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ON INVOLUTIONS OF QUASI-DIVISION ALGEBRAS 

BY 

LOWELL SWEET 

All algebras are assumed to be finite dimensional and not necessarily associative. 
An involution of an algebra is an algebra automorphism of order two. A quasi-
division algebra is any algebra in which the non-zero elements form a quasi-group 
under multiplication. The purpose of this short paper is to determine the structure 
of all involutions of quasi-division algebras and to give an application of this result. 

LEMMA. Let A be a quasi-division algebra of dimension n over a field K and suppose 
that a e Aut A\{Id) has an eigenvalue XeK. If Aa(X) indicates the corresponding 
eigenspace then 

dimension Aa(X) <_ [n/2] 

Proof. Since ajéld we may choose eeA\{0} such that cn{e)^e. We now claim 
that 

(1) Aa(X) n Aa(X) -e = {0} 

For suppose 

0 ?6 x = y e e Aa(X) with y e Aa(X) 
then 

a(x) = a(y • e) 

= «GO * a(e) 

Xx = Xy - cn(e) 

x = y • <x.(e) 

but this implies that a(e)=e which is a contradiction. 
But now the fact that A is a quasi-division algebra implies that dimAa(X)= 

dim Aa(X) • e and then (1) implies that 

2 dim Aa(X) < n 

dimAa(X)<[nl2] 

THEOREM 1. Let A be a quasi-division algebra of aim n over afield K. Then 

(i) Ifn is odd then Aut(^4) contains no involutions 
(ii) Ifn is even and char K^2 and OL is any involution of A then there exists a 

basis of A such that the corresponding matrix representation of a. is 

_ _ _ _ _ a = -• Jw/a 0 In/2 
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(iii) If n is even and char K=2 and a is any involution of A then there exists a 
basis of A such that the corresponding matrix representation of'a is 

where each Ai = L A for 1 <Ç i < n/2. 

Proof, (i) Let a be any involution of A. Then the minimal polynomial of a 
must divide x2—1. Suppose that char ^=^2. Since oc^/dand — Id is never an auto
morphism of a non-zero algebra it follows that the minimal polynomial of a is 
(x+l)(^—l). Since ± 1 e l w e may choose a basis of 4̂ so that the corresponding 
matrix representation of a is in Jordan Normal Form. That is, we may assume 
that 

(1) a = -Ir 0 Is 

where l < r , s<n and r + s = n . Since « is odd, either r>[«/2] or s>[nj2] and so 
either dim Aa(—1)> [n/2] or dim Aa{\)> inl^] both of which contradict the previous 
lemma. Hence we may assume that char K=2. In this case it follows that the mini
mal polynomial of oc is x2+l = (x+l)2 and as above we assume that a basis of A 
has been chosen so that the corresponding matrix representation of a is in the 
Jordan Normal Form. That is 

(2) OL = Ir@A1eA2@- - ®A Jc 

where A~ 

and so 

•i on 
i iJ 

for all i, l<i<k. But then since n is odd it follows that r^O 

d i r n d l ) = r + / c > [n/2] 

which again contradicts the previous theorem and hence in all cases, Aut(^t) is 
involution free. 

(ii) The proof is very similar to the above and follows easily since the lemma 
implies that 

dim Aa(l) = dim ^«( -1 ) = n/2 

(iii) Again the proof is similar to (i) above and the lemma implies that the only 
possibility for r in (2) above is r = 0 . 

We now give an application of the above theorem. The following notation is due 
to Djokovic [1]. 

DEFINITION. An algebra A over a field K is said to be extremely homogeneous 
if Aut(y4) acts transitively on ^4\{0}. 

Extremely homogeneous algebras over finite fields have been investigated by 
Kostrikin and the following definition appears in his paper [4]. 
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DÉFINITION. Let F—GF(2n) and suppose ju is any fixed element in F. Let 
°:Fx F->F by the map defined by 

(x,y)-+xoy= /fay)2 

Then A(n, [i) denotes the algebra over GF{2) obtained from F by replacing the 
usual multiplication in F by the map o. 

The following two theorems are due to Gross [3]. 

THEOREM 2 (Gross). If A is a non-zero, extremely homogeneous algebra over GF(2) 
then A is a quasi-division algebra. 

THEOREM 3 (Gross). If A is a non-zero algebra of dim n over GF(2) such that 
Aut(^) contains a solvable subgroup H which acts transitively on A\{0} then A^ 
A(n, fi)for some fixed fi e GF*(2n). 

Now we have the following result: 

THEOREM A. If A is a non-zero, extremely homogeneous algebra of odd dim n 
over GF(2) then Ac=LA(n, [t)for some fixed ft e GF*(2n). 

Proof. It follows from Theorem 2 that A is a quasi-division algebra. But then 
Theorem 1 implies that Aut(A) is of odd order and hence solvable by the Feit-
Thompson Theorem [2]. The desired result now follows directly from Theorem 3. 
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