inequalities

Let $f : [a, b] \to \mathbb{R}$ be such that $f^{(n-1)}$ exists on [a, b] for some $n \ge 2$. We introduce the following notation for each $x \in [a, (a+b)/2]$:

$$D(x) = \frac{1}{2} [f(x) + f(a + b - x)],$$

$$t_{w,n}(x) = \frac{1}{2} \left[\sum_{i=0}^{n-2} \frac{f^{(i+1)}(x)}{(i+1)!} \int_{a}^{b} w(s)(s-x)^{i+1} ds + \sum_{i=0}^{n-2} \frac{f^{(i+1)}(a+b-x)}{(i+1)!} \int_{a}^{b} w(s)(s-a-b+x)^{i+1} ds \right]$$

and

$$\begin{aligned} \widehat{T}_{w,n}(x,s) &= -\frac{1}{2} \left[T_{w,n}(x,s) + T_{w,n}(a+b-x,s) \right] \\ &= \begin{cases} -\int_{a}^{s} w(u)(u-s)^{n-1} du, & a \le s \le x, \\ -\frac{1}{2} \left[\int_{a}^{s} w(u)(u-s)^{n-1} du - \int_{s}^{b} w(u)(u-s)^{n-1} du \right], & x < s \le a+b-x, \\ \int_{s}^{b} w(u)(u-s)^{n-1} du, & a+b-x < s \le b. \end{cases} \end{aligned}$$

In the next theorem we establish a general weighted two-point formula which plays the key role in this section.

THEOREM 2.1. Let $f : I \to \mathbb{R}$ be such that $f^{(n-1)}$ is absolutely continuous for some $n \ge 2$, $I \subset \mathbb{R}$ an open interval, $a, b \in I$, a < b. If $w : [a, b] \to [0, \infty)$ is some probability density function, then for each $x \in [a, (a + b)/2]$

$$\int_{a}^{b} w(t)f(t) dt = D(x) + t_{w,n}(x) + \frac{1}{(n-1)!} \int_{a}^{b} \widehat{T}_{w,n}(x,s) f^{(n)}(s) ds.$$
(2.1)

PROOF. We put $x \equiv x$ and $x \equiv a + b - x$ in (1.3) to obtain two new formulae. After adding these two formulae and multiplying by 1/2, we get (2.1).

REMARK 1. Identity (2.1) holds in the case n = 1. It also can be obtained by taking $x \equiv x$, and $x \equiv a + b - x$ in (1.2), adding these two formulae and multiplying by 1/2. In this special case,

$$\int_{a}^{b} w(t)f(t) dt = D(x) + \int_{a}^{b} \widehat{T}_{w,1}(x,s)f'(s) ds, \qquad (2.2)$$

where

$$\widehat{T}_{w,1}(x,s) = -\frac{1}{2} \left[T_{w,1}(x,s) + T_{w,1}(a+b-x,s) \right]$$
$$= -\frac{1}{2} \left[P_w(x,s) + P_w(a+b-x,s) \right]$$

$$= \begin{cases} -W(s), & a \le s \le x, \\ \frac{1}{2} - W(s), & x < s \le a + b - x, \\ 1 - W(s), & a + b - x < s \le b. \end{cases}$$

DEFINITION 2.2. We say p, q with $1 \le p, q \le \infty$ are conjugate if $p^{-1} + q^{-1} = 1$.

THEOREM 2.3. Suppose that the assumptions of Theorem 2.1 hold. Additionally assume that (p, q) is a pair of conjugate exponents. Let $f^{(n)} \in L_p[a, b]$ for some $n \ge 2$. Then for each $x \in [a, (a + b)/2]$

$$\left| \int_{a}^{b} w(t)f(t) dt - D(x) - t_{w,n}(x) \right| \le \frac{1}{(n-1)!} \left\| \widehat{T}_{w,n}(x, \cdot) \right\|_{q} \left\| f^{(n)} \right\|_{p}.$$
 (2.3)

The constant $(1/(n-1)!) \|\widehat{T}_{w,n}(x,\cdot)\|_q$ is sharp for 1 and the best possible for <math>p = 1.

PROOF. Applying the Hölder inequality we have

$$\left|\frac{1}{(n-1)!}\int_{a}^{b}\widehat{T}_{w,n}(x,s)f^{(n)}(s)\,ds\right| \leq \frac{1}{(n-1)!}\left\|\widehat{T}_{w,n}(x,\cdot)\right\|_{q}\left\|f^{(n)}\right\|_{p}.$$
 (2.4)

Using inequality (2.4), from (2.1) we get estimate (2.3). Let's denote $C_n^x(s) = \widehat{T}_{w,n}(x, s)$. Now, we will prove that the constant $(1/(n-1)!) \left[\int_a^b |C_n^x(s)|^q ds \right]^{1/q}$ is optimal. We will find a function f such that

$$\left| \int_{a}^{b} C_{n}^{x}(s) f^{(n)}(s) \, ds \right| = \left(\int_{a}^{b} |C_{n}^{x}(s)|^{q} \, ds \right)^{1/q} \left(\int_{a}^{b} |f^{(n)}(s)|^{p} \, ds \right)^{1/p}$$

For 1 take <math>f to be such that $f^{(n)}(s) = \operatorname{sgn} C_n^x(s) \cdot |C_n^x(s)|^{1/(p-1)}$. For $p = \infty$ take $f^{(n)}(s) = \operatorname{sgn} C_n^x(s)$. For p = 1 we shall prove that

$$\left| \int_{a}^{b} C_{n}^{x}(s) f^{(n)}(s) \, ds \right| \leq \sup_{s \in [a,b]} |C_{n}^{x}(s)| \left(\int_{a}^{b} |f^{(n)}(s)| \, ds \right) \tag{2.5}$$

is the best possible inequality.

The function $C_n^x(s)$ is left continuous and has finite jumps at x and a + b - x. Thus we have four possibilities.

(1) Suppose $|C_n^x(s)|$ attains its maximum at $s_0 \in [a, b]$ and $C_n^x(s_0) > 0$. Then for $\varepsilon > 0$ small enough define $f_{\varepsilon}(s)$ by

$$f_{\varepsilon}(s) = \begin{cases} 0, & a \le s \le s_0 - \varepsilon, \\ \frac{1}{\varepsilon n!} (s - s_0 + \varepsilon)^n, & s_0 - \varepsilon \le s \le s_0, \\ \frac{1}{n!} (s - s_0 + \varepsilon)^{n-1}, & s_0 \le s \le b. \end{cases}$$

Thus

72

$$\left|\int_{a}^{b} C_{n}^{x}(s) f_{\varepsilon}^{(n)}(s) \, ds\right| = \left|\int_{s_{0}-\varepsilon}^{s_{0}} C_{n}^{x}(s) \frac{1}{\varepsilon} \, ds\right| = \frac{1}{\varepsilon} \int_{s_{0}-\varepsilon}^{s_{0}} C_{n}^{x}(s) \, ds.$$

Now, from inequality (2.5),

$$\frac{1}{\varepsilon} \int_{s_0-\varepsilon}^{s_0} C_n^x(s) \, ds \leq \frac{1}{\varepsilon} C_n^x(s_0) \int_{s_0-\varepsilon}^{s_0} ds = C_n^x(s_0).$$

Since

$$\lim_{\varepsilon \to 0^+} \frac{1}{\varepsilon} \int_{s_0 - \varepsilon}^{s_0} C_n^x(s) \, ds = C_n^x(s_0)$$

the statement follows.

(2) Suppose $|C_n^x(s)|$ attains its maximum at $s_0 \in [a, b]$ and $C_n^x(s_0) < 0$. Then for $\varepsilon > 0$ small enough define $f_{\varepsilon}(s)$ by

$$f_{\varepsilon}(s) = \begin{cases} \frac{1}{n!} (s_0 - s)^{n-1}, & a \le s \le s_0 - \varepsilon, \\ -\frac{1}{\varepsilon n!} (s_0 - s)^n, & s_0 - \varepsilon \le s \le s_0, \\ 0, & s_0 \le s \le b, \end{cases}$$

and the rest of the proof is similar to that given in (1).

(3) Suppose $|C_n^x(s)|$ does not attain a maximum on [a, b] and let $s_0 \in [a, b]$ be such that

$$\sup_{s\in[a,b]} |C_n^x(s)| = \lim_{\varepsilon\to 0^+} |f(s_0+\varepsilon)|.$$

If $\lim_{\varepsilon \to 0^+} f(s_0 + \varepsilon) > 0$, we take

$$f_{\varepsilon}(s) = \begin{cases} 0, & a \le s \le s_0, \\ \frac{1}{\varepsilon n!} (s - s_0)^n, & s_0 \le s \le s_0 + \varepsilon, \\ \frac{1}{n!} (s - s_0)^{n-1}, & s_0 + \varepsilon \le s \le b, \end{cases}$$

and similarly to before we have

$$\left| \int_{a}^{b} C_{n}^{x}(s) f_{\varepsilon}^{(n)}(s) \, ds \right| = \left| \int_{s_{0}}^{s_{0}+\varepsilon} C_{n}^{x}(s) \frac{1}{\varepsilon} \, ds \right| = \frac{1}{\varepsilon} \int_{s_{0}}^{s_{0}+\varepsilon} C_{n}^{x}(s) \, ds,$$
$$\frac{1}{\varepsilon} \int_{s_{0}}^{s_{0}+\varepsilon} C_{n}^{x}(s) \, ds \leq \frac{1}{\varepsilon} C_{n}^{x}(s_{0}) \int_{s_{0}}^{s_{0}+\varepsilon} ds = C_{n}^{x}(s_{0}),$$
$$\lim_{\varepsilon \to 0^{+}} \frac{1}{\varepsilon} \int_{s_{0}}^{s_{0}+\varepsilon} C_{n}^{x}(s) \, ds = C_{n}^{x}(s_{0})$$

and the statement follows.

(4) Suppose $|C_n^x(s)|$ does not attain a maximum on [a, b] and let $s_0 \in [a, b]$ be such that

$$\sup_{s\in[a,b]}|C_n^x(s)| = \lim_{\varepsilon\to 0^+}|f(s_0+\varepsilon)|.$$

If $\lim_{\varepsilon \to 0^+} f(s_0 + \varepsilon) < 0$, we take

$$f_{\varepsilon}(s) = \begin{cases} \frac{1}{n!} (s - s_0 - \varepsilon)^{n-1}, & a \le s \le s_0, \\ -\frac{1}{\varepsilon n!} (s - s_0 - \varepsilon)^n, & s_0 \le s \le s_0 + \varepsilon, \\ 0, & s_0 + \varepsilon \le s \le b, \end{cases}$$

and the rest of the proof is similar to that shown in (1).

THEOREM 2.4. Suppose that the assumptions of Theorem 2.3 hold. Additionally assume that $f^{(2n)}$ is a differentiable function on $\langle a, b \rangle$. Then for every $x \in [a, (a + b)/2]$ there exists $\eta \in \langle a, b \rangle$ such that

$$\int_{a}^{b} w(t)f(t) dt - D(x) - t_{w,2n}(x) = \frac{f^{(2n)}(\eta)}{(2n-1)!} \int_{a}^{b} \widehat{T}_{w,2n}(x,s) ds.$$
(2.6)

PROOF. We apply (2.1) with 2n in place of n. Since $-\int_a^s w(u)(u-s)^{2n-1} du \ge 0$ for every $s \in [a, x], \int_s^b w(u)(u-s)^{2n-1} du \ge 0$ for every $s \in \langle a + b - x, b \rangle$ and

$$\frac{1}{2} \left[-\int_{a}^{s} w(u)(u-s)^{2n-1} \, du + \int_{s}^{b} w(u)(u-s)^{2n-1} \, du \right] \ge 0$$

for every $s \in \langle x, a + b - x \rangle$, we have $\widehat{T}_{w,2n}(x, s) \ge 0$ for $s \in [a, b]$. By applying the integral mean value theorem to $\int_a^b \widehat{T}_{w,2n}(x, s) f^{(2n)}(s) ds$ we obtain (2.6).

