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Abstract

Using a semi-inverse method proposed by Wright the reflection of a finite elastic plane
shock wave at a plane boundary of a special elastic incompressible material is examined.
Three types of boundary conditions are considered. In the case of frictionless-rigid
boundary the reflected wave is a single simple wave. For clamped boundary the solution
indicates a possibility of irregular reflection as well. There is no reflection solution in the
case of a free boundary.

1. Introduction

The reflection of a finite plane shock wave at a plane boundary in nonlinear
homogeneous simple elastic material was investigated by Wright [6, 7] and
Duvaut [1]. Both authors obtained the solution in a form of centered shocks and
simple waves, but the treatment and scope of these two presentations differ
considerably.

Using a strictly mechanical theory, Wright presented a semi-inverse method of
finding the reflected waves. In this method it is assumed that the incident shock,
with the angle of incidence 60 smaller than a certain critical angle 9C, is given a
priori, and that the medium ahead of the shock has a fixed state; this means that
the state immediately behind the shock is also known. It is also assumed that the
state behind the wave and the state at the boundary (compatible with the
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boundary conditions) are connected by means of a sequence of one parameter
families of reflected waves (simple waves), centered at the moving line of contact
between the incident shock wave and the plane boundary. In general, three such
families are required. The reflection problem then reduces to an initial-boundary
value problem for a system of ordinary differential equations governing the
variation of the deformation gradient and velocity fields in the regions of simple
waves. Its solution determines the fan-shaped regions of simpie waves and the
distribution and strength of the wavelets within each wave.

In some cases the assumed reflection pattern may fail the admissibility test; the
pattern must be then modified to include shocks or a combination of shocks and
simple waves. Both the shocks and the simple waves are given by one-parameter
families of functions. A typical combination is a joint family of the reflected
shocks and simple waves which may be connected to the same state. The
transition from one type of the wave to the other one within this family can be
obtained by continuous variation of the family parameter. Such a combination is
called a composite wave [7].

In this paper a problem of reflection at a plane boundary of an oblique plane
transverse shock wave propagating through an elastic rubber-like Zahorski's
material [8] is examined. The material region ahead of the incident shock is
assumed to be unstrained and at rest. The strength and the directions of
propagation and polarisation of the incident shock are given; then the basic
assumption is made that the reflection solution is in the form of a single simple
wave centered on the line of incidence.

Section 2 contains a summary of necessary theory and derivation of the
propagation condition for simple waves in incompressible materials. In Section 3
geometric and analytic descriptions of the incident shock and reflected simple
wave are given; then, for a special isotropic incompressible material the shock
propagation condition, the differential equations for the deformation gradient,
velocity and the p(Xa) function in the region of simple wave are derived. Three
types of boundary conditions and the corresponding initial-boundary value
problems are considered in Section 4. Section 5 contains the numerical analysis of
the reflection solution for clamped and frictionless-rigid boundary conditions.
The results are illustrated graphically.

2. Shocks and simple waves

The motion of the continuum is given by x'' = x'(X", t) where x' and X" are
the Cartesian coordinates of a material particle in the present configuration B and
the reference configuration BR respectively. The deformation gradient x'a, its
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inverse X" a n d the velocity are defined by

OA OX "

It is assumed that the material is homogeneous, elastic, and incompressible. The
incompressibility constraint requires that

(2.2)

The Piola-Kirchhoff stress tensor for such material is

TR? = P « T T + PX? (2.3)

where a denotes internal energy per unit mass in BR, pR = p is the density and
p = p(Xa) is an arbitrary scalar function (hydrostatic pressure).

If the stress and velocity fields are differentiable, then the equations expressing
balance of momentum and moment of momentum are

TRI% = pu,, x'Jt = x'aTR\ (2.4)

If the functions x'(Xa, t) are continuous everywhere but have discontinuous
first derivatives on some propagating surface S(Xa, t) = 0, the equations (2.4)
must be replaced by the jump conditions on this surface

[TRl"]Na = -pUB\u,], (2.5a)

[<]="%, \u'\=-a'Uv. (2.5b)

Such a surface is called a shock wave. The vector Na is a material unit normal to
the wave, Uv is the speed of propagation along Na and a' is the amplitude vector
of the jump. The bold square brackets indicate the jump in the quantity enclosed
across S; thus

where the letters F and B refer to the limit values taken in front and rear sides of
S respectively.

