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Abstract

Let C be a locally planar curve. Its versal deformation admits a stratification by
the genera of the fibres. The strata are singular; we show that their multiplicities
at the central point are determined by the Euler numbers of the Hilbert schemes
of points on C. These Euler numbers have made two prior appearances. First, in
certain simple cases, they control the contribution of C to the Pandharipande–Thomas
curve counting invariants of three-folds. In this context, our result identifies the strata
multiplicities as the local contributions to the Gopakumar–Vafa BPS invariants. Second,
when C is smooth away from a unique singular point, a conjecture of Oblomkov and
the present author identifies the Euler numbers of the Hilbert schemes with the ‘U(∞)’
invariant of the link of the singularity. We make contact with combinatorial ideas of
Jaeger, and suggest an approach to the conjecture.

1. Introduction

Let C → Λ be a projective flat family of integral, locally planar, complex algebraic curves
over a smooth base. The fibres necessarily share the same arithmetic genus g, and it is
known [DH88, Tes80] that the geometric genus gives a lower semicontinuous function g̃ : Λ→ Z.
For h6 g we write

Λh = {λ ∈ Λ | Cλ is of geometric genus6 h}.
This gives a stratification by closed subvarieties

Λ0 ⊂ · · · ⊂ Λg = Λ.

By semicontinuity, λ /∈ Λh unless g̃(λ)6 h. By convention we take Λh = ∅ for any h > g.
We say the family is locally versal at λ ∈ Λ when the induced deformations of the germs of

the singular points of Cλ are versal. We recall properties of versal deformations of singularities
in § 4 and refer to [GLS07] for a detailed treatment. At a locally versal point λ, in the range
g̃(λ)6 h6 g, it is known that the stratum Λh is non-empty of pure codimension g − h and is the
closure of the locus Λ+

h of curves with g − h nodes [DH88, Tes80]. While Λ+
h is smooth, Λh will

generally be singular. We are interested in the multiplicities degλ Λh, i.e., the number of points
near λ in which Λh intersects a generic space of the appropriate codimension. For instance, since
Λg = Λ is smooth by assumption,

degλ Λg = 1. (1)
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The multiplicities depend only on the singularities of Cλ. Denote the germs of the singularities
by ci, their respective contributions to g − g̃(λ) by δ(ci), and the bases of their miniversal
deformations by V(ci). Fix π : Λ→

∏
V(ci) compatible with the deformations of ci induced by Λ;

it is unique up to first order and smooth by local versality of Λ [GLS07, p. 237]. We write V+
h (ci)

for the locus in V(ci) where the fibres are smooth away from exactly δ(ci)− h nodes, and
Vh(ci) for its closure. The stratifications are compatible: Λg̃+h = π−1(

⋃
h=

∑
hi

∏
i Vhi(ci)).

Since π is a smooth morphism,

degλ Λg̃+h =
∑

h=
∑
hi

∏
i

deg[ci] Vhi(ci). (2)

In particular, the multiplicity of Λg−1 is given by the sum of the multiplicities of the
discriminant loci in the V(ci). These are the Milnor numbers µ(ci). If ci be the germ of
f(x, y) = 0 at (0, 0), then, for sufficiently general g(x, y), the function f(x, y) + εg(x, y) has
only simple critical points in a neighborhood of (0, 0) and, moreover, only one in each fibre
(f + εg)−1(t). The total number of critical points is by definition µ(ci). The family of curves
Cs,t = {(x, y) | f + sg = t} induces a map from the germ at zero in the (s, t)-plane to V(ci), and
the line s= ε intersects the discriminant locus in the µ(ci) values of t for which (f + sg)−1(t)
acquires a node.

Let b(ci) be the number of analytic local branches. Milnor has shown [Mil68, Theorem 10.5]
that µ(ci) = 2δ(ci) + 1− b(ci). Therefore χ(Cλ) = 2− 2g̃ +

∑
(1− b(ci)) = 2− 2g +

∑
µ(ci),

and so

degλ Λg−1 = χ(Cλ) + 2g − 2. (3)

One expects that going to deeper strata will lead to increasingly difficult calculations.
Nonetheless, Fantechi, Göttsche, and van Straten [FGS99] showed that the multiplicity of the
deepest stratum is equal to the topological Euler number of the compactified Jacobian Pic 0(Cλ).
This space is described in detail in [AK80]; it parameterizes torsion free, rank one, degree zero
sheaves on Cλ:

degλ Λ0 = χ(Pic 0(Cλ)). (4)

Unless Cλ is rational, both sides of (4) vanish; the left-hand side because λ /∈ V0 by
semicontinuity, and the right-hand side because the compactified Jacobian is topologically a
product of the Jacobian of the normalization of Cλ and factors coming from the singularities.
However, if c̄i is a rational curve smooth away from a singularity analytically isomorphic to ci,
then (2) and (4) imply

degλ Λg̃(λ) =
∏
i

χ