THEOREM 2.5. Suppose that the assumptions of Theorem 2.1 hold for 2n, $n \in \mathbb{N}$. If *f* is (2n)-convex, then for each $x \in [a, (a + b)/2]$ the inequality

$$\int_{a}^{b} w(t)f(t) dt - \frac{f(x) + f(a+b-x)}{2} - t_{w,2n}(x) \ge 0$$
(2.7)

holds. If f is (2n)-concave, then the inequality (2.7) is reversed.

PROOF. First note that if $f^{(k)}$ exists, then f is k-convex (k-concave) if and only if $f^{(k)} \ge 0$ ($f^{(k)} \le 0$).

From (2.1) we have that

$$\int_{a}^{b} w(t)f(t) dt - D(x) - t_{w,2n}(x) = \frac{1}{(n-1)!} \int_{a}^{b} \widehat{T}_{w,2n}(x,s) f^{(2n)}(s) ds.$$

[7]

Let us consider the sign of the integral

$$\int_a^b \widehat{T}_{w,2n}(x,s) f^{(2n)}(s) \, ds$$

when f is 2n-convex. We have $f^{(2n)} \ge 0$ and from the proof of Theorem 2.4, $\widehat{T}_{w,2n}(x, s) \ge 0$. Hence, $\int_a^b \widehat{T}_n(x, s) f^{(n)}(s) ds \ge 0$, and (2.7) follows. The reversed (2.7) can be obtained analogously.

REMARK 2. If in Theorem 2.3 we set x = (a + b)/2 we get the generalized midpoint inequality (see [1])

$$\left| f\left(\frac{a+b}{2}\right) - \int_{a}^{b} w(t)f(t) dt + \sum_{i=0}^{n-2} \frac{f^{(i+1)}\left(\frac{a+b}{2}\right)}{(i+1)!} \int_{a}^{b} w(s) \left(s - \frac{a+b}{2}\right)^{i+1} ds \right|$$

$$\leq \frac{1}{(n-1)!} \left(\int_{a}^{b} \left| T_{w,n}\left(\frac{a+b}{2}, s\right) \right|^{q} ds \right)^{1/q} \left\| f^{(n)} \right\|_{p}.$$

For the generalized trapezoid inequality we apply (2.3) with x = a or x = b:

$$\left| \frac{f(a) + f(b)}{2} - \int_{a}^{b} w(t)f(t) dt + \sum_{i=0}^{n-2} \frac{f^{(i+1)}(a)}{2(i+1)!} \int_{a}^{b} w(s)(s-a)^{i+1} ds \right|$$
$$+ \sum_{i=0}^{n-2} \frac{f^{(i+1)}(b)}{2(i+1)!} \int_{a}^{b} w(s)(s-b)^{i+1} ds \right|$$
$$\leq \frac{1}{2(n-1)!} \left(\int_{a}^{b} \left| T_{w,n}(a,s) + T_{w,n}(b,s) \right|^{q} ds \right)^{1/q} \left\| f^{(n)} \right\|_{p}$$

where

$$T_{w,n}(a,s) + T_{w,n}(b,s) = \int_{a}^{s} w(u)(u-s)^{n-1} du - \int_{s}^{b} w(u)(u-s)^{n-1} du.$$

For the applications to follow we introduce the notation

$$f_k^*(x) = \sum_{\substack{0 \le i \le k \\ j=1,2}} (-1)^{i(j+1)} x^i f^{(i)} \left((-1)^j x \right) \quad k = 0, 1, 2.$$

3. Application to Gaussian quadrature formulae

Gaussian quadrature formulae are formulae of the type

$$\int_a^b \varrho(t) f(t) \, dt \approx \sum_{i=1}^k A_i f(x_i).$$

Without loss of generality, we shall restrict ourselves to [a, b] = [-1, 1].

3.1. The case $\varrho(t) = (1/\sqrt{1-t^2}), t \in [-1, 1]$ In this case we have a Gauss-Chebyshev formula

$$\int_{-1}^{1} \frac{1}{\sqrt{1-t^2}} f(t) dt = \sum_{i=1}^{k} A_i f(x_i) + E_k(f),$$
(3.1)

where $A_i = \pi/k$, i = 1, ..., k and the x_i i = 1, ..., k are zeros of the *Chebyshev* polynomials of the first kind defined as

 $T_k(x) = \cos(k \arccos(x)).$

The polynomial $T_k(x)$ has exactly k distinct zeros, all of which lie in the interval [-1, 1] (see for instance [13]) and are given by

$$x_i = \cos\left(\frac{(2i-1)\pi}{2k}\right).$$

The error of the approximation formula (3.1) is given by

$$E_k(f) = \frac{\pi}{2^{2k-1}(2k)!} f^{(2k)}(\xi), \quad \xi \in \langle -1, 1 \rangle$$

In the case k = 2 (3.1) reduces to

$$\int_{-1}^{1} \frac{1}{\sqrt{1-t^2}} f(t) \, dt = \frac{\pi}{2} f_0^* \left(\frac{\sqrt{2}}{2}\right) + \frac{\pi}{192} f^{(4)}(\xi), \quad \xi \in \langle -1, 1 \rangle.$$

REMARK 3. If we apply (2.2) with a = -1, b = 1, $x = -\sqrt{2}/2$ and $w(t) = 1/(\pi\sqrt{1-t^2})$, $t \in [-1, 1]$, we get

$$\int_{-1}^{1} \frac{1}{\sqrt{1-t^2}} f(t) \, dt = \frac{\pi}{2} f_0^* \left(\frac{\sqrt{2}}{2}\right) + \pi \int_{-1}^{1} R_1(s) f'(s) \, ds,$$

where

$$R_1(s) = \begin{cases} -\frac{1}{2} - \frac{1}{\pi} \arcsin s, & -1 \le s \le -\frac{\sqrt{2}}{2}, \\ -\frac{1}{\pi} \arcsin s, & -\frac{\sqrt{2}}{2} < s \le \frac{\sqrt{2}}{2}, \\ \frac{1}{2} - \frac{1}{\pi} \arcsin s, & \frac{\sqrt{2}}{2} < s \le 1. \end{cases}$$

COROLLARY 3.1. Let $f : I \to \mathbb{R}$ be absolutely continuous, $I \subset \mathbb{R}$ an open interval, $[-1, 1] \subset I$, (p, q) a pair of conjugate exponents, and $f' \in L_p[-1, 1]$. Then

$$\left| \int_{-1}^{1} \frac{1}{\sqrt{1-t^2}} f(t) \, dt - \frac{\pi}{2} f_0^* \left(\frac{\sqrt{2}}{2} \right) \right| \le \pi \, \|R_1\|_q \, \|f'\|_p. \tag{3.2}$$

PROOF. This is a special case of Theorem 2.3 for a = -1, b = 1, $x = -\sqrt{2}/2$ and $w(t) = 1/(\pi\sqrt{1-t^2}), t \in [-1, 1]$.

COROLLARY 3.2. Suppose that all the assumptions of Corollary 3.1 hold. Then

$$\left| \int_{-1}^{1} \frac{1}{\sqrt{1-t^2}} f(t) \, dt - \frac{\pi}{2} f_0^* \left(\frac{\sqrt{2}}{2} \right) \right| \le \begin{cases} (2\sqrt{2}-2) \, \left\| f' \right\|_{\infty}, \\ (\pi\sqrt{2}-4)^{1/2} \, \left\| f' \right\|_2, \\ \frac{1}{4}\pi \, \left\| f' \right\|_1. \end{cases}$$

The constants on the right-hand sides of the first and second inequalities are sharp and the best possible in the third inequality.

PROOF. We apply (3.2) with $p = \infty$:

$$\int_{-1}^{1} |R_1(s)| \, ds = \int_{-1}^{-\sqrt{2}/2} \left| -\frac{1}{2} - \frac{1}{\pi} \arcsin s \right| \, ds + \int_{-\sqrt{2}/2}^{\sqrt{2}/2} \left| -\frac{1}{\pi} \arcsin s \right| \, ds \\ + \int_{\sqrt{2}/2}^{1} \left| \frac{1}{2} - \frac{1}{\pi} \arcsin s \right| \, ds = \frac{2\sqrt{2} - 2}{\pi}$$

and the first inequality is obtained. To prove the second inequality we take p = 2:

$$\int_{-1}^{1} |R_1(s)|^2 ds = \int_{-1}^{-\sqrt{2}/2} \left| -\frac{1}{2} - \frac{1}{\pi} \arcsin s \right|^2 ds + \int_{-\sqrt{2}/2}^{\sqrt{2}/2} \left| -\frac{1}{\pi} \arcsin s \right|^2 ds + \int_{\sqrt{2}/2}^{1} \left| \frac{1}{2} - \frac{1}{\pi} \arcsin s \right|^2 ds = \frac{\pi\sqrt{2} - 4}{\pi^2}.$$

If p = 1, then $\sup_{s \in [-1,1]} |R_1(s)|$ equals

$$\max\left\{\sup_{s\in\left[-1,-\frac{\sqrt{2}}{2}\right]}\left|-\frac{1}{2}-\frac{1}{\pi}\arcsin s\right|, \sup_{s\in\left[-\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right]}\left|-\frac{1}{\pi}\arcsin s\right|, \sup_{s\in\left[\frac{\sqrt{2}}{2},1\right]}\left|\frac{1}{2}-\frac{1}{\pi}\arcsin s\right|\right\}.$$

By an elementary calculation, each of the three suprema is equal to 1/4, and the third inequality is proved.

REMARK 4. The first and third inequality from the Corollary 3.2 have also been obtained in [7].

REMARK 5. If we apply Theorem 2.1 with n = 2, a = -1, b = 1, $x = -\sqrt{2}/2$ and $w(t) = 1/(\pi\sqrt{1-t^2})$, $t \in [-1, 1]$, we get

$$\int_{-1}^{1} \frac{1}{\sqrt{1-t^2}} f(t) dt = \frac{\pi}{2} f_1^* \left(\frac{\sqrt{2}}{2}\right) + \pi \int_{-1}^{1} R_2(s) f''(s) ds,$$

•

where

$$R_{2}(s) = \begin{cases} \frac{1}{2}s + \frac{1}{\pi} \left(s \arcsin s + \sqrt{1 - s^{2}} \right), & -1 \le s \le -\frac{\sqrt{2}}{2}, \\ \frac{1}{\pi} \left(s \arcsin s + \sqrt{1 - s^{2}} \right), & -\frac{\sqrt{2}}{2} < s \le \frac{\sqrt{2}}{2}, \\ -\frac{1}{2}s + \frac{1}{\pi} \left(s \arcsin s + \sqrt{1 - s^{2}} \right), & \frac{\sqrt{2}}{2} < s \le 1. \end{cases}$$

COROLLARY 3.3. Suppose that the assumptions of Theorem 2.3 hold. Then

$$\left| \int_{-1}^{1} \frac{f(t) dt}{\sqrt{1 - t^2}} - \frac{\pi}{2} f_1^* \left(\frac{\sqrt{2}}{2} \right) \right| \le \begin{cases} \frac{1}{2} \pi \|f''\|_{\infty}, \\ \left(\frac{32 + 3\sqrt{2}\pi}{27} \right)^{1/2} \|f''\|_2, \\ \left(\frac{\sqrt{2}\pi}{8} + \frac{\sqrt{2}}{2} \right) \|f''\|_1. \end{cases}$$

The constants on the right-hand sides of the first and second inequalities are sharp and the right-hand side constant in the third inequality is the best possible.

