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Abstract

Let / be an expansive homeomorphism with the pseudo orbits tracing property on a compact metric
space. There are stable and unstable " manifolds" with similar properties as in the hyperbolic case, and
similar behavior near periodic points is observed. P e r ( / ) = fi(/) = CR(f). Mappings £2 and CR are
continuous at / .

1980 Mathematics subject classification (Amer. Math. Soc): primary 58 F 15; secondary 54 H 20.

1. Introduction

This paper is a further attempt to approach some problems of smooth dynami-
cal systems theory from a non-differential point of view. It follows paper [9]
where P. Walters emphasized concepts of POTP (pseudo orbits tracing property)
and EXPS (expansiveness) proving they are very close to the concept of topologi-
cal stability. POTP together with EXPS imply topological stability. Topological
stability implies POTP. In paper [6] M. Hurley proved that topological stability
implies something like Axiom A: he proved the existence of the spectral decom-
position of the chain recurrent set CR(f). We try to show here further relations
POTP, EXPS and hyperbolicity. As is known, hyperbolicity implies POTP and
EXPS; see for example [1], [7], and [9] which provides a good discussion.

This research was carried out while the author was a visiting associate professor at Washington State
University, 1984-85.
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302 Jerzy Ombach (2 ]

Theorems 1 to 4 in this paper show that POTP together with EXPS imply
results that are similar to results following from a hypothesis of hyperbolicity.
There is a continuous family of stable and unstable "manifolds", a similar
situation to the Stable Manifold Theorem ([1], [3], [7]). The situation described by
Figure 1 is excluded. There are only three types of periodic points, generally
speaking: "sink", "source", and "saddle". For / G PTOP n EXPS, Per( / ) = ~af

= uj = fl(/) = CR(f) and mappings a, w, S2, CR are continuous at / as
Theorem 5 shows. In order to emphasize the non-differential character of the
results, we work on a compact metric space: only Theorem 5 requires the space to
be a manifold. This for example means that the results are valid for any subshift
of finite type because it is both POTP and EXPS; see [9].

I am indebted to the referee for his/her suggestions; especially for pointing out
to me the facts stated in Proposition 3.

2. Stable and unstable "manifolds"

Let Jf be a compact metric space with some distance d, f: X -> X a
homeomorphism.

A sequence {xn }n G z is a S-pseudo orbit, if for any n G Z,

A sequence {•*„}„<= z is e-traced, if there is a point x such that for any n G Z,

The homeomorphism / has the pseudo orbits tracing property ( / G POTP), if
for any e > 0 there is 8 > 0 such that any 5-pseudo orbit is e-traced.

The homeomorphism / is expansive ( / G EXPS), if there is a number e(f) > 0
such that

d(fx,f"y) < e(f) for all n e Z implies x =y.

It is easy to see the following is true.

LEMMA 1. Let n be an integer, n =£ 0. Then

f G POTP if and only iff <E POTP.

f G EXPS if and only iff G EXPS.

For N > 0 denote VN = {(x, y) G X X X: d(f"x,fy) < e(f) for |n| ^N},
where e(f) is an expansive constant of / . For e > 0 denote Bt= {(x, y):
d(x, y) < e} and B(x, e)= {y <= X: d(x, y) < e}.
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LEMMA 2. Let f e EXPS. Then, for every e > 0 there is a natural N such that
VN c Be; for every natural N there is e > 0 such that Bc c VN.

This is in fact Lemma 2 from [9].
Define the following sets

Wt'(x) = {>•: d(fx,fy) < e for all n > 0},

Wt"(x)= [y: d{fnx,fy)^eioTa\\n < 0 } ,

Ws(x) = {>•: < / ( / " * , / » - » 0 as n-» oo},

W"{x) = {y: d(fx,f"y) -> 0 as n -» -oo} .

