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Abstract

Let f be an expansive homeomorphism with the pseudo orbits tracing property on a compact metric
space. There are stable and unstable *“ manifolds” with similar properties as in the hyperbolic case, and
similar behavior near periodic points is observed. Per( f) = Q(f) = CR(f). Mappings Q and CR are
continuous at f.

1980 Mathematics subject classification (Amer. Math. Soc.): primary 58 F 15; secondary 54 H 20.

1. Introduction

This paper is a further attempt to approach some problems of smooth dynami-
cal systems theory from a non-differential point of view. It follows paper [9]
where P. Walters emphasized concepts of POTP (pseudo orbits tracing property)
and EXPS (expansiveness) proving they are very close to the concept of topologi-
cal stability. POTP together with EXPS imply topological stability. Topological
stability implies POTP. In paper [6] M. Hurley proved that topological stability
implies something like Axiom A: he proved the existence of the spectral decom-
position of the chain recurrent set CR(f). We try to show here further relations
POTP, EXPS and hyperbolicity. As is known, hyperbolicity implies POTP and
EXPS; see for example [1], [7], and [9] which provides a good discussion.

This research was carried out while the author was a visiting associate professor at Washington State
University, 1984-85.
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Theorems 1 to 4 in this paper show that POTP together with EXPS imply
results that are similar to results following from a hypothesis of hyperbolicity.
There is a continuous family of stable and unstable “manifolds”, a similar
situation to the Stable Manifold Theorem ([1], [3], [7]). The situation described by
Figure 1 is excluded. There are only three types of periodic points, generally
speaking: “sink”, “source”, and “saddle”. For f € PTOP N EXPS, Per(f) = a_f
= E/= Q(f)= CR(f) and mappings a, w, £, CR are continuous at [ as
Theorem 5 shows. In order to emphasize the non-differential character of the
results, we work on a compact metric space: only Theorem 5 requires the space to
be a manifold. This for example means that the results are valid for any subshift
of finite type because it is both POTP and EXPS; see [9].

I am indebted to the referee for his/her suggestions; especially for pointing out
to me the facts stated in Proposition 3.

2. Stable and unstable “manifolds”

Let X be a compact metric space with some distance d, f: X = X a
homeomorphism.
A sequence {x, ), z 1s a 8-pseudo orbit, if for any n € Z,

d(fxn’xn+1) < 6
A sequence { x,}, c » is e-traced, if there is a point x such that forany n € Z,
d(frx,x,) < e

The homeomorphism f has the pseudo orbits tracing property ( f € POTP), if
for any ¢ > 0 there is § > O such that any é-pseudo orbit is e-traced.

The homeomorphism f is expansive ( f € EXPS), if there is a number e(f) > 0
such that

d(f"x,f"y) <e(f) forall n € Z implies x = y.

It is easy to see the following is true.

LEMMA 1. Let n be an integer, n # 0. Then

f€ POTP ifandonly if f" € POTP.
fe EXPS ifandonly if f" € EXPS.

For N > 0 denote V, = {(x, y) € X X X: d(f"x,f"v) < e(f) for |n|< N},
where e(f) is an expansive constant of f. For € > 0 denote B, = {(x, y):
d(x,y)<e}and B(x,e)={y € X: d(x,y) < &}.
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LEMMA 2. Let f € EXPS. Then, for every € > O there is a natural N such that
Vy C B, for every natural N there is ¢ > O such that B, C V.

This is in fact Lemma 2 from [9].
Define the following sets

Wix)={y:d(f"x, ") <eforall n > 0},
WH(x)= {y:d(f"x,f"y) < eforall n < 0},
W (x)={y:d(f"x,f"y) > 0asn— o0},

W (x)={y:d(f"x,f"y) >0asn—> —o0}.

