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Bipositive Isomorphisms Between Beurling
Algebras and Between their Second Dual
Algebras

F. Ghahramani and S. Zadeh

Abstract. Let G be a locally compact group and let w be a continuous weight on G. We show that
for each of the Banach algebras L'(G, w), M(G,w), LUC(G,w™)*, and L'(G, w)**, the order
structure combined with the algebra structure determines the weighted group.

1 Introduction and Preliminaries

Let G be alocally compact group with a fixed Haar measure. By the group algebra on
G we mean the convolution Banach algebra L'(G) of Haar-integrable functions on G.
A natural question asks to what extent does the algebra structure of L' (G) determine
the topological group structure of G. An account of the progress on this question is
contained in W. Rudin’s monograph (see [Rud62, Subsection 4.7.7]). It is well known
that, in general, the algebra structure of a group algebra does not necessarily deter-
mine its underlying topological group structure, even when the groups are finite; see,
for example, [Wenb51]. So, if only the existence of an algebra isomorphism between
group algebras is assumed, then the underlying topological groups are isomorphic
only if we impose some constraints, for instance on the norm of the isomorphism, or
if we consider some special isomorphism such as a bipositive isomorphism. In this
article we focus on bipositive algebra isomorphisms.

Y. Kawada was the first author to study such a question. In [Kaw48], Kawada
showed that if we have a bipositive algebra isomorphism between group algebras,
then the underlying locally compact groups must be isomorphic. H. Farhadi [Far98]
proved similar results for other Banach algebras related to locally compact groups,
including the bidual of group algebras. He proved that if G and H are locally com-
pact groups and T is a bipositive algebra isomorphism from L'(G)** onto L'(H)**,
then T is an isometric algebra isomorphism. In [GL88], Ghahramani and Lau proved
that the Banach algebra structure of the bidual of the group algebras determine their
underlying locally compact groups. It then follows from [GL88] that G and H are
isomorphic locally compact groups. In [Far98, Thm. 2.4], Farhadi showed that a sim-
ilar result holds if we replace the bidual of group algebras with a measure algebra or
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with dual of the space of left uniformly continuous functions equipped with an Arens-
type multiplication, by reducing the problem to one covered in the paper of Lau and
McKennon [LM80].

In this article we provide an example of a bipositive algebra isomorphism between
weighted measure algebras that is not an isometry (see Example 3.9). The same con-
struction can be carried out to provide bipositive algebra isomorphisms between other
types of convolution algebras associated with weighted locally compact groups (e.g.,
weighted group algebras) that are not isometries. This example shows that the same
approach as the one in Farhadi’s paper [Far98] cannot be used to settle similar prob-
lems when the weight is nontrivial. Using techniques different from those used by
Farhadi [Far98], we show that the algebra structure together with the order struc-
ture of various convolution algebras associated with weighted locally compact groups
completely determines the structure of the topological groups together with a con-
straint on the weights. Moreover, we give a complete description of bipositive algebra
isomorphisms between weighted group and between weighted measure algebras in
terms of topological group isomorphisms.

Throughout, G denotes a locally compact group with a fixed left Haar measure A.
Integration with respect to the Haar measure A is denoted by [, ---dx. A weight on
G is a positive continuous function w: G - R* such that w(xy) < w(x)w(y) for all
x, y € G. By a weighted locally compact group we mean a pair (G, w), where G is a
locally compact group and w is a weight function on G.

We recall that given a weight  on G, Cy(G, w™") denotes the Banach space of all
(continuous) functions f on G such that f/w € Co(G), equipped with the norm

o £
e =] 5

We call a continuous function f defined on G positive if f(x) > 0 for x € G.
The set of all regular Borel measures on G such that

[ a(s)dlul(s) < o,

denoted by M (G, w), is a Banach space with respect to the norm

el = [ @(s)dlul(s).

It can be seen that as a Banach space M(G,w) is isometrically isomorphic to
Co(G, w™)*, with the duality implemented by the pairing

(wf)= [ F() dutx) (f € ColGro™) e M(G.w)).

The Banach space M (G, w) is a Banach algebra if it is equipped with the following
multiplication * defined by duality:

(e f)= [ [ Fs)du() av(s) (wveM(Gw), feColGa™)).

The multiplication in M (G, w) is separately weak-star continuous.
The measure y € M(G, w) is called positive if (u, f) > 0, for every positive f €
C() (G, w‘l).
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The Beurling algebra L'(G, w) is the Banach algebra of all measurable functions
satisfying

W= [ Iy()la(x)ds < oo,
together with the convolution product defined by

wl*Wz(x):fcwl(y)w(y‘lx)dy, (Y1, ¥2 € LY(G,w), A ae. x € G).

By [Gha84, Lemma 2.1], the Banach algebra L!(G, w) has a bounded approximate
identity. We can identify each y € L'(G, w) with an element h + [ h(x)y(x)dx of
Co(G, w™)*. It can be seen that with this identification L!'(G, w) is a closed ideal of
M(G, w).

An element y € L'(G, w) is positive if y(x) >0, L a.e. x € G.

It can readily be seen that L'(G, w) as a Banach space is isometrically isomorphic
to L'(G) via y = yw. This implies that the dual of L'(G, w) is

L¥(G,w ™) ={f: floel™(G)},
with the norm

f
[Fleosot = | =]
w !l oo

The above definitions and identifications can be found, for example, in [DL05] or
[Gha84].
We recall that a linear operator L on the Banach algebra A is a left multiplier if

L(ab)=L(a)b (a,beA).

As shown in [Joh64], if the Banach algebra A has a bounded approximate identity,
then every left multiplier on A is continuous.

Since L'(G, w) is an ideal in M (G, w), for each y € M(G, w) we can define the left
multiplier L,: L'(G, w) - L'(G, w); ¥ — p * y. It follows from [Gha84, Lemma 2.3]
that every left multiplier on L'(G, @) is an L, for a measure y € M(G, w).