THEOREM 1. Let f <E POTP n EXPS. Then there is a number e0 > 0 ŵcA ^a?
/or efery e < e0 ?/jere is S > 0 and a continuous function a: Bs —> X such that

(A) /or eferj ( x . ^ e l x l , W/(^) n We"(j) contains at most one point; for
(x,y)eBg, We

s(x)n Wc
u(y)= {a{x, y)};

(B) for every x e X

W;(x)nB(x,8)= {y: y = a{x, y), d(x, y) < 8},

W;{x)nB{x,8)= {y: y = a(y,x), d(x, y) < 8);

(Q

Wt'(x) c ^ ( J C ) ,

(D)

PROOF. Fix e0 < e ( / ) /3 and take e < e0. Take 8X such that J(x, _y) < 8X

implies d( fx,fy)^e,81 < e. Fix 8 > 0 such that every S-pseudo orbit is 5rtraced.
Fix (x, v) e 5g. Now, consider a sequence {xn} defined as

_ Ify for« < 0,
X"~\fx forw^O,

which is a S-pseudo orbit. It is Srtraced by some point a e X. There is only one
such point. (Suppose a and a' are two such points. Then for every n, d(fa, xn)
< §!, d(fa',xn) ^ 8r, hence d(fa, fa') < 2St < 2e < <?(/). By expansivenes
a = a'.) So we have defined the mapping Bs 3 (x, y) -» a = a(^, j ) G X
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We have for (x, y) e Bs

d(fx,fa(x,y)) < ̂  < e for n > 0,
( 1 ) ,fna{x,y))^S>x^z for n < 0.

In particular d(f~1y,f~la(x, y)) ̂  8i and by choice of Slt d(y,a(x, y) < e.
Hence

(2) d(/->>,/"a(x,>0)<e fo r«<0 .

(1) and (2) imply that a(x, y) e W*(x) n W/C}'). Moreover, this intersection
cannot contain two distinct points. If b,c e W/(x) n H "̂(_v), then for every
n > 0, d(fnb,f"c) < d(fb,f"x) + d(f"x,fc) < 2e < e( / ) and similarly for
» « 0, d(fb,f"c) < d(fb,fy) + d(f"y,f"c) < 2E < e(/) . By expansiveness
b = c, and hence (A) is proved.

To prove the continuity of the mapping a we use Lemma 2. Let (x, ,y),
(x', y') e 5S. For o O w e have from (1)

d(f"a(x,y),fa{x',y'))

< d(fa(x, y), fx) + d(f"x,f"x') + d(f"x'J"a{x', /))

< 2e + d(fx,fx').

For n < 0 w e have from (2)

d(f"a(x,y),fa(x',y'))

< rf(/-a(jc, j), /-^) + d(f»y,f"y') + d(f"y',f"a(x', / ) )

< 2e + d(fy,fny').

Now fix some /x > 0. Lemma 2 produces N with K̂  c B^. Continuity of / * with
\k\ < Â  implies that there is a X such that for (x, x'), (y, y') e 5X we have
d(f"x,fx') < e for 0 < n < TV and d(fy,f"y') < e for -TV < « ̂  0. So, for
such x, x', _y, y' we get

j ( / " a ( x , > ' ) , / " a ( x ' , / ) ) < 3 e < e ( / ) for |«| < TV,

which means that (a(x, y), a(x', y')) e F^c B ,̂ so the mapping is continuous.
To prove (B) let us note first, y = a(x, y) e Wf(x) by (1) and second, for

y G W°(x) we see j e W?(x) n W£"(y). Since (x, v) e fi5, j = a(x, y). The
proof of the remaining case is the same.

Now we prove (C). Let y e W*(x). Given JU there is N by Lemma 2 such that
KN c £M. By the definition of W*(x) we see that for n > TV, (fx,fy) e F w c
7^, but this meanse that d(f"x,f"y) -> 0 as « -> oo. Hence >- e ^ ( x ) . Simi-
larly ^" (x ) c W"(x).

