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EXISTENCE OF OPTIMAL CONTROLS FOR A
CLASS OF NONLINEAR DISTRIBUTED PARAMETER SYSTEMS

NIKOLAOS S. PAPAGEORGIOU

In this paper we examine a Lagrange optimal control problem driven by a non-
linear evolution equation involving a nonmonotone, state dependent perturbation
term. For this problem we establish the existence of optimal admissible pairs. For
the same system we also examine a time optimal control problem involving a mov-
ing target set. Finally we work out in detail an example of a strongly nonlinear
parabolic distributed parameter system.

1. INTRODUCTION

In this paper we establish the existence of optimal controls for a class of strongly
nonlinear, parabolic optimal control problems, with an integral cost criterion and with
state dependent control constraints. Our work extends those of Ahmed [1], Ahmed and
Teo [2], Avgerinos and Papageorgiou [4], Flytzanis and Papageorgiou [9], Joshi [11],
Lions [12] and Vidyasagar [18]. From these works, Ahmed [1] and Ahmed and Teo
[2] assumed that the differential operator A(t)() is linear (semilinear system) and in
Ahmed and Teo [2] there was a state-dependent perturbation term, which though was
monotone as was A(t)(-). In the problem studied by Avgerionos and Papageorgiou [4],
the operator A{t, •) was nonlinear, but there were no nonmonotone terms. In Flytzanis
and Papageorgiou [9] again the dynamical equation is nonlinear, but it is assumed
that the partial differential operator is of the subdifferential type and in addition the
semigroup of nonlinear contractions S(t) generated by it is compact for t > 0. In
Lions [12] only time invariant monotone operators were allowed, while finally Joshi [11]
and Vidyasagar [18] examined systems described by Hammerstein and nonlinear finite
dimensional equations respectively, but under restrictive overall hypotheses. We should
also mention the recent work of Cesari [8], who studied a different class of nonlinear
control problems, using results from operator theory and the nice book of Ahmed and
Teo [3], which has a comprehensive introduction into the modern approaches of the
theory of optimal control of nonlinear evolution equations in Banach spaces.
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212 N.S. Papageorgiou [2]

In our problem, the important feature is the presence of a nonlinear, nonmonotone
state dependent perturbation, which in concrete examples can incorporate certain par-
tial differential operator terms of nonmonotone type. We examine a nonlinear Lagrange
optimal control problem and under mild hypotheses we prove that it has a solution.
We also consider a time optimal control problem, involving a moving target set and for
this we establish the existence of time optimal controls. Finally we work out in detail
an example of a nonlinear, parabolic distributed parameter system.

2. PRELIMINARIES

Let (ft, E) be a measurable space and X a separable Banach space. By Pj(c){X)

we will be denoting the family of nonempty, closed, (convex) subsets of X. A mul-
tifunction (set valued function) F: ft —» 2X \ {0} is said to be graph measurable
if GrF = {(«, x) 6 ft x X: x £ F(u)} £ S x B{X), with B(X) being the Borel
er-field of X. A multifunction F: ft —• Pj(X) is said to be measurable, if for all
z £ X, u> -* d(z, F(w)) — inf{||2 — x|| : x e F(w)} £ L\. Measurability implies graph
measurability. The converse is true if there exists a complete, tr-finite measure /i(-) on
(ft ,E).

Let y, Z be Hausdorff topological spaces. A multifunction G: Y —» 2^\{0} is said
to be upper semicontinuous(u.s.c), if for all U C Z open, G+(U) = {y £ Y: G(y) C U}

is open in Y. Also we say that G{) is closed, if GrG = {(y, z) eY x Z: z 6 G(y)} is
closed in Y X Z. A closed valued, u.s.c. multifunction is closed.