The space of all continuous left multipliers of a Banach algebra A equipped with
composition of operators as product and with operator norm is a Banach algebra,
called the left multiplier algebra of A. The reader is referred to [Pal94, Sections 1.2.1-
1.2.7] for definitions and basic theorems regarding the left multipliers. Some easy cal-
culations show that the mapping u + L, is a continuous algebra isomorphism from
M(G, w) onto the left multiplier algebra of L'(G, w) but is not necessarily isometric,
unless w(e) = 1.

As usual, we let C,(G) be the space of all complex-valued, continuous, and
bounded functions on G equipped with the sup-norm, and let LUC(G) be the sub-
space of Cy,(G) consisting of all functions f such that the map G - C,(G);x — I, f
is continuous, where I, f is the function defined by I, f(y) = f(xy), for each y € G.

Let LUC(G, w™) denote the Banach space of all continuous functions f where
f/w e LUC(G), equipped with the norm

oo = sup| 1.
xeG | 0(x)
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We also recall that the second dual space A** of a Banach algebra A can be
equipped with two Banach algebra products, called Arens products, that naturally ex-
tend the product of A, as canonically embedded in A**. We will assume that L' (G)**
carries the first (left) product.

Next we recall the definition of a Banach algebra product in LUC(G, w™")*. For
the definition of a product in LUC(G, w™")*, we require that the weight w also satisfy
w(eg)=1, where eg denotes the identity element in the group G.

There is a right action of the Banach algebra L' (G, w) on its dual L™ (G, w™") given
by

(f-ow)=(frexy) (Fel™(G@™) gy el'(Gw)).
For the weight w on G satisfying w(eg) = 1, we have by [DL05, Proposition 715]
and [Gre90, Proposition 1.3] that L™ (G, w™) - L'(G,w) = LUC(G, w™). Hence,
LUC(G,w™) = LUC(G,w™) - L'(G, w), since L'(G, w) factors. So we have a left
action of LUC(G, w™)* on LUC(G, w™"), defined by duality as follows:

(m-f,y)=(m,f-v),

where m € LUC(G, w™)*, f € LUC(G,w™"),and v € L'(G, w). We can then define
a Banach algebra product 0 on LUC(G, w™")* via

(mon, f)=(m,n-f),

where m,n € LUC(G,w™)*, f € LUC(G,w™). We can embed M(G, w) isomet-
rically as a Banach algebra into LUC(G, w™)* via the natural embedding (u, f) =
Jo fdu, f e LUC(G,w™) and y € M(G, w).

The above definitions and properties can be found, for example, in [DL05].

Let A and B be ordered Banach algebras. Then an operator T: A — B is called
positive if for each positive element a € A, T(a) > 0 in B. In particular, m «
LUC(G, w™)* is positive if (m, f) > 0, for every positive function f in LUC(G, w™).
The operator T is called bipositive if T is a bijection and both T and T~ are positive
operators. For a space S of functions, S* denotes the subset of all positive elements
inS.

We conclude this section with some lemmas that are needed for our work in the
subsequent sections. The proof of Lemma 1.1, follows the same lines as [Gre65, Lemma
1.1.3] and is therefore omitted.

We say anet (pq) in M(G, w) converges to y in M(G, w) in strong operator topol-
ogy if for each f in L'(G, w),

I 1o
pa* f——pu*f.
Lemma 1.1 If (G, w) is a weighted locally compact group, then the strong operator

closed convex hull of{yw‘zz) :x € G, y e T} is the unit ball of M(G, w).

For u € M(G, w), we can define a continuous linear functional 7 on LUC(G, ™)
by the pairing

@f)= [ fx)du(x), (feLUC(G. ™).
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Since Co(G, w ™) is a Banach subspace of LUC(G, w™"), the mapping u ~ 4, isan iso-
metric linear isomorphism from M(G, w) into LUC(G, w™)*. Whenever it is clear
from the context, we will just write g instead of 7 and M(G, w) instead of M(G, w).

Lemma 1.2 Let (G, w) be a weighted locally compact group. Then we have

(i) LUC(G,w™)* = M(G,w) & Co(G,w ™) . In this decomposition, M(G, w) is
a norm-closed subalgebra and Co(G, w™")* is a w*-closed ideal.
(i) (LUC(G,0™)*)* = M(G,w)* @ (Co(G,w ™))",

Proof (i) The map ®:LUC(G,w ™) - LUC(G): f = w™'f is an isometric linear
isomorphism mapping Co(G, w™") onto Cy(G). As ®*: y + ™' u maps the copy of
M(G) in LUC(G)* isometrically onto the copy of M(G, w) in LUC(G, w™*)*, and
also maps Co(G)* onto Co(G, w™)* and since by [GLL90, Lemma 1.1], LUC(G)* =
M(G) & Co(G)*, we have LUC(G,w™)* = M(G, w) & Co(G, w™)*.

To show that M (G, w) is a subalgebra of LUC(G, w™)*, first we prove that given
peM(G,w)and f e LUC(G,w™), 5O f = u- f. Tothisend, let ¢ € L'(G, w). Then

(Hof.e)=(Bf-¢)=(f b.p).

Simple calculations using Fubini’s theorem show that
(- 9)x) = [ f)pdt (x<0),
so that
(g = [ [ F(1)9(0) dtdu(x) = (7.9 + ) = (u- £. ).
Hence,
(L) uaf=u-f.
Now given y,v € M(G,w) and f € LUC(G, w™) we have
(Fov.f) =(@vof)=@y-f)={-fu).

Again simple calculations using Fubini’s theorem show that

(vefouh={frpxv)=((u*v).f)

and so @O V= (u * v), showing that M(G, w) is a subalgebra of LUC(G, w™')*.
To show that Cy(G, w™)* is an ideal in LUC(G, w™")*, first we note that if y €
M(G,w) and h € Co(G, w™), then from equation (1.1),

1.2) uoh=u-heCo(G,w™).

Since Cy(G, w™") is a Banach M (G, w)-submodule of LUC(G, w™"), we note that for
ve LY (G,w),and h € Co(G, w™),

(1.3) hoyeCo(G,w™).

