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Abstract

This paper is concerned with the problem of existence and uniqueness of weak and
classical solutions for a fourth-order semilinear boundary value problem. The existence
and uniqueness for weak solutions follows from standard variational methods, while
similar uniqueness results for classical solutions are derived using maximum principles.
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1. Introduction

The present work intends to study a semilinear fourth-order equation

∆2u + ϕ(x)∆u + ρ(x) f (u) = 0 in Ω ⊂ IRn for all n ≥ 1, (1.1)

under the Navier boundary conditions (u = ∆u = 0 on ∂Ω) or the Dirichlet boundary
conditions (u = ∂u/∂n = 0 on ∂Ω). Here and throughout the paper, Ω is a bounded
domain, ∂Ω is the boundary of Ω, diam(Ω) is the diameter of Ω and Ω = Ω ∪ ∂Ω.

Though by no means exhaustive, we indicate some contexts where equation (1.1)
arises. When n = 1, ϕ ≡ k (k constant <0), equation (1.1) is known as the Fisher–
Kolmogorov equation [2], whereas for ϕ ≡ k > 0 it is known as the Swift–Hohenberg
equation [23]. For f (t) = t − t2, equation (1.1) arises in the dynamic phase-space
analogy of a nonlinearity supported elastic strut [13]. When f (t) = t3 − t, equation (1.1)
represents a model for pattern formation in many chemical and biological systems [2].

The case of n = 2, ϕ ≡ 0 and f (t) = k1t3 + k2t with k1, k2 > 0 arises in bending
of cylindrical shells [16]. A uniqueness result for the corresponding boundary value
problem under Dirichlet boundary conditions was given by Danet [3]. Equation (1.1)
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where n = 2, ϕ ≡ 0, ρ ≡ constant < 0 and f (t) = t arises in thin plate theory [15]. The
case ϕ ≡ 0, f (t) = et, represents a natural higher-order extension of the celebrated
Gelfand equation −∆u = 2eu, which describes the problems of self-ignition (see
Gelfand’s article [9]).

Equations that model various aspects of oscillations of suspension bridges are of
the type

utt + uxxxx + f (u) = 1.

Travelling waves are of interest and are solutions of the form u = u(x − ct) that satisfy

u′′′′ + c2u′′ + eu − 1 = 0,

where u′′ and u′′′′ denote the second- and fourth-order derivatives, respectively (see
the articles [14, 18] and the references cited therein).

There are other various motivations for studying these types of equations. Such
equations appear when studying the Paneitz–Branson operator and its generalizations,
which have many geometrical properties (in particular, conformal invariance), and
are important in mathematical physics (see the articles [7, 8] and the cited references
therein).

The paper is organized as follows. In the next section, which is divided in two
subsections, we state our main results. The first subsection treats the existence and
uniqueness of weak solutions and the next one is dedicated to classical solutions of
equation (1.1). We first prove an existence result. In the remaining part of the paper,
we prove our main results by defining several P functions which will be used to
prove uniqueness for the corresponding boundary value problem, so extending and
improving some classical results.

2. Main results

2.1. Existence and uniqueness of weak solutions Let Ω be a C2 domain and let
H = W2,2(Ω) ∩W1,2

0 (Ω). Here and throughout the paper the symbol Wk,p(Ω) denotes
the classical Sobolev spaces (see [1]).

Our first result is concerned with the existence and uniqueness of weak solutions of{
∆2u + ϕ∆u + ρ(x) f (u) = 0 in Ω

u = ∆u = 0 on ∂Ω,
(2.1)

where ϕ is a a constant function.

Definition 2.1. A weak solution of (2.1) is a function u ∈ H such that∫
Ω

(∆u∆v − ϕ∇u∇v + ρ(x) f v) dx = 0 for all v ∈ H.

A strong solution of (2.1) is a function u ∈W4,2(Ω) ∩ C2(Ω) that satisfies (2.1) almost
everywhere.
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[3] Existence and uniqueness of weak and classical solutions 307

It is well known (see [17, Ch. 1]) that H becomes a Hilbert space endowed with the
scalar product

(u, v)→
∫

Ω

∆u∆v dx for all u, v ∈ H.