Let H be a separable Hilbert space and X a subspace of H, carrying the structure
of a separable, reflexive Banach space and which embeds continuously and densely
into H. Identifying H with its dual (pivot space), we have X c—» H <—» X* with
all embeddings being continuous and dense. Such a triple of spaces is called in the
literature "Gelfand triple". To have a concrete example in mind let Z be a bounded
domain in Rn with smooth boundary dZ = T. Set H = L2(Z) and X = W™'P{Z)

with m e Z + , 2 < p < o o . Then Wm''{Z) <-> L2{Z) •-• W~m>*(Z) = [W™lP{Z)]*

(1/p + 1/q = 1) with all embeddings being continuous, dense and furthermore compact
("Sobolev-Kondrachov embedding theorem"). By | | | | (respectively |-|, ||-||,) we will
denote the norm of X (respectively of H, X* ). Also by (•, •) we will denote the duality
brackets for (X, X*) and by (•, •) the inner product in E. The two are compatible in
the sense that if x £ X C H and v £ H C X*, then (x, v) = (x, v).

3. EXISTENCE THEOREMS

Let T = [0, 6] and (X, H, X*) a Gelfand triple of spaces with all embeddings

being in addition compact. Also Y is a separable, reflexive Banach space modelling the

control space.
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[3] Optimal control 213

The nonlinear optimal control problem under consideration is the following:

(*)

J(x, u)= I L{t, x(t), u(t))dt -f inf = m
Jo

such that x(t) + A(t, x(i)) + f(t, x{t)) = B(t)u(t) almost everywhere

a;(0) = x0, u(f) G U(t, x(t)) almost everywhere

«(•) measurable

We will need the following hypotheses on the data of (*).

H(A). A: T x X -» X* is an operator such that

(1) t —> ^4(t, z) is measurable,
(2) * —» A(t, x) is hemicontinuous, monotone,

(3) \\A(t, x)\\t < cfllasH1""1 + l ) almost everywhere with c > 0, p ^ 2,

(4) {A(t, x), x) ^ C2 ||a:||p ahnost everywhere with C2 > 0.

H(f). f-.TxX^Hisa. map such that

(1) t —» /(t, a) is measurable,
(2) x —» /(<, z) is continuous and sequentially weakly continuous,

(3) there exists C3 > 0 such that —C3 ̂  (f(t, x), x) almost everywhere for
all x&X,

(4) \f(t, x)\ ^ a{t) + 6||a;||p~1 almost everywhere with o(-) G L\,

i>0(l/p+1/9=1).

) . U:T xH -* Pfc{Y) is a multifunction such that

(1) U(-, •) is graph measurable,
(2) U(t, •) is sequentially closed in H x Yw,
(3) |Ef(t, z ) | < ai(t) almost everywhere with oi(-) G i + .

. I : T x J T x y - » R i s a n integrand such that

(1) £(•, •, •) is measurable,

(2) L(t, -, •) is lower semicontinuous on H xY,
(3) £(<, z, •) is convex,
(4) <f>{t) - M{\x\ + \\u\\) ̂  i ( t , z , u) almost everywhere with <f>() G i 1 ,

M > 0 .

Finally to avoid trivial situations, we need the following admissibility hypothesis:

Ha- there exists admissible "state-control" pair (x, u) such that J(x, u) < 00.
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214 N.S. Papageorgiou [4]

Let Wpq(T) = {x() G Lp(X): x(-) € Lq(X*)}, with the derivative involved defined
in the sense of distributions. Furnished with the norm

Wpq(T) becomes a separable, reflexive Banach space. Furthermore we know (see Ahmed
and Teo [3, Theorem 1.2.15, p.27]) that Wpq(T) •-» C(T, H) continuously. The trajec-
tories of (*) lie in Wpq(T) (see Barbu [6] and Hirano [10]).

THEOREM 3 . 1 . If hypotheses H(A), H(f), H{B), H{U), H{L) and Ha hold,
then there exists admissible "state-control" pair (x, u) such that J{x, u) = m.