To see this, first note that because Co(G, w™") is a Banach M(G, w)-submodule of
LUC(G,w™), for y € M(G,w) S LUC(G,w™)*, u-h,h-pe Co(G,w™). Now,

(hoy, @)= 1= (hy* @) 1= (Y *x §, h)y-c, = (h- ¥, $)m-m
={¢, h-Y)m-c, = (h ¥, ) =11,
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sohOy=h-yin L®(G,w™). By continuity, hOy = h -y € Co(G,w™?).

Now suppose that m € LUC(G,w™)*, n € Co(G,w™)*, and h € Co(G,w™).
Then for v € L'(G, w), equation (1.3) gives (n O h,y) = (n,h O y) = 0, and hence
(mon,h) = (mynoh) = 0. Thus, Co(G, w™")* is a left ideal in LUC(G, w™")*.
Writing m as m = p + my, where y € M(G,w) and m; € Co(G, w™)*, we have
nadm = nOpu+n0my, with nOm; € Co(G, w™')* from the above. Also, equation (1.2)
gives (nOp, h) = (n,u0h)=0,s0 n0p € Co(G, w™")*, as well. Thus, Cy(G, w™')*
is also a right ideal in LUC(G, w™)*.

(ii) Let p € (LUC(G,w™)*)* and let 4 € M(G, w) be the measure obtained by
restricting p to Co(G, w™"). Then u can be regarded as an element of LUC(G, w™*)*
through the pairing

(wf)= [ f()du(t) (feLUC(G.6™).

Obviously, y is positive. Let m := p — u € Co(G, w™"')*. We prove that m > 0. To this
end, we take g € (LUC(G, w_l)) " Given € > 0, there exists a compact subset K € G
such that

[ e dlul(t) <e.
G\K
Let f € C.(G) suchthat0 < f <land f =1on K. We set g; := fg; pointwise product.
Then g € C.(G) € LUC(G,w™),and g - g1 € LUC(G, w™)*. We have
{m. &) =(p. &) (1 8) = (P &) + (P g —g1) = (W-81) — (-8~ &)
=(p-wg)+(pg-g) - (g-g) =(P.g-g) — (g~ &)

> g =gl [, @(Ddlul()
> =elg = gillw.ars > ~€lgloo,0

Hence, (m, g) > 0. [ |

The following proposition is at the heart of this paper. Proposition 1.3(i) generalizes
[Kaw48, Thm.2] to weighted measure algebras. Our techniques are mostly different
from the ones used by Kawada in the special case w = 1. Proposition 1.3(ii) is a modi-
fication of [GLL90, Corollary 1.2] in the context of ordered Banach algebras.

Proposition 1.3  Let (G, w) be a weighted locally compact group.

(i)  Suppose that u € (M(G,w))" is invertible and y~" is also positive. Then there
exist a positive number y and an element x in G such that y = yJ,.

(ii) Suppose that m € (LUC(G,w™)*)* such that m is invertible and m™" is also
positive. Then there exist a positive number y and an element x in G such that
m=yd,.

Proof (i) First we observe that there exist positive discrete measures y 4 and v, and
positive continuous measures y. and v, such that

Y=pq+u, and H_I:vd+vc.
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To see this, we note that since wy belongs to M(G), by [HR, 19.20 and 19.21], there
exist a discrete measure wy, and a continuous measure wy, in M(G) such that
wp = wpg + wpe, and Jou| = [opal + [wpc|.
Now, since wy is positive, we have
(1.4) loul = (wp.1) = (wpa, 1) + {wpe, 1)
=Re({wpa,1) + (wpc,1)) = Re(wpy, 1) + Re(wp,, 1).
Obviously, |Re{wpg,1)| < |wuq| and [Re{wp,,1)| < |wp.|. Now if either of these last
two inequalities is strict, then from (1.4) we would have
lop| < |oual + |wpel,
a contradiction. Therefore, we must have Re{wyy,1) = |wp,| and Re{wp,,1) =
|wuc|. Hence, wps and wy, are positive measures. It then follows that uy and p,
are positive measures. Similarly, we can show that v; and v, are positive measures.
Since y * u~! = 8., we have that
(a + pe) * (va +ve) = e
that is
Pa * Va+ Pa * Vet e ¥ Vg + e ¥ Ve = 0.
Hence, pg*vg = 8o and pg*ve+pc*va+pc*ve = 0,because My (G, w)nM (G, w) =
{0} and M. (G, w) is an ideal in M(G, w). Hence pg * v4 = phe * Vg = phc * v, = 0, by
positivity of all the measures involved. Reversing roles of v and y gives us
Va * fa = 0cs Vi * fhe = Ve X fg = Ve * fhe = 0.
Hence
ve= (Vg *pg) *ve =vg* (g *v.) =0.
Similarly, y, = 0. Suppose that

Ud = i an0y, and wvg= i bn0xs
n=1 n=1

where (x,) and (x],) are sequences of distinct elements of G and a, and b,’s are
positive numbers such that ¥, a,w(x,) < oo and ¥, b,w(x),) < oo. Since a, > 0
and b, > 0, from p, * v4 = &, it follows that y, is concentrated at a single point.
The same argument works for v, and v,.

(ii) By Lemma 1.2, we have m = p; + ny and m™ = p, + ny, with g; > 0and n; > 0,
forall i =1,2. From

(SEG=mDm’lz‘ul*y2+y1Dn2+n1Dy2+n1Dn2,
it follows that
Prx Uz =08, and pOny+mOuy+nOny =0,

since M(G, w) N Co(G,w™)* = {0} and Co(G, w™)* is an ideal in LUC(G, w™')*.
Similarly,

(L5) Yo * U1 = Ocg
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and
(16) I’lzD!/ll‘f"l/lanl‘Fl’lan]:O.
Hence, by equation (1.5) and part (i), there exist y > 0 and an element x € G such that
p1 =y and py = y~18,-1. Since all the terms in equation (1.6) are nonnegative, we
have

wpOn,=0 and mOp, =0,
and thus by invertibility of y; and y5, we have that n; = n, = 0. ]

Lemma 1.4 Let (G, w) be a weighted locally compact group. Then for every y €
M(G,w), m— poOm; LUC(G,w™)* - LUC(G, w™)* is weak-star continuous.