THEOREM 1. Letr f € POTP N EXPS. Then there is a number ¢y, > 0 such that
for every € < g, there is 8 > 0 and a continuous function a: By — X such that

(A) for every (x, y) € X X X, W)(x) N W*(y) contains at most one point; for
(x,7) € By, W2(x) N W) = {a(x, y)):;

(B) forevery x € X

Wi(x)NB(x.8)={y: y=a(x,y), d(x,y) <8},
Wi(x)NB(x.8)={y: y=a(y,x),d(x,y) <8};
©)
Wi (x) € W (x),
Wi (x) € W*(x);
(D)

W)= U s (),

wixy = U 77 m).

n=0

PrOOF. Fix &, < e(f)/3 and take ¢ < e,. Take &; such that d(x, y) < 6,
implies d( fx, fy) < &, 8, < & Fix 8§ > 0 such that every 6-pseudo orbit is §;-traced.
Fix (x, y) € Bs. Now, consider a sequence { x,,} defined as

. = f"y forn <0,
" f"™x fornz0,

which is a 8-pseudo orbit. It is 8,-traced by some point a € X. There is only one
such point. (Suppose a and a’ are two such points. Then for every n, d(f"a, x,,)
< 68y, d(f"a’,x,) < 8, hence d(f"a, f"a’) < 28, < 2¢ < e(f). By expansivenes
a = a’.) So we have defined the mapping B; 2 (x, y) = a = a(x, y) € X.
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We have for (x, y) € B;

(1) d(fnx’fna(x,y))<81<£ for n 20,
d(f"y,fra(x,y)) <8, <e forn<0.

In particular d(f™'y, fla(x, y)) < 8, and by choice of §,, d(y,a(x,y)<e.
Hence
(2) d(f"y,f"a(x,y))<e forn<O.

(1) and (2) imply that a(x, y) € W'(x) N W *(y). Moreover, this intersection
cannot contain two distinct points. If b,c € W’(x) N W*(y), then for every
nz0, d(f"b, fc) < d(f"b, f"x) +d(f"x, f"c) < 2e < e(f) and similarly for
n<0,d(f", fh%)<d(f"b, f"y)+d(f"y, fc) < 2¢ < e(f). By expansiveness
b = ¢, and hence (A) is proved.

To prove the continuity of the mapping a we use Lemma 2. Let (x, y),
(x', y') € Bs. For n > 0 we have from (1)

d(f"a(x, ), fra(x’, y"))
<d(fra(x,y), f*x) +d(f"x, fx') +d(["x', fra(x', y"))
<2e+d(f"x, frx').
For n < 0 we have from (2)
d(fra(x,y), fra(x’,y"))
<d(fra(x,y), frv) +d(f"y. f"y') +d( /"y, fra(x", y'))
<2e+d(fy, fy).

Now fix some p > 0. Lemma 2 produces N with ¥y, ¢ B,. Continuity of f* with
|k| < N implies that there is a A such that for (x, x’), (y, y’) € B, we have
d(f", f"x"Y<eforO<n< Nand d(f"y, f"y)< e for —N < n < 0. So, for
such x, x’, y, y’ we get

d(f"a(x,y), fra(x’,y’)) < 3e<e(f) for|n| <N,

which means that (a(x, y), a(x’, y")) € V)y € B,, so the mapping is continuous.

To prove (B) let us note first, y = a(x, y) € W'(x) by (1) and second, for
y € Wi(x) we see y € W(x)n WH(y). Since (x, y) € By, y =a(x,y). The
proof of the remaining case is the same.

Now we prove (C). Let y € W'(x). Given pu there is N by Lemma 2 such that
Vv C B,. By the definition of W;(x) we see that for n > N, (f"x, f"y) € Vy C
B,, but this meanse that d(f"x, f"y) = 0 as n — oo. Hence y € W*(x). Simi-
larly WH*(x) € W*(x).

Proving (D) is now trivial, the proof of Theorem 1 is completed.
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3. Sinks, sources, saddles

In this section we display three possible types of behaviour of orbits near a
point from the space X. We define a sink, a source, a saddle in a case the point is
periodic and as we will see in Theorems 2 to 4 such names are justified by
excellent similarity to the hyperbolic case. Propositions 1 to 5 contain the main
steps for proofs of these theorems.

We assurne in the sequel that f€ POTP N EXPS, x € X, and 0 € € < ¢,
where ¢, is given in Theorem 1.

Define the positive and negative limit set

w(x) = w(x) = {y: flx - y, for some k, > o},
a;(x)=a(x) = {y: fx > y, for some k, = —oo}.

First we show that the situation illustrated by Figure 1 is excluded. A related
problem has been considered in a different context in [4, 6.16].