Proving (D) is now trivial, the proof of Theorem 1 is completed.
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3. Sinks, sources, saddles

305

In this section we display three possible types of behaviour of orbits near a
point from the space X. We define a sink, a source, a saddle in a case the point is
periodic and as we will see in Theorems 2 to 4 such names are justified by
excellent similarity to the hyperbolic case. Propositions 1 to 5 contain the main
steps for proofs of these theorems.

We assume in the sequel that / e POTP n EXPS, x e X, and 0 < e < e0,
where e0 is given in Theorem 1.

Define the positive and negative limit set

Uf(x) = u{x) = [y: fk-x -* y, for some kn-* oo},

af(x) = a(x) = [y: fk-x -» y, for some kn -> - oo).

First we show that the situation illustrated by Figure 1 is excluded. A related
problem has been considered in a different context in [4, 6.16].

PROPOSITION 1. / / intH^O) # 0 , then x e int Ws(x).

PROOF. Take j ^ e l a n d el > 0 such that y <= B(y, e j c Ws(x), e1 < eo/2,
where e0 is given in Theorem 1. Choose some S corresponding to ex by POTP.
Continuity of / provides a A > 0 such that

(3) d(u.v) < X implies d(fu,fv) < 8.

Figure 1
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There is N > 0 such that

(4) d(fNx,fNy)<\\

because y G Ws{x). By continuity of fN there is a neighborhood U of x such that
for each x' G U

(5) d(fNx',fNx)*\\

It is enough to show that U c W"(x). Let x' G (/. By (4) and (5) d{fsx', fNy)
< A and by (3) the sequence defined by

(fy for n^N,

fx' forn > N,

is a S-pseudo orbit. It is ertraced by some point y'. This implies in particular

(6) d(y',y)^el,

(7) d(f"y',f»x')<\e0 for n > N.

Now (6) implies that y' G ^ ^ ( X ) , and hence there is Ar' such that for n > N',
d(fy',f"x)^ eo/2 which together with (7) imply that for large n, f"x' G
W^(/"JC) . Hence by Theorem 1(D) x' G ^ ' ( J C ) and the proof is completed.

PROPOSITION 2. 7/jc G intWs(x), then x G intW/(x).

PROOF. Let JC G i n t ^ ( x ) . It is enough to have a number N and a neighbor-
hood U of x such that forn^N and _y G U, d(f"x,f"y) < e. Then, continuity
of / " for 0 < n < A' will finish the proof. Asssume this is not true, that is,

for any number JV and any neighborhood U of x there

^ ' is n > N and y G £/ such that d(f"x,f"y) > e.

Let £(x, et) c ^ ( x ) , ex > 0 and let S > 0 be such a number that any
6-pseudo orbit is min(e/2, Ej)-traced. Let 17 > 0 be chosen, depending on 6, by
continuity of / .

LEMMA 3. There is a S-pseudo orbit {zn}, there are numbers /,, «,-, / = 1,2,3,. . . ,
0 = / 1 < « 2 < / 2 < « 3 < - . . , such that

( 9 ) d(zn,f"'x)>£l,

(10) * , ,= / ' '*

for / = 1,2, 3 , . . . .
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P R O O F . Define zn = f"x for n < 0 and put l1 = 0. Assume that we have

already defined numbers «,. /, for / < y and points zn for n < /., such that (9)

and (10) hold and d(fzn, z,, + 1) < S for n < lj. Since x e iniW5(x), f is continu-

ous and (8) holds, we can find a point y e Ws{x), a number nJ+l > l} such that

d(f>y, Zj) = d(f'iy,fl'x) < i) and d{f"'-ly, f">+lx) > e. Since y e Ws(x) there
is a number lJ + 1 > nj+l such that d(f1^l'ly,fl'+l~lx) < i).