Proof It follows from the factorization LUC(G, w™) = LUC(G, w™')-L'(G, w) that
LUC(G,w™) is a Banach M(G, w)-submodule of L*(G, w™). For u € M(G,w)
we denote the adjoint of f +~ f - u;LUC(G,w™) - LUC(G,w™) by m — u -
m; LUC(G,w™)* - LUC(G,w™)*. So for weak-star continuity of m +~ u 0O m,
it suffices to show that y O m = - m, forall m € LUC(G, w™")*. To this end, first let
p=vyelY(G,w). Thenif f € LUC(G, w™), we have
(yom f)={y.m-f)=(m-f.y)=(m.f-y)={y-m,[).
Hence, y O m = y - m. Now let
ueM(G,w), meLUC(G,w™")*, andfeLUC(G,w™).
Then f = gy, for some g € LUC(G, w™) and y € L'(G, w). Hence,
(uom, f)=(uomg-y)=(y-(pom)g)
(yo(uom),g) = ((yxu)omg)
((yru)-mg)=(y-(u-m)g)
{u-m.g-v)=(u-mf).
Hence, uyOm = p-m. |

2 The “Easy” Direction of all the Results

Definition 2.1 Let (G, w;) and (H, w;) be weighted locally compact groups. A
standard isomorphism (y, ¢) from (G, w;) onto (H, w,) consists of the following
data: a bicontinuous bijective isomorphism of locally compact groups ¢: G — H and
a continuous character y: G — R* such that

0< ;relcf;y(x)m and supy(x)m < o0,

wi (x) <G wi(x)

Theorem 2.2 Let (G, wy) and (H, w,) be weighted locally compact groups, and sup-
pose that (y, ¢) is a standard isomorphism from (G, w;) to (H, w). Define
jrg Co(H, @3") = Co(G, )
by jy.s(f) =y fo¢,and ], : LUC(H,w3") - LUC(G, wi") by
Jys(f)=y-fod.
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() jy.¢ is a bounded, bijective, bipositive, bijective linear isomorphism, and
Ty = j;)¢:M(G, w;) > M(H, w,)

is a bounded, bipositive, bijective algebra isomorphism.

(i) Ty,¢ maps L'(G, w,) bijectively onto L'(H, w,).

(i) T,7%:L'(G,w1)** » L'(H,w2)** is a bounded, bipositive, bijective algebra iso-
morphism.

(iv) Jy,¢ is a bounded, bipositive linear isomorphism, mapping Co(H, w3") onto
Co(G, w;h), and J;.4:LUC(G, wi)* - LUC(H, w;")* is a bounded, bipositive,
algebra isomorphism.

Proof Suppose that (G, w;) and (H, w; ) are weighted locally compact groups, and
suppose that (y, ¢) is a standard isomorphism from (G, w;) to (H, w; ). By Definition
2.1, ¢: G - H is a bicontinuous isomorphism from G onto H and y: G - ((0, o0), x)
is a continuous homomorphism. Furthermore, there are positive numbers M and m
such that

m < y(x)M <M, (x€G).

wi(x)

(i) We define the mapping

Jy.g: Co(H, w3') = Co(G, w;'), where jy o(f) =y fo¢.

Then it is straightforward to check that j, 4 is a bounded bipositive linear isomor-
phism. Hence, the dual mapping

TY,¢ = ];,qﬁM(G’ (4)1) — M(H) wz)

is also a bounded bipositive linear isomorphism. To show that T}, ¢ is multiplicative,
we first note that for each x € G we have

Ty,6(8x) = y(x)8¢(x)-

Hence, since y and ¢ are multiplicative, it can be readily seen that T, 4 is multiplicative
on point masses. Now, to see that T, ¢ is also multiplicative on M(G, w;), we note
that the linear span of point masses is weak-star dense in M(G, w, ), the convolution
product is separately weak-star continuous and T}, = j 4 is weak-star continuous.
Clearly, T, 4 is invertible with TM,_I = Tyjy,¢-1. Therefore, T} 4 is a bipositive algebra
isomorphism.

(ii) We observe that Ty, 4(L'(G, w1)) = L'(H, w;). Since ¥/ ~ [ ¢/ (¢(x))dx de-
fines a Haar integral on L'( H), there exists ¢ > 0 such that the equation

[ @endx=c [ y(dy (v eL'(m)

https://doi.org/10.4153/CJM-2016-028-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2016-028-5

12 F. Ghahramani and S. Zadeh
holds. Let y € L!(G, w; ). Then for each f € Co(H, w;), we have
(Typs (0 1) = Uy g (W) 1) = (97 f o 9)
= [ vy(0r o p(x)dx
=c [ yo s (ye s )y

={cyod " yog7f).
Therefore, Ty, 4 () = cyo ¢~ -yo ¢ € L'(H, w;), and hence
Ty,¢(L1(G, wl)) c LI(H, wz).
A similar argument using Ty,(p_l = Tyjy,¢-1 shows that
(2.1) Ty/y,e- (L'(H, 02)) € L'(G, wy).
Now, by applying T4 to each side of (2.1), we have that L' (H, ;) € Ty,4(L'(G, w1)),
and therefore T, 4 (L' (G, w1)) = L'(H, w,).
(iii) Since T),4:L'(G,w;) — L'(H,w,) is a bounded algebra homomorphism,
Ty LYG,w)** - L'(H,w;)** is also a bounded algebra homomorphism (this is
a standard fact in the theory of Arens product). It can be readily checked that since
Ty, is bijective and bipositive T, is also bijective and bipositive.
(iv) Itis not difficult to see that ], 4 as defined above is a bipositive (bounded) linear
isomorphism mapping LUC(H, @;") onto LUC(G, w;"). We note that ], 4 maps
Co(H, wy) onto Co(G, w;). Now, the dual mapping
J34 LUC(G, w")* = LUC(H, w;")*
is also a bipositive (bounded) linear isomorphism such that
(2.2) ];’¢(8x) =y(x)0px) (x€G).
We observe that J7 , is also multiplicative. To see this, first note that since y and ¢
are multiplicative, it can be readily seen from the equation (2.2) that J , is multi-
plicative on the linear span of point masses. Now, to see that J} , is multiplicative
on LUC(G, w;')*, we note that the linear span of point masses is weak-star dense
in LUC(G, w;*)*; for each n € LUC(G, w;")*;m — m O n is weak-star continuous
on LUC(G, w;')*; for each y € M(G, w;), n = u O n is weak-star continuous; and
from equation (2.2), J; , maps the linear span of point masses in LUC(G, wh)* into
M(H, w,). So, if m,n € LUC(G, wi')*, we can find nets (y;) and (v;) in the linear
span of the point masses such that w* —lim y; = m and w* —limv; = #, and obtain

