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COMPLETE HYPERSURFACE OF
NON-POSITIVE RICCI CURVATURE

PUI-FAI LEUNG

We conjecture that a complete hypersurface of non-positive Ricci

curvature in the Euclidean space must be unbounded. We prove

this under the additional assumption that all sectional curvatures

of the hypersurface are bounded away from negative infinity.

0. Introduction

In this note we shall consider a complete hypersurface M in an

Euclidean space IK . We shall consider the case when the Ricci

curvature of M is non-positive. We first observe that it follows from

the Gauss equation that any minimal hypersurface belongs to our class. Of

course there are hypersurfaces with non-positive Ricci curvature which are

not minimal. For the case of minimal hypersurfaces it has been conjectured

for a long time that they cannot be bounded. It is well-known that minimal

hypersurfaces cannot be compact and it is also well-known that even the

larger class of hypersurfaces with non-positive Ricci curvature cannot have

compact members either, therefore it seems likely that the following

stronger conjecture may be true.

CONJECTURE. Any complete hypersurface with non-positive Ricci

curvature in the Euclidean space must be unbounded.

The example of a flat torus S1 x S1 in IR x Ft2 shows that we

cannot relax the codimension in the above conjecture.
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In the following we shall show that under the additional assumption

that the sectional curvatures of the hypersurface are bounded away from

-°° , the conjecture is true. Our proof is a direct application of an

important theorem due to Omori [7] and an algebraic result on bilinear

forms due to Otsuki [2].

1. Introduction

In this section we shall state the theorem of Omori and that of Otsuki

to be used in the next section.

Since a smooth function / attains a maximum on a compact manifold

(at a point p say) we have grad f{p) = 0 and Hess f(X, X) 5 0 for any

unit vector X in the tangent space at p . The theorem of Omori is a

generalization of this phenomenon.

THEOREM (Omori [ J ] ) . Let M be a complete and connected Riemannian

manifold whose sectional curvatures are bounded away from -°° . Let f be

a smooth and bounded function on M . Then, for any e > 0 , there is a

point p € M such that ||grad f(p)\\ < e and Hess f(X, X) < e for any

unit vector X € TM .
P

Next we consider a symmetric bi l inear form B : FT x FT -»• W . Let

a denote the u n i t sphere in VV . Consider the function <j> : £> •*• R

defined by <J>U) = \\B(X, X)\\2 . Clearly <f> i s smooth and since s " " 1 i s

compact <(> a t t a i n s a minimum a t X . We s h a l l consider the l i n e a r

t ransformat ion B{XQ, •) : Rn -»• RP .

THEOREM ( [ 2 3 , Chapter 1 1 , Lemma 1 ) . Suppose B{XQ, XQ) ? 0 . Then

(i) XQ J_Ker B(XQ, •] ,

(ii) for any Y € Ker B{X , •) , we have

< s ( x 0 , X Q ) , s ( y , y ) > > | |B(AT 0 , X Q ) \ \ 2 .
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2. The main result

Consider now a complete hypersurface AT in the Euclidean space

F^ . We shall denote the connection on AT by V and the connection on

IK t>y V . The second fundamental form 5 is a symmetric bil inear form

on TM x m into NM (the normal bundle) given by

V^J + B(X, Y)

where X, Y € TM . For a pair of orthogonal unit vectors X, Y € TM , we

shall denote by i?(X, Y, X, Y) the sectional curvature corresponding to

the plane containing X and Y . We have the Gauss equation

R(X, Y, X, Y) = <B(X, X), B{Y, Y)) - \\B(X, Y)f .

For any unit vector X € TM , the Ricci curvature in that direction is

given by

n-1
Ric(X, X) = £ R[X, Y X, Y ) ,

i=l v v

where \x, Y , ..., Y } form an orthonormal basis of TM .

Now suppose that M is bounded. So M lies inside a ball of radius

T say. We consider the function f on M defined by /(x) = <x, x>

2
where x stands for the position vector of M . Clearly fix) - r and

so is bounded.

Now take any point p € M and any unit vector V € TM . We shall now

compute Hess f(V, V) . We f i r s t recall that V J = V when x is the

position vector. We have

Hess f(V, V) = W{f) - Vyy(f)

= W<x, x> - VyV<x, x>

= 2V<V, x> - 2<VyV, x>

= 2 < V ^ , x> + 2<V, V) - 2WVV, x>

= 2<B(V, V) , x> + 2 .

Now for any positive integer m , we have by Omori's theorem a point p € W
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so that Hess f(V, V) < 2/m for all unit vectors V € TM . Therefore we

have

\\B(V, K) II * \ W| |B(7 , V>||

> =^<B(V, V), x)

= ^ (2 - Hess f(V, V)}

and so B(K, V) * 0 .

Now we take XQ so that ||fl [XQ, XQ) \f is the minimum of ||B( V, V) \\2

for a l l units V € TM . From above B[x , X ) # 0 and since

dim Ker B [XQ, •) > n - 1 we therefore have dim Ker B[X , •) = n - 1 .

Take T. , . . . , Y _ to be an orthonormal basis for Ker B{X , •] . By (i)

in Otsuki's theorem, we have an orthonormal basis X , Y , . . . , Y for

TM . I t therefore follows from the Gauss equation and (ii) in Otsuki's

theorem that

%. — 1

±n£ \\B{XO, xo)f
1—1

Hence le t t ing m •* °° , we obtain the following.

THEOREM. £et M be a complete hypersurface in IF< such that all

sectional curvatures on M are bounded away from -°° . If M is
contained in a ball of radius r , then

https://doi.org/10.1017/S0004972700025685 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700025685


N o n - p o s i t i v e R i c c i c u r v a t u r e 219

lim sup Ric(^, X) i —— .
r

XZTM

IMI

From this we have the following partial answer to our conjecture.

COROLLARY. Let M be a complete hypersurface in IK such that
all sectional curvatures on M are bounded away from -°° . If M has
non-positive Ricci curvature, then M is unbounded.
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