PROOF. Similarly to the proof of Corollary 3.2, for the first inequality we have

$$\int_{-1}^{1} |R_2(s)| \, ds = \frac{1}{2}$$

and for the second

$$\int_{-1}^{1} |R_2(s)|^2 \, ds = \frac{32 + 3\sqrt{2}\pi}{27\pi^2}$$

To prove the third inequality we calculate

$$\sup_{s \in \left[-1, -\sqrt{2}/2\right]} \left| \frac{1}{2}s + \frac{1}{\pi} \left(s \arcsin s + \sqrt{1 - s^2} \right) \right| = \frac{(4 - \pi)\sqrt{2}}{8\pi},$$
$$\sup_{s \in \left[-\sqrt{2}/2, \sqrt{2}/2\right]} \left| \frac{1}{\pi} \left(s \arcsin s + \sqrt{1 - s^2} \right) \right| = \frac{(4 + \pi)\sqrt{2}}{8\pi},$$
$$\sup_{s \in \left[\sqrt{2}/2, 1\right]} \left| -\frac{1}{2}s + \frac{1}{\pi} \left(s \arcsin s + \sqrt{1 - s^2} \right) \right| = \frac{(4 - \pi)\sqrt{2}}{8\pi}.$$

Finally

$$\sup_{s \in [-1,1]} |R_2(s)| = \max\left\{\frac{(4-\pi)\sqrt{2}}{8\pi}, \frac{(4+\pi)\sqrt{2}}{8\pi}\right\} = \frac{(4+\pi)\sqrt{2}}{8\pi}.$$

[11]

REMARK 6. If f'' is a differentiable function on $\langle -1, 1 \rangle$, by Theorem 2.4 there exists $\eta \in \langle -1, 1 \rangle$ such that

$$\int_{-1}^{1} \frac{f(t) dt}{\sqrt{1-t^2}} - \frac{\pi}{2} f_1^* \left(\frac{\sqrt{2}}{2}\right) = \frac{\pi}{2} f''(\eta).$$

REMARK 7. If we apply Theorem 2.1 with n = 3, a = -1, b = 1, $x = -\sqrt{2}/2$ and $w(t) = 1/(\pi\sqrt{1-t^2})$, $t \in [-1, 1]$, we get

$$\int_{-1}^{1} \frac{1}{\sqrt{1-t^2}} f(t) dt = \frac{\pi}{2} f_2^* \left(\frac{\sqrt{2}}{2}\right) + \frac{\pi}{2} \int_{-1}^{1} R_3(s) f'''(s) ds,$$

where

$$R_{3}(s) = \begin{cases} -\frac{3}{2\pi}s\sqrt{1-s^{2}} - \frac{1}{\pi}\left(\frac{1}{2} + s^{2}\right) \arcsin s \\ -\frac{1}{2}\left(\frac{1}{2} + s^{2}\right), & -1 \le s \le -\frac{\sqrt{2}}{2}, \\ -\frac{3}{2\pi}s\sqrt{1-s^{2}} - \frac{1}{\pi}\left(\frac{1}{2} + s^{2}\right) \arcsin s, & -\frac{\sqrt{2}}{2} < s \le \frac{\sqrt{2}}{2}, \\ -\frac{3}{2\pi}s\sqrt{1-s^{2}} - \frac{1}{\pi}\left(\frac{1}{2} + s^{2}\right) \arcsin s \\ +\frac{1}{2}\left(\frac{1}{2} + s^{2}\right), & \frac{\sqrt{2}}{2} < s \le 1. \end{cases}$$

COROLLARY 3.4. Suppose that the assumptions of Theorem 2.3 hold. Then

$$\int_{-1}^{1} \frac{f(t) dt}{\sqrt{1 - t^2}} - \frac{\pi}{2} f_2^* \left(\frac{\sqrt{2}}{2}\right) \bigg| \le \begin{cases} \frac{1}{36} \left(-8 + 19\sqrt{2}\right) \|f'''\|_{\infty}, \\ \frac{1}{2} \left(\frac{-4096 + 2505\sqrt{2}\pi}{6750}\right)^{1/2} \|f'''\|_{2}, \\ \frac{1}{8} \left(3 + \pi\right) \|f''''\|_{1}. \end{cases}$$

The constants on the right-hand sides of the first and second inequalities are sharp and the right-hand side constant in the third inequality is the best possible.

PROOF. For the first and second inequalities

$$\int_{-1}^{1} |R_3(s)| \, ds = \frac{-8 + 19\sqrt{2}}{18\pi}, \quad \int_{-1}^{1} |R_3(s)|^2 \, ds = \frac{-4096 + 2505\sqrt{2}\pi}{6750\pi^2},$$

and for the third

$$\sup_{s \in \left[-1, -\sqrt{2}/2\right]} \left| -\frac{3}{2\pi} s \sqrt{1-s^2} - \frac{1}{\pi} \left(\frac{1}{2} + s^2 \right) \arcsin s - \frac{1}{2} \left(\frac{1}{2} + s^2 \right) \right| = \frac{1}{4} - \frac{3}{4\pi},$$

$$\sup_{\substack{s \in \left[-\sqrt{2}/2, \sqrt{2}/2\right]}} \left| -\frac{3}{2\pi} s \sqrt{1-s^2} - \frac{1}{\pi} \left(\frac{1}{2} + s^2\right) \arcsin s \right| = \frac{1}{4} + \frac{3}{4\pi},$$
$$\sup_{s \in \left[\sqrt{2}/2, 1\right]} \left| -\frac{3}{2\pi} s \sqrt{1-s^2} - \frac{1}{\pi} \left(\frac{1}{2} + s^2\right) \arcsin s + \frac{1}{2} \left(\frac{1}{2} + s^2\right) \right| = \frac{1}{4} - \frac{3}{4\pi}.$$

Finally

$$\sup_{s \in [-1,1]} |R_3(s)| = \max\left\{\frac{1}{4} - \frac{3}{4\pi}, \frac{1}{4} + \frac{3}{4\pi}\right\} = \frac{1}{4} + \frac{3}{4\pi}.$$

3.2. The case $\varrho(t) = \sqrt{1-t^2}$, $t \in [-1, 1]$ In this case we have a formula of the type

$$\int_{-1}^{1} \sqrt{1 - t^2} f(t) dt = \sum_{i=1}^{k} A_i f(x_i) + E_k(f), \qquad (3.3)$$

where the A_i are given by

$$A_i = \frac{\pi}{k+1} \sin^2 \frac{i\pi}{k+1}, \quad i = 1, \dots, k$$

and the x_i are zeros of the Chebyshev polynomials of the second kind defined as

$$U_k(x) = \frac{\sin[(k+1)\arccos(x)]}{\sin[\arccos(x)]}.$$

The polynomial $U_k(x)$ has exactly k distinct zeros, all of which lie in the interval [-1, 1] (see for instance [13]) and are given by

$$x_i = \cos\left(\frac{i\pi}{k+1}\right).$$

The error of the approximation formula (3.3) is given by

$$E_k(f) = \frac{\pi}{2^{2k+1}(2k)!} f^{(2k)}(\xi), \quad \xi \in \langle -1, 1 \rangle.$$

In the case k = 2 (3.3) reduces to

$$\int_{-1}^{1} \sqrt{1-t^2} f(t) \, dt = \frac{\pi}{4} f_0^* \left(\frac{1}{2}\right) + \frac{\pi}{768} f^{(4)}(\xi), \quad \xi \in \langle -1, 1 \rangle.$$

REMARK 8. If we apply (2.2) with a = -1, b = 1, x = -1/2 and $w(t) = 2\sqrt{1-t^2}/\pi$, $t \in [-1, 1]$, we get

$$\int_{-1}^{1} \sqrt{1-t^2} f(t) \, dt = \frac{\pi}{4} f_0^* \left(\frac{1}{2}\right) + \frac{\pi}{2} \int_{-1}^{1} Q_1(s) f'(s) \, ds,$$

[13]

where

$$Q_1(s) = \begin{cases} -\frac{1}{2} - \frac{1}{\pi} \left(s\sqrt{1-s^2} + \arcsin s \right), & -1 \le s \le -\frac{1}{2}, \\ -\frac{1}{\pi} \left(s\sqrt{1-s^2} + \arcsin s \right), & -\frac{1}{2} < s \le \frac{1}{2}, \\ \frac{1}{2} - \frac{1}{\pi} \left(s\sqrt{1-s^2} + \arcsin s \right), & \frac{1}{2} < s \le 1. \end{cases}$$

COROLLARY 3.5. Suppose that the assumptions of Corollary 3.1 hold. Then

$$\left| \int_{-1}^{1} \sqrt{1 - t^2} f(t) \, dt - \frac{\pi}{4} f_0^* \left(\frac{1}{2} \right) \right| \le \frac{\pi}{2} \, \|Q_1\|_q \, \left\| f' \right\|_p. \tag{3.4}$$

PROOF. This is a special case of Theorem 2.3 for a = -1, b = 1, x = -1/2 and $w(t) = 2\sqrt{1-t^2}/\pi$, $t \in [-1, 1]$.

COROLLARY 3.6. Suppose that the assumptions of Corollary 3.1 hold. Then

$$\left| \int_{-1}^{1} \sqrt{1 - t^2} f(t) \, dt - \frac{\pi}{4} f_0^* \left(\frac{1}{2} \right) \right| \leq \begin{cases} \frac{1}{12} \left(-8 + 9\sqrt{3} - \pi \right) \|f'\|_{\infty}, \\ \frac{1}{6} \left(\frac{-512 + 135\sqrt{3}\pi - 15\pi^2}{20} \right)^{1/2} \|f'\|_2, \\ \frac{1}{24} \left(3\sqrt{3} + 2\pi \right) \|f'\|_1. \end{cases}$$

The constants on the right-hand sides of the first and second inequalities are sharp and the right-hand side constant in the third inequality is the best possible.

PROOF. We apply (3.4) with $p = \infty$:

$$\begin{split} \int_{-1}^{1} |Q_1(s)| \, ds \\ &= \int_{-1}^{-1/2} \left| -\frac{1}{2} - \frac{1}{\pi} \left(s\sqrt{1 - s^2} + \arcsin s \right) \right| \, ds \\ &+ \int_{-1/2}^{1/2} \left| -\frac{1}{\pi} \left(s\sqrt{1 - s^2} + \arcsin s \right) \right| \, ds \\ &+ \int_{1/2}^{1} \left| \frac{1}{2} - \frac{1}{\pi} \left(s\sqrt{1 - s^2} + \arcsin s \right) \right| \, ds = \frac{-16 + 18\sqrt{3} - 2\pi}{12\pi} \end{split}$$

and the first inequality is obtained. To prove the second inequality we take p = 2:

$$\int_{-1}^{1} |Q_1(s)|^2 ds = \int_{-1}^{-1/2} \left| -\frac{1}{2} - \frac{1}{\pi} \left(s\sqrt{1-s^2} + \arcsin s \right) \right|^2 ds + \int_{-1/2}^{1/2} \left| -\frac{1}{\pi} \left(s\sqrt{1-s^2} + \arcsin s \right) \right|^2 ds + \int_{1/2}^{1} \left| \frac{1}{2} - \frac{1}{\pi} \left(s\sqrt{1-s^2} + \arcsin s \right) \right|^2 ds = \frac{-512 + 135\sqrt{3}\pi - 15\pi^2}{180\pi^2}.$$
(3.5)

If p = 1, we have that the arguments of the three integrals in (3.5) have successive suprema $(1/3) - \sqrt{3}/4\pi$, $(1/6) + \sqrt{3}/4\pi$, $(1/3) - \sqrt{3}/4\pi$ so

$$\sup_{s \in [-1,1]} |Q_1(s)| = \max\left\{\frac{1}{3} - \frac{\sqrt{3}}{4\pi}, \frac{1}{6} + \frac{\sqrt{3}}{4\pi}\right\} = \frac{1}{6} + \frac{\sqrt{3}}{4\pi}$$

and the third inequality is proved.