This scalar product induces a norm equivalent to ‖ · ‖W2,2(Ω). Problem (2.1) has a
variational structure, and its solutions can be found as critical points of the energy
J : H→ IR

J(u) =

∫
Ω

[
1
2
(
(∆u)2 − ϕ|∇u|2

)
+ ρ(x)F(u)

]
dx,

where F(s) =
∫ s

0 f (t) dt.
We may follow one of the author’s papers [5] to show that J is weakly lower

semicontinuous on the reflexive space H if

ρ ≥ ρ0 > 0 in Ω, (2.2)
F(s) ≥ −β|s|α where β > 0, 1 ≤ α < 2. (2.3)

Moreover, if ϕ ≤ 0 and
f ′ ≥ 0 in IR, (2.4)

then J is convex.
Note that (2.3) is satisfied if | f (s)| ≤ C|s|α, where α < 1, α , −1. We are now able

to state the first result.

Theorem 2.2. Suppose that (2.2) and (2.3) hold. Then the boundary value problem
(2.1) has at least one weak solution. If (2.4) also holds, then the weak solution is
unique.

If, in addition,

F ≥ 0 in IR,

then the unique solution is the trivial one, that is, u ≡ 0.
If we admit that

∂Ω ∈ C4, f ∈ C0(IR), ρ ∈ C0(Ω),

then the boundary value problem (2.1) admits a unique strong solution.

2.2. Existence and uniqueness of classical solutions

2.2.1 Existence.

Definition 2.3. A classical solution of:

• equation (1.1) is a function u ∈ C4(Ω);
• the boundary value problem (1.1) under Navier boundary condition is a function

u ∈ C4(Ω) ∩C1(Ω);
• the boundary value problem (2.1) is a function u ∈ C4(Ω) ∩C2(Ω).
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We remark that equation (1.1) is equivalent to the cooperative system{
−∆u = v in Ω

−∆v = −ρ(x) f (u) + ϕ(x)v in Ω.
(2.5)

For x ∈ Ω, let

U(x1, . . . , xn) = M ln(x1, . . . , xn) and V(x1, . . . , xn) = N ln(x1, . . . , xn),

where the constants M,N > 0 are to be determined such that (U,V) is a supersolution
of (2.5) (that is, the pair (U,V) satisfies (2.5) with the relation “≥” instead of “=”).

Since
−∆U =

Mn
(x1 + · · · xn)2 > V in Ω,

if we choose M > Nn(diam(Ω) + 1)2 ln(n(diam(Ω) + 1)), and since

−∆V =
Nn

(x1 + · · · xn)2 > −ρ f (U) + ϕ(x)V in Ω,

if ϕ ≤ 0 and if we choose N > αn(diam(Ω) + 1)2 and |ρ f | ≤ α, we obtain that (U,V) is
a supersolution of (2.5).

Since the system (2.5) is cooperative, and (0, 0) and (U,V) are a pair of ordered sub-
and supersolutions ( f (0) ≤ 0), respectively, we infer the following existence result.

Theorem 2.4. Equation (1.1) has at least one positive classical solution, if ρ is
bounded in Ω, ϕ ≤ 0 in Ω, f (0) ≤ 0 and f is bounded on bounded intervals in
IR+ = [0,∞).

2.2.2 Uniqueness via maximum principles (the P function method [26]). Before
we state and prove the uniqueness results, we begin here by proving several maximum
principle results for equation (1.1). As a consequence of the maximum principles, we
obtain various uniqueness results.

A review of the literature reveals that almost all maximum principles and
uniqueness theorems (based on maximum principles) related to equation (1.1) are
stated under the restriction ρ > 0 and/or ∆ρ ≤ 0 and/or (2.4) (see [11, 12, 19, 20, 25,
27, 28]).

The next maximum principles and uniqueness theorems extend classical results of
Goyal [11] or Schaefer [25] by treating the uncovered case, ρ, ∆ρ, f ′ of arbitrary sign.
The first P function we introduce below is based on the Miranda function [21] M =

|∇u|2 − u∆u. In the following, we adopt the notation u,i = ∂u/∂xi, u,i j = ∂2u/∂xi∂x j,
and so on. Also, repeated indices are summed from one to n.