PROOF: Let {{xn, un)}n>i be a minimising sequence of admissible pairs for (*).
Then for all n > 1, we have:

xn{t) + A[t, xn{t)) + f{t, *„(*)) = B(t)un(t) almost everywhere]

xn(0) = xo, iin{t) G U(t, xn(t)) almost everywhere

un(-) measurable

Multiply the evolution equation with xn(-). We get

<«„(«), xB(0> + (A(t, «»(*)), !„(/)) + (/(«, xn(t)), xn(t))

— (B(t)un(t), xn(t)) almost everywhere

= 2(B(t)un(t), !„(<)) almost everywhere .

Using hypotheses H(A) (4) and H(f) (3), we get

^ \xn{t)\2 + 2c2 ||xn(<)ir - 2c3 < 2(B(t)un(t), xB(f)) almost everywhere.
at

Integrating and using Holder's inequality, we get

2C2 ||*»HLP(X) < 2C3& + 2 ll*«»llW(K) ll*

Invoking Cauchy's inequality with e > 0, we get

2 | | | l i < 2c>b + 2C- I I I I + 1
Oc-P 2

— \\xn\\lHX) + —
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[5] Optimal control 215

By choosing e > 0 sufficiently small so that c2 > e p /p , we get from the above

inequality that there exists Mi > 0 such that ||*n||£p(x) ^ -^i ^or all n ^ 1.

Then using hypotheses H(A) (3) and H(f) (4) and recalling that (p — l)q = p,
we get:

+ 1) + 8'(a(t)' + 6 \\xn(t)\\")

+ 2* ||-B||x,oo(T£(yiH)) a,i(i)9 abnost everywhere.

Integrating over T = [0, 6] and recalling that H^nll^/^) ^ Mi, we deduce that
there exists M2 > 0 such that ||zn||j,9(x*) ^ ^ for all n ^ 1. Hence we have
proved that {zn()}n>i is bounded in Wpq(T). Recalhng that Wpq(T) is reflexive and
by passing to a subsequence if necessary, we may assume that xn —> x in Wpq(T).
Furthermore since by hypothesis X •—* H compactly, from Lions [13, Theorem 5.1,
p.58], we have that Wpq(T) <—* LP(H) compactly. So we can say that xn -̂ » x in
LP(H). Furthermore since Lq{Y) is reflexive (Y being reflexive and q > 1), by passing
to a subsequence if necessary, we may assume that un —* u in L9(Y). Then hypothesis
H(L) allows us to apply Theorem 2.1 of Balder [5] and get that

/ L(t, x(t), u(t))dt ^ lim / L(t, xn{t), un(t))dt = m.
Jo Jo

So it remains to show that (a;, w) is an admissible "state—control" pair for (*).
First we claim that:

]im(A(t, xn(t)) + f(t, xn(t)), xn(t) - x(t)) ^ 0 almost everywhere .

Suppose that this is not the case. Then we will have

(1) lim(A(«, *»(<)) + f(t, *»(*)), xn(t) - *(«)) < 0 for t 6 E, \{E) > 0.

Invoking hypotheses H(A) (3) and (4) and H(f) (3) and (4), we have

(A(t, xn(t)) + f(t, *„(«)), xn(t) - x(t)) > Cl + c2 ||xn(<)||p - c3

( 2 ) -c^Wir1 + l ) ||Z(<)|| - (a(t) + i | |x»(<) | r 1 ) \\x(t)\\ almost everywhere

Combining (1) and (2) above, we get that {||xn(0ll}n>i *S bounded for t £ E\N =
E', X(N) = 0. Fix t E E'. By passing to a subsequence (depending on t G E') if
necessary, we may assume that xn{t) —* x{t). Since by hypothesis X •—» H compactly,
we have xn(t) A x(t) (the limit will depend on < 6 E'). On the other hand recall
that xn -^ x in Wpq(T) and as we have already said Wpq(T) *-» 2^(JJ) compactly. So
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216 N.S. Papageorgiou [6]

we may assume that xn —* x in LP(H) and xn(t) —* x(t) almost everywhere in H.

Thus we have x(t) = x(t) for all t G E" = E \ Nx, A(iVx) = 0. Then exploiting the
monotonicity of A[t, •), t G E", we have:

x»(<) - x(t))

=• lim(il(<, x»(0) , xB(<) - x(t)) > 0 t G E" .