Simple waves [4], [7] are defined to be regions of space-time in which all field
quantities are continuous functions of a single parameter, say, A = G(X", t).
Regions of constant X are propagating surfaces, called wavelets, with unit normal
and normal velocity in BR given by

% 4 (2-6)
\VG\ \VG\
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The equation of motion (2.4), and a compatibility condition in the region of
simple wave are

dTB
a

-7*-4JG.a = KG. (2-7a)
dxj,

x'JG = u"Gtf (2.7b)

where the prime indicates differentiation with respect to X. If G # 0, equations
(2.7) may be written as

". P ' (2.8)
Uxjf + u'JNfi = 0

where

T
Ri

is the acoustic tensor. For an incompressible material substitution of (2.3) into
(2.8), and the indentity X?a = 0, lead to the equation

(QtJ - PU\)u'J - p,aX°U/\vG\ = 0

or, since in the region of simple wave/? a = p'\vG\Na, to the equation

(Qu - PU%)u'J - p'UX?Na = 0. (2.9)

We denote here

From the incompressibility condition (2.2) we have J p = X°x'^G ̂  = 0. Using
this equation, together with (2.8) and the relation (cf. [5] page 111):

Un' = uNaX? (2.11)

where n' is a unit normal and u the speed of propagation of the wave in B, the
scalar p' can be eliminated:

G.y v - Pu2u'y - p'u-w = o,
p'(\) = uU-2QljU'Jn<.

to obtain the propagation condition for simple waves in incompressible materials

(Q*-pU28u)u'^0. (2.13)

The tensor

Q*=Qu-QkJ"
k", (214)

is called the reduced acoustic tensor.
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3. Incident shock and reflection pattern

35

The constraint of incompressibility restricts the propagating waves to trans-
verse waves only. In general, the reflection problem may have no solution in
terms of simple waves, as there are at most two possible families of reflected
waves in such a case; this means that there are two free parameters, with three
boundary conditions to be met. However, solutions may exist for some types of
incompressible materials, with particular deformation and boundary conditions.
In this paper we examine such special cases.

FIGURE 1. Incident shock and assumed reflection pattern.

Let {Xa} and {x'} be the Cartesian coordinates of an elastic particle in BR

and B respectively. Suppose that a plane shock wave propagates through an
elastic incompressible material in the half space X2 > 0, and approaches its
boundary X2 = 0 at an angle 60 (Figure 1), and the line of contact with the
boundary is parallel to the .Y3-axis. It is also assumed that the angle of incidence
80 is smaller than a certain critical angle 6C (refer (3.18)). Thus, this travelling
discontinuity surface belongs to a one-parameter family of parallel planes, with
normals

N2 = (sin0o,-cos0o,O). (3.1)

The reflection line (point Q in Figure 1) moves along the boundary with speed
Uh = f/ysin 80 where Uv is the shock speed. It is assumed that the reflected wave
is a simple wave (region 2). The material region 0 in front of the incident shock is
unstrained and at rest. Regions 1 and 3 have constant state.

Since all waves are centered on Q, we have for the reflected wave:

Na(\) = (sin0(\),-cos0(\),0), (3.2a)

U(\) = Uhsin0(\), (3.2b)

where 6(\) is the angle of reflection and X is the reflected wave parameter.
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For (2.13) to have nonzero solution in u" it is necessary that

det(<2*. - PU%) = ( s in0 ) 6 ^ (T) = 0, (3.3a)

u'J = kr>. (3.3b)

^ " ( T ) is a sixth degree polynomial with real coefficients, T = cot d(X), and r' is a
right proper vector of Qfj corresponding to a particular proper value T. In (3.3) k
is an arbitrary parameter; assuming k = U, it follows from (2.7b) and (3.3b) that:

*fi = ~r%, u" = Ur'. (3.4)

These are the ordinary differential equations for the gradient x'a and velocity u' in
the region of simple wave. They can be solved, with the initial conditions taken in
region 1.

A detailed discussion and geometric interpretation of the roots of ^ ( T ) can be
found in [7]. In this paper we shall only state that for a simple wave T must be a
real decreasing function of \, when X changes from its initial value 0 to the
extreme value X (which may be negative); it means that its wavelets (rays) diverge
when \ varies from 0 to X. If T(X) increases, then the assumed reflection pattern
should be modified to include shocks as well [7].