omon) = 1 o(w* ~lim(w* ~lim(s 9v)) )
=w' = lim(w" ~lim 5, (i 0;))
! ]
=w* _lign( w* = 1151’1(];45([41) O ];,¢(Vj))) = ];)45(1’1’1) O ];,¢(”)>

as required. In particular, this shows that LUC(G, w;')* and LUC(H, w3"')* are bi-
positively algebraically isomorphic Banach algebras. ]
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3 The Harder Direction for Weighted Measure Algebras

In this section we show that the existence of a bipositive algebra isomorphism between
the weighted measure algebras M (G, w;) and M (H, w, ) implies that their underlying
locally compact groups must be isomorphic. Corollary 3.7 is a special case of [Far98,
Thm.2.4].

Lemma 3.1 Let (G, w) be a weighted locally compact group. For each y € L'(G, w),
the map x = 8 * v: G —» (LY(G, w), | - |1,0) is continuous.

Proof See [Kan09, Lemma 1.3.6 (ii)]. [ |

Lemma 3.2 Let (G, w) be a weighted locally compact group. The left annihilator of
LY(G,w) in M(G, w) is zero.

Proof Let u € M(G,w) be a left annihilator of L'(G, ) and let (f;) denote the
bounded approximate identity of L'(G, w) given in the proof of [Gha84, Lemma 2.1].
Then by [Gha84, Lemma 2.2], we have that

p=pxde=w" —lim(u * f;) = 0. u

Lemma 3.3 Let T be a bounded algebra isomorphism from M(G, wy) to M(H, wy).
Then T restricted to bounded subsets is SOT-to-w™ continuous.

Proof Take a bounded net (ug) ¢ M(G, w,) that converges in the strong operator
topology to u € M(G, w;). We claim that

T(ug) — T(u).
To see this, let v be a weak-star limit point of (T (ug)) in M(H, w,) and let (pp(;)
be a subnet of (yg) such that
Observe that it suffices now to show that v = T(y).

Without loss of generality, we can assume that T'(up) 2, v. Lety e LY(G, w) be
fixed. Then

ITCup) * T(y) = T() * T(¥) |0, — 0,
since T is bounded and (yg) tends to u in strong operator topology. Hence,

T(ug) * T(y) > T(u) * T(y)

in M(H, w;). On the other hand, since multiplication in M(H, w,) is separately
weak-star continuous we see that

T(ug) = T() > v x T(y).
Thus,
T(uxy)=T(p) *T(y)=v*T(y),
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andso y * v = T7'(v) * y. Since v € L'(G, w,) is arbitrary, we obtain y = T~'(v) by
Lemma 3.2, and so T(u) = v as required. [ |

Corollary 3.4 A bounded net in M (G, w) that converges in the strong operator topol-
ogy converges in the weak-star topology.

Theorem 3.5 Let T be a bipositive algebra isomorphism from M(G,w;) onto
M(H, w;) . Then there exists a standard isomorphism (y, ¢) from (G, wy) to (H, w;)
such that T = j 4.

Proof Suppose that T is a bipositive algebra isomorphism from M(G, w;) onto
M(H, w;). By [AB85, Thm. 4.3], T and T~' are bounded operators. Suppose that
x € G is given. Since 6, is a positive measure and T is a positive operator, T(8,)
is a positive measure. Also, since T is an algebra isomorphism and J, is an invert-
ible measure, T () is also invertible, with the inverse T'(8,-1). Thus, we have that
T(8,) is a positive invertible measure with a positive inverse. It now follows from
Proposition 1.3 that there exist an element ¢(x) € H and a positive number y(x) such
that

T(8x) = y(x)dy(x)-
Since T is an algebra isomorphism and J, * §, = 0, for each x, y € G, we can readily
see that both y : G - (0, 00) and ¢: G — H are multiplicative. We shall now show

that y and ¢ are continuous. Suppose that (g, ) is a net in G that tends to eg, the
identity element of G. By Lemma 3.1, for every y € L(G, w),

I lhyey

é\gn * 1// _—
Since T is bounded, we have that

I ey

T(8g, *v) T(y)

in M(H, w,). Hence

(3.) T(60) * T(W) % T(y).

Let U be a precompact neighbourhood of eg. Without loss of generality we can as-
sume g; € U, for all i. Then

IT(Be ) < I THIOg, | < [Tlwr(ga) < [ T]sup{wi(t);t € U}.

Hence, the net (T(Jy,)) is bounded in M(H, w; ), and so it has a subnet (T(Jg,, ))
converging weak-star to some y € M(H, w,). Then by equation (3.1), we have that
u* T(y) = T(y). Applying T~ to the two sides of this equation yields T~ () *
v = y. Hence by Lemma 3.2, T™'(u) = &,,, or equivalently T(8,,) = . Hence,
t = y(ec)04(eq) = y(eg)dey. This, in particular, shows that y(g;) — y(ec) and
#(gi) = ¢(eg). Hence, ¢ and y are continuous. To prove that ¢ is a bijection, we
note that corresponding to T!, there exist f: H — (0, +o0) and y: H — G such that

T7(8)) = B8y (yeH).
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It follows from the equations T(T7'(6,)) = 8, and T™'(T(8x)) = O, that y is a
bijection, ¥ = ¢! and B(¢(x)) = Tlx)’ for all x € G. By symmetry, y is continuous.
Therefore, ¢ is an isomorphism of topological groups from G onto H.