Theorem 2.5. Let u be a classical solution of (1.1) in Ω ⊂ IR2, where ρ ∈ C2(Ω).
Suppose that one of the following conditions is satisfied:

s f (s) ≥ 0 in IR, ρ > 0 in Ω, ϕ ≥ 0 in Ω, (2.6)
s f (s) ≥ 0 in IR, ρ < 0 in Ω, ϕ ≤ 0 in Ω. (2.7)
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(a) If, for some α ∈ IR,

α
ρ∆ρ + (α − 1)|∇ρ|2

ρ2 + ϕ ≤ 0 in Ω, (2.8)

then the function

Pα =
|∇u|2 − u∆u

ρα
=

M
ρα

does not attain a nonnegative maximum in Ω, unless it is constant in Ω.
(b) Suppose that either (2.6) with ϕ ≡ 0 or (2.7) holds, and let i1, . . . , in ∈ {1, . . . , n}

be distinct numbers. If one of the following conditions holds:

(i) ρ,k ≥ 0 for all k = 1, . . . , n in Ω;
(ii) there exist(s) i1, . . . , iq (1 ≤ q ≤ n − 1) such that ρ,i1 , . . . , ρ,iq ≤ 0 in Ω and

the rest of the functions ρ,k are nonnegative in Ω;
(iii) ρ,k ≤ 0 for all k = 1, . . . , n in Ω,

then, for a sufficiently small α, the function

Pα
ψ

does not attain a nonnegative maximum in Ω, unless it is constant in Ω. Here
ψ(x) = 1 − beaxi > 0 in Ω for some i ∈ {1, . . . , n}, where b = supΩ γ(diam(Ω))2/4,
a = 2/ diam(Ω) and γ is such that supΩ γ < 4/e2(diam(Ω))2.

Proof. (a) Since

∆Pα = ∆

( 1
ρα

)
M + ∇

( 1
ρα

)
∇M +

1
ρα

∆M

= −α
ρ∆ρ − (α + 1)|∇ρ|2

ρα+2 M −
2α
ρα+1∇ρ∇M +

1
ρα

∆M,

we get

∆Pα +
2α
ρ
∇ρ∇Pα = −α

ρ∆ρ − (α + 1)|∇ρ|2

ρα+2 M +
1
ρα

∆M −
2α2|∇ρ|2

ρα+2 M.

Hence, Pα satisfies

∆Pα +
2α
ρ
∇ρ∇Pα + α

Pα
ρ2 (ρ∆ρ + (α − 1)|∇ρ|2) =

1
ρα

∆M.

Using the well-known inequality

u,i j u,i j ≥ (∆u)2/2

and equation (1.1),

∆M = 2u,i j u,i j −(∆u)2 − u∆2u ≥ ϕu∆u + ρu f (u),
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which yields

∆Pα +
2α
ρ
∇ρ∇Pα + Pα

(
α
ρ∆ρ + (α − 1)|∇ρ|2

ρ2 + ϕ
)
≥

u f (u)
ρα−1 +

ϕ|∇u|2

ρα
. (2.9)

If (2.6) is satisfied, we can choose α to be arbitrary and get from (2.9) that

∆Pα +
2α
ρ
∇ρ∇Pα + Pα

(
α
ρ∆ρ + (α − 1)|∇ρ|2

ρ2 + ϕ
)
≥ 0 in Ω. (2.10)

The conclusion can now be inferred from the classical maximum principle [24].
If (2.7) holds, then the conclusion follows by choosing α to be odd.

(b) According to inequality (2.10) and some previous results of the author [6,
Theorem 3.2] or [4, Theorem 1.11, page 15], the function Pα/ψ cannot attain
a nonnegative maximum in Ω, unless it is a constant, if one of the conditions
(i)–(iii) are satisfied and if

α
(
ρ∆ρ + (α − 1)|∇ρ|2

ρ2

)
+ ϕ ≤

4
e2 diam(Ω)

in Ω. (2.11)

Since α is arbitrary, we can choose α sufficiently small such that inequality
(2.11) always holds.

This completes the proof of the theorem. �

With the aid of Theorem 2.5, we establish two uniqueness results that extend
Schafer’s classical uniqueness results [25].

Theorem 2.6. Suppose that either:

(a) conditions (2.6) and (2.8) hold;
or

(b) condition (2.6) (ϕ ≡ 0) and one of the conditions (i)–(iii) of Theorem 2.5 hold.