We assume that the incompressible elastic material that fills the region X2 > 0
(Figure 1) is isotropic, and it is defined by the constitutive equation

W(Ilt I2) = pail,, I2) = C^A - 3) + C2(/2 - 3) + C3(/x
2 - 9) (3.5)

proposed by Zahorski [8], where

( ) (3.6)

are the invariants of the left Cauchy-Green strain tensor B'J.
The sets of values for C1( C2, C3 for three kinds of rubber are given in [9].
Furthermore, we assume that the direction of polarisation, given by unit vector

d', is parallel to the ^3-axis:

d' = d, = (0,0,1). (3.7)

The jump conditions (2.5b) are now

[x] = -mUBd; [ x i ] = md'Na (3.8a)

where a' = md\ and m is the shock strength. It is clear that only the jumps of two
components of the deformation gradient and one of the velocity are not zero.
Since the medium in front of the shock is unstrained and at rest, these jumps are

U 3 ] = (*3)* =-mUo, (3.8b)

[] )B [ ] ( ) B (3.8c)
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Substituting (3.5) and (3.8a) into (2.5a) we obtain the propagation condition

U2 = -p C2 + 6C3 + 2C3m
2]. (3.9)

This means that for Zahorski's material the squared speed of the shock wave is a
quadratic function of the shock strength.

The material region behind the wave front should remain elastic. Hence, the
discontinuity jumps cannot be arbitrary, and the appropriate estimates for m
should be established. In the further numerical analysis the jump estimates
presented in [2] for the material (3.5) will be used.

Since by (3.8a) (xj,)B - ô  = md'Na - xl
a, the deformation gradient and its

inverse in region 1 are

(3.10)

The components of 7^, and the elasticities off (refer (2.10)) required in this paper
are then evaluated in region 1:

1
0

A

0
1

X3

x 2

o'
0
1

1
0
X3

1

0
1
X3
x 2

0
0
1

l' = 2p{Ol + o2[l +{x3
2f\)

7\>1 = TD'J ^ —ipO-yX -\X -5,W l /< * <^ Z 1 Z '

a3
1
3
1 = 2(a1 + a2)+4a1 1(^3

1)2 ,

a 3 3 ^ a 3 3 = Ao-^\X jX 2 .

where

1 3/j p 1

92a 2 ^

r m
3 = -2pa2x3

1-/>x3
1,

T^1 = 2p(Ol + a,)^3!,

rR2
3 = -2pa2x3

2-/>x3
2,

i + o2)x\.

(3

TR3
2 =

) + 4an(*3
2) 2 ,

(3-12)

do 1
a/2 ~ P '

From (3.7) and (3.8) it follows that

u' = (0,0,u3), u3 = -mUv. (3.13)

This implies that all motion is restricted to the x3 direction.
By (3.11) and the assumption that w3 is not zero the condition (2.13) is reduced

to a single equation (refer (3.3));

Q*3 - pU2 = 0. (3.14)
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From (2.11), (3.2) and (3.10) it follows that «3 = 0 and, by (2.10) and (2.14),
Q*3 = £33 = PoffNaHp. Denoting

Na = N^sind = (l , - T , 0 ) , T(A) = cot 0(A), (3.15)

and using (3.2b), we can rewrite (3.14) as a quadratic equation in T:

Its smaller root (c/. [6]),

T =
°33 ~

_22
J33

_22
a 33

(3-16)

(3.17)

indicates the planes of reflected wavelets. The requirement that the roots are real
gives the condition for the critical angle 0,: it is the largest angle 0 for which the
following inequality holds

(3.18)

0 . 8

0 . 7

0.6

0 . 5

0 .4

0 . 3

0 . 2

O.I

cot

m
O.I 0.5 1.5 2.5 2.66

FIGURE 2. Relation between critical angle and shock strength.
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FIGURE 3. (a) Deformation gradient, (b) speed of propagation, (c) particle velocity in region of simple
wave.

The elasticities off are evaluated in region 1, with the material constants:
C, = 0.64, C2 = 0.09, C3 = 0.07. (See [9], for rubber OKA-1; the constants are
expressed in kg/cm2.) Figure 2 shows that the critical angle 8C decreases with
increasing shock strength m.

Equation (2.12) was derived for arbitrary homogeneous incompressible elastic
material and arbitrary deformation. In the special case considered here this
equation is reduced to the form,
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FIGURE 4. Relation between x3, and 0O on the trailing edge of simple wave.

Substitution of (3.10), (3.12) and (3.15) gives a differential equation forp(A) in
terms of the deformation gradient and velocity fields in the region of simple wave,

p'(X) = 8C3t/-V3(l + r)'1/2(x\ - TJC3
2). (3.19)

The problem of determining these two fields and the interval for the wave
parameter A will be discussed in the next sections.