Now, we show that for every x € G we have

w2(¢(x))
wi(x)

Since, T is a bounded operator, for all x € G we have that
y(x)w2($(x)) = y(¥) [0y | = IT(0:) | < [T[10x] = [T @i ().

A similar argument using T~! shows that

wi(x) <[ T y(x)w2(¢(x)).
Thus we have established the inequalities in equation (3.2).
Therefore, by the above argument there exist an isomorphism of locally compact
groups ¢ from G onto H, a continuous homomorphism y : G — (0, +c0) and positive
constants M and m such that

(3.2) 1T < y(x) <|T|.

5 wr(¢(x
(3.3) T(8x) = y(x)8¢(x) = jy,¢(6x) and m< y(x)M <M,
wi(x)
for each x € G.
Given y € M(G, w;), by Lemma 1.1, we can find a bounded net (yg) of discrete

measures in M (G, w;) such that

lim g+ y =yl =0 (y € LY(G, @1)).
By equation (3.3),

(3.4) T(pp) = jy.e(up)

for each 8. By Lemma 3.3, T(ug) 2 T(u). By Corollary 3.4 and weak-star conti-
nuity of j} ;, we have that

e w* I~
Jy,¢(l/‘ﬁ) - ]y,¢(.“)-
It now follows from equation (3.4) that T () = j} 4 (). [ |

Proposition 3.6 Let (G, w;) and (H, ;) be locally compact weighted groups such
that there exists a standard isomorphism (y, ¢) from (G, w;) to (H, wy). Then %
is bounded below if and only if y = L.

Proof We show that if % is bounded below by a constant, say C > 0, then
y = 1. The converse is obvious. First we note that if there is an element x € G such
that y(x) < 1, then y(x7') > 1. Suppose that there exists x € G such that y(x) > 1.
Then, since y is a homomorphism, by using powers of x, we can assume that there is
a sequence (y,) of elements of G such that y(y,) > n’. Let y := ¥ s wi(yn) ™',

Then since T, ¢, as introduced in Theorem 2.2, is positive, for each n € N,

1 _ 1 _ _
Ty,fp(/") 2 ﬁTy,qﬁ(wl(yn) layn) = ﬁwl()’n) IY(yn)8¢(yn) 2 71(4)1()/n) 1645()/")'
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This means that for each n € N,

1Ty ()| > nwr(yn) w2 (¢(yn))) > nC,

a contradiction. [ |

The following result is a special case of [Far98, Thm. 2.4].

Corollary 3.7  Suppose that G and H are locally compact groups. If T is a bipositive
algebra isomorphism from M(G) onto M(H), then T is an isometry.

Proof By Theorem 3.5 and Proposition 3.6, there is an isomorphism of topological
groups ¢ from G onto H such that T = ji. It is readily seen that jg is an isometry and
therefore T is an isometric algebra isomorphism. ]

In Corollary 3.8 we give a characterization of all bipositive algebra isomorphisms
from M(G, w;) onto M(H, w;) that are also isometries.

Corollary 3.8 Suppose that T is a bipositive algebra isomorphism from M (G, w;)
onto M(H, w,). Then T is an isometric isomorphism if there exists an isomorphism of
topological groups ¢ from G onto H such that

wi(x) wi (x)
w2(¢(x)) w2 (¢(x))
Proof Suppose that T is a bipositive isometric isomorphism from M(G, w;) onto

M(H, w,). Then by the proof of Theorem 3.5, there exist an isomorphism of topolog-
ical groups ¢ from G onto H and a continuous homomorphism y : G - (0, c0) such

T(8x) = 04(x) and is multiplicative.

that
_ —1-1 wa(¢p(x))
69 TO)=ydye ad |71 <y 28 <y,
Since T is an isometry, | T| = | T7!| = 1. Equation (3.5) now implies that
w1 (x) w1 (x)
=— d T(8x)=—""04x G).
YOt M TGy e e .

The following example shows that a bipositive algebra isomorphism between
weighted measure algebras need not necessarily be an isometry.

Example 3.9 Let R denote the additive group of real numbers. Define the subad-
ditive function g on R by

1 x < -1,
g(x):=1|x| -1<x<1,
1 1<

Consider the weight functions w; = 1 and w, := e® on R. Let ¢o: R - R;x ~ x be the
identity isomorphism and yo: R — (0, 00); x — 1be the trivial homomorphism on R.
Using the notation introduced in Theorem 2.2, we define the operator

Ty, 00 M(R) — M(R, w3).
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It can be readily seen that T is a bipositive algebra isomorphism that is not an isometry.

We remark that the above construction can be carried out in the following sections
to provide bipositive algebra isomorphisms that are not isometries.

4 The Harder Direction, Beurling Algebras

In this section, among other results, we shall show that every bipositive algebra iso-
morphism T from L' (G, w;) onto L'(H, w,) extends to a bipositive algebra isomor-
phism T from M(G, w;) onto M(H, w, ). Therefore, by Theorem 3.5, if there exists a
bipositive algebra isomorphism from L' (G, w;) onto L'(H, w, ), then the locally com-
pact groups G and H are isomorphic. This generalizes the result of Kawada [Kaw48]
to the context of weighted group algebras.

Lemma 4.1 Let (G, w) be a weighted locally compact group. Then a left multiplier
Ly:y = yxyon L'(G, ) is positive if and only if u is positive.

Proof It is obvious that for a positive measure y € M(G, w), the left multiplier
L,(y) = u + y is positive. For the converse, suppose that L, is positive. Then the
proof of [Gha84, Lemma 2.3] shows that ¢ = w* —lim; L, (f;), where f; := yu,/A(U;)
. Since f;’s are positive elements in L'(G, ), we have that L, (f;)’s are also positive
and therefore y is also positive. ]

Let (G, w) be a weighted locally compact group. Recall that M; (L' (G, w) denotes
the Banach algebra of all left multipliers on L' (G, w) equipped with the composition
of operators and with operator norm. The following theorem shows that there is a
bipositive algebra isomorphism from M;(L!(G, w)) onto M(G, w).