Hence finally, using hypothesis .ff(/) (2), we have

)im(A{t, xB(<)) + /(<, x»(0) , «»(<) - x(i)) ^ 0 t G E" , A(£") = A(£) > 0,

and this contradicts (1). So we have proved our claim.
Set Tin(t) - {A(i, xn(t)) + f{t, xB(t)), xn(i) - x(t)). From Fatou's lemma we have

,fc fb

0 < / timi7n(f)<ft < Urn / i7B(i)(ft
Jo Jo

Um ((l(xn) + f{xn), x B -

(3)

where A: AP(X) —» i*(X*) is the Nemitsky operator corresponding to A(t, x),
J: LP(X) -» Lq(X*) the Nemitsky operator corresponding to f(t, x) and ((-, ))0 the
duality brackets for the dual pair {LP(X), Lq(X*)).

Now we claim that

B m ( ( l x n + / ( B n ) , x B - x ) ) =0 .

From the dynamics of the system for every n ^ 1, we have:

Xn - ) )

with B being the Nemitsky operator corresponding to B(t). Recall (see for example
Tanabe [17], Lemma 5.5.1, p.151) that:

(x(<) - xB(t), x(«) - xB(<)) = ~ < x ( i ) - xB(i), x(t) - xB(i))

l W W l 1

( (x -x n ,x -x n ) ) 0 =- |x (6) -x n (6) |

-((xBI x - xB))0 = \ |x(6) - xn(6)|2 - ((x, x - xB))0.
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[7] Optimal control 217

Recalling that Wpq(T) •-» C{T, H), we have:

—xn + Bun, xn — x 1 I = ((—xn, xn — x))0 + I I Bun, z n — z J I

1 2 . f~ \

So we deduce that

which proves our claim. Putting this fact back into (3) we get

0=1 limT7n(t) ^ lim / 7]n(t)dt ^ h'ml I Axn + f{xn)> xn — *)) = 0 .
Jo Jo v v y / o

From the above inequalities, we deduce that JQ \Tjn(t)\ dt —»0asn—> oo => i)n -»0
in i/1(T) and so we may assume that t]n(t) —• 0 almost everywhere => (^4(t, a;T,(<)) +
/ ( t , zn( t)) , zn(f)—z(t)) —> 0 almost everywhere. From this and inequality (2) above, we
see that {||zn(*)ll}n>i is bounded for almost all t £ T. Hence as before, by passing to a
subsequence (depending in general on t) if necessary, we may assume that xn(t) —* x(t)

for almost all t £ T. On the other hand recall that since xn -̂ + x in Wpq(T), we
can write that xn(t) —> x(t) almost everywhere in H. Thus x(t) = x(t) almost
everywhere and thus since for almost all t £ T, every subsequence of {xn{t)}n^i for
almost all t £ T has a further subsequence converging weakly in X to x(t), we deduce
that xn(t) A x(t) almost everywhere in X . Then (/(*, xn{t)), xn{t) - x(t)) -> 0
and so (A(t, xn(t)), xn(t) — x(t)) —> 0 almost everywhere. Now note that since by
hypothesis H(A) (2), A(t, •) is hemicontinuous, monotone, everywhere defined on X ,
it is pseudomonotone (see Browder [7]). So A(t, xn(t)) —> A(t, x(t)) almost everywhere
in X* => Axn A Ax in Lq(X*). Also from hypotheses H(f) (2) and (4), we see that
J[xn) ^+ / ( z ) in Lq(H) (hence in Lq(X*)). Finally note that since xn ^* x in
Wpq(T) => xn ^ x in i*(X*) , while Bun -^ JBu in Lq(H) (hence in L«(X*) too). So
for any h £ LP(X), we have:

=> ( ( i , fc))o -

Since A £ LP(X) was arbitrary, we deduce that

J z(f) + A(t, x(t)) + f(t, z(t)) = B(t)u(t) almost everywhere]