4. Reflection calculations

The simple wave is completely described by a one-parameter set of functions
given by the ordinary differential equations (3.4), and satisfying given initial and
boundary conditions. Equations (3.4) now are

(4.1)
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(a)

-0.492 -0.433 -0.383 -0.321 -0.250 -0.171

FIGURE 5. x3
1 in region of simple wave (a) for m = 2.66, (b) for m = 0.5, and some values of 60.
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where / is an arbitrary function of the wave parameter A. The deformation
gradient and velocity are assumed to be continuous throughout regions 1-3
(Figure 1). Thus, the initial values for the differential equations that describe
region 2 are the constant values of region 1; the final values in region 2 (at the
trailing edge of the wave) are the constant values of region 3, derived from the
boundary conditions on the plane X2 = 0.

The components of the deformation gradient and velocity behind the shock are
given by (3.8b; c); hence, the initial conditions for equations (4.1) are

= msin60, x\(0) = -mcos0o, (4.2)

where the shock speed Uv is given by (3.9).

Frictionless-rigid boundary.
Let us consider a case of "mixed" boundary conditions on the plane X2 = 0,

when the normal displacement and the shearing stresses TR1
2, TRi

2 are zero. Since
all motion is restricted to the A^-axis direction, the displacement condition is
satisfied identically. The stress conditions

TR
2 = -2po2x\x\ = 0,

0

are met when

Jc3
2 = O onA-2 = 0. (4.4)

To satisfy this condition it is convenient to choose in (4.1), / = - T " 1 for then the
system (4.1) becomes

X'\ = T-\ x'\ = -l, uri = -Uhx'\; (4.5a,b,c)

integrating the last two equations, with the initial conditions (4.2), we obtain

x3
2 = -A — mcosd0, M3 = -Uh(x

3
1 — msinffo) — mUv,

and the condition (4.4) is met when

* final = ^ = ~m C O S V (4- 6 )

Substitution for x3
2 in T (refer (3.17)) in equation (4.5a) gives a nonlinear

differential equation for jc3
x in the form, jc'3! = g(x3

lt A), X < X < 0. The initial
condition is equation (4.2b). If 60 < 6C, g is a real single-valued smooth function
of both variables, and the initial value problem has a unique continuous solution
Jc3

x(A). This problem, however, can be solved only numerically. Substitution for
x3

1 and Jc3
2 in (3.17) completes the solution. The function T(0(A)) defines a
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family of wavelets of the reflected wave, and r(6(0)) indicates the leading edge of
this wave. The final value for \ is given by (4.6) and T ( 0 ( X ) ) indicates the trailing
edge of the wave.

Clamped boundary.
Let us assume that the incident shock is reflected from a rigidly constrained

boundary; this means that

u3 = 0 onA'2 = 0. (4.7)

To meet this condition it is convenient to choose in (4.1), / = -Uh~
l, for then the

system (4.1) becomes

M'3 = - 1 , x'\ = Uh-\ x'\ = -rUh-
1; (4.8a, b,c)

integrating the first two equations, with the initial conditions (4.2), we obtain

M3 = _ \ _ mu^ jc3
t = U^X + msind0

and the condition (4.7) is satisfied when

X = -mUv. (4.9)

For X = X jc3j also vanishes: Jc3
1(X) = -mU^lUv + msin0o = 0. Substitution for

Jc3
x and T (given by (3.17)) in (4.8c) leads to a nonlinear differential equation for

x3
2 which can be solved only numerically. Substitution for jc3

x and jc3
2 in (3.17)

completes the solution.

Free boundary.
Consider a case in which the stress vector /, = TRj

aKa, Ka = (0, -1,0), vanishes
on the plane X2 = 0. This means that for X2 = 0,

TR
2 = -2po2x\x\ = 0,

TR
2 = 2p(ai + o2)x\ = 0,

TR
2 = 2p{Ol + o2[2 +{x\f\} + p = 0.

The first two equations led to the condition (4.4). The third equation which must
be satisfied on X2 - 0 in both regions 0 and 3 determines the hydrostatic
pressure/) in region 0:

p0 = -2(C\ + 2C2 + 6C3) (4.11)
and in region 3:

P3=po- 2(C2 + 2C3)(x\('X))2 (4.12)

where the x|,(X) are the values of the deformation gradient at the trailing edge of
region 2.
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The function p is continuous throughout regions 1-3, but it suffers a jump
across the shock surface that separates regions 0 and 1. To find pl in region 1 we
use jump conditions (2.5). The first two equations: [TRf]Na = 0, or equivalently
I7™1! = T2|rW2

2], together with (3.11) and (4.2), give the jump of/?,

Pi ~ Po= -4C3m
2,

and the function px in region 1 of constant siaie is

Pi=Po~ 4C3rn\ (4.13)

for arbitrary value of the incident angle 6Q < 9C.
In region 2 the deformation gradient and velocity are completely determined by

