
Canad. Math. Bull. Vol. 56 (1), 2013 pp. 3–12
http://dx.doi.org/10.4153/CMB-2011-152-9
c©Canadian Mathematical Society 2011

Semiclassical Limits of Eigenfunctions on
Flat n-Dimensional Tori

Tayeb Aı̈ssiou

Abstract. We provide a proof of a conjecture by Jakobson, Nadirashvili, and Toth stating that on an

n-dimensional flat torus T
n, and the Fourier transform of squares of the eigenfunctions |ϕλ|2 of the

Laplacian have uniform ln bounds that do not depend on the eigenvalue λ. The proof is a generaliza-

tion of an argument by Jakobson, et al. for the lower dimensional cases. These results imply uniform

bounds for semiclassical limits on T
n+2. We also prove a geometric lemma that bounds the number of

codimension-one simplices satisfying a certain restriction on an n-dimensional sphere Sn(λ) of radius√
λ, and we use it in the proof.

1 Introduction

We let ∆ denote the Laplacian on the n-dimensional flat torus T
n
= R

n/Z
n. The

eigenvalues of −∆ are denoted by 0 = λ0 < λ1 ≤ λ2 ≤ · · · , and the corresponding

eigenfunctions are denoted by ϕ j . We normalize ‖ϕ j‖2 = 1.

The following proposition was proved in [21] for n = 2, in [10] for n = 3, and in

[11] for n = 4.

Proposition 1.1 Let 2 ≤ n ≤ 4. Then the Fourier series of |ϕ j |2 has uniformly

bounded ln norms, where the bound is independent of λ j .

We remark that it is well known that the multiplicity of λ j becomes unbounded

for n ≥ 2, and therefore so does ‖ϕ j‖∞.

It was conjectured in [10] that the conclusion of Proposition 1.1 holds for arbi-

trary n. The main result of this paper is the proof of that conjecture.

Theorem 1.2 For any n ≥ 5, there exists C = Cn < ∞ such that for every eigenfunc-

tion ∆ϕ j + λ jϕ j = 0 with ‖ϕ j‖2 = 1, the Fourier series of g := |ϕ j |2 satisfies

‖ĝ‖ln ≤ C(n)‖ϕ j‖2
2.

We stress that the bound C does not depend on the eigenvalue λ j . The bound

C(n) is computed at the end of the proof and tends to 2 as n → ∞.

Theorem 1.2 implies (by an argument in [10]) a statement about limits of eigen-

functions on T
n+2. Consider weak limits of the probability measures dµ j = |ϕ j |2dx,

and denote the limit measure as λ j → ∞ by dν. One can prove that all such limit

measures dν are absolutely continuous in any dimension with respect to the Lebesgue
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measure on T
n (see [10]). Accordingly, by the Radon–Nikodym theorem, one can

conclude that dν has a density h(x) ∈ L1(T
n) such that dν = h(x) dx. Then we

consider the Fourier expansion of h(x):

(1.1) h(x) ∼
∑

τ∈Zn

cτ ei(τ ,x).

In dimension n = 2, it was shown in [10] that the density of every such limit is a

trigonometric polynomial with at most two different magnitudes for the frequency.

It was also shown in [10, 11] that on T
n for 3 ≤ n ≤ 6, the Fourier expansion of the

limit measure dν is in ln−2, that is,

(1.2)
∑

τ∈Zn

|bτ |n−2 < ∞.

The proofs in dimensions 4 ≤ n ≤ 6 used Proposition 1.1 and results in [10] that

reduced estimates for limits on T
n+2 to estimates for eigenfunctions on T

n. The esti-

mate (1.2) implies that on T
3, the density of any limit dν has an absolutely convergent

Fourier series, whereas on T
4, we conclude that h(x) ∈ L2(T

4).

Combining Theorem 1.2 with the results in [10], we immediately obtain the fol-

lowing result.

Theorem 1.3 Given the Fourier expansion (1.1) of the limit measure dν on T
n+2, we

have

( ∑

τ∈Zn+2

|bτ |n
) 1/n

≤ C(n) < ∞.

A generalization of B. Connes’ result [6], proved in [10], shows that the constant

C(n) appearing in Theorem 1.3 on T
n+2 coincides with the constant in Theorem 1.2

on T
n. The bound C(n) will be computed at the end of the proof and we will find

that it tends to 2 as n → ∞.