PROPOSITION 1. If int W*(x) # O, then x € int W?(x).

PrROOF. Take y € X and ¢, > 0 such that y € B(y, &) C W(x), ¢ < g/2,
where ¢, is given in Theorem 1. Choose some & corresponding to ¢ by POTP.
Continuity of f provides a A > 0 such that

(3) d(u.v) < X\ implies d( fu, fv) < 8.

Figure 1
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There is N > 0 such that

(4) d(f % /%) < 3A

because y € W*(x). By continuity of fV there is a neighborhood U of x such that
for each x’ € U

(5) d( ™', fMx) < %A

It is enough to show that U € W*¥(x). Let x’ € U. By (4) and (5) d(f x’, f"y)
< A and by (3) the sequence defined by

f"y  forn <N,
x —
" "y’ forn > N,
is a 8-pseudo orbit. It is ¢-traced by some point y’. This implies in particular
(6) d(y,7y)<£1’
1
(7) d(f"y’, f*x’) < 58 forn > N.

Now (6) implies that y’ € W?*(x), and hence there is N’ such that for n > N’,
d(f"y', f"x) < g,/2 which together with (7) imply that for large n, f"x’ €
W:(f"x). Hence by Theorem 1(D) x’ € W?*(x) and the proof is completed.

€9

PROPOSITION 2. If x € int W*(x), then x € int W(x).

PrROOF. Let x € int W*(x). It is enough to have a number N and a neighbor-
hood U of x such that for n > N and y € U, d(f"x, f"v) < & Then, continuity
of f" for 0 < n < N will finish the proof. Asssume this is not true, that is,

(8)

Let B(x,&)C Wi(x), ¢ >0 and let § > 0 be such a number that any
8-pseudo orbit is min(e/2, ¢ )-traced. Let n > 0 be chosen, depending on §, by
continuity of f.

for any number N and any neighborhood U of x there
isn > Nand y € Usuch that d(f"x, f"v) > e.

LEMMA 3. There is a 8-pseudo orbit { z,}, there are numbers !, n;, i =1,2,3,...

0=1 <n,<l,<ny< ..., suchthat

(9) d(z,,f"x) > ¢,
(10) Z/,=f['x
fori=1,23,....
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PROOF. Define z, = f"x for n < 0 and put /; = 0. Assume that we have
already defined numbers n,. I, for i <j and points z, for n </, such that (9)
and (10) hold and d( fz,, z,,,) < & for n < ;. Since x € int W*(x), f is continu-
ous and (8) holds, we can find a point y € W(x), a number n,,; >/, such that
d(f'y,z;)=d(f"y, f'x) <7 and d(f"+1y, f+1x) > e Since y € W*(x) there
is a number [, > n_, such that d(fY+7ly, fli171x) <.

Put z, = f y for [, <n <1, and Z,, = = fl+1x. The choice of 7 implies
d(fz,,2,01) <8 forn <[ and 9), (10) are also satisfied for j + 1. Thus the
lemma is proved.

To finish the proof of Proposition 2 take a point x’ tracing the pseudo orbit
{z,}). We get d(f"x’,z,) < min(3¢,¢). In particular, x" € B(x,¢)C W*(x),
that means d(f"x’, f"x) - 0, as n - oo, and d(f"x’,z,) < e for infinitely
many »,. The triangle inequality leads us to a contradiction with (8).

The idea of the next proposition was suggested to me by the referee.

ProposiTION 3. If x € intW],(x), then w(x) is a periodic orbit equal to
(y, oo . f5Y and y € int W*(y).

PROOF. Let B(x,¢) C W, ,(x) C W'(x), g > 0. It 1s known that w(x) # &
in a compact space and w(y) C w(x) for any y € w(x). To show that w(y) =
w(x) for such a y. Let z € w(x) and p > 0. Take § > 0 in such a way that any
8-pseudo orbit is min(e,, p/3)-traced. The §-pseudo orbit

[ fx forn < N,
"\ f" M forn > N,

where N is a number with d( f¥x, y) < 8, is p/3-traced by a point x’ € W*(x).
So we get

d(f"x,f") < p/3 forlarge n,
d(f"x,z) < p/3 for infinitely many n, and
d(f* M, f'x’)<p/3 fornxN.