Theorem 4.2 Let (G, w) be a weighted locally compact group. The left multiplier
algebra of L'(G, w) is bipositively and algebraically isomorphic to M(G, w).

Proof Let 6:M(G,w) - M;(L'(G,w)), 6(u) := L. It follows from [Gha84,
Lemma 2.3] and Lemma 3.2 that 6 is an algebra isomorphism. Lemma 4.1 now shows
that 0 is bipositive. ]

Theorem 4.3  Let G and H be locally compact groups, and let w; and w, be weights
on G and H, respectively. Let T:L'(G,w;) - L'(H, w,) be a bipositive algebra iso-
morphism. Then there exists a standard isomorphism (y, ¢) from (G, w1) to (H, wy),
such that the map j; 4: M(G,w1) » M(H, w2), when restricted to LY(G, w), agrees
with T.

Proof Suppose that T is a bipositive algebra isomorphism from L'(G, w;) onto
L'(H, w,). Then it is easy to see that for each u € M(G, w),

Ly LN(H, ;) — LN(H,wp); y— T(ux T (y))
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is a multiplier. So, by [Gha84, Lemma 2.3], there is a measure T(u) € M(H, w,) such
that

Lu(y) = T(u) *y.
If y € M(G,w;)", then by Lemma 4.1, L, is also a positive multiplier, and therefore
T(u) belongs to M(H, w,)*. An easy calculation shows that T:y ~ T(u) from
M(G, w;) onto M(H, w,) is a bipositive algebra isomorphism extending T. Now
Theorem 3.5 implies the existence of a standard isomorphism (y, ¢) from (G, w;) to
(H, wz) such that j} , = T. By Theorem 2.2(i), Jy, maps L'(G, w;) bijectively onto
L'(H, w;), so T maps L'(G, w;) onto L' (H, w,). [

By taking w; = 1 and w, =1in Theorem 4.3, we obtain the following result, origi-
nally proved by Wendel [Wen51, Thm. 2].

Corollary 4.4  Suppose that G and H are locally compact groups. If T is a bipositive
algebra isomorphism from L'(G) onto L'(H), then T is an isometry.

Proof By Theorems 2.2 and 4.3 and Proposition 3.6, there is an isomorphism of
topological groups ¢ from G onto H such that for each y in L'(G) we have that
T = cy o ¢!, where c is the measure adjustment constant introduced in Theorem
2.2(ii). It is now readily seen that T is an isometry and therefore an isometric algebra
isomorphism. ]

5 The Harder Direction, for LUC(G, w™') and L'(G, w)**

In this section, in order for us to be able to define a Banach algebra product on
LUC(G,w™)*, we require the weight w additionally to satisfy w(eg)=1, where eg
denotes the identity element in the group G. We conclude this section by showing
that the order structure combined with algebra structure of the bidual of the weighted
group algebra L' (G, w)** determines the locally compact group G. This result gen-
eralizes Farhadi [Far98, Thm.2.2] to the context of Beurling algebras. We remark that
the same ideas as in the proof of Farhadi [Far98, Thm.2.2] cannot be followed to pro-
vide a proof for Theorem 5.2. This is mainly because when w # 1, the function w is
not a multiplicative linear functional on L'(G, ).

Theorem 5.1 Let (G, w,) and (H, w,) be a weighted locally compact groups, with
wi(eg) = 1 and wy(ey) = 1. Suppose that T: LUC(G, wy)* - LUC(H,wy)* is
a bipositive algebra isomorphism. Then there is a standard isomorphism (y, $) from
(G, w) to (H, w,).

Proof Let T:LUC(G,w;)* - LUC(H, w,)* be a bipositive algebra isomorphism.
By [AB85, Thm.4.3], T and T~' are bounded operators. Given x € G, since T is a
positive operator T/(J ) is positive. Since T is an algebra isomorphisms T'(dy) is also
invertible with a positive inverse T(8,-1). Therefore, by Proposition 1.3, there exist
¢(x) € H and a positive number y(x) such that T(8,) = y(x)J4(x). Since T is an
algebra isomorphism, we have that both y and ¢ are multiplicative.

https://doi.org/10.4153/CJM-2016-028-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2016-028-5

Bipositive Isomorphisms Between Beurling Algebras 19

We shall now show that y and ¢ are continuous. Suppose that (x,) is a net in G
such that x, — x in G. Then by Lemma 3.1, for every ¥ in L' (G, w; ), we have that

I lhe

Ox, * Y ——— Ox * Y.
Since T is a bounded algebra isomorphism,

I ley

T(3,,) 0 T(y) % 1(8,) 0 T(y).

Without loss of generality, we can assume that x,’s are contained in a compact neigh-
bourhood U of x. Since

IT(8x )| < [ T] sup{wi(t) : t € U},
(T(6%,)) is a bounded net in M(H, w,). Thus, there is a subnet (T(dy,, )) and an

element m in LUC(H, w;')* such that T(J,, ) — m in the weak-star topology of
LUC(H, w;')*. Therefore,

T(8,,) 0 T(y) > mo T(y).

Hence, for every y in L'(G, w,), 8, Oy = T~'(m) O y. Therefore, T(8,) = m, since
LUC(G, w;') = LY(G, w;) - LUC(G, wi'). A similar argument then shows that every
subnet of (T(Jy,)) has a subnet convergent to T(J, ). Hence,

Y(xa)8¢(xa) = T(0x, ) S T(&C) = )’(x)8¢(x) .
An argument similar to that in the proof of Theorem 3.5 shows that y and ¢ are con-

tinuous. By considering T~ we can show that ¢ is surjective, with a continuous in-
verse. u

Theorem 5.2  Suppose that T: L' (G, w,)** — L'(H, w;)** is a bipositive bijective
algebra isomorphism. Then there is a standard isomorphism (y, $) from (G, wy) to
(H, (02).