An important question about eigenfunctions of the Laplacian is the following:

given ϕ(x) satisfying ∆ϕ j + λ jϕ j = 0 and ‖ϕ‖2 = 1 on a general n-dimensional

smooth Riemannian manifold M, what is the asymptotic growth rate of the Lp norms

of the eigenfunction? That is, how fast does ‖ϕ j‖Lp grow as the eigenvalue λ j → ∞?

On a two-dimensional compact boundaryless Riemannian manifold, C. Sogge

showed in [17] that for 2 ≤ p ≤ ∞, ‖ϕ j‖p ≤ Cλ
δ(p)
j ‖ϕ j‖2, where

δ(p) =





1

4

( 1

2
− 1

p

)
, 2 ≤ p ≤ 6,

1

2

( 1

2
− 2

p

)
, 6 ≤ p ≤ ∞.

This bound turned out to be sharp on the round sphere S2.
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Semiclassical Limits of Eigenfunctions on Flat n-Dimensional Tori 5

In a remarkable result, Zygmund [21] provided a uniform bound for the L4-norm

of the eigenfunctions of the Laplacian on T
2. That is,

(1.3)
‖ϕ‖4

‖ϕ‖2
≤ 51/4.

The bound (1.3) provided in [21] is independent of the eigenvalue.

Before we mention the next result, we define

(1.4) Mn,p(λ) := sup
(∆+λ)ϕ=0
ϕ on T

n

‖ϕ‖p

‖ϕ‖2
.

The question of the growth rate mentioned earlier can be translated into: what is the

asymptotic behavior of Mn,p(λ)? It is sometimes possible to obtain uniform bounds

(independent of λ) for Mn,p(λ) for a restricted set of eigenvalues.

In particular, Mockenhaupt proved in [13] the following. Given a finite subset

D = {q1, q2, . . . , qk} of prime integers with q j ≡ 1 (mod 4), we consider the set

ΛD consisting of all eigenvalues λ ∈ N such that all prime divisors q of λ with the

property q ≡ 1 (mod 4), belong to D. Then for all λ ∈ ΛD and for all p < ∞, we

have M2,p ≤ C(p, k) < ∞, where C(p, k) is a constant.

A legitimate question to ask is whether or not there exists a uniform bound for

Mn,p for general n and p. The question is still open, although there exist results

about the rate of growth of Mn,p(λ) as λ → ∞. Bourgain showed in [3] that on T
n

with n ≥ 4, we have Mn,p ≪ λ(n−2)/4−n/2+ε for p ≥ 2(n + 1)/(n − 3).

We notice that Theorem 1.2 does not imply a bound on eigenfunctions since there

is no converse to the Hausdorff–Young inequality. For 1 < p ≤ 2 ≤ q < ∞ with

p−1 + q−1
= 1, we have ‖bτ‖lq ≪ ‖ϕ‖2

L2p .

Although the bound C(n) from Theorem 1.2 does not depend on the eigenvalue

λ, it does not give us information about the bound Mn,p in (1.4).

In recent papers, J. Bourgain and Z. Rudnick [4, 5] considered upper and lower

bounds for the Lp norms of the the restriction of eigenfunctions of the Laplacian to

smooth hypersurfaces of T
n with nonvanishing ‖ϕλ‖L2(Σ) ≍ ‖ϕλ‖2 for all eigenfunc-

tions ϕλ of the Laplacian on T
n with λ ≥ Λ for some Λ that depends only on the

hypersurface Σ.

There exist bounds for the L∞ norm of the eigenfunctions as well. Hörmander

showed (see [8, 9]) that on any compact Riemannian manifold M, we have

‖ϕλ‖∞ ≤ C λ(n−1)/4,

where n is the dimension of the manifold M. This bound is attained for some man-

ifolds, such as Sn, but not for others, such as T
n. Manifolds for which this bound is

sharp are called manifolds with maximal eigenfunction growth.

Y. Safarov studied the asymptotic behavior of the spectral function, the remainder

in Weyl’s law, and of eigenfunctions, in many papers including [14, 15].

In a series of papers C. Sogge, J. Toth, and S. Zelditch [18–20] studied the follow-

ing question: what characterizes the manifolds with maximal eigenfunction growth?
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They established that the manifolds with maximal eigenfunction growth must have

a point x where the set of geodesic loops at that point has a positive measure in S∗x M.

The converse turned out to be false, as they constructed a counterexample in [19].