Put zn = f"y for lj < n < lJ + l and z/+i = f'j*1x. The choice of TJ implies
/ n , zM + 1) < S for n < / ^ t and (9), (10) are also satisfied for j + 1. Thus the

lemma is proved.
To finish the proof of Proposition 2 take a point x' tracing the pseudo orbit

{ z j . We get d{fx',zn)^Toiv.(\E,e{). In particular, / e B ^ t ^ c WJ(;c),
that means d(f"x',f"x) -> 0, as « -> oo, and d(f'x', zn ) < ^e for infinitely
many «;. The triangle inequality leads us to a contradiction with (8).

The idea of the next proposition was suggested to me by the referee.

PROPOSITION 3. If x e intWe
5
/4(x), then co(x) is a periodic orbit equal to

{y,fy,...,fk~\v} andy e miW\y).

PROOF. Let B{x, e^ c We
s
/4(x) c W\x), e1 > 0. It is known that u(x) * 0

in a compact space and «( v) c w(x) for any _v G w(x). To show that u(y) =
w(x) for such a _y. Let z e u(x) and /i > 0. Take 8 > 0 in such a way that any
S-pseudo orbit is min(e1, ju/3)-traced. The S-pseudo orbit

fx for n < N,

f"~Ny iom^N,

where A' is a number with d(fNx, y) < S, is fi/3-traced by a point x' e Ws(x).
So we get

d{fx,/"') < ju/3 for large n,

i/ ( / "x, z) < ju/3 for infinitely many n, and

d(f"-Ny,f"x') < ju/3 for n > N.

Thus d(f"y, z) < ju. for some n, and hence z e w(j').
Let any a-pseudo orbit be min^, e/4)-traced, a > 0. We show that B(y, a/2)

c ^ / ( j ) for any y from w(x-). Let N be such that d(fNx,y)^ a/2 and let
z e B(y, a/2). The sequences defined as follows

fx for n < N, jfx for n < N,
_

f~Ny for n > N, Z"~ \f'Nz for n > N,
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are both a-pseudo orbits. They are e/4-traced by points y' and z' from We
s
/4(x).

For n > 0 we have

+ d(f"+Ny',yn+N)<e.

That means y G int Wt'(y) c intWs(y).
It is known (see [8] and Proposition 6 in this paper) that any neighborhood of a

limit point contains a periodic one. Let p e Ws(y) be a periodic point. We claim
p = y. For p # y we would find another periodic point <? G ^ ( j ) , Q ^ P-
Hence W"(/>) = **"(;>) = r ( ? ) , so </(/>, /"?) -• 0, which is impossible.

Thus we have u(x) = u(y) = {y,fy,---,fk~ly}, where k > 0 is a period of

PROPOSITION 4. x e int W^O) / / and o/i/y ; / W"{x) n H = {x}, where H is

some neighborhood of x.

PROOF. Let x e int Wc
s(x). Take a neighborhood # of x such that / / c Wc

s(x)
Pi 5(x, S), where S is chosen in terms of e as in Theorem 1. For y e W"(x) n //
we have, ^ e W°(x)n Wc

u(x) = {a(x,x)} = {x}.
Let W"(x) n H = {x}, where H is a neighborhood of x. Continuity of the

mapping a: Bs -^ X (Theorem 1) provides a neighborhood U of x such that
y e U implies a(y, x) e H. Since a(y, x) G W"(x), we have a(y, JC) = x and
_y G We

s(x), and hence [/ c W°(x).

PROPOSITION 5. Le/ JC G intWe
s(x) be a periodic point with period k and let

e < e(fk) (see Lemma 1). Then there is a neighborhood G of x such that

(11)

(12) f l /"*(<?)={*}•
n = 0

Let us note that conditions (11), (12) mean the periodic orbit {x, fx,.. .,fk~ 1x}
is an attractor in the sence of Conley ([2], [4]).

PROOF. Let x e G1 c int Wt
s(x), G1 open. For every n > 0, f"k(Gx) c 5(x , e).