Proof Let (f;) be a bounded approximate identity of L' (G, w;) with f; > 0, for all i
(see [Gha84, Lemma 2.1]), and let E be a weak-star cluster point of (f;). Then, E > 0.
By [BD73, Prop.111.28.7], E is a right identity of L'(G, w;)**. Hence, T(E) is also a
positive right identity of L'(H, w,)**. Now we argue as in [GL88].

The maps

15 ELY(G, 01)" — LUC(G, w1")"s  En— nliyc(6.om)s
and
r(e): T(E)L'(H, 02)"" — LUC(H,w3")"s  T(E)m — m|iyc(m,up)-

establish bipositive algebra isomorphisms between each domain and target algebras.
Hence, 73! o T o 71y is a bipositive algebra isomorphism from LUC(G, w;')* onto
LUC(H, w;')*. The result now follows from Theorem 5.1. [ |

Acknowledgment The authors would like to thank the referee whose comments
helped to simplify some of the arguments and to improve the overall presentation
of the paper.

https://doi.org/10.4153/CJM-2016-028-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2016-028-5

20 F Ghahramani and S. Zadeh

References

[AB85] C.D. Aliprantis and O. Burkinshaw, Positive operators. Pure and Applied Mathematics, 119,
Academic Press, Inc., Orlando, FL, 1985.

[BD73] F F Bonsall and J. Duncan, Complete normed algebras. Ergebnisse der Mathematik und
ihrer Grenzgebiete, 80, Springer-Verlag, New York-Heidelberg, 1973.

[DLO5] H. G. Dales and A. T.-M. Lau, The second duals of Beurling algebras. Mem. Amer. Math. Soc.
177(2005), no. 836.  http://dx.doi.org/10.1090/memo/0836

[Far98] H.-R. Farhadi, Bipositive isomorphisms between the second duals of group algebras of locally
compact groups. Math. Proc. Cambridge Philos. Soc. 123(1998), no. 1, 95-99.
http://dx.doi.org/10.1017/5S0305004197002065

[Gha84] E Ghahramani, Weighted group algebra as an ideal in its second dual space. Proc. Amer.
Math. Soc. 90(1984), no. 1, 71-76.  http://dx.doi.org/10.1090/S0002-9939-1984-0722417-9

[GL88] F Ghahramani and A. T. Lau, Isometric isomorphisms between the second conjugate algebras
of group algebras. Bull. London Math. Soc. 20(1988), no. 4, 342-344.
http://dx.doi.org/10.1112/blms/20.4.342

[GLL90] E Ghahramani, A. T. Lau, and V. Losert, Isometric isomorphisms between Banach algebras
related to locally compact groups. Trans. Amer. Math. Soc. 321(1990), no. 1, 273-283.
http://dx.doi.org/10.1090/50002-9947-1990-1005079-2

[Gre65] FE P. Greenleaf, Norm decreasing homomorphisms of group algebras. Pacific J. Math. 15(1965),
1187-1219.  http://dx.doi.org/10.2140/pjm.1965.15.1187

[Gre90] N. Gronbak, Amenability of weighted convolution algebras on locally compact groups. Trans.
Amer. Math. Soc. 319(1990), no. 2, 765-775.
http://dx.doi.org/10.1090/50002-9947-1990-0962282-5

[HR] E. Hewitt and K. A. Ross, Abstract harmonic analysis. Vol. I. Structure of topological groups,
integration theory, group representations. Second ed., Grundlehren der Mathematischen
Wissenschaften, 115, Springer-Verlag, Berlin-New York, 1979.

[Joh64] B. E.Johnson, An introduction to the theory of centralizers. Proc. London Math. Soc. (3)
14(1964), 299-320.  http:/dx.doi.org/10.1112/plms/s3-14.2.299

[Kan09] E. Kaniuth, A course in commutative Banach algebras. Graduate Texts in Mathematics, 246,
Springer, New York, 2009. http://dx.doi.org/10.1007/978-0-387-72476-8

[Kaw48] Y. Kawada, On the group ring of a topological group. Math. Japonicae 1(1948), 1-5.

[LM80] A.T. M. Lau and K. McKennon, Isomorphisms of locally compact groups and Banach
algebras. Proc. Amer. Math. Soc. 79(1980), 55-58.
http://dx.doi.org/10.1090/50002-9939-1980-0560583-5

[Palo4] T. W. Palmer, Banach algebras and the general theory of * -algebras. Cambridge University
Press, Cambridge, 1994.

[Rud62] W. Rudin, Fourier analysis on groups. Interscience Tracts in Pure and Applied Mathematics,
12, Interscience Publishers, New York-London, 1962.

[Wen51] J. G. Wendel, On isometric isomorphism of group algebras. Pacific J. Math. 1(1951), 305-311.

http://dx.doi.org/10.2140/pjm.1951.1.305

Department of Mathematics, University of Manitoba, Winnipeg, MB R3T 2N2
e-mail: fereidou@cc.umanitoba.ca

Laboratoire de Mathématiques, Université de Franche-Comté, 16 route de Gray, 25030 Besangon Cedex
e-mail: jsafoora@gmail.com

https://doi.org/10.4153/CJM-2016-028-5 Published online by Cambridge University Press


http://dx.doi.org/10.1090/memo/0836
http://dx.doi.org/10.1017/S0305004197002065
http://dx.doi.org/10.1090/S0002-9939-1984-0722417-9
http://dx.doi.org/10.1112/blms/20.4.342
http://dx.doi.org/10.1090/S0002-9947-1990-1005079-2
http://dx.doi.org/10.2140/pjm.1965.15.1187
http://dx.doi.org/10.1090/S0002-9947-1990-0962282-5
http://dx.doi.org/10.1112/plms/s3-14.2.299
http://dx.doi.org/10.1007/978-0-387-72476-8
http://dx.doi.org/10.1090/S0002-9939-1980-0560583-5
http://dx.doi.org/10.2140/pjm.1951.1.305
mailto:fereidou@cc.umanitoba.ca
mailto:jsafoora@gmail.com
https://doi.org/10.4153/CJM-2016-028-5