1 x(0) = zo J
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218 N.S. Papageorgiou [8]

Also recall that we have un —» u in Lq(Y) (since {uti(')}n>i is bounded (hypoth-
esis H(U) (3)) in the reflexive Banach space Lq(Y)). Then from Theorem 3.1 of [15]
we have u(t) £ conv w — lim U(t, xn(t)) almost everywhere. But because of H(U) (2)
we have that w-Um U(t, xn{t)) C U(t, x(t)). So u(t) E U(t, x(t)) almost everywhere,
•u(-) measurable. Hence (x, u) is an admissible "state-control" pair for (*). Therefore
we conclude that (z, u) is the desired optimal pair; that is, J{x, u) = m. u

We can also solve a time optimal control problem with a moving target set. So let
G: T —> 2H \ {0} be the moving target. Our goal is to reach G(-) in minimum time
moving along trajectories of (*).

We will need the following hypothesis about the moving target:

H(G). G: T —* Pfc(H) is an upper semicontinuous multifunction from T into Hw,
where Hw is the Hilbert space H endowed with the weak topology.

Also hypothesis Ha will be replaced by the following controllability type hypoth-
esis:

Hc. E = {t G T: G(t) (~l P(xo){t) ^ 0} ̂  0, where P(x0) is the set of trajectories of
(•) and P(xo)(t) = {.(*):.(•) G P(x0)}.

THEOREM 3 . 2 . If hypotheses H(A), H(f), H(B), H{U), H(G) and Hc hold
with p = q = 2 and X is a Hilbert space, then there exists time optimal control.

PROOF: Let r — inf E. It exists because of Hc. Take {<n}n»i C E such that
tn i T. Then by definition there exist xn() 6 P(x0) such that xn(tn) G G(tn) n > 1.
Recall (see the proof of (Theorem 3.1) that {*n(-)}n^i *s '"'-compact in W2,2{T). Since
X is a Hilbert space and X •—> H compactly, from Nagy [14], we know that Wj^T) *—•
C[T, H) compactly. So {xn{-)}n-^1 is compact in C(T, H) and thus by passing to a
subsequence if necessary, we may assume that i n 4 i in C(T, H) => xn(tn) —> X(T) in
H => X(T) G W — limG(tn) C G[T) (hypothesis H(G)). So x(-) is the desired optimal
trajectory and any control generating x(-) is a time optimal control. D

4. AN EXAMPLE

In this section we work out in detail an example illustrating the applicability of
our results.

So let T — [0, b] and Z be a bounded domain in Rn with smooth boundary
dZ = F. On T x Z we consider the following nonlinear parabolic distributed parameter
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[9] Optimal control 219

optimal control problem.

(**)

J(x, u)= I I L(t, z, x(t, z), u(t, z))dzdi -* inf = m
Jo Jz

s u c h that M j p * + £ (-l)HDaAa(t, z, V(x(t, z))) + f(t, z, «(«(«, »)))

= (p(*, z), u(t, z)) on T x Z, Dfix(t, z)=0 for (t, z) € T x T, |/?| < m - 1

x(0, *) = *„(*) on {0} x Z, / |u(«, z)\2 < / r(«, *, *(*, z))2dz
Jz Jz

«(-, •) measurable

Here ri{x{z)) = {Dax(z): \a\ < m} and 8(x) = {D^x(z): |/9| < m - 1}.

We will need the following hypotheses on the data of (**).

H(A)'. Aa:T x Z x Rn™ -> R are maps such that

(1) (I, z) —> i4a(t, z, rj) is measurable,

(2) ?; —> i4(f, 2, TJ) is continuous,

(3) \Aa(t, x, r))\ < c(^\ri\p~1 + l ) almost everywhere, c > 0, p ^ 2,

(4) E Ua(*, z, t/) - AQ(f, z, v'))(v<x - < ) ^ 0 for every 2 G Z and every
|a|<m

tj, V G R n - , with n m = ((n + m)\)/(n\m\),

(5) 5Z (-^0(^1 *i »?))»7a ^ <=2 X) l7?a|J> almost everywhere, c2 > 0.
|a|^m |a|<m

' . f-.Ty.Zx Rnm -> R is a function such that

(1) (t, z) —> / ( t , z, fl) is measurable,
(2) 0 —» /(<, z, fl) is continuous,

(3) \f(t,z,0)\ ^ a(t, 2) + 6|fl|p~1 almost everywhere with o(-, •) G

(4) /(f, z,6)0>-c3, c s > 0 .