Define G = U^_0/"*(G!
1). Then G is a neighborhood of jt and (11) holds true.

Furthermore, G c 5(x , e). Let x' c n "_ 0 / n / c (G) . Then, in particular x ' e G
and by (11) x' G / n / c (G) for any n < 0. So for any n e Z, x ' G fnk(B(x, e)) and
hence for all /i, d(fk"x',fknx) = d(fknx', x) < e < e ( / * ) . S o x ' = x and (12) is
proved.

The following theorem summarizes and completes all previous results.
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THEOREM 2. The following conditions are equivalent for a point x G X, 0 < e < e0,
y G a(x).

(AS)intWs(x)* 0,
(BS)x G inlWs(x),
(CS) Ws{x) is open,
(DS)xe intWt'(x),
(ES)intW,'(x)* 0 ,
(FS) W"(x) O H = { JC }, where H is some neighborhood of x,
(GS) W»{y)={y),
{m)Wu{y)={y},
(IS) 03 (x) = {y,fy,---,fk~1y} is a periodic orbit.

There is a neighborhood G ofy such that
(13) f(G) c G,

(14) f\fnk(G)={y}.

PROOF. (AS) =>'(BS) by Proposition 1. To see that (BS) => (CS) consider a
point z e Ws(x). Then Ws(z) = Ws(x) contains x in its interior. By Proposition
1, z G intW\z) = intH^x), and hence Wf(x) is open. (CS) => (DS) by Prop-
osition 2. (DS) => (ES) is trivial. (ES) => (AS) by Theorem 1(C). (DS) <=> (FS) by
Proposition 4. Thus we have proved equivalences among conditions (AS) to (FS).

We prove (AS) =» (IS). By Proposition 2, x e intF*7o(x). By Proposition 3,
y G int Ws{y) and y is periodic. Once again by Proposition 2, y G int W (̂>>) for
small e1 > 0. Proposition 5 completes the proof.

To see (IS) => (HS) take some z ¥= y. Then for all n large enough, z <£ f"k(G),
as (13) implies the sequence fk(G) decreases. So f~nkz € G for such n and
z « ^"(.y).

(HS) => (GS) by Theorem 1(C).
We prove (GS) =» (DS). W7(>>) = {y} implies ^2(>>) = {y} and by Prop-

osition 4, _v G intW7/2(.y). As y e w(^), then there is a number Â  such that
f*x G int We

s
/2(y). Continuity of /", 0 < n < N, provides a neighborhood U of x

such that for z G [/, d(fx,fz) < e for 0 < n < AT and /^z G »7/2(>'). It is
clear that U c ^K/(x), so (DS) is true.

The proof of Theorem 2 is complete.
Applying Theorem 2 to the inverse of / we immediately get

THEOREM 3. The following conditions are equivalent for a point x G X, 0 < e < e0,
y G <*(x).

(AU) int PK "(.*)# 0,
(BU)x
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(CU)W(x) is open,
(DU)x G intWe

u(x),
(E\J)intWe

u(x)* 0,
(FU) W*{x) n H = {x}, where H is some neighborhood ofx,
(GU)W°(y)={y},
(HU) W'(y)={y},
(IU) a(x) = {y,fy,--.,fy} is a periodic orbit.

There is a neighborhood G ofy such that

Assume in the sequel that x is a non-isolated point in the space X and
y G w(x). Let us note that the situations described in Theorems 2 and 3 exclude
each other. To see this, compare conditions (DS) and (FU). There is just one
other interesting situation. It is enough to combine the negation of a condition
from (AS) to (IS) with the negation of a condition from (AU) to (IU) to get the
description of this third situation. Taking advantage of (FS) and (FU), for
example, we get
(Y) any neighborhood of x contains points

xseWt*(x)\{x}, xueWt
u(x)\{x), xs*xu.