Thus d(f"y, z) < p for some n, and hence z € w(y).

Let any a-pseudo orbit be min(e,, ¢ /4)-traced, a > 0. We show that B(y, a/2)
< W2(y) for any y from «(x). Let N be such that d(f"x, y) < a/2 and let
z € B(y,a/2). The sequences defined as follows

fx forn < N, f"x forn < N,
Y = -N Zn = -N
f"~ % fornx=N, f" "% fornz=N,
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are both a-pseudo orbits. They are e/4-traced by points y” and z’ from W, ,(x).
For n > 0 we have

d(fz, ") = d(z, s+ Yusn)
< d(Z"+N’fn+Nz/) + d(fn+NZ/,fn+l\'X) + d(fn-#Nx,fn+Ny1)

+d(/"N ) <&
That means y € int W(y) C intW?(y).

It is known (see [8] and Proposition 6 in this paper) that any neighborhood of a
limit point contains a periodic one. Let p € W*( y) be a periodic point. We claim
p =y For p#y we would find another periodic point ¢ € W*(y), q # p.
Hence W*(p) = W*(y) = W*(q),so d(f"p, f"q) — 0, which is impossible.

Thus we have w(x) = w(y) = {y, fy,..., f¥ 1y}, where k > 0 is a period of
y.

PROPOSITION 4. x € intW(x) if and only if W*(x)N H = {x}, where H is
some neighborhood of x.

PRrROOF. Let x € int W'(x). Take a neighborhood H of x such that H € W}(x)
N B(x,8), where § is chosen in terms of ¢ as in Theorem 1. For y € W*(x) N H
we have, y € WS(x) N WH(x) = {a(x,x)} = {x}.

Let W*(x) N H = {x}, where H is a neighborhood of x. Continuity of the
mapping a: B; = X (Theorem 1) provides a neighborhood U of x such that
y € U implies a(y, x) € H. Since a(y, x) € W*(x), we have a(y, x) = x and
y € W?(x), and hence U € W;(x).

PROPOSITION 5. Let x € intW!(x) be a periodic point with period k and let
e < e(f¥) (see Lemma1). Then there is a neighborhood G of x such that

(11) f(G)ca,

(12) f:\of"k(c) - (x).

Let us note that conditions (11), (12) mean the periodic orbit { x, fx, ..., f* x}
is an attractor in the sence of Conley ([2], [4]).

PROOF. Let x € G, C int W’(x), G, open. For every n > 0, f"%(G,) C B(x,¢).
Define G = U%_, f"%(G,). Then G is a neighborhood of x and (11) holds true.
Furthermore, G C B(x,¢). Let x’ € N®_, f"¥(G). Then, in particular x’ € G
and by (11) x’ € f"%(G) for any n < 0. So for any n € Z, x’ € f"%(B(x, ¢)) and
hence for all n, d(f*"x’, f*"x) = d(f*"x’, x) < e < e(f¥). So x’ = x and (12) is
proved.

The following theorem summarizes and completes all previous results.
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THEOREM 2. The following conditions are equivalent for a point x € X,0 < ¢ < &,
y € w(x).

(AS)intW*(x) + &,

(BS) x € int W?*(x),

(CS) W*(x) is open,

(DS) x € int WS(x),

(ES)intWi(x)+ 2,

(FS) W*(x) ©" H = {x}, where H is some neighborhood of x,

GH W (»)={r}h

(HS) W*(y) = {y),

(IS) w(x) = {y, fy,-.., ¥y} is a periodic orbit.

There is a neighborhood G of y such that

(13) 4G)ca,

(14) Fjof"km) - ).

PROOF. (AS) ='(BS) by Proposition 1. To see that (BS) = (CS) consider a
point z € W*(x). Then W*(z) = W*(x) contains x in its interior. By Proposition
1, z € int W*(z) = int W*(x), and hence W (x) is open. (CS) = (DS) by Prop-
osition 2. (DS) = (ES) is trivial. (ES) = (AS) by Theorem 1(C). (DS) < (FS) by
Proposition 4. Thus we have proved equivalences among conditions (AS) to (FS).