H(r). T x Z x R - » R + i s a function such that

(1) (t, 2, v) —> r(t, 2, «) is measurable,
(2) v —» r(f, z, u) is upper semicontinuous,
(3) \r(t, z, v)\ < O!(t, z) almost everywhere with ai(-, •) € L*(T, L2(Z)).

H(L)'. L : T x Z x R x R r - t R i s a n integrand such that

(1) L(-, •, •, •) is measurable,
(2) (z, u) —+ L[t, 2, as, «) is lower semicontinuous,
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220 N.S. Papageorgiou [10]

(3) L(t, z, x, •) is convex,
(4) tf>(t, z) - M{\x\ + ||u||) < L(t, z, x, u) ahnost everywhere with <j>(-, •) G

L\TxZ) and M > 0.

Ho. xo()eL2(Z).

Ha . There exists admissible "state-control" pair such that J(x, u) < oo.
We will reduce (**) to the abstract optimal control problem (*) and then apply

Theorem 3.1.
In this case X = W™'P{Z), H = L2(Z) and X* = W~m^(Z). This is a Gelfand

triple and furthermore all embeddings are compact. Also Y = L\(Z) (the control
space). We consider the time varying Dirichlet form a: T x W™'P(Z) x W™'P(Z) -» R
defined by

a(t, x,y)= ] T f Aa{t, z, r,(x(z)))Day(z)dz.

Using Minkowski's and Holder's inequalities, we have

Aa(t, z, r,(x{z)))Day{z)dz a(t, z, V{x{z)))\< dz^j ( jf \Day{z)\

Day(z)\'dz]1/P

J

=> |o(t, x, y)\ ^ c(\\x\\r£,p + l ) \\y\\w™,P(z), e > 0.

Hence a(t, x, •) is continuous and linear on W™'P(Z). Thus there exists A: T x
W™'P(Z) -» ^ - m -9 (Z) defined by

o(<, x, y) = {A(t, x), y)

where (•, •> denotes the duality brackets for the pair (Wo
m>p(Z), W-m-q(Z)).

Observe that for all y £ W™'V{Z),

f Aa(t,z,r,(x(z)))Day(z)dz
JZ

is by Fubini's theorem measurable. So t —> ^4(i, x) is weakly measurable from T into
W~m>q(Z) and since the latter is separable, invoking Pettis' theorem, we conclude that
t —• A(t, x) is measurable.
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[11] Optimal control 221

Next let xn —• x in W™'P(Z). Then by Krasnoselski's theorem, we have

\(A(t, xa) - A(t, x), y)\

\Aa{t, z, ij(x»(z))) - Ajjt, z, T?(X(Z)))| • \Day(z)\ dz -> 0I
> x —+ -4(t, x) is demicontinuous, in particular then hemicontinuous.

Also from hypothesis H(A) (4), we have

(A{t, x) - A(t, y), x-y)

=> x —» J4(<, X) is monotone.

Furthermore from the growth property of a(-, •, •) we have

\(A{t, x), y)\ ^ (c(\\x\\p^lP{z) + l ) ) • \\y\\w~.P{z)

=> \\A(t, x)||. < c(\\x\\^,P(z) + l ) , c > 0.

Finally from hypothesis ^(^4) (5), we have:

(A(t, x), x) > c2 llxll^m.n^j c2 > 0.

Thus operator A: T x W™'P(Z) -* W~m'q(Z) denned above satisfies hypothesis

H(A).
Next let F:Tx W™'P(Z) -» L2(Z) be defined by

F(t, x)(z) = f{i, z, 0(x{z))).