H e r e x s =£ x u s i n c e T h e o r e m 1 i m p l i e s Wf(x) n W"(x) = { x } .

LEMMA 4. / / a point x is periodic, then condition (Y) is equivalent to
(X) any neighborhood of x contains points

PROOF. (Y) => (X) by Theorem 1(C). To see (X) => (Y), take advantage of
(HS) « (FS) and (HU) » (FU) in the case y = x e CO(JC) = a(x).

Now, it makes sense to call a periodic point a sink, if the situation described in
Theorem 2 occurs, a source, if the situation described in Theorem 3 occurs, a
saddle, if the situation described in Lemma 4 occurs.

Similarities to the hyperbolic case are clear. Thus we have

THEOREM 4. Any periodic point is either a sink or a source or a saddle.

4. Continuous dependence of sets describing asymptotic behavior

For a homomorphism / : X —> X define the periodic set

Per(/) = {x e X: fkx = x, for some k),
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the negative and positive limit set

«/= U «/(*), "/= U «/(*)>
x<B.X

the non-wandering set
u ( / ) = {x G X: for every neighborhood £/ of x there is

n ± 0 such that / " (£ / ) n J / # 0 },

the c/iaz'n recurrent set

CR ( / ) = { x e X i f o r every e > 0 there is an e-chain from x to itself},

where an e-chain from x to itself is a finite e-pseudo orbit {x0,..., xn],
x = x0 = xn, n > 0. It is known and not hard to prove that 0 ( / ) and CR(f) are
closed and

(15) Per(/) c ^ n ^ c ^ u ^ c Q(f) c CR(f).

The following summarizes known results (see [1], [8]).

PROPOSITION 6. Letf e POTP n EXPS. Then

(16) T ^ ^

PROOF. We have to show that CR(f) c Per(/) . Let x e Ci?(/) and e < \e(f)
be fixed. POTP provides a 5 corresponding to this e. There is a S-chain
{x0,..., xN) from x to itself. The sequence {x'n}, n e Z defined by x̂ , = x, if
« = / (mod A )̂, is a 6-pseudo orbit. It is e-traced by some point y, but also by
fNy. The triangle inequality implies for all n, d(fy,f"Ny) < 2e < e(f), and
hence y = fNy. Thus j e Per(/) and (/(>», x) = J(^, x0) < e.

Define the metric space H(X) = {f: X -* X, f is a homeomorphism} with the
distance dH(f,g) = sup{d(fx, gx), x G l } and the metric space K(X) = {K
c X: K is closed} with the Hausdorff distance H(K,L) = maxfmax^ K d(x, L),
maxyeLd(y,L)). __ _

Let a, co, fi, CR denote mappings H(X) -* K(X) sending / to ccf, wf, fi(/),
CR (f), respectively.

THEOREM 5. Let X be a compact manifold. Then the mappings defined above are
continuous at points from the set POTP n EXPS.

First we recall the concept of upper and lower semicontinuity. Let T be a
topological space. A mapping F: T -* K(X) is upper semi-continuous at t0 e T,
if for every e > 0 there is a neighborhood of t0 such that for t belonging to it we
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have F(t) c Uc(F(t0)), and lower semi-continuous at t0 e T, if for every e > 0
there is a neighborhood of t0 susch that for t belonging to it we have F(t0) c
Ut(F(t)), where L^tf) = {>>: d{y,x) < E, with some x & K); see [2], [4] and
references therein.

The following lemma is obvious.

LEMMA 5. A mapping F: T -> K(X) is continuous at t0 if and only if F is upper
and lower semi-continuous at t0.

The following lemma contains the result from [5]; compare also with [2, Section
II, 6.2A], where upper semi-continuity of the chain recurrent set CR(S) = R(S)
as a mapping of a compact invariant set S has been proved.

LEMMA 6. The mapping CR: H(X) -* K(X) is upper semi-continuous at every
point f0 e K(X).

