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COMPLETE HYPERSURFACE OF
NON-POSITIVE RICCI CURVATURE

Pui-Far Leune

We conjecture that a complete hypersurface of non-positive Ricei
curvature in the Euclidean space must be unbounded. We prove
this under the additional assumption that all sectional curvatures

of the hypersurface are bounded away from negative infinity.

0. Introduction

In this note we shall consider a complete hypersurface Mn in an

Euclidean space Pn+l . We shall consider the case when the Riceci
curvature of M is non-positive. We first observe that it follows from
the Gauss equation that any minimal hypersurface belongs to our class. Of
course there are hypersurfaces with non-positive Ricei curvature which are
not minimal. For the case of minimal hypersurfaces it has been conjectured
for a long time that they cannot be bounded. It is well-known that minimal
hypersurfaces cannot be compact and it is also well-known that even the
larger class of hypersurfaces with non-positive Ricci curvature cannot have
compact members either, therefore it seems likely that the following

stronger conjecture may be true.

CONJECTURE. Any complete hypersurface with non-positive Ricei

curvature in the Euclidean space must be unbounded.

The example of a flat torus Sl X Sl in Re X R2 shows that we

cannot relax the codimension in the above conjecture.
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In the following we shall show that under the additional assumption
that the sectional curvatures of the hypersurface are bounded away from
—o . the conjecture is true. Our proof is a direct application of an
important theorem due to Omori [1] and an algebraic result on bilinear
forms due to Otsuki [2].

1. Introduction

In this section we shall state the theorem of Omori and that of Otsuki

to be used in the next section.

Since a smooth function f attains a maximum on a compact manifold
(at a point p say) we have grad f(p) = 0 and Hess f(X, X) =0 for any
unit vector X in the tangent space at p . The theorem of Omori is a

generalization of this phenomenon.

THEOREM (Omori [1]). Let M be a complete and connected Riemannian
mantfold whose sectional curvatures are bounded away from - . Let f be
a smooth and bounded function on M . Then, for any € > 0 , there is a
point p € M such that |lgrad f(p)ll <€ and Hess f(X, X) < e for any
wunit vector X € TMp

Next we consider a symmetric bilinear form B : R x R? » RP . Let
Sn-l denote the unit sphere in R® . Consider the function ¢ : .Sn—l + R
defined by ¢(X) = [|B(X, X)||2 . Clearly ¢ is smooth and since Sn—l is
compact ¢ attains a minimum at X, . We shall consider the linear

0]

transformation B(X R -) : [Rn >R .

THEOREM ([Z], Chapter 11, Lemma 1). Suppose B(X XO] # 0. Then

0’
(i) X, ] Ker B(XO, ),

(ii) for any Y € Ker B{X,, *) , we have

2
(B(X,> X,), B(Y, 7)) = ||B(xo, x )
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2. The main result

Consider now a complete hypersurface llf in the Euclidean space
+ .
R* 1 .  We shall denote the connection on 1\[‘ by V and the connection on

IF{H]' by V . The second fundamental form B is a symnetric bilinear form
on TM X TM into NM (the normal bundle) given by

ﬁxy = V¥ + B(X, Y)

where X, Y € TM . TFor a pair of orthogonal unit vectors X, Y € TM , we
shall denote by R(X, Y, X, Y) the sectional curvature corresponding to
the plane containing X and Y . We have the Gauss equation
2
R(X’ Y, X’ -Y) =(B(Xa X)’B(‘Y’ Y))-”B(X; -Y)” .

For any unit vector X € TM , the Ricei curvature in that direction is

given by
n-1
Ric(X, X) = Y R(x, v., x, .} ,
i=1 v s

where {X, Yl, } form an orthonormal basis of TM .

N

Now suppose that M 1is bounded. So M 1lies inside a ball of radius

r say. We consider the function f on M defined by f(x) ={(z, x)

where & stands for the position vector of M . Clearly f(x) = r2 and

so is bounded.

Now take any point p € M and any unit vector V € TMp . We shall now
compute Hess f(V, V) . We first recall that 6Vr =V when x is the

position vector. We have

Hess f(V, V) = VV(f) - VVV(f)

Wiz, z) - VVV(:L', x?

vy, z) - 2(VVV, x)

2(\7VV, z) + 2V, V) - 2(VVV, x)

2B(V, V), =) + 2 .

Now for any positive integer m , we have by Omori's theorem a point p € M
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so that Hess f(V, V) < 2/m for all unit vectors V € mp . Therefore we

have

IB(v, VI = T ll=liB(v, Vi

v

-1
p” (B(V, V), x?

|+

= o [2 ~ Hess f(V, V)]

1
> = (1-
= (1-(2/m))
and so B(V, V) # 0 .
Now we take X, so that ||B(XO, XO] ||2 is the minimum of ||B(V, V) ”2
for all units V € TMp . From above B(XO, Xo) # 0 and since
dim Ker B(XO, -] zZn - 1 we therefore have dim Ker B(X s °) =n-1.

Take _Yl, ey 'Yn—l to be an orthonormal basis for Ker B(X , °) . By (%)
in Otsuki's theorem, we have an orthonormal basis XO’ Yl, ceey Yn—l for
'lMp . It therefore follows from the Gauss equation and (ZZ) in Otsuki's
theorem that
n-1
Ric(X_, xo) = 2 R(xo, Yo, X, Yi)
1=1
n-1
= Z_V; (B{x_, xo), B(Yi, Y. )
1=1
= 2
z ¥ B (x,, x)l
1=1
n-1 2
> 1.,_2 (_l—(l/m)] .

Hence letting m > « , we obtain the following.

THEOREM. Let M' be a complete hypersurface in R such that all
sectional curvatures on M are bounded away from - . If M <is

contained in a ball of radius r , then
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lim sup McM,X)EE%.
peM r
XeT™
flxll=1

From this we have the following partial answer to our conjecture.

COROLLARY. Let M' be a complete hypersurface in K™ such that
all sectional curvatures on M are bounded away from -» . If M has

non-positive Ricel curvature, then M <is unbounded.
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