We prove (AS) = (IS). By Proposition 2, x € int W;(x). By Proposition 3,
y € int W?(y) and y is periodic. Once again by Proposition 2, y € int W(y) for
small ¢ > 0. Proposition 5 completes the proof.

To see (IS) = (HS) take some z # y. Then for all n large enough, z & f"%(G),
as (13) implies the sequence f"%(G) decreases. So f~"¥z ¢ G for such n and
z & W (y).

(HS) = (GS) by Theorem 1(C).

We prove (GS) = (DS). W,(y) = { ) implies W,%,(y) = {»} and by Prop-
osition 4, y € intW;,(y). As y € w(x), then there is a number N such that
f¥x € int W.,,(y). Continuity of /", 0 < n < N, provides a neighborhood U of x
such that for z € U, d(f"x.f"z)<e for 0 <n< N and f"z € W;,(y). It is
clear that U € W}(x), so (DS)is true.

The proof of Theorem 2 is complete.

Applying Theorem 2 to the inverse of f we immediately get

THEOREM 3. The following conditions are equivalent for a point x € X,0 < ¢ < g,
y € a(x).

AU intWH*(x)+ @,

(BU) x € int W¥*(x),
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(CU) W*(x) is open,

(DU) x € int WH(x),

(EU)intWH(x) + @,

(FU) WS (x) N H = {x}, where H is some neighborhood of x,
GU)W:(y)={»},

HU) W (y) = {»},

(IU) a(x) = {p, f-.., f¥" 1y} is a periodic orbit.

There is a neighborhood G of y such that

Fe)C6 NG = (),

Assume in the sequel that x is a non-isolated point in the space X and
y € w(x). Let us note that the situations described in Theorems 2 and 3 exclude
each other. To see this, compare conditions (DS) and (FU). There is just one
other interesting situation. It is enough to combine the negation of a condition
from (AS) to (IS) with the negation of a condition from (AU) to (IU) to get the
description of this third situation. Taking advantage of (FS) and (FU), for
example, we get
(Y) any neighborhood of x contains points

xSE u/t‘s(x)\{x}’ 'xue VVsu(X)\{x}’ xs;exu'
Here x # x, since Theorem 1 implies W'(x) N W*(x) = {x}.

LEMMA 4. If a point x is periodic, then condition (Y) is equivalent to

(X) any neighborhood of x contains points
x, € Wi (x)\{x}, x, € WH*(x)\{x}. X, # X,

PrOOF. (Y) = (X) by Theorem 1(C). To see (X) = (Y), take advantage of
(HS) & (FS) and (HU) < (FU)in the case y = x € w(x) = a(x).

Now, it makes sense to call a periodic point a sink, if the situation described in
Theorem 2 occurs, a source, if the situation described in Theorem 3 occurs, a
saddle, if the situation described in Lemma 4 occurs.

Similarities to the hyperbolic case are clear. Thus we have

THEOREM 4. Any periodic point is either a sink or a source or a saddle.

4. Continuous dependence of sets describing asymptotic behavior

For a homomorphism f: X — X define the periodic set
Per(f) = {x € X: f*x = x, for some k},
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the negative and positive limit set
a = U a/(x), wp = U wf(x)’
xe€X xeX
the non-wandering set
w(f) = {x € X: for every neighborhood U of x there is

n # Osuch that f"(U)NU# @},

the chain recurrent set
CR(f) = {x € X: for every ¢ > 0 there is an e-chain from x to itself},

where an e-chain from x to itself is a finite e-pseudo orbit {x,,...,x,},
x = x4 = x,, 1 > 0.1t is known and not hard to prove that £(f) and CR(f) are
closed and

(15) Per(f) C a;N @, C a,U &, C Q(f) € CR(f).

The following summarizes known results (see [1], [8]).

PROPOSITION 6. Let f € POTP N EXPS. Then
(16) Per(f) = a; = w, = Q(f) = CR(f).