REMARK 9. The first and third inequalities from Corollary 3.6 have also been obtained in [7].

REMARK 10. If we apply Theorem 2.1 with n = 2, a = -1, b = 1, x = -1/2 and $w(t) = 2\sqrt{1-t^2}/\pi$, $t \in [-1, 1]$, we get

$$\int_{-1}^{1} \sqrt{1-t^2} f(t) \, dt = \frac{\pi}{4} f_1^* \left(\frac{1}{2}\right) + \frac{\pi}{2} \int_{-1}^{1} Q_2(s) f''(s) \, ds,$$

where

$$Q_{2}(s) = \begin{cases} \frac{1}{3\pi} \left(2+s^{2}\right) \sqrt{1-s^{2}} + \frac{1}{\pi}s \arcsin s + \frac{s}{2}, & -1 \le s \le -\frac{1}{2}, \\ \frac{1}{3\pi} \left(2+s^{2}\right) \sqrt{1-s^{2}} + \frac{1}{\pi}s \arcsin s, & -\frac{1}{2} < s \le \frac{1}{2}, \\ \frac{1}{3\pi} \left(2+s^{2}\right) \sqrt{1-s^{2}} + \frac{1}{\pi}s \arcsin s - \frac{s}{2}, & \frac{1}{2} < s \le 1. \end{cases}$$

COROLLARY 3.7. Suppose that the assumptions of Theorem 2.3 hold. Then

$$\left| \int_{-1}^{1} \sqrt{1 - t^2} f(t) \, dt - \frac{\pi}{4} f_1^* \left(\frac{1}{2} \right) \right| \leq \begin{cases} \frac{1}{8} \pi \, \left\| f'' \right\|_{\infty}, \\ \frac{\pi}{2} \left(-\frac{1}{144} + \frac{3\sqrt{3}}{80\pi} + \frac{2048}{4725\pi^2} \right)^{1/2} \left\| f'' \right\|_2, \\ \left(\frac{\pi}{24} + \frac{3\sqrt{3}}{16} \right) \left\| f'' \right\|_1. \end{cases}$$

The constants on the right-hand sides of the first and second inequalities are sharp and the right-hand side constant in the third inequality is the best possible.

PROOF. For the first and second inequalities

$$\int_{-1}^{1} |Q_2(s)| \, ds = \frac{1}{4}, \quad \int_{-1}^{1} |Q_2(s)|^2 \, ds = -\frac{1}{144} + \frac{3\sqrt{3}}{80\pi} + \frac{2048}{4725\pi^2},$$

and for the third

$$\sup_{s \in [-1, -1/2]} \left| \frac{1}{3\pi} \left(2 + s^2 \right) \sqrt{1 - s^2} + \frac{1}{\pi} s \arcsin s + \frac{s}{2} \right| = -\frac{1}{6} + \frac{3\sqrt{3}}{8\pi},$$
$$\sup_{s \in [-1/2, 1/2]} \left| \frac{1}{3\pi} \left(2 + s^2 \right) \sqrt{1 - s^2} + \frac{1}{\pi} s \arcsin s \right| = \frac{1}{12} + \frac{3\sqrt{3}}{8\pi},$$
$$\sup_{s \in [1/2, 1]} \left| \frac{1}{3\pi} \left(2 + s^2 \right) \sqrt{1 - s^2} + \frac{1}{\pi} s \arcsin s - \frac{s}{2} \right| = -\frac{1}{6} + \frac{3\sqrt{3}}{8\pi}.$$

Finally

$$\sup_{s \in [-1,1]} |Q_2(s)| = \max\left\{-\frac{1}{6} + \frac{3\sqrt{3}}{8\pi}, \frac{1}{12} + \frac{3\sqrt{3}}{8\pi}\right\} = \frac{1}{12} + \frac{3\sqrt{3}}{8\pi}.$$

REMARK 11. If f'' is a differentiable function on $\langle -1, 1 \rangle$, by Theorem 2.4, there exists $\eta \in \langle -1, 1 \rangle$ such that

$$\int_{-1}^{1} \sqrt{1-t^2} f(t) \, dt - \frac{\pi}{4} f_1^* \left(\frac{1}{2}\right) = \frac{\pi}{8} f''(\eta).$$

REMARK 12. If we apply Theorem 2.1 with n = 3, a = -1, b = 1, x = -1/2 and $w(t) = 2\sqrt{1 - t^2}/\pi$, $t \in [-1, 1]$, we get

$$\int_{-1}^{1} \sqrt{1-t^2} f(t) \, dt = \frac{\pi}{4} f_2^* \left(\frac{1}{2}\right) + \frac{\pi}{4} \int_{-1}^{1} Q_3(s) f'''(s) \, ds,$$

where

$$Q_{3}(s) = \begin{cases} -\frac{1}{12\pi}(13s+2s^{3})\sqrt{1-s^{2}} \\ -\frac{1}{4\pi}(1+4s^{2}) \arcsin s - \frac{1}{8}(1+4s^{2}), & -1 \le s \le -\frac{1}{2}, \\ -\frac{1}{12\pi}(13s+2s^{3})\sqrt{1-s^{2}} \\ -\frac{1}{4\pi}(1+4s^{2}) \arcsin s, & -\frac{1}{2} < s \le \frac{1}{2}, \\ -\frac{1}{12\pi}(13s+2s^{3})\sqrt{1-s^{2}} \\ -\frac{1}{4\pi}(1+4s^{2}) \arcsin s + \frac{1}{8}(1+4s^{2}), & \frac{1}{2} < s \le 1. \end{cases}$$

COROLLARY 3.8. Suppose that the assumptions of Theorem 2.3 hold. Then

$$\begin{split} \left| \int_{-1}^{1} \sqrt{1 - t^{2}} f(t) \, dt - \frac{\pi}{4} f_{2}^{*} \left(\frac{1}{2} \right) \right| \\ & \leq \begin{cases} \frac{1}{2880} \left(-128 + 297\sqrt{3} - 40\pi \right) \left\| f^{\prime\prime\prime} \right\|_{\infty}, \\ \frac{\pi}{4} \left(-\frac{7}{720} + \frac{411\sqrt{3}}{5600\pi} - \frac{65536}{496125\pi^{2}} \right)^{1/2} \left\| f^{\prime\prime\prime} \right\|_{2}, \\ \left(\frac{\pi}{48} + \frac{9\sqrt{3}}{128} \right) \left\| f^{\prime\prime\prime} \right\|_{1}. \end{split}$$

The constants on the right-hand sides of the first and second inequalities are sharp and the right-hand side constant in the third inequality is the best possible.

PROOF. For the first and second inequalities

$$\int_{-1}^{1} |Q_3(s)| \, ds = \frac{-128 + 297\sqrt{3} - 40\pi}{720\pi},$$
$$\int_{-1}^{1} |Q_3(s)|^2 \, ds = -\frac{7}{720} + \frac{411\sqrt{3}}{5600\pi} - \frac{65536}{496125\pi^2},$$

and for the third

$$\begin{split} \sup_{s \in [-1, -1/2]} \left| -\frac{1}{12\pi} \left[13s + 2s^3 \right] \sqrt{1 - s^2} - \left[1 + 4s^2 \right] \left(\frac{1}{4\pi} \arcsin s + \frac{1}{8} \right) \right| \\ &= \frac{1}{6} - \frac{9\sqrt{3}}{32\pi}, \\ \sup_{s \in [-1/2, 1/2]} \left| -\frac{1}{12\pi} \left[13s + 2s^3 \right] \sqrt{1 - s^2} - \frac{1}{4\pi} \left[1 + 4s^2 \right] \arcsin s \right| \\ &= \frac{1}{12} + \frac{9\sqrt{3}}{32\pi}, \\ \sup_{s \in [1/2, 1]} \left| -\frac{1}{12\pi} \left[13s + 2s^3 \right] \sqrt{1 - s^2} + \left[1 + 4s^2 \right] \left(-\frac{1}{4\pi} \arcsin s + \frac{1}{8} \right) \right| \\ &= \frac{1}{6} - \frac{9\sqrt{3}}{32\pi}. \end{split}$$

Finally

$$\sup_{s \in [-1,1]} |Q_3(s)| = \max\left\{\frac{1}{6} - \frac{9\sqrt{3}}{32\pi}, \frac{1}{12} + \frac{9\sqrt{3}}{32\pi}\right\} = \frac{1}{12} + \frac{9\sqrt{3}}{32\pi}.$$

4. Nonweighted case of a two-point formula and applications

Here we define

84

$$\begin{aligned} \widehat{t}_n(x) &= \frac{1}{2} \sum_{i=0}^{n-2} \left[f^{(i+1)}(x) + (-1)^{i+1} f^{(i+1)}(a+b-x) \right] \\ &\times \frac{(b-x)^{i+2} - (a-x)^{i+2}}{(i+2)!(b-a)}, \\ \widehat{T}_n(x,s) &= -\frac{n}{2} \left[T_n(x,s) + T_n(a+b-x,s) \right] \\ &= \begin{cases} \frac{1}{(b-a)} (a-s)^n, & a \le s \le x, \\ \frac{1}{2(b-a)} \left[(a-s)^n + (b-s)^n \right], & x < s \le a+b-x, \\ \frac{1}{(b-a)} (b-s)^n, & a+b-x < s \le b. \end{cases} \end{aligned}$$

We will use the Beta function and the incomplete Beta function of Euler type defined as

$$B(x, y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt, \quad B_r(x, y) = \int_0^r t^{x-1} (1-t)^{y-1} dt, \ x, y > 0.$$

THEOREM 4.1. Let $f : I \to \mathbb{R}$ be such that $f^{(n-1)}$ is absolutely continuous for some $n \ge 2$, $I \subset \mathbb{R}$ an open interval, $a, b \in I$, a < b. Then for each $x \in [a, (a+b)/2]$ we have the identity

$$\frac{1}{b-a} \int_{a}^{b} f(t) dt = D(x) + \hat{t}_{n}(x) + \frac{1}{n!} \int_{a}^{b} \hat{T}_{n}(x,s) f^{(n)}(s) ds.$$

PROOF. We take $w(t) = 1/(b - a), t \in [a, b]$ in (2.1).

THEOREM 4.2. Suppose that the assumptions of Theorem 4.1 hold. Additionally assume that (p, q) is a pair of conjugate exponents and that $f^{(n)} \in L_p[a, b]$ for some $n \ge 2$. Then for each $x \in [a, (a + b)/2]$

$$\left|\frac{1}{b-a}\int_{a}^{b}f(t)\,dt - D(x) - \widehat{t}_{n}(x)\right| \le \frac{1}{n!} \left\|\widehat{T}_{n}(x,\,\cdot)\right\|_{q} \left\|f^{(n)}\right\|_{p}.$$
(4.1)

The constant $(1/n!) \|\widehat{T}_n(x, \cdot)\|_q$ is sharp for 1 and the best possible for <math>p = 1.