(4.5) and (4.6) as continuous functions of the wave parameter in the interval
(X,0>. Equations (4.5) and (4.6) are consistent with the first two conditions
(4.10). The differential equation (3.19), after substitution for x\, x3

2 and u3,
determines the hydrostatic pressurep(X) up to a constant in the interval (X,0).
Direct integration, with the aid of (4.5), gives

p(\)--4C3[{*\(\))2+(*>2(\)f]+C.
Due to continuity throughout regions 1-3, the function p(X) must satisfy two
conditions, p(0) = px and p(k) = p3 where px and p3 are given by (4.12) and
(4.13). Hence

p(X) = -4C3[(*\(X))2 +(*3
2(A))2] +Po. (4.14)

The second condition leads to the equation

2 + 2C3)(x\(X)Y

which is satisfied only when C2 = 0. By assumption, for the material (3.5)
considered in this paper, C2 *= 0. This implies that the reflection problem for the
case of a free boundary may have no solution in the form of a single simple wave.

5. Numerical solutions

The reflection solutions discussed in Section 4 are examined numerically for the
material (3.5) with constants C: = 0.64, C2 = 0.09, C3 = 0.07. The Runge-Kutta
method is used to solve the initial value problems (4.5), (4.2) and (4.8), (4.2) for
some values of the incident angle 60 < 0c, and the following values of the incident
shock strength [2]; m = 0.1, 0.5,1.0,1.5, 2.0, 2.5, 2.66.
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Frictionless-rigid boundary.
Some characteristic results are shown in Figures 3-6.
Equation (4.5a), x'3l = T"1 = tan0(X) states that the tangent to the curve

x3
r = Jc3!(\)at\ = X1(X < \1 < 0, is parallel to the corresponding ray 81 = ^Xj)

in region 2 (Figure 1), and that the leading ray is 0x = 6(0). The graphs in Figures
3, 4 and 5 show that Jc'^X) is a decreasing concave-up function of X when X
changes from 0 to X < 0; this indicates that the function 0(X) increases when X

: 5# m = 2.66

H u v

-2.65

-2.00

FIGURE 6. For 60 = 5°, m = 2.66 (a) reflected simple wave, and (b) gradient, (c) wave speed as
functions of X.
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10* -r20'

O.IOO

0.080
o solution in the form of

simple wave fails

+ critical angle

0.060-

0.040

0.020

10* 30 50' 7 0 * 90*

FIGURE 7. x3
2(X) as function of incident angle and some values of m; indicated failure of reflection

pattern.

changes from 0 to X and, according to the admissibility criterion, that region 2 is a
reflected simple wave. The angle of this wedge shaped region is determined by the
slopes of tangents at A = 0 and A = X. The width of the wave region, as measured
by the angle of the wedge, increases with curvature of the curve x3

1 = Jc3j(A).
The numerical results show that the graphs of x3

x(A) become less "curved"
with the decreasing values of the incident shock parameters 60 and m. For
m = 0.5 the curve x3

l = Jc3j(A) (Figure 5(b)) is almost a straight line. In this case
the reflected wave consists of a very "slim" fan of wavelets centered on Q.
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Clamped boundary.
Some results are shown in Figures 6 and 7.
It is characteristic for this case that the final value of the wave parameter is

independent of 0O (see (3.9) and (4.9)). The wavelet distributions within the wave
however, depends on both parameters 00 and m (Figure 6(a)). The numerical
analysis of the problem proves that only relatively weak shocks produce the
reflected waves as simple waves for all 00 < Bc. For stronger shocks the pattern is
preserved only for 6Q < &0 where #0 is a certain specific angle depending on m,
and #0 < 60; for 0O > 80 the wave function T ( \ ) is no longer monotone in the
whole interval (X,0). The assumed reflection pattern should be then modified to
include a shock as well [6].

Figure 7 illustrates a situation where the solution fails the admissibility test on
the trailing edge of the reflected simple wave. It can be seen that in each case (for
m > 1) the reflected wave is a simple wave if 60 is smaller than a certain specific
angle 60 < 6C; it is an indication that for 60 > #0 a shock could be formed at the
trailing edge of the simple wave, and the reflected wave would be a shock-simple
wave combination. It seems, however, that this combination could not be in a
form of a composite wave centered on Q: such a reflection pattern would not be
stable [3] as the shock would propagate with sonic speed with respect to the
medium ahead of it. In such a case rather an irregular reflection pattern, when the
waves break away from Q and interact with the incident shock, could be
expected. The irregular reflections, however, are beyond the scope of this presen-
tation and are not discussed here.
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