PRrOOF. We have to show that CR(f) C Per(f). Let x € CR(f)and e < 1e(f)
be fixed. POTP provides a & corresponding to this & There is a §-chain
{xg.-..,xy} from x to itself. The sequence {x,}, n € Z defined by x,, = x, if
n =i (mod N), is a 8-pseudo orbit. It is e-traced by some point y, but also by
f"y. The triangle inequality implies for all n, d(f"y, f"My) < 2e < e(f), and
hence y = fy. Thus y € Per(f) and d(y,x) = d(y, x,) < e

Define the metric space H(X) = {f: X = X, f is a homeomorphism} with the
distance d,(f, g) = sup{d(fx, gx), x € X} and the metric space K(X)= {K
C X: K is closed} with the Hausdorff distance H(K, L) = max(max, . x d(x, L),
max, _, d(y, L)). o

Let a, w, 2, CR denote mappings H(X) — K(X) sending f to «, w;, @(f),
CR(f), respectively.

THEOREM 5. Let X be a compact manifold. Then the mappings defined above are
continuous at points from the set POTP N EXPS.

First we recall the concept of upper and lower semicontinuity. Let 7 be a

topological space. A mapping F: T — K(X) is upper semi-continuous at t, € T,
if for every € > 0 there is a neighborhood of ¢, such that for 7 belonging to it we
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have F(t) € U(F(t,)), and lower semi-continuous at t, € T, if for every e > 0
there is a neighborhood of ¢, susch that for ¢ belonging to it we have F(¢) C
U,(F(t)), where U(K)= {y: d(y,x) < e, with some x € K }; see [2], [4] and
references therein.

The following lemma is obvious.

LEMMA 5. 4 mapping F: T — K(X) is continuous at t, if and only if F is upper
and lower semi-continuous at t,.

The following lemma contains the result from [5]; compare also with (2, Section
II, 6.2A), where upper semi-continuity of the chain recurrent set CR(S) = R(S)
as a mapping of a compact invariant set S has been proved.

LEMMA 6. The mapping CR: H(X) — K(X) is upper semi-continuous at every
point f, € K(X).

PrOOF. For any ¢ > 0 define CR(f) = {x € X: there is an e-chain from x to
itself}. We see that N, (CR,(f) = CR(f), CR(f) € CR_(f) for ¢ < &;,. Now
fix ¢ > 0. There is p > 0 such that CR,(f;) € U(CR(f,)); let 8 = p/2. For
f € H(X) with dy(f, fy) <8 we show that CR(f)C CR,(f,) € U(CR(f,)).
Let x € CR(f) and let {x,,..., x5} be a 8-chain with respect to f. It is also the
p-chain with respect to f, by the triangle inequality, so the proof is completed.

We will take advantage of the following.

WALTERS’ THEOREM [9]. Any homeomorphism f, € POTP N EXPS is topologi-
cally stable, that is, there is &, susch that for any & < g, there is 8 > O such that for
any homeomorphism f with d (£, f,) < 8 there is a continuous mappnig h: X —» X

satisfying
(17) dy(id, h) <e,
(18) Joch="hof.

In case the space X is a manifold the mapping h is “onto”™.

LEMMA 7. If X is a compact manifold and f, € POTP N EXPS, then the
mappings « and w are lower semi-continuous at f,.

PrOOF. For given & > 0 take § > 0 as in Walters’ Theorem and fix f € H(X)
with d;(f, f,) < 8. There is a mapping h: X — X, which is onto X and (17), (18)
hold. For any x € X there is x’ € X such that x = 4(x’) and since (18) implies
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for any n, fJ'oh = heo f" we have f/'x = hf "x’. From (17) we see that
d(fo”x,f"x’) =d(hf"x',f"x') < e.

Thus w, (x) C U(w/(x")) € U w,), and at last 5;; C U(w,). The proof for the
mapping « is the same.

ProOF OF THEOREM 5. Let f; € POTP N EXPS, & > 0. Let d,(f, fy) < §;
where 8, is chosen to ¢ as in Lemma 6. Thus CR(f) € U(CR( f,))- By (15) and
(16)

a, U« © Q(f) € CR(f) € U(CR(f))

= U(9(£)) = U(ay,) = U(w,)

which means upper semi-continuity at f; of all considered mappings.
_ Let dy(f, fo) < 8, where §, is chosen in terms of & as in Lemma 7. Thus
w;, © Ufwy). By (16) and (15)

RC(fy) = Q(fy) = @, < U(w,) € U(R(f)) € U(CR(f))

which means lower semi-continuity at f;, of all considered mappings.
Lemma 5 completes the proof.
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