Then the boundary value problem
∆2u + ϕ(x)∆u + ρ(x) f (u) = 0 in Ω

u =
∂u
∂n

= 0 on ∂Ω

has no nontrivial classical solution in the C1 domain Ω.

Proof. Suppose that (b) holds for some α. By Theorem 2.5,

Pα
Ψ

does not attain a nonnegative maximum in Ω (2.12)

unless there exists a constant k ∈ IR such that

Pα
Ψ
≡ k in Ω. (2.13)
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[7] Existence and uniqueness of weak and classical solutions 311

From (2.12) we get

max
Ω

Pα
Ψ

= max
∂Ω

Pα
Ψ

= 0,

which means that Pα ≤ 0 in Ω. From (2.13), the boundary conditions and continuity,
we obtain k = 0, that is, Pα ≡ 0 in Ω. It follows that |∇u| = 0 in Ω, so that u = constant,
and therefore u ≡ 0 in Ω.

Hence we are left to check the case Pα < 0: that is,

|∇u|2 − u∆u < 0 in Ω.

After integrating the last inequality over Ω,∫
Ω

|∇u|2 dx < 0,

which is impossible. Hence, u ≡ 0 in Ω could be the only solution (if f (0) = 0).
We can argue similarly if we are under hypothesis (a), so this completes the proof. �

Theorem 2.7. Under hypotheses (a) or (b) of Theorem 2.6, the boundary value problem{
∆2u + ϕ(x)∆u + ρ(x) f (u) = 0 in Ω

u = ∆u = 0 on ∂Ω
(2.14)

has no nontrivial classical solution in the convex domain Ω.

Proof. Since the proof of part (a) is essentially contained in the proof of part (b), it
will be omitted.

By the maximum principle Theorem 2.5, for some small α, the function M/ραΨ

takes its nonnegative maximum on the boundary ∂Ω at a point, say, y0 = (y1
0, y

2
0), unless,

M/ραΨ ≡ constant in Ω, where ψ(x) = 1 − beax2 .
By introducing normal coordinates in the neighbourhood of the boundary, we write

(see [26, page 46, relation 4.3])

∆u =
∂2u
∂n2 +

∂2u
∂s2 + K

∂u
∂n

on ∂Ω, (2.15)

where K > 0 denotes the curvature of ∂Ω, and ∂u/∂s denotes the tangential derivative
of u. Since u = ∆u = 0 on ∂Ω, equation (2.15) becomes

∂2u
∂n2 = −K

∂u
∂n
. (2.16)

Using (2.16) and the convexity assumption,

∂M
∂n

= −2K
(
∂u
∂n

)2
< 0 on ∂Ω. (2.17)

By computation and using (2.17),

∂

∂n

( M
ραΨ

)
=

(
∂u
∂n

)2(
− 2KραΨ −

∂(ραΨ)
∂n

) 1
ρ2αΨ2 ,

and, by the convexity assumption, we get −2KραΨ < 0.
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We now choose at y0 a principal coordinate system (see [10, page 354] for details).
The outer unit normal at y0 is n(y0) = (n1(y0), n2(y0)) = (0,−1). Hence

∂(ραΨ)
∂n

(y0) = αρα−1(y0)
∂ρ

∂n
(y0)Ψ(y0) + abρα(y0)eay2

0 . (2.18)

If (∂ρ/∂n)(y0) < 0, then we choose α sufficiently small such that (2.11) holds (that is,
the maximum principle holds) and

∂(ραΨ)
∂n

(y0) > 0.

Consequently,
∂

∂n

( M
ραΨ

)
(y0) < 0,

which is a contradiction to the generalized maximum principle of Hopf [24,
Theorem 10, page 73]). It follows from the maximum principle that there exists a
constant C ≥ 0 such that

M = CραΨ in Ω.

By (2.18), the case C > 0 would imply that
∂M
∂n

(y0) > 0,

which contradicts (2.17). It follows that C = 0, that is, M = 0 in Ω, which gives
|∇u|2 = 0, and therefore u ≡ 0 in Ω.

We are now left to check the case
M
ραΨ

< 0 in Ω.

It follows that
|∇u|2 − u∆u < in Ω.