PROOF. We take
$$w(t) = 1/(b - a), t \in [a, b]$$
 in (2.3).

$$\left|\frac{1}{b-a}\int_{a}^{b}f(t)\,dt - D(x) - \widehat{t}_{n}(x)\right| \leq \begin{cases} \Omega_{\infty} \left\|f^{(n)}\right\|_{\infty},\\ \Omega_{2} \left\|f^{(n)}\right\|_{2},\\ \Omega_{1} \left\|f^{(n)}\right\|_{1}, \end{cases}$$

where

$$\begin{split} \Omega_{\infty} &= \frac{1}{(n+1)!} \left[\frac{(x-a)^{n+1} \left[2 + (-1)^{n+1} \right] + (b-x)^{n+1}}{(b-a)} \\ &- \left[\frac{b-a}{2} \right]^n \left[\frac{(-1)^{n+1} + 1}{2} \right] \right] \\ \Omega_2 &= \frac{1}{n!} \left(\frac{(-1)^n (b-a)^{2n-1}}{2} \left[B_{\frac{b-x}{b-a}}(n+1,n+1) - B_{\frac{x-a}{b-a}}(n+1,n+1) \right] \\ &+ \frac{3(x-a)^{2n+1} + (b-x)^{2n+1}}{2(2n+1)(b-a)^2} \right)^{1/2} \\ \Omega_1 &= \frac{1}{n!(b-a)} \max \left\{ (x-a)^n , \frac{(a-x)^n + (b-x)^n}{2} \right\}. \end{split}$$

The constants on the right-hand sides of the first and second inequalities are sharp and the right-hand side constant in the third inequality is the best possible.

PROOF. We apply (4.1) with $p = \infty$:

$$\begin{split} &\int_{a}^{b} \left| \widehat{T}_{n}(x,s) \right| ds \\ &= \int_{a}^{x} \left| \frac{(a-s)^{n}}{b-a} \right| ds + \int_{x}^{a+b-x} \left| \frac{(a-s)^{n} + (b-s)^{n}}{2(b-a)} \right| ds \\ &+ \int_{a+b-x}^{b} \left| \frac{(b-s)^{n}}{b-a} \right| ds \\ &= 2 \frac{(x-a)^{n+1}}{(n+1)(b-a)} + \frac{(a-x)^{n+1} + (b-x)^{n+1} - \left(\frac{b-a}{2}\right)^{n+1} \left[(-1)^{n+1} + 1 \right]}{(n+1)(b-a)} \\ &= \frac{(x-a)^{n+1} \left[2 + (-1)^{n+1} \right] + (b-x)^{n+1}}{(n+1)(b-a)} - \left(\frac{b-a}{2} \right)^{n} \left[\frac{(-1)^{n+1} + 1}{2(n+1)} \right] \end{split}$$

and the first inequality is obtained. To prove the second inequality we take p = 2:

$$\begin{split} \int_{a}^{b} |\widehat{T}_{n}(x,s)|^{2} ds \\ &= \int_{a}^{x} \left| \frac{(a-s)^{n}}{b-a} \right|^{2} ds + \int_{x}^{a+b-x} \left| \frac{(a-s)^{n} + (b-s)^{n}}{2(b-a)} \right|^{2} ds \\ &+ \int_{a+b-x}^{b} \left| \frac{(b-s)^{n}}{b-a} \right|^{2} ds \\ &= \frac{3(x-a)^{2n+1} + (b-x)^{2n+1}}{2(2n+1)(b-a)^{2}} + \frac{(-1)^{n}(b-a)^{2n-1}}{2} \\ &\times \left[B_{(b-x)/(b-a)} (n+1,n+1) - B_{(x-a)/(b-a)} (n+1,n+1) \right]. \end{split}$$

If
$$p = 1$$
,

$$\sup_{s \in [a,b]} |\widehat{T}_n(x,s)| = \max\left\{ \sup_{s \in [a,x]} \left| \frac{(a-s)^n}{b-a} \right|, \sup_{s \in [x,a+b-x]} \left| \frac{(a-s)^n + (b-s)^n}{2(b-a)} \right|, \sup_{s \in [a+b-x,b]} \left| \frac{(b-s)^n}{b-a} \right| \right\}$$

By an elementary calculation we obtain

$$\sup_{s \in [a,x]} \left| \frac{(a-s)^n}{b-a} \right| = \frac{(x-a)^n}{(b-a)}, \quad \sup_{s \in [a+b-x,b]} \left| \frac{(b-s)^n}{b-a} \right| = \frac{(x-a)^n}{(b-a)}$$

The function $y:[a, b] \to \mathbb{R}$, $y(x) = (a - x)^n + (b - x)^n$, is decreasing on $\langle a, (a + b)/2 \rangle$ and increasing on $\langle (a + b)/2, b \rangle$ if *n* is even, and decreasing on $\langle a, b \rangle$ if *n* is odd. Thus

$$\sup_{s \in [x,a+b-x]} \left| \frac{(a-s)^n + (b-s)^n}{2(b-a)} \right| = \frac{(a-x)^n + (b-x)^n}{2(b-a)}.$$
 (4.2)

Since $x \in [a, (a + b)/2]$

$$\sup_{s \in [a,b]} \left| \widehat{T}_n(x,s) \right| = \max\left\{ \frac{(x-a)^n}{(b-a)}, \frac{(a-x)^n + (b-x)^n}{2(b-a)} \right\}$$

and the third inequality is proved.

COROLLARY 4.4. Let $f : [a, b] \to \mathbb{R}$ be a L-Lipschitzian function on [a, b]. Then for each $x \in [a, (a + b)/2]$

$$\left|\frac{1}{b-a}\int_{a}^{b}f(t)\,dt - D(x)\right| \le \left(\frac{3(x-a)^{2} + (b-x)^{2}}{2(b-a)} - \frac{b-a}{4}\right)L.$$
 (4.3)

PROOF. We apply the first inequality from Corollary 4.3 with n = 1.

REMARK 13. The inequality (4.3) has been proved and generalized for α -L-Lipschitzian functions by Guessab and Schmeisser in [5]. They also proved that this inequality is sharp for each admissible x.

COROLLARY 4.5. Let $f : [a, b] \to \mathbb{R}$ be such that f' is an L-Lipschitzian function on [a, b]. Then for each $x \in [a, (a + b)/2]$

$$\left| \frac{1}{b-a} \int_{a}^{b} f(t) dt - D(x) - \left[f'(x) - f'(a+b-x) \right] \frac{(b-x)^{2} - (a-x)^{2}}{4(b-a)} \right|$$
$$\leq \frac{(x-a)^{3} + (b-x)^{3}}{6(b-a)} L.$$

PROOF. We apply the first inequality from Corollary 4.3 with n = 2.

COROLLARY 4.6. Let $f : [a, b] \to \mathbb{R}$ be a continuous function of bounded variation on [a, b]. Then for each $x \in [a, (a + b)/2]$

$$\left|\frac{1}{b-a}\int_{a}^{b}f(t)\,dt - D(x)\right| \le \left(\frac{1}{4} + \frac{|3a+b-4x|}{4(b-a)}\right)V_{a}^{b}(f). \tag{4.4}$$

More precisely, if $x \in [a, (3a + b)/4]$

$$\left|\frac{1}{b-a}\int_{a}^{b}f(t)\,dt - D(x)\right| \le \frac{a+b-2x}{2(b-a)}V_{a}^{b}(f)$$

and if $x \in [(3a+b)/4, (a+b)/2]$

$$\left|\frac{1}{b-a}\int_{a}^{b}f(t)\,dt - D(x)\right| \leq \frac{x-a}{b-a}V_{a}^{b}(f).$$

PROOF. We apply the third inequality from Corollary 4.3 with n = 1 to get

$$\left|\frac{1}{b-a}\int_a^b f(t)\,dt - D(x)\right| \le \frac{1}{(b-a)}\max\left\{x-a,\frac{a+b}{2}-x\right\}V_a^b(f).$$

Using the formula $\max\{A, B\} = (1/2) (A + B + |A - B|)$ the proof for the first inequality follows. Since

$$\max\left\{x - a, \frac{a + b}{2} - x\right\} = \begin{cases} \frac{a + b}{2} - x, & \text{if } x \in \left[a, \frac{3a + b}{4}\right], \\ x - a, & \text{if } x \in \left[\frac{3a + b}{4}, \frac{a + b}{2}\right], \end{cases}$$

the proofs of the second and third inequalities follow.

REMARK 14. The inequalities (4.3) and (4.4) and their generalizations based on extended Euler formulae via Bernoulli polynomials have been proved by Pečarić, Perić and Vukelić on the interval [0, 1] in [11].

COROLLARY 4.7. Let $f : [a, b] \to \mathbb{R}$ be such that f' is a continuous function of bounded variation on [a, b]. Then for each $x \in [a, (a + b)/2]$

$$\left| \frac{1}{b-a} \int_{a}^{b} f(t) dt - D(x) - \left[f'(x) - f'(a+b-x) \right] \frac{(b-x)^{2} - (a-x)^{2}}{4(b-a)} \right|$$

$$\leq \frac{(x-a)^{2} + (b-x)^{2}}{4(b-a)} V_{a}^{b}(f').$$

PROOF. We apply the third inequality from Corollary 4.3 with n = 2 to get

$$\left| \frac{1}{b-a} \int_{a}^{b} f(t) dt - D(x) - \left[f'(x) - f'(a+b-x) \right] \frac{(b-x)^{2} - (a-x)^{2}}{4(b-a)} \right|$$

$$\leq \frac{1}{2(b-a)} \max\left\{ (x-a)^{2}, \frac{(a-x)^{2} + (b-x)^{2}}{2} \right\} V_{a}^{b}(f')$$

$$= \frac{(x-a)^{2} + (b-x)^{2}}{4(b-a)} V_{a}^{b}(f')$$

and the proof follows.

88

COROLLARY 4.8. Suppose that the assumptions of Theorem 4.2 hold. Then for each $x \in [a, (a + b)/2]$

$$\begin{aligned} \left| \frac{1}{b-a} \int_{a}^{b} f(t) dt - D(x) - \widehat{t}_{n}(x) \right| \\ &\leq \frac{1}{n!} \left(\frac{2(x-a)^{nq+1}}{(nq+1)(b-a)^{q}} + \frac{((a-x)^{n} + (b-x)^{n})^{q}}{2^{q}(b-a)^{q}} (a+b-2x) \right)^{1/q} \| f^{(n)} \|_{p}. \end{aligned}$$

PROOF. We have

$$\int_{a}^{b} \left| \widehat{T}_{n}(x,s) \right|^{q} ds = \int_{a}^{x} \left| \frac{(a-s)^{n}}{b-a} \right|^{q} ds + \int_{x}^{a+b-x} \left| \frac{(a-s)^{n} + (b-s)^{n}}{2(b-a)} \right|^{q} ds + \int_{a+b-x}^{b} \left| \frac{(b-s)^{n}}{b-a} \right|^{q} ds.$$

Since

$$\int_{a}^{x} \left| \frac{(a-s)^{n}}{b-a} \right|^{q} ds = \int_{a+b-x}^{b} \left| \frac{(b-s)^{n}}{b-a} \right|^{q} ds = \frac{(x-a)^{nq+1}}{(nq+1)(b-a)^{q}},$$

and, by applying (4.2),

$$\int_{x}^{a+b-x} \left| \frac{(a-s)^{n} + (b-s)^{n}}{2(b-a)} \right|^{q} ds \leq \int_{x}^{a+b-x} \left(\frac{(a-x)^{n} + (b-x)^{n}}{2(b-a)} \right)^{q} ds$$
$$= \frac{((a-x)^{n} + (b-x)^{n})^{q}}{2^{q}(b-a)^{q}} (a+b-2x)$$

we obtain

$$\int_{a}^{b} \left| \widehat{T}_{n}(x,s) \right|^{q} ds \leq \frac{2(x-a)^{nq+1}}{(nq+1)(b-a)^{q}} + \frac{\left((a-x)^{n} + (b-x)^{n} \right)^{q}}{2^{q}(b-a)^{q}} (a+b-2x). \quad \Box$$

REMARK 15. If we set x = a, (2a + b)/3, (3a + b)/4, (a + b)/2 in Theorem 4.2 and Corollaries 4.3–4.8, we get the generalized trapezoid, two-point Newton–Cotes, two-point Maclaurin and midpoint inequalities.