Because of hypotheses H(f)' (1), (2), (3) and since p > 2 and Z C Rn is
bounded, from Krasnoselski's theorem, we have that F(t, x) is well defined. Also
for every h £ L\Z), (/(*, -, *(*(•))), fc)L,(z) = / z / ( * , *, 0(x(z)))h(z)dz and so Fu-
bini's theorem tells us that t —» f(t, •, ^(*(-))) is weakly measurable, hence by Pet-
tis* theorem measurable. So t —» F(t, x) is measurable. Furthermore, if xn —» z
in WT'P(Z), then since Wo

miJ>(Z) •-» ^ " ^ " ( Z ) compactly, we have xn -̂ » x in
WQm~llJ>(Z) and then using Krasnoselski's theorem, we conclude that F(t, •) is com-
pletely continuous from Wjn>p(Z) into L2(Z). Hence F(t, •) is continuous and se-
quentially weakly continuous. In addition, because of hypothesis H(f) (3), we have
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\\F(*, *)IL>(Z) < o(«)+i | | * | | ^ . P ( z ) > with a(t) = ||oft O I I L - ^ , sothat a() G L"(T).

Finally from hypothesis H{f)' (4), we have -<TS < (Ff t x), x)Li(Z) with c3 > 0. Thus

F: T x Wo
mill(Z) -» L2(Z) defined above satisfies hypothesis H{f).

Next let 2 : T x Z2(Z) x L\{Z) -* R be defined by

Lft a;, «) = / L(t, z, x(z), u(z))dz.
Jz

From Pappas [16] we know that we can find Lk: T x Z x R x R * —• R Caratheodory
integrands (that is, measurable in ft z), continuous in (x, u)) such that <f>(t, z) —

M(\x\ + \\u\\) < Lk(t, z, x,u)4:k and Lk T L. Then set

Lh[t, x,u)= f Lk(t, z, i («) , u(z))dz.
Jz

Clearly £*(-, •, •) is Caratheodory (that is, measurable in t, continuous in (z, u));
thus it is jointly measurable. By the monotone convergence theorem, we have X* f
L, so i ( - , •, •) is jointly measurable too. Also L(t, x, u) > <j>[t) — M(||z||2 + ||t^||2)
while from Balder [5] we have that L(t, •, •) is sequentially "strongly x weakly" lower
semi continuous on L2(Z) x L%(Z).

Finally let U: T x L2(Z) -> Pfc(L
2

r(Z)) be defined by

with f f t a;) = Jzr(t, z, x(z))dz. As we did for integrand Z(-, -, •) we can show

that f̂ -, •) is measurable. This time since r f t z, •) is upper semicontinuous, the

Caratheodory approximations are from above. Hence GrU — {ft x, u) G T X L2(Z) x

L2
r(Z): f f t x) - ||u||, > 0} G B(T) x 5( I 2 (Z)) x B(L2

r(Z)) => tf(-, •) is graph mea-

surable. Also \U(t, x)\ < 2i(f) almost everywhere with £i(t) = ||a(i, OIIL'^Z)' thus

tt!() G £5.. Finally if (xn, un) G GrU(t, •) and (a:n, un) ^ 5 (a;, «) in L2(Z) x £2(Z),

then ||u||2 < lim ||«n| |2 ^ lim ||un||2 < lim r[t, xn) ^ f{t, x) (the last inequality coming

from Fatou's Lemma). So we have satisfied hypothesis H(U).

Next let B(t): L\{Z) -» L2(Z) be defined by (B(t)u)(z) = (p(t, z), u(z)). Because

of hypothesis H(p), B() G L°°(T, C(L2
r{Z), L\Z))). Finally let x0 = x o ( ) G L2{Z)

(hypothesis Ho).