We use the argument presented by Schaefer [25] to get again u ≡ 0 in Ω (see also a
simplified argument by Sperb [26, Corollary 10.1, pages 177–178]). �

We shift our attention from the two-dimensional case to the n-dimensional case, and
prove four maximum principles and uniqueness results under some relaxed hypotheses
( f ′, ρ or ∆ρ of arbitrary sign), so extending results of Schaefer [25] and Zhang [28].

Theorem 2.8. Let u be a classical solution of (1.1) in Ω ⊂ IRn, where ϕ ≤ 0, ρ ∈ C2(Ω)
and f ∈ C1(IR).

(a) Assume that
ρ f ′ > β for some β > 0,
(ρ f ′ − β)∆ρF − f 2|∇ρ|2 ≥ 0.

(2.19)

Then the functional

Pβ =
(∆u)2

2
+ β|∇u|2 + ρ(x)

∫ u

0
f (s) ds

assumes its maximum value on ∂Ω.
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(b) Assume that the following inequalities hold:

ρ f ′ > −γ,

(ρ f ′ + γ)
(
∆ρ +

γ

β
ρ
)
F − f 2|∇ρ|2 ≥ 0

(2.20)

for some constants β > 0 and γ ≥ 0, such that

γ

β
≤
π2

d2 .

Then the function
Pβ
χ

cannot attain a nonnegative maximum in Ω unless

Pβ
χ
≡ constant.

Here we suppose that Ω lies in a strip (of width d) 0 < xi < d for some i = 1, 2, . . . , n,
and

χ(x) = cos
π(2xi − d)
2(d + ε)

n∏
j=1

cosh(εx j) ∈ C∞(Ω),

where ε > 0 is small.

Proof. (a) A computation shows that

∆Pβ ≥ |∇(∆u)|2 + 2β∇u∇(∆u) + ∆ρF(u) + ρ f ′(u)|∇u|2 + 2 f (u)ρ,i u,i .

Completing the square of the first two terms gives

∆Pβ ≥ (ρ f ′ − β)|∇ρ|2 + 2 f (u)ρ,i u,i +∆ρF(u).

Again, we complete the square of the first two terms by adding and subtracting
the term f 2ρ,i ρ,i /(ρ f ′ − β), to get

∆Pβ ≥ ∆ρF(u) −
f 2ρ,i ρ,i
ρ f ′ − β

≥ 0 in Ω,

by (2.19), so that the conclusion follows from the maximum principle.
(b) By calculations

∆Pβ +
γ

β
Pβ ≥ F

(
∆ρ +

γ

β
ρ
)

+ |∇u|2(ρ f ′ + γ) + 2 fρ,i u,i .

Completing the square of the last two terms and using (2.20) gives

∆Pβ +
γ

β
Pβ ≥ F

(
∆ρ +

γ

β
ρ
)
−

f 2|∇ρ|2

ρ f ′ + γ
≥ 0 in Ω.

The conclusion now follows from a previous result [3, Theorem 2.1]. �
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Theorem 2.9. Suppose that we are under hypothesis (a) of Theorem 2.8 and that
ρF ≥ 0 in Ω. Then the only classical solution of the boundary value problem (2.14)
in the convex domain Ω ⊂ IRn is the trivial solution.

Proof. According to Theorem 2.8, for some β, the function Pβ attains its maximum
value on ∂Ω at a point x0. From Hopf’s lemma [24, Theorem 10, page 73], it follows
that

∂Pβ
∂n

> 0 at x0.

A computation shows that

∂Pβ
∂n

=
∂∆u
∂n

∆u + β
∂u
∂n

∂2u
∂n2 + ρ f (u)

∂u
∂n

+
∂ρ

∂n

∫ u

0
f (s) ds. (2.21)

Note that, from
∫ u

0 f (t) dt ≥ 0 and f ′ > 0, it follows that f (0) = 0.
By similar calculations used in the the proof of Theorem 2.7 and using the boundary

conditions, equation (2.21) becomes

∂Pβ
∂n

= −βH
(
∂u
∂n

)2
≤ 0 on ∂Ω,

where H > 0 denotes the mean curvature of Ω. This contradicts Hopf’s lemma at the
point x0 ∈ ∂Ω, where Pβ (Pβ . constant) assumes its maximum value. Hence Pβ is
constant in Ω.