An older question of the same type is: how fast does the spectral function and the

remainder term in Weyl’s formula grow as λ → ∞? The spectral function is given by

Nx,y(λ) =
∑

0<
√

λ j<
√
λ

ϕ j(x)ϕ j(y).

If we consider the diagonal when x = y, we obtain Nx,x(λ). If we integrate the

latter over the volume of the manifold M (assumed to be compact), we obtain the

eigenvalue counting function N(λ) defined by N(λ) = #{λi < λ}. The remainder

term in Weyl’s formula is given by R(λ) = N(λ) − cn vol(M)λn/2, where cn is a

constant that depends on the dimension n.

The asymptotic behavior of the spectral function and the remainder term were

studied by many people; see [1, 7, 9, 12, 16] and the references therein for a detailed

exposition of the subject.

The results of this paper appear in [2].

2 Proof of the Main Result

Let us define the notation that will be used throughout the argument. For ϕ j(x),

an L2-normalized eigenfunction of the Laplacian on an n-dimensional torus T
n
=

R
n/Z

n with eigenvalue λ j , we let its Fourier expansion be:

ϕ j(x) ∼
∑

η∈Z
n

|η|2
=λ j

aηei(x,η).

The Fourier series of g(x) = |ϕ j(x)|2 (recall the definition from the introduction) is

as follows:

|ϕ j(x)|2 ∼
∑

τ=ξ−η
|ξ|2

=|η|2
=λ j

bτ ei(x,τ ),

bτ =

∑

ξ−η=τ
|ξ|2

=|η|2
=λ j

aξ āη,

∑

η∈Z
n

|η|2
=λ j

|aη|2 ≡ 1.

We will write Sn−1(λ j) for the (n − 1)-sphere of radius
√
λ j and Sn−1,λ j

for the

set of lattice points on Sn−1(λ j). In the spirit of this new notation, the last three
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equations may be written as follows:

|ϕ j(x)|2 ∼
∑

τ=ξ−η
ξ,η∈Sn−1,λ j

bτ ei(x,τ ),

bτ =

∑

ξ,η∈Sn−1,λ j

ξ−η=τ

aξ āη,

∑

η ∈Sn−1,λ j

|aη|2 ≡ 1.

Without loss of generality, we can assume the coefficients aξ to be real, and then

we have |aξ| = |āξ| = |a−ξ|. For the case where τ = 0, we have

(2.1) b0 =

∑

0=τ=ξ−η

aξ āη =
∑

ξ ∈Sn−1,λ j

|aξ|2 = 1.

The proof of Theorem 1.2 requires a lemma that will be proved at the end of this

section.

Lemma 2.1 Given n points {ξi}n
i=1 on Sn−1(λ j) ∩ Z

n, no two of which are diametri-

cally opposite, that form a codimension-one simplex, assume that there exist τ ∈ Z
n and

another n points {ηi}n
i=1 on Sn−1(λ j) ∩ Z

n such that

(2.2) ξi − ηi = ±τ , 1 ≤ i ≤ n.

Then there can be at most 2n−1 such different vectors τ satisfying (2.2).

Remark 2.2 Given m > n points on Sn−1(λ j) ∩ Z
n, we will still have the same

bound, 2n−1, on the number of possible τ ’s. In other words, adding more points

augments the number of restrictions, which, in principle, might reduce the number

of possibilities for the different τ ’s.

Remark 2.3 We also notice that the bound we obtained is independent of the eigen-

value λ j . This fact is crucial in the proof of Theorem 1.2.

The proof of Theorem 1.2 is by strong induction, the base case being done in [10]

for the case n = 3 and in [11] for the case n = 4. First we will provide a proof for the

case n = 5. This will give a feeling of how the proof of the general case goes.

Proof of Theorem 1.2 for the case n = 5 The aim of the following calculations is to

bound the sum
∑

τ |bτ |5. Given (2.1), we will consider the sum with nonzero τ :

(2.3)
∑

τ 6=0

|bτ |5 ≤
∑

τ 6=0

( ∑

ξ j−η j=τ

5∏

j=1

|aξ j
||aη j

|
)
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8 T. Aı̈ssiou

The trick that we shall use is to bound the right-hand side of (2.3) by

(2.4)
∑

τ 6=0

∑

ξi−ηi=τ

1

2

( 5∏

i=1

|aξi
|2 +

5∏

i=1

|aηi
|
)
.

Then we interchange the order of summation in (2.4), and finally we use Lemma 2.1

to obtain a finite upper bound.