REMARK 16. For some related results see [3, 8, 12].

5. Bullen-type inequalities

In this section we use identity (5.1) to prove a generalization of Bullen-type inequalities (1.6) for (2*n*)-convex functions ($n \in \mathbb{N}$). Also we study for $x \in [a, (a + b)/2]$ the general weighted quadrature formula

$$\int_{a}^{b} w(t)f(t) dt = \frac{1}{4}(f(a) + f(x) + f(a + b - x) + f(b)) + G(f, w; x),$$

where G(f, w; x) is the remainder.

Again, let $f : [a, b] \to \mathbb{R}$ be such that $f^{(n-1)}$ exists on [a, b] for some $n \ge 2$. We introduce the following notation for each $x \in [a, (a+b)/2]$:

$$\widetilde{D}(x) = \frac{D(x) + D(a)}{2} = \frac{f(a) + f(x) + f(a + b - x) + f(b)}{4},$$

$$\widetilde{T}_{w,n}(x,s) = \frac{\widehat{T}_{w,n}(a,s) + \widehat{T}_{w,n}(x,s)}{2} \quad \text{and} \quad \widetilde{t}_{w,n}(x) = \frac{t_{w,n}(x) + t_{w,n}(a)}{2}$$

where D(x), $\hat{T}_{w,n}(x, s)$ and $t_{w,n}(x)$ are as in Section 2.

THEOREM 5.1. Suppose that the assumptions of Theorem 2.1 hold. Then for each $x \in [a, (a + b)/2]$ the following identity holds:

$$\int_{a}^{b} w(t)f(t) dt = \widetilde{D}(x) + \widetilde{t}_{w,n}(x) + \frac{1}{(n-1)!} \int_{a}^{b} \widetilde{T}_{w,n}(x,s) f^{(n)}(s) ds.$$
(5.1)

PROOF. We put $x \equiv x$, $x \equiv a + b - x$, $x \equiv a$ and $x \equiv b$ in (1.3) to obtain four new formulae. After adding these four formulae and multiplying by 1/4, we obtain (5.1). \Box

REMARK 17. If in Theorem 5.1 we choose x = (2a + b)/3, (a + b)/2 we obtain closed Newton–Cotes formulae with the same nodes as Simpson's 3/8 rule and Simpson's rule respectively.

THEOREM 5.2. Suppose that the assumptions of Theorem 2.3 hold. Then for each $x \in [a, (a + b)/2]$ the following inequality holds:

$$\left| \int_{a}^{b} w(t) f(t) \, dt - \widetilde{D}(x) - \widetilde{t}_{w,n}(x) \right| \leq \frac{1}{(n-1)!} \left\| \widetilde{T}_{w,n}(x, \cdot) \right\|_{q} \left\| f^{(n)} \right\|_{p}.$$
 (5.2)

The constant $(1/(n-1)!) \| \widehat{T}_{w,n}(x, \cdot) \|_q$ is sharp for 1 and the best possible for <math>p = 1.

PROOF. The proof is similar to the proof of Theorem 2.3.

THEOREM 5.3. Suppose that the assumptions of Theorem 2.3 hold. Additionally assume that $f^{(2n)}$ is a differentiable function on $\langle a, b \rangle$. Then for every $x \in [a, (a + b)/2]$ there exists $\eta \in \langle a, b \rangle$ such that

$$\int_{a}^{b} w(t)f(t) dt - \widetilde{D}(x) - \widetilde{t}_{w,2n}(x) = \frac{f^{(2n)}(\eta)}{(2n-1)!} \int_{a}^{b} \widetilde{T}_{w,2n}(x,s) ds.$$

PROOF. Similarly to Theorem 2.4, we have $\widetilde{T}_{w,2n}(x, s) \ge 0$ for $s \in [a, b]$. Thus we can apply the integral mean value theorem to $\int_a^b \widetilde{T}_{w,2n}(x, s) f^{(2n)}(s) ds$. \Box

THEOREM 5.4 (Weighted generalization of Bullen-type inequality). Suppose that the assumptions of Theorem 5.1 hold for 2n, $n \ge 1$. If f is (2n)-convex, then for each $x \in [a, (a + b)/2]$ the following inequality holds:

$$\int_{a}^{b} w(t)f(t) dt - \frac{f(x) + f(a+b-x)}{2} - t_{w,2n}(x)$$

$$\geq \frac{f(a) + f(b)}{2} - \int_{a}^{b} w(t)f(t) dt + t_{w,2n}(a).$$
(5.3)

If f is (2n)-concave, then the inequality (5.3) is reversed.

PROOF. From (5.1) we have that

$$2\int_{a}^{b} w(t)f(t) d - \frac{f(a) + f(x) + f(a + b - x) + f(b)}{2} - t_{w,2n}(x) - t_{w,2n}(a)$$
$$= \frac{1}{(2n-1)!} \int_{a}^{b} \widetilde{T}_{w,2n}(x,s) f^{(2n)}(s) ds.$$

Similarly to Theorem 2.5, we have $\widetilde{T}_{2n}(x, s) \ge 0$ and $\int_a^b \widetilde{T}_{2n}(x, s) f^{(2n)}(s) ds \ge 0$, from which (5.3) follows immediately.

In the special case $w(t) = 1/(b - a), t \in [a, b]$, we define

$$\widetilde{T}_n(x,s) = -\frac{n}{4} \left[T_n(a,s) + T_n(x,s) + T_n(a+b-x,s) + T_n(b,s) \right]$$

$$= \begin{cases} \frac{1}{4(b-a)} \left[3(a-s)^n + (b-s)^n \right], & a \le s \le x, \\ \frac{1}{2(b-a)} \left[(a-s)^n + (b-s)^n \right], & x < s \le a+b-x, \\ \frac{1}{4(b-a)} \left[(a-s)^n + 3(b-s)^n \right], & a+b-x < s \le b, \end{cases}$$

and

$$\widetilde{t}_n(x) = \frac{\widehat{t}_n(x) + \widehat{t}_n(a)}{2}.$$

THEOREM 5.5. Suppose that the assumptions of Theorem 4.1 hold. Then for each $x \in [a, (a+b)/2]$ we have the identity

$$\frac{1}{b-a}\int_{a}^{b}f(t)\,dt = \widetilde{D}(x) + \widetilde{t}_{n}(x) + \frac{1}{n!}\int_{a}^{b}\widetilde{T}_{n}(x,s)f^{(n)}(s)\,ds.$$
We take $w(t) = 1/(b-a), t \in [a, b]$ in (5.1).

PROOF. We take $w(t) = 1/(b - a), t \in [a, b]$ in (5.1).

THEOREM 5.6. Suppose that the assumptions of Theorem 4.2 hold. Then for each $x \in [a, (a+b)/2]$ we have the inequality

$$\left|\frac{1}{b-a}\int_{a}^{b}f(t)\,dt - \widetilde{D}(x) - \widetilde{t}_{n}(x)\right| \leq \frac{1}{n!} \left\|\widetilde{T}_{n}(x,\,\cdot)\right\|_{q} \left\|f^{(n)}\right\|_{p}.$$
(5.4)

The constant $(1/n!) \|\widetilde{T}_n(x, \cdot)\|_q$ is sharp for 1 and the best possible forp = 1.

PROOF. We take
$$w(t) = 1/(b - a), t \in [a, b]$$
 in (5.2).

COROLLARY 5.7. Suppose that the assumptions of Theorem 5.6 hold. Then for each $x \in [a, (a\sqrt[n]{3} + b)/(1 + \sqrt[n]{3})]$

$$\begin{aligned} \left| \frac{1}{b-a} \int_{a}^{b} f(t) dt - \widetilde{D}(x) - \widetilde{t}_{n}(x) \right| \\ &\leq \frac{1}{(n+1)!} \left(\frac{(-1)^{n} (x-a)^{n+1} + (b-x)^{n+1} + (b-a)^{n+1}}{2(b-a)} - (b-a)^{n} \left[\frac{(-1)^{n+1} + 1}{2^{n+1}} \right] \right) \| f^{(n)} \|_{\infty} \end{aligned}$$

[25]

and for $x \in [(a\sqrt[n]{3} + b)/(1 + \sqrt[n]{3}), (a+b)/2]$

$$\begin{aligned} \left| \frac{1}{b-a} \int_{a}^{b} f(t) dt - \widetilde{D}(x) - \widetilde{t}_{n}(x) \right| \\ &\leq \left(\frac{(x-a)^{n+1} \left[3 + 2(-1)^{n+1} \right] + (b-x)^{n+1} \left[2 + (-1)^{n+1} \right] + (b-a)^{n+1}}{2(b-a)} - (b-a)^{n} \left[3 \left(\frac{1}{1+\sqrt[n]{3}} \right)^{n} + \frac{1}{2^{n}} \right] \left[\frac{(-1)^{n+1} + 1}{2} \right] \right) \frac{\|f^{(n)}\|_{\infty}}{(n+1)!}. \end{aligned}$$

Also, for each $x \in [a, (a+b)/2]$

$$\left|\frac{1}{b-a}\int_{a}^{b}f(t)\,dt - \widetilde{D}(x) - \widetilde{t}_{n}(x)\right| \leq \begin{cases} \Phi_{2} \,\|f^{(n)}\|_{2}, \\ \Phi_{1} \,\|f^{(n)}\|_{1}, \end{cases}$$

where

$$\Phi_{2} = \frac{1}{n!} \left(\frac{5(x-a)^{2n+1} + 3(b-x)^{2n+1} + (b-a)^{2n+1}}{8(2n+1)(b-a)^{2}} + \frac{(-1)^{n}(b-a)^{2n-1}}{4} \right)$$
$$\times \left[2B_{(b-x)/(b-a)}(n+1,n+1) + B_{(x-a)/(b-a)}(n+1,n+1) \right] \right)^{1/2},$$
$$\Phi_{1} = \frac{1}{n!(b-a)} \max\left\{ \frac{(b-a)^{n}}{4}, \frac{(a-x)^{n} + (b-x)^{n}}{2}, \frac{\left|3(x-a)^{n} + (x-b)^{n}\right|}{4} \right\}.$$

The constants on the right-hand sides of the first, second and third inequalities are sharp and the right-hand side constant in the last inequality is the best possible.

PROOF. We apply (5.4) with $p = \infty$:

$$\int_{a}^{b} \left| \widetilde{T}_{n}(x,s) \right| ds = \int_{a}^{x} \left| \frac{3(a-s)^{n} + (b-s)^{n}}{4(b-a)} \right| ds$$
$$+ \int_{x}^{a+b-x} \left| \frac{(a-s)^{n} + (b-s)^{n}}{2(b-a)} \right| ds$$
$$+ \int_{a+b-x}^{b} \left| \frac{(a-s)^{n} + 3(b-s)^{n}}{4(b-a)} \right| ds.$$

The second integral is

$$\int_{x}^{a+b-x} \left| \frac{(a-s)^{n} + (b-s)^{n}}{2(b-a)} \right| ds$$
$$= \frac{(a-x)^{n+1} + (b-x)^{n+1} - ((b-a)/2)^{n+1} \left[(-1)^{n+1} + 1 \right]}{(n+1)(b-a)}.$$

Now, we suppose n is even. The first and the third integrals are

$$\frac{3(x-a)^{n+1} - (b-x)^{n+1} + (b-a)^{n+1}}{4(n+1)(b-a)}$$

Now, we suppose n is odd. There are two possible cases.