It follows that ∂Pβ/∂n = 0 on ∂Ω and, consequently, ∂u/∂n = 0 on ∂Ω. By the
boundary conditions, it follows that Pβ ≡ 0 in Ω. Since we have supposed that ρF ≥ 0
in Ω, it follows that u ≡ 0 in Ω. �

Theorem 2.10. Suppose that we are under hypothesis (b) of Theorem 2.8. Then the
boundary value problem (2.14) has no nontrivial classical solution in the convex
domain Ω ⊂ IRn if ρF ≥ 0 in Ω.

Proof. According to Theorem 2.8, the function Pβ/χ does attain a nonnegative
maximum on ∂Ω at a point x0, unless

Pβ
χ
≡ constant,

where

χ(x) = cos
π(2xn − diam(Ω))
2(diam(Ω) + ε)

n∏
j=1

cosh(εx j).

Without loss of generality, we assume that Ω lies in the strip 0 < xn < diam(Ω) and
that x0 ∈ ∂Ω ∩ {diam(Ω/2) < xn < diam(Ω)} = ∂Ω1. A computation shows that

∂

∂n

(Pβ
χ

)
= −

β

χ2

(
Hχ +

∂χ

∂n

)
on ∂Ω.
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Since
0 <

π

2(diam(Ω) + ε)
(2xn − diam(Ω)) < π/2,

it follows that
0 < sin

π

2(diam(Ω) + ε)
(2xn − diam(Ω)) < 1.

Consequently, ∂χ/∂xn < 0 on ∂Ω1.
As in the proof of Theorem 2.7, we choose a principal coordinate system at x0 and,

by the last inequality,
∂χ

∂n
(x0) > 0.

Hence,
∂

∂n

(Pβ
χ

)
(x0) < 0.

Now we use the same arguments as in the final part of the proof of Theorem 2.9 to
conclude that Pβ ≡ 0. Finally, since ρF ≥ 0, we have u ≡ 0 in Ω, and the proof is
complete. �

Theorem 2.11. Let u be a classical solution of (1.1) in Ω ⊂ IRn, where ϕ ≡ constant
and f (s) = s. Suppose that one of the following conditions holds:

(a) ϕ ∈ (0, 1]; or
(b) ϕ < 0, ρ > 0 in Ω and ϕ2ρ ≤ (ρ − 1)2 in Ω.

Then the function
P1 = 1

2 (∆u + ϕu)2 + 1
2 (∆u)2 + u2

takes its maximum value on ∂Ω.

Proof. (a) By computing and completing the square, we get

∆P1 ≥ −ϕ(∆u)2 − ρϕu2 − 2(ρ − 1)u∆u

= −ϕ
(
(∆u)2 + ρu2 + 2

ρ − 1
ϕ

u∆u
)

≥ −ϕ
(
(∆u)2

(
1 −

1
ϕ2

)
+ u2(−ρ2 + ρ − 1)

)
≥ 0 in Ω.

The proof follows from the classical maximum principle.
(b) In a similar manner, we obtain

∆P1 ≥ −ϕ(∆u)2 − ρϕu2 − 2(ρ − 1)u∆u

= ρ
(
− ϕu2 − 2

ρ − 1
ρ

u∆u
)
− ϕ(∆u)2

≥ (∆u)2
(
− ϕ +

ρ

ϕ

(
ρ − 1
ρ

)2)
≥ 0 in Ω.

This completes the proof. �
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We note that the previous result as well as the following uniqueness result (case (a))
hold without any restriction on f . The result follows by a simple application of
Theorem 2.11.

Theorem 2.12. There is at most one classical solution of the boundary value problem{
∆2u + ϕ(x)∆u + f (u) = 0 in Ω

u = g1, ∆u = g2 on ∂Ω,

where one of the following conditions holds:

(a) f is an arbitrary function and ϕ ∈ (0, 1]; or
(b) ϕ < 0, f ′ > 0 in Ω and ϕ2 f ′ ≤ ( f ′ − 1)2 in Ω.