In doing so, we will encounter several configurations of the points ξi ’s on

S4(λ j) ∩ Z
5. Each configuration needs to be studied separately. An obvious case

is when two or more points ξi coincide. Then equation (2.3) reduces to

(2.5)
∑

τ 6=0

∑

ξ0−η0=τ

|aξ0
|2|aη0

|2
( ∑

ξi−ηi=ξ0−η0

( 5∏

i=3

|aξi
||aηi

|
))

and one can bound the terms |aξi
||aηi

| inside the product of (2.5) by 1
2
(|aξi

|2 + |aηi
|2).

Then we can bound this case by

1

23

∑

τ 6=0

∑

ξ0−η0=τ

|aξ0
|2|aη0

|2
( ∑

ξ,η∈S4,λ j

|aξ|2|aη|2
)
,

where the former is bounded by 1
23 .

Now we may suppose that no two points coincide. We end up with five points

in R
5. These points will either lie in a 4-dimensional affine subspace (where they

will form a 4-simplex), a 3-dimensional affine subspace, or a 2-dimensional affine

subspace.

In the case where the points form a 4-simplex, we can use Lemma 2.1 and inter-

change the order of summation in (2.4) as follows:

1

2

∑

ξi∈S4,λ j

∑

τ 6=0

∑

ξi−ηi=±τ

( 5∏

i=1

|aξi
|2 +

5∏

i=1

|aηi
|2
)
.

The former will be bounded by

1

2

∑

ξi∈S4,λ j

24 · 2

5∏

i=1

|aξi
|2,

which by the L2 normalization will not exceed 24.

In the case where the points ξi lie in a 3-dimensional affine subspace, namely α,

they will form a codimension-2 simplex. There will be three different configurations

that need to be considered.

The first case is when {ξi}i=1,...,5 ∈ α and at least one of the −ηi 6∈ α. With-

out loss of generality, we may suppose that −η5 6∈ α. Then the simplex formed by

(ξ1, ξ2, ξ3, ξ4,−η5) is a parallel translate of the simplex formed by (η1, η2, η3, η4,−ξ5)
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Semiclassical Limits of Eigenfunctions on Flat n-Dimensional Tori 9

and these simplices do not lie in a 3-dimensional subspace. They form a non-degen-

erate 4-simplex. Hence, we are reduced to the case just studied above and we obtain

the same bound, that is, 24.

In the next case, we suppose that the points {ξi} ∈ α, {−ηi} ∈ α, but {ηi} 6∈
α for all i = 1, . . . , 5. The trick we will be using is to consider the subspace that

contains both α and η1 say, namely, γ. The subspace γ is a 4-dimensional subspace

that contains 0, since both η1 and −η1 lie in γ. Thus, γ ∩ S4(λ j) is the great 3-

sphere, where the great k-sphere is defined to be the intersection of Sn(λ j) with a

k-dimensional hyperplane passing through the origin. Hence, by Lemma 2.1 and

Remark 2.2, we have the same bound on the number of τ ’s as to have four points on

S3,λ j
, and this will lead to a bound of 23.

The last scenario that needs to be considered in the case where {ξi}i=1,...,5 ∈ α is

when {−ηi}i=1,...,5 ∈ α and at least one of the ηi ∈ α, say η1. Since both η1 and −η1

are in α, 0 ∈ α and all of ±ηi ,±ξi ∈ α. Hence, α ∩ S4(λ j) is the great 2-sphere.

Once again, Lemma 2.1 and Remark 2.2 will lead us to a bound that is equal to 22.

It may happen that the points lie in a 2-dimensional affine subspace say, β. We

will study the possible cases in the same manner we did previously. In the first

case, we suppose that {ξi}i=1,...,5 ∈ β with {−ηi} ∈ β for all i. We consider the

3-dimensional subspace γ1 that contains both β and η1 say. Then 0 ∈ γ1, which im-

plies that ±ηi ,±ξi all lie in γ1 ∩ S4(λ j), which is the great 2-sphere. We are back in

one of the cases studied previously and once again, Lemma 2.1 and Remark 2.2 will

guarantee us a bound of 22.

In the very last case, we lose a bit of control on where the ηi might be. We let

ξi ∈ β, but at least one of the −ηi 6∈ β, −η5 say. Then the points {ξ1, ξ2, ξ3, ξ4, η5}
lie in a 3-dimensional affine subspace and we are back to the case where the ξi ∈ α.