(1) If $x \in [a, (a\sqrt[n]{3} + b)/(1 + \sqrt[n]{3})]$, the first and third integrals are

$$\frac{-3(x-a)^{n+1} - (b-x)^{n+1} + (b-a)^{n+1}}{4(n+1)(b-a)}.$$

(2) If $x \in [(a\sqrt[n]{3} + b)/(1 + \sqrt[n]{3}), (a+b)/2]$

$$\begin{split} \int_{a}^{x} \left| \frac{3(a-s)^{n} + (b-s)^{n}}{4(b-a)} \right| ds \\ &= \int_{a}^{(a\sqrt[n]{3}+b)/(1+\sqrt[n]{3})} \frac{-3(s-a)^{n} + (b-s)^{n}}{4(b-a)} ds \\ &+ \int_{(a\sqrt[n]{3}+b)/(1+\sqrt[n]{3})}^{x} \frac{3(s-a)^{n} - (b-s)^{n}}{4(b-a)} ds \\ &= \frac{3(x-a)^{n+1} + (b-x)^{n+1} + (b-a)^{n+1} - 6(1+\sqrt[n]{3}) \left(\frac{b-a}{1+\sqrt[n]{3}}\right)^{n+1}}{4(n+1)(b-a)}, \end{split}$$

and the transformation $s \rightarrow t = a + b - s$ shows that

$$\int_{a+b-x}^{b} \left| \frac{(a-s)^{n} + 3(b-s)^{n}}{4(b-a)} \right| ds$$

has the same value.

Now, in case (1), $\int_{a}^{b} \left| \widetilde{T}_{n}(x, s) \right| ds$ has value

$$\frac{3(-1)^n (x-a)^{n+1} - (b-x)^{n+1} + (b-a)^{n+1}}{2(n+1)(b-a)} + \frac{(a-x)^{n+1} + (b-x)^{n+1} - ((b-a)/2)^{n+1} \left[(-1)^{n+1} + 1\right]}{(n+1)(b-a)} = \frac{(-1)^n (x-a)^{n+1} + (b-x)^{n+1} + (b-a)^{n+1}}{2(n+1)(b-a)} - (b-a)^n \left[\frac{(-1)^{n+1} + 1}{2^{n+1}(n+1)}\right]$$

[27]

while, in case (2), its value is

$$\frac{3(x-a)^{n+1} + (-1)^{n+1}(b-x)^{n+1} + (b-a)^{n+1} \left[1 - 3\left(\frac{1}{1+\frac{n}{\sqrt{3}}}\right)^n \left((-1)^{n+1} + 1\right)\right]}{2(n+1)(b-a)} \\ + \frac{(a-x)^{n+1} + (b-x)^{n+1} - ((b-a)/2)^{n+1} \left[(-1)^{n+1} + 1\right]}{(n+1)(b-a)} \\ = \frac{(x-a)^{n+1} \left[3 + 2(-1)^{n+1}\right] + (b-x)^{n+1} \left[2 + (-1)^{n+1}\right] + (b-a)^{n+1}}{2(n+1)(b-a)} \\ - (b-a)^n \left[3\left(\frac{1}{1+\frac{n}{\sqrt{3}}}\right)^n + \frac{1}{2^n}\right] \left[\frac{(-1)^{n+1} + 1}{2(n+1)}\right].$$

Therefore, the first and the second inequalities are obtained. To prove the third inequality we take p = 2:

$$\begin{split} &\int_{a}^{b} \left| \widetilde{T}_{n}(x,s) \right|^{2} ds \\ &= \int_{a}^{x} \left| \frac{3(a-s)^{n} + (b-s)^{n}}{4(b-a)} \right|^{2} ds + \int_{x}^{a+b-x} \left| \frac{(a-s)^{n} + (b-s)^{n}}{2(b-a)} \right|^{2} ds \\ &+ \int_{a+b-x}^{b} \left| \frac{(a-s)^{n} + 3(b-s)^{n}}{4(b-a)} \right|^{2} ds \\ &= \frac{5(x-a)^{2n+1} + 3(b-x)^{2n+1} + (b-a)^{2n+1}}{8(2n+1)(b-a)^{2}} \\ &+ \frac{(-1)^{n}(b-a)^{2n-1}}{4} \\ &\times \left[2B_{(b-x)/(b-a)}(n+1,n+1) + B_{(x-a)/(b-a)}(n+1,n+1) \right]. \end{split}$$

If
$$p = 1$$
,

$$\sup_{s \in [a,b]} \left| \widetilde{T}_{n}(x,s) \right|$$

= $\max \left\{ \sup_{s \in [a,x]} \left| \frac{3(a-s)^{n} + (b-s)^{n}}{4(b-a)} \right|, \sup_{s \in [x,a+b-x]} \left| \frac{(a-s)^{n} + (b-s)^{n}}{2(b-a)} \right|,$
$$\sup_{s \in [a+b-x,b]} \left| \frac{(a-s)^{n} + 3(b-s)^{n}}{4(b-a)} \right| \right\}.$$

Carrying out the same analysis as in Corollary 4.3 we obtain that the first and last suprema take the common values

$$\max\left\{\frac{(b-a)^n}{4(b-a)}, \frac{3(x-a)^n + (x-b)^n}{4(b-a)}\right\},\$$

https://doi.org/10.1017/S1446181109000315 Published online by Cambridge University Press

$$\max\left\{\frac{(b-a)^{n}}{4(b-a)}, \frac{\left|3(x-a)^{n}+(x-b)^{n}\right|}{4(b-a)}\right\}$$

according as n is even or odd. Also

$$\sup_{s \in [x,a+b-x]} \left| \frac{(a-s)^n + (b-s)^n}{2(b-a)} \right| = \frac{(a-x)^n + (b-x)^n}{2(b-a)}$$

for each *n*. Since $x \in [a, (a+b)/2]$ we have

$$\sup_{s \in [a,b]} \left| \widetilde{T}_n(x,s) \right| = \max\left\{ \frac{(b-a)^{n-1}}{4}, \frac{(a-x)^n + (b-x)^n}{2(b-a)}, \frac{\left|3(x-a)^n + (x-b)^n\right|}{4(b-a)} \right\}$$

and the last inequality is proved.

COROLLARY 5.8. Let $f : [a, b] \to \mathbb{R}$ be an L-Lipschitzian function on [a, b]. Then for each $x \in [a, (3a + b)/4]$

$$\left|\frac{1}{b-a}\int_{a}^{b} f(t) dt - \widetilde{D}(x)\right| \le \frac{-(x-a)^{2} + (b-x)^{2}}{4(b-a)}L$$

and for each $x \in [(3a + b)/4, (a + b)/2]$

$$\left|\frac{1}{b-a}\int_{a}^{b}f(t)\,dt - \widetilde{D}(x)\right| \le \left(\frac{5(x-a)^{2} + 3(b-x)^{2}}{4(b-a)} - \frac{3(b-a)}{8}\right)L.$$

PROOF. We apply the first and second inequality from Corollary 5.7 with n = 1. \Box

COROLLARY 5.9. Let $f : [a, b] \to \mathbb{R}$ be such that f' is an L-Lipschitzian function on [a, b]. Then for each $x \in [a, (a + b)/2]$

$$\begin{aligned} \left| \frac{1}{b-a} \int_{a}^{b} f(t) \, dt - \widetilde{D}(x) - \left[f'(x) - f'(a+b-x) \right] \frac{(b-x)^{2} - (a-x)^{2}}{8(b-a)} \\ &- \left[f'(a) - f'(b) \right] \frac{(b-a)}{8} \right| \\ &\leq \frac{(x-a)^{3} + (b-x)^{3} + (b-a)^{3}}{12(b-a)} L. \end{aligned}$$

PROOF. We apply the first and second inequality from Corollary 5.7 with n = 2. \Box

COROLLARY 5.10. Let $f : [a, b] \to \mathbb{R}$ be a continuous function of bounded variation on [a, b]. Then for each $x \in [a, (a + b)/2]$

$$\left|\frac{1}{b-a}\int_{a}^{b} f(t) dt - \widetilde{D}(x)\right| \le \max\left\{\frac{1}{4}, \frac{a+b-2x}{2(b-a)}, \frac{|4x-3a-b|}{4(b-a)}\right\} V_{a}^{b}(f).$$

[29]

More precisely, if $x \in [a, (3a + b)/4]$

$$\left|\frac{1}{b-a}\int_{a}^{b}f(t)\,dt - \widetilde{D}(x)\right| \le \frac{a+b-2x}{2(b-a)}V_{a}^{b}(f)$$

and if $x \in [(3a + b)/4, (a + b)/2]$

$$\left|\frac{1}{b-a}\int_{a}^{b}f(t)\,dt - \widetilde{D}(x)\right| \leq \frac{1}{4}\,V_{a}^{b}(f).$$

PROOF. We apply the last inequality from Corollary 5.7 with n = 1 to get

$$\left|\frac{1}{b-a}\int_{a}^{b} f(t) \, dt - \widetilde{D}(x)\right| \le \max\left\{\frac{1}{4}, \frac{a+b-2x}{2(b-a)}, \frac{|4x-3a-b|}{4(b-a)}\right\} V_{a}^{b}(f).$$

Now, carrying out the same analysis as in Corollary 4.6 we obtain the second and the third inequality.

COROLLARY 5.11. Let $f : [a, b] \to \mathbb{R}$ be such that f' is a continuous function of bounded variation on [a, b]. Then for each $x \in [a, (a + b)/2]$

$$\begin{aligned} \left| \frac{1}{b-a} \int_{a}^{b} f(t) dt - \widetilde{D}(x) - \left[f'(x) - f'(a+b-x) \right] \frac{(b-x)^{2} - (a-x)^{2}}{8(b-a)} \\ - \left[f'(a) - f'(b) \right] \frac{(b-a)}{8} \right| \\ &\leq \frac{(a-x)^{2} + (b-x)^{2}}{4(b-a)} V_{a}^{b}(f'). \end{aligned}$$

PROOF. We apply the last inequality from Corollary 5.7 with n = 2 to get

$$\begin{split} &\left|\frac{1}{b-a}\int_{a}^{b}f(t)\,dt - \widetilde{D}(x) - \left[f'(x) - f'(a+b-x)\right]\frac{(b-x)^{2} - (a-x)^{2}}{8(b-a)}\right| \\ &- \left[f'(a) - f'(b)\right]\frac{(b-a)}{8}\right| \\ &\leq \frac{1}{2(b-a)}\max\left\{\frac{(b-a)^{2}}{4}, \frac{(a-x)^{2} + (b-x)^{2}}{2}, \frac{3(x-a)^{2} + (x-b)^{2}}{4}\right\}V_{a}^{b}(f') \\ &= \frac{(a-x)^{2} + (b-x)^{2}}{4(b-a)}V_{a}^{b}(f') \end{split}$$

and the proof follows.