Remark 2.13. Although the maximum principles and uniqueness results stated above
do not apply to the equation that appears in the plate theory [15], ∆2u − ρu = 0 in Ω,
where ρ > 0 is constant, one can check that the functions

P2 = |∇u|2 − u∆u +
u2

2
and P3 =

|∇u|2 − u∆u
ρ

+
u2

2

satisfy a maximum principle if ρ ≤ 1/2, d2 ≤ π2 and ρ ≥ 2, ρd2 ≤ π2, respectively.
Hence, we can deduce uniqueness results for the corresponding boundary value
problem.

So far, we have only considered uniqueness results under Navier or Dirichlet
boundary conditions.The next maximum principle allows us to prove a uniqueness
result for a different kind of boundary condition.

Theorem 2.14. Let u be a classical solution of equation (1.1) in Ω ⊂ IRn, where n ≤ 4,
ϕ ≡ constant ≤ 0, ρ ≥ 0 in Omega and f ′ ≥ 0 in IR. Then the functional

P4 = u,i j u,i j −∇u∇(∆u) −
ϕ

2
|∇u|2

attains its maximum value on ∂Ω.

Proof. We observe that

∆P4 = 2(∆u),i j u,i j +2u,i jk u,i jk −|∇(∆u)|2 − 2(∆u),i j u,i j −∇u∇(∆2u)
−ϕ(u,i j u,i j +∇u∇(∆u)).

Using Payne’s inequality [22] (which holds in n dimensions) [26, inequality (10.3),
page 179]

u,i jk u,i jk ≥
3

n + 2
|∇(∆u)|2,

and our assumptions, we get

∆P4 ≥ −∇u∇(−ϕ∆u − ρ f (u)) − ϕ∇u∇(∆u)
= ρ f ′|∇u|2 ≥ 0 in Ω.

Hence P4 is subharmonic, and the conclusion follows by the classical maximum
principle. �
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Theorem 2.15. There is no nontrivial classical solution of the boundary value problem
∆2u + ϕ∆u + ρ(x) f (u) = 0 in Ω

∂u
∂n

=
∂2u
∂n2 = 0 on ∂Ω ∈ C2,

where ϕ, ρ and f satisfy the conditions of Theorem 2.14.

Proof. Using Theorem 2.14 we deduce that

max
Ω

P4 = max
∂Ω

P4.

It can be checked that, on ∂Ω,

u,i j u,i j =

(
∂2u
∂n2

)2
.

Combining the last two equations

P4 = u,i j u,i j −∇u∇(∆u) −
ϕ

2
|∇u|2 ≤ 0 in Ω. (2.22)

Integrating equation (2.22) over Ω and using the following relation that results from
Green’s identity [24],

−

∫
Ω

∇u∇(∆u) dx =

∫
Ω

(∆u)2 dx,

and the boundary conditions, we get∫
Ω

u,i j u,i j dx +

∫
Ω

(∆u)2 dx −
ϕ

2

∫
Ω

|∇u|2 dx ≤ 0.

It follows that ∆u ≡ 0 in Ω and hence ∆2u ≡ 0 in Ω. Consequently, equation (1.1)
becomes −ρu ≡ 0 in Ω, and hence u ≡ 0 in Ω. �

3. Conclusion

This paper treats the problem of existence and uniqueness of weak and classical
solutions for a fourth-order semilinear boundary value problem. The results are derived
using standard variational methods as well as maximum principles. Future research
will widen these results by proving similar results for a class of sixth or higher-order
equations.

Acknowledgements

This research was carried out while the author was visiting the University of North
Carolina at Charlotte (UNCC), USA, and was supported by the Horizon 2020–2017
RISE-777911 project.

It is a pleasure to thank Professor Douglas Shafer (UNCC) for his help, hospitality
and for several valuable discussions which we had during my stay in Charlotte.

https://doi.org/10.1017/S1446181119000129 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181119000129


318 C.-P. Danet [14]

References

[1] R. A. Adams and J. Fournier, Sobolev spaces, 2nd edn, Volume 140 of Pure and Applied
Mathematics Series (Academic Press, Boston, MA, 2003);
https://www.elsevier.com/books/sobolev-spaces/adams/978-0-12-044143-3.

[2] D. Bonheure, “Multitransition kinks and pulses for fourth order equations with a bistable
nonlinearity”, Ann. Inst. H. Poincaré Anal. Non Linéaire 21 (2004) 319–340;
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