Hence, we have a total bound equal to 22 + 23 + 24
= 28.

Summing all the bounds, we obtain C(n) ≈ 2.384729 . . . .

Proof of the General Case We shall now turn into the proof of the general case, that

is, the sum (2.6) given below is convergent for any n. The proof is by strong induction.

That is, we suppose that the sum (2.6) is bounded in any dimension k < n.

(2.6)
∑

τ∈Zn∩Sn−1(λ j )

|bτ |n = 1 +
∑

0 6=τ∈Zn∩Sn−1(λ j )

|bτ |n.

As in the proof of the n = 5 case, we have

(2.7)
∑

τ 6=0

|bτ |n ≤
∑

τ 6=0

∑

ξi−ηi=τ

n∏

i=1

|aξi
||aηi

|.

The same trick is used as before, that is, we will bound the right-hand side of (2.7) by

(2.8), then interchange the order of summation in the latter, and finally use Lemma

2.1 to obtain a finite upper bound,

(2.8)
∑

τ 6=0

∑

ξi−ηi=τ

1

2

( n∏

i=1

|aξi
|2 +

n∏

i=1

|aηi
|2
)
.
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Once again, several cases need to be studied. We will do so in the same manner as

for the n = 5 case. Instead of five points, we now have n points {ξi}n
i=1 on the surface

of the sphere Sn−1(λ j)

The trivial case where two or more points coincide gives a bounded contribution

to the sum (2.6) that is equal to 1
2n−2 , by the same computations as in the n = 5 case.

In the subsequent cases, we may assume that no two points ξi coincide.

The second trivial case is when the points {ξi} form a non-degenerate codimen-

sion-1 simplex. A change of order of summation in (2.8) and Lemma 2.1 yields a

bound equal to 2n−1.

The nontrivial cases are when the points {ξi} lie in smaller subspaces. Providing

an upper bound to each of these cases finishes the proof. The first of such nontrivial

cases is when the points {ξi} lie in an (n − 2)-dimensional affine subspace, namely

αn−2. Let us suppose {ξi}n
i=1 ∈ αn−2 with all the {−ηi} ∈ αn−2 as well. If any one of

the ηi ’s or −ξi ’s is an element of αn−2, then the origin 0 ∈ αn−2, which implies that

αn−2 ∩ Sn−1(λ j) is the great (n − 2)-sphere. Hence, we have n points on Sn−2,λ j
and

by the induction hypothesis, this gives us a bounded contribution to the sum (2.6).

Suppose now that none of the ηi ’s or −ξi ’s is an element of αn−2. Then we consider

the subspace βn−2 containing both αn−2 and η1 say. We get an (n − 1)-dimensional

subspace including 0, and βn−2 ∩ Sn−1(λ j) is the great (n − 2)-sphere. Remark 2.2

implies that the resulting case is one of the cases in our induction hypothesis and this

gives a bounded contribution to the sum (2.6).

In order to prove it for the rest of the cases, i.e., when the points {ξi} lie in a

(n − k) < (n − 2)-dimensional affine subspace, namely αn−k, we will use a second

(reversed) induction on the dimension of the affine subspace αn−k where the points

{ξi} might lie. That is, assuming we have a bounded contribution from all the αn−k+1

for some k with 3 < k < (n − 1), we will prove that we have a bounded contribu-

tion from the case where the {ξi} ∈ αn−k. Once again, we have the two subcases,

depending on whether or not −η j belong to αn−k.

For the first subcase, we may assume without loss of generality that −η1 6∈ αn−k.

Then the simplex (−η1, ξ2, . . . , ξn) is a parallel translate of (−ξ1, η2, . . . , ηn) and the

last two simplices lie in an (n − k + 1)-dimensional subspace. Hence, we are re-

duced to the second induction hypothesis which yields a bounded contribution to

the sum (2.6).

Let us now turn our attention to the second subcase. If all the {ξi}n
i=1 and

{−ηi}n
i=1 lie in αn−k with none of the ηi ’s in αn−k, we consider the subspace βn−k

containing both αn−k and η1 say. This is an (n − k + 1)-dimensional subspace that

includes 0. We can see that βn−k ∩ Sn−k+1(λ j) is the great (n − k)-sphere. Hence,

we have n points on Sn−k,λ j
and by the strong first induction hypothesis, we obtain a

finite contribution from this subcase to the sum (2.6).