So we can rewrite (**) in the following equivalent abstract form:

rb ̂
J(x, u)= I L(t, x(t), u(t))dt -»inf = m

Jo

such that x(t) + A(t, x(t)) + F(t, x(t)) = B(t)u(t) almost everywhere

x(0) = xo, u(t) G U{- ,x(t)) almost everywhere

u(-) measurable
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This has the same form as (*). So we can apply Theorem 3.1 and get:

THEOREM 4 . 1 . If hypotheses H{A)', H{f)', H(p), H{r), H{L)', Ho and Ha

hold, then there exists admissible "state-control" pair (z, u) £ Lq{T, W™>P{Z)) x

Li(T, Ll(Z)) such that J(x, u) = m.

REFERENCES

[l] N. Ahmed, 'Optimal control of a class of strongly nonlinear parabolic systems', J. Math.
Anal. Appl. 61 (1977), 188-207.

[2] N. Ahmed and K. Teo, 'Optimal control of systems governed by a class of nonlinear
evolution equations in a reflexive Banach space', J. Optim. Theory Appl. 25 (1978), 57-81.

[3] N. Ahmed and K. Teo, Optimal control of distributed parameter systems (North Holland,
New York, 1981).

[4] E. Avgerinos and N.S. Papageorgiou, 'An existence theorem for an optimal control prob-
lem in Banach spaces', Bull. Austral. Math. Soc. 39 (1989), 239-248.

[5] E. Balder, 'Necessary and sufficient conditions for L\ -strong-weak lower semicontinuity
of integral functional', Nonlinear Anal. 11 (1987), 1399-1404.

[6] V. Barbu, Nonlinear semigroups and differential equations in Banach spaces (Noordhoff
International Publishing, Leyden, The Netherlands, 1976).

[7] F. Browder, 'Pseudomonotone operators and nonlinear elliptic boundary value problems
on unbounded domains', Proc. Nat. Acad. Set. 74 (1977), 2659-2661.

[8] L. Cesari, 'Existence of solutions and existence of optimal solutions', in Mathematical
theories of optimization: Lecture Notes in Math. 979, Editors J. Cecconi and T. Zolezzi,
pp. 88-107 (Springer-Verlag, Berlin, Heidelberg, New York, 1983).

[9] E. Flytzanis and N.S. Papageorgiou, 'On the existence of optimal solutions for a class of
nonlinear infinite dimensional systems', Differential Integral Equations (1990). (in press) .

[10] N. Hirano, 'Nonlinear evolution equations with nonmonotone perturbations', Nonlinear

Anal. 13 (1989), 599-609.
[11] M. Joshi, 'On the existence of optimal controls in Banach spaces', Bull. Austral. Math.

Soc. 27 (1983), 395-401.
[12] J.-L. Lions, 'Optimisation pour certaines classes d'equations d'evolution nonlineaires',

Ann. Mat. Pura Appl. 72 (1966), 275-294.

[13] J.-L. Lions, Quelques methodes de resolution des problemes aux limites non lineaires
(Dunod, Paris, 1969).

[14] E. Nagy, 'A theorem on compact embedding for functions with values in an infinite
dimensional Hilbert space', Ann. Univ. Sci. Budapest. Eotvo s Sect. Math. 29 (1986),
243-245.

[15] N.S. Papageorgiou, 'Convergence theorems for Banach space valued integrable multifunc-
tions', Internat. J. Math. Math. Sci. 10 (1987), 433^42.

[16] G. Pappas, 'An approximation result for normal integrands and applications to relaxed
control theory', / . Math. Anal. Appl. 93 (1983), 132-141.

[17] H. Tanabe, Equations of evolution (Pitman, London, 1979).

https://doi.org/10.1017/S0004972700028975 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700028975


224 N.S. Papageorgiou [14]

[18] M. Vidyanagar, 'On the existence of optimal control', J. Optim. Theory Appl. 17 (1975),
273-278.

Florida Institute of Technology
Department of Applied Mathematics
Melbourne FL 32901-6988
United States of America

Permanent address:
National Technical University
Department of Mathematical Sciences
Athens 15773
Greece

https://doi.org/10.1017/S0004972700028975 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700028975