COROLLARY 5.12. Suppose that the assumptions of Theorem 4.2 hold. Then for each $x \in [a, (a + b)/2]$ we have

$$\left| \frac{1}{b-a} \int_{a}^{b} f(t) dt - \widetilde{D}(x) - \widetilde{t}_{n}(x) \right| \\ \leq \frac{(b-a)^{n-1}}{2 \cdot n!} \left(2 \left(\frac{3}{2} \right)^{q} (x-a) + (a+b-2x) \right)^{1/q} \| f^{(n)} \|_{p}.$$

PROOF. We have

$$\begin{split} \int_{a}^{b} \left| \widetilde{T}_{n}(x,s) \right|^{q} ds &= \int_{a}^{x} \left| \frac{3(a-s)^{n} + (b-s)^{n}}{4(b-a)} \right|^{q} ds \\ &+ \int_{x}^{a+b-x} \left| \frac{(a-s)^{n} + (b-s)^{n}}{2(b-a)} \right|^{q} ds \\ &+ \int_{a+b-x}^{b} \left| \frac{(a-s)^{n} + 3(b-s)^{n}}{4(b-a)} \right|^{q} ds. \end{split}$$

It is easy to check that the function $y : [a, b] \to \mathbb{R}$, $y(x) = (x - a)^n + (b - x)^n$ attains its maximal values on the boundary, so $(x - a)^n + (b - x)^n \le (b - a)^n$. Using this fact we obtain

$$|3(a-s)^{n} + (b-s)^{n}| \le 3|(s-a)^{n} + (b-s)^{n}| \le 3(b-a)^{n}$$

and thus

$$\int_{a}^{x} \left| \frac{3(a-s)^{n} + (b-s)^{n}}{4(b-a)} \right|^{q} ds \le \left(\frac{3}{4}(b-a)^{n-1} \right)^{q} (x-a).$$

Similarly, we have

$$\int_{a+b-x}^{b} \left| \frac{(a-s)^n + 3(b-s)^n}{4(b-a)} \right|^q \, ds \le \left(\frac{3}{4}(b-a)^{n-1}\right)^q \, (x-a)$$

and

$$\int_{x}^{a+b-x} \left| \frac{(a-s)^{n} + (b-s)^{n}}{2(b-a)} \right|^{q} ds \le \left(\frac{1}{2} (b-a)^{n-1} \right)^{q} (a+b-2x).$$

Now,

$$\int_{a}^{b} \left| \widetilde{T}_{n}(x,s) \right|^{q} ds \leq \left(\frac{1}{2} (b-a)^{n-1} \right)^{q} \left(2 \left(\frac{3}{2} \right)^{q} (x-a) + (a+b-2x) \right)$$

and the proof follows.

https://doi.org/10.1017/S1446181109000315 Published online by Cambridge University Press

THEOREM 5.13 (Nonweighted generalization of Bullen-type inequalities). Suppose that the assumptions of Theorem 5.5 hold for $2n, n \ge 1$. If f is (2n)-convex, then for each $x \in [a, (a + b)/2]$ we have the inequality

$$\frac{1}{b-a} \int_{a}^{b} f(t) dt - \frac{f(x) + f(a+b-x)}{2} - \hat{t}_{2n}(x)$$
$$\geq \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_{a}^{b} f(t) dt + \hat{t}_{2n}(a).$$
(5.5)

If f is (2n)-concave, then inequality (5.5) is reversed.

PROOF. We take
$$w(t) = 1/(b - a), t \in [a, b]$$
 in (5.3).

REMARK 18. Generalizations of Bullen-type inequalities (1.6) for (2*n*)-convex functions $(n \in \mathbb{N})$ and $x \in [a, (a + b)/2 - (b - a)/4\sqrt{6}] \cup \{(a + b)/2\}$ (of the same type as in Theorem 5.13) were first proved by Klaričić and Pečarić in [6].

COROLLARY 5.14. Suppose that the assumptions of Theorem 5.13 hold. If f is 2-convex, then for each $x \in [a, (a + b)/2]$ the following inequality holds:

$$\frac{1}{b-a} \int_{a}^{b} f(t) dt - \frac{f(x) + f(a+b-x)}{2} - r(x)$$
$$\geq \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_{a}^{b} f(t) dt,$$
(5.6)

where

$$r(x) = \left(f'(x) - f'(a+b-x)\right)\frac{a+b-2x}{4} + \left(f'(a) - f'(b)\right)\frac{b-a}{4}.$$

If f is 2-concave, then inequality (5.6) is reversed.

PROOF. This is a special case of Theorem 5.13 for n = 1.

COROLLARY 5.15. Suppose that the assumptions of Theorem 5.13 hold. If f is 4-convex, then for each $x \in [a, (a + b)/2]$ we have the inequality

$$\frac{1}{b-a} \int_{a}^{b} f(t) dt - \frac{f(x) + f(a+b-x)}{2} - r(x)$$
$$\geq \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_{a}^{b} f(t) dt, \qquad (5.7)$$

where

$$\begin{aligned} r(x) &= \left(f'(x) - f'(a+b-x)\right) \frac{a+b-2x}{4} + \left(f'(a) - f'(b)\right) \frac{b-a}{4} \\ &+ \left(f''(x) + f''(a+b-x)\right) \frac{(a-x)^2 + (a-x)(b-x) + (b-x)^2}{12} \\ &+ \left(f''(a) + f''(b)\right) \frac{(b-a)^2}{12} + \left(f'''(a) - f'''(b)\right) \frac{(b-a)^3}{48} \\ &+ \left(f'''(x) - f'''(a+b-x)\right)(a+b-2x) \frac{(a-x)^2 + (b-x)^2}{48}. \end{aligned}$$

If f is 4-concave, then inequality (5.7) is reversed.

PROOF. This is a special case of Theorem 5.13 for n = 2.

REMARK 19. If we apply Theorem 5.4 with n = 1, a = -1, b = 1, $x = -\sqrt{2}/2$ and $w(t) = 1/(\pi\sqrt{1-t^2})$, $t \in [-1, 1]$, inequality (5.3) reduces to

$$\int_{-1}^{1} \frac{1}{\sqrt{1-t^2}} f(t) \, dt - \frac{\pi}{2} f_0^* \left(\frac{\sqrt{2}}{2}\right) - r(x) \ge \frac{\pi}{2} f_0^*(1) - \int_{-1}^{1} \frac{1}{\sqrt{1-t^2}} f(t) \, dt,$$

where

$$r(x) = \frac{\pi\sqrt{2}}{4} \left[f'\left(-\frac{\sqrt{2}}{2}\right) - f'\left(\frac{\sqrt{2}}{2}\right) \right] + \frac{\pi}{2} \left[f'(-1) - f'(1) \right].$$

REMARK 20. If we apply Theorem 5.4 with n = 1, a = -1, b = 1, x = -1/2 and $w(t) = 2\sqrt{1-t^2}/\pi$, $t \in [-1, 1]$, inequality (5.3) reduces to

$$\int_{-1}^{1} \sqrt{1-t^2} f(t) \, dt - \frac{\pi}{4} f_0^* \left(\frac{1}{2}\right) - r(x) \ge \frac{\pi}{4} f_0^*(1) - \int_{-1}^{1} \sqrt{1-t^2} f(t) \, dt,$$

where

$$r(x) = \frac{\pi}{8} \left[f'\left(-\frac{1}{2}\right) - f'\left(\frac{1}{2}\right) \right] + \frac{\pi}{4} \left[f'(-1) - f'(1) \right].$$

REMARK 21. If we apply Theorem 5.4 with n = 2, a = -1, b = 1, $x = -\sqrt{2}/2$ and $w(t) = 1/\pi\sqrt{1-t^2}$, $t \in [-1, 1]$, inequality (5.3) reduces to

$$\int_{-1}^{1} \frac{1}{\sqrt{1-t^2}} f(t) \, dt - \frac{\pi}{2} f_0^* \left(\frac{\sqrt{2}}{2}\right) - r(x) \ge \frac{\pi}{2} f_0^*(1) - \int_{-1}^{1} \frac{1}{\sqrt{1-t^2}} f(t) \, dt,$$

where

$$r(x) = \frac{\pi\sqrt{2}}{4} \left[f'\left(-\frac{\sqrt{2}}{2}\right) - f'\left(\frac{\sqrt{2}}{2}\right) \right] + \frac{\pi}{2} \left[f'(-1) - f'(1) \right] \\ + \frac{\pi}{4} \left[f''\left(-\frac{\sqrt{2}}{2}\right) + f''\left(\frac{\sqrt{2}}{2}\right) \right] + \frac{3\pi}{8} \left[f''(-1) + f''(1) \right] \\ + \frac{\pi\sqrt{2}}{12} \left[f'''\left(-\frac{\sqrt{2}}{2}\right) - f'''\left(\frac{\sqrt{2}}{2}\right) \right] + \frac{5\pi}{24} \left[f'''(-1) - f'''(1) \right].$$

REMARK 22. If we apply Theorem 5.4 with n = 2, a = -1, b = 1, x = -1/2 and $w(t) = 2\sqrt{1 - t^2}/\pi$, $t \in [-1, 1]$, inequality (5.3) reduces to

$$\int_{-1}^{1} \sqrt{1-t^2} f(t) \, dt - \frac{\pi}{4} f_0^* \left(\frac{1}{2}\right) - r(x) \ge \frac{\pi}{4} f_0^*(1) - \int_{-1}^{1} \sqrt{1-t^2} f(t) \, dt,$$

where

$$r(x) = \frac{\pi}{8} \left[f'\left(-\frac{1}{2}\right) - f'\left(\frac{1}{2}\right) \right] + \frac{\pi}{4} \left[f'(-1) - f'(1) \right] \\ + \frac{\pi}{16} \left[f''\left(-\frac{1}{2}\right) + f''\left(\frac{1}{2}\right) \right] + \frac{5\pi}{32} \left[f''(-1) + f''(1) \right] \\ + \frac{\pi}{48} \left[f'''\left(-\frac{1}{2}\right) - f'''\left(\frac{1}{2}\right) \right] + \frac{7\pi}{96} \left[f'''(-1) - f'''(1) \right].$$

References

- A. Aglić Aljinović and J. Pečarić, "On some Ostrowski type inequalities via Montgomery identity and Taylor's formula", *Tamkang J. Math.* 36 (2005) 199–218.
- [2] P. S. Bullen, "Error estimates for some elementary quadrature rules", Univ. Beograd Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 602-633 (1978) 97–103.
- [3] Lj. Dedić, M. Matić and J. Pečarić, "On Euler midpoint formulae", ANZIAM J. 46 (2005) 417–438.
- [4] Lj. Dedić, M. Matić, J. Pečarić and A. Vukelić, "Hadamard-type inequalities via some Euler-type identities - Euler bitrapezoid formulae", *Nonlinear Stud.* 8 (2001) 343–372.
- [5] A. Guessab and G. Schmeisser, "Sharp integral inequalities of the Hermite–Hadamard type", J. Approx. Theory 115 (2002) 260–288.
- [6] M. Klaričić and J. Pečarić, "Generalized Hadamard's inequalities based on general 4-point formulae", accepted for publication in *ANZIAM J*.
- [7] S. Kovač and J. E. Pečarić, "Generalization of an integral formula of Guessab and Schmeisser", submitted for publication.
- [8] M. Matić, C. E. M. Pearce and J. Pečarić, "Two-point formulae of Euler type", ANZIAM J. 44 (2002) 221–245.
- [9] D. S. Mitrinović, J. E. Pečarić and A. M. Fink, *Inequalities for functions and their integrals and derivatives* (Kluwer Academic Publishers, Dordrecht, 1994).
- [10] J. Pečarić, "On the Čebyšev inequality", Bul. Inst. Politeh. Timisoara 25 (1980) 10-11.
- [11] J. Pečarić, I. Perić and A. Vukelić, "Sharp integral inequalities based on general Euler two-point formulae", *Math. Inequal. Appl.* 4 (2001) 215–221.

Sharp integral inequalities based on two-point formulae

[35]

- [12] J. Pečarić, I. Perić and A. Vukelić, "Sharp integral inequalities based on general Euler two-point formulae", ANZIAM J. 46 (2005) 555–574.
- [13] A. Ralston and P. Rabinowitz, A first course in numerical analysis (Dover Publications, Mineola, New York, 2001).