PROOF. For any e > 0 define CRe(f) = {x e X: there is an e-chain from x to
itself}. We see that C\e>0CRc(f) = CR(f), CRti(f) c CR.2(f) for Cl < e2. Now
fix e > 0. There is /x > 0 such that Ci?M(/0) c Uc(CR(f}}); let S = ju/2. For
/ e H(X) with dH(f,f0) < 8 we show that CR(f) c C/JM(/0) c C/e(C«(/0)).
Let x e CR(f) and let {x 0 , . . . , xN) be a 5-chain with respect to / . It is also the
/x-chain with respect to / 0 by the triangle inequality, so the proof is completed.

We will take advantage of the following.

WALTERS' THEOREM [9]. Any homeomorphism f0 e POTP n EXPS is topologi-
cally stable, that is, there is e0 susch that for any e < e0 there is S > 0 such that for
any homeomorphism f with dH(f, f0) < S there is a continuous mappnig h: X -» X
satisfying

(17) dH(id,h)*e,

(18) f0oh = h°f.

In case the space X is a manifold the mapping h is "onto".

LEMMA 7. / / X is a compact manifold and /„ e POTP n EXPS, then the
mappings a and u are lower semi-continuous at f0.

PROOF. For given e > 0 take 8 > 0 as in Walters' Theorem and fix / e H(X)
with dH(f, / 0) < S. There is a mapping h: X -> X, which is onto X and (17), (18)
hold. For any x e X there is x' e X such that x = /z(x') and since (18) implies
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for any n, /0" ° h = h° / " , we have /0"x = hf"x'. From (17) we see that

d{fo"x,fx') = d(hf"x',f"x') < e.

Thus Ufo(x) c t/c(aj|(x')) c Uc{uf), and at last uyo c Ue(o>f). The proof for the
mapping a is the same.

PROOF OF THEOREM 5. Let /0 e POTP n EXPS, e > 0. Let dH(f,f0) < S:

where 8X is chosen to e as in Lemma 6. Thus CR(f) c Ue(CR(f0)). By (15) and
(16)

^ U ̂  c Q(f) c C*(/) c Ut(CR(f0))

which means upper semi-continuity at /0 of all considered mappings.
Let dH(f,f0) < 82 where 82 is chosen in terms of e as in Lemma 7. Thus

^ c Ue(^f). By (16) and (15)

RC(f0) = 8( /0) = ^ c t / e (^ ) c I/e(Q(/))

which means lower semi-continuity at /0 of all considered mappings.
Lemma 5 completes the proof.

References

[1] R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms (Lecture Notes in
Math. 470(1975)).

[2] C. Conley, Isolated invariant sets and the Morse index (Amer. Math. Soc., 1978).
[3] M. Hirsch and C. Pugh, 'Stable manifolds and hyperbolic sets', Proc. Sympos. Pure Math., Vol

14, pp. 133-164 (Amer. Math. Soc, Providence, Rhode Island, 1970).
[4] M. Hurley, 'Attractors: persistence and density of their basins', Trans. Amer. Math. Soc. 269

(1982), 247-271.
[5] M. Hurley, 'Bifurcation and chain recurrence', Ergodic Theory Dynamical Systems 3 (1983),

231-240.
[6] M. Hurley,' Consequences of topological stability', / . Differential Equations 54 (1984), 60-72.
[7] Z. Nitecki, Differentiate dynamics (M.I.T., Cambridge, Mass., 1971).
[8] M. Shub, Stabilite globale des systemes dynamiques, (Asterisque 56 (1978)).
[9] P. Walters, On the pseudo orbits tracing property and its relationship to stability, pp. 231-244

(Lecture Notes in Math. 668).

Instytut Matematyki
Uniwersytet Jagiellohski
ul Reymonta 4, 30059 Krakow
Poland

https://doi.org/10.1017/S1446788700029608 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700029608