We note that if all the {ξi}n
i=1 and {−ηi}n

i=1 lie in αn−k with at least one of the ηi ’s

in αn−k, then 0 ∈ αn−k and αn−k ∩ Sn−1(λ j) is the great (n − k − 1)-sphere, and

this case gives a bounded contribution to the sum (2.6) by once again the strong first

induction hypothesis.

We have exhausted all the possible cases, each giving a bounded contribution to

the sum (2.6). Therefore, the sum is bounded and this finishes the proof of the con-

jecture in [10].
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We may now provide a proof for the geometric Lemma 2.1.

Proof of Lemma 2.1 Suppose we are given {ξi}n
i=1, n points on Sn−1,λ j

, no two of

which are diametrically opposite, and such that the simplex with vertices {ξi}n
i=1 is

non-degenerate. That is, the points {ξi}n
i=1 cannot be in any (affine) subspace of

dimension strictly less than n − 1. Then given n equal parallel “chords” {vi}n
i=1 of

Sn−1,λ j
(not equal to ξiξ j , ∀i, j) such that ξi is an endpoint of vi, we denote the other

endpoint of vi by ηi and the diametrically opposite points of ξi (respectively ηi) by ξ ′i
(respectively η ′

i ). The question we would like to pose is: where on Sn−1,λ j
can {ηi}n

i=1

lie? We will see that there are finitely many places where the {ηi}n
i=1 can be. In fact,

there are [n/2] different scenarios, and we will study each of them.

If ξiηi are equal for all i, then η1 = ηi + ξiξ1 for all i = 1, . . . , n. Hence, the points

η1 + ξ1ξi lie on Sn−1,λ j
for all i. Since Sn−1(λ j) is strictly convex, there is at most one

point (other than ξ1), namely η1, for which the points η1 + ξ1ξi for all i = 1, . . . , n lie

on Sn−1,λ j
.

In the next scenario, we suppose ξiηi are equal for all i, except at one point k,

where ξiηi = ηkξk. Then the points η1 + ξ1ξi for all i 6= k and η1 + ξ1ξ ′k lie on Sn−1,λ j
.

Again by the convexity of Sn−1(λ j) and the fact that {ξi} forms a codimension-1

simplex, there is at most one point (other than ξ1), namely η1, for which the points

η1 + ξ1ξi for i 6= k and η1 + ξ1ξ ′k lie on Sn−1,λ j
. However, the last equation gives us at

most one possibility for η1 for every k = 1, . . . , n. Hence, we have a total of n =
(

n
1

)

possibilities for η1.

In the next case, we assume ξiηi are equal for all i 6= k, l, where ξiηi = ηkξk = ηlξl.

Here again η1 = ηi + ξiξ1 for all i 6= k, l and η1 = η ′
k + ξ ′kξ1 = η ′

l + ξ ′l ξ1, making the

points η1 + ξ1ξi for i 6= k, l, η1 + ξ1ξ ′k , and η1 + ξ1ξ ′l lie on Sn−1,λ j
. The convexity of

Sn−1(λ j) implies the uniqueness of such η1 6= ξ1 for every pair k, l. Hence, we have(
n
2

)
possibilities for η1 in this scenario.

Similarly, we will get
(

n
3

)
for the next and so on, until

(
n
n

)
. However, the

(
n
n

)
case

is the same as the very first case
(

n
0

)
in which we will simply change the sign of all

the vectors ξiηi . The (n − 1)-th scenario is similar to the second scenario, and so on;

hence, counting every case twice. The total number of possibilities will be the sum of

the possibilities in every scenario and is

1

2

n∑

k=0

(
n

k

)
= 2n−1.

The bound follows from the proof of Theorem 1.2, using the bounds given by

Lemma 2.1. We do not claim that C(n) is a sharp bound. The result will be:

C(n) =
(

22−n +
( 5n

4
− 4

)
2n + 5

) 1/n

.

It is clear that C(n) → 2 as n → ∞.
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[3] J. Bourgain, Eigenfunction bounds for the Laplacian on the n-torus. Internat. Math. Res. Notices
1993, no. 3, 61–66.

[4] J. Bourgain and Z. Rudnick, Restrictions of toral eigenfunctions to hypersurfaces. C. R. Math. Acad.
Sci. Paris, 347(2009), no. 21-22, 1249–1253.

[5] , On the nodal sets of toral eigenfunctions. To appear in Invent. Math. ArXiv:1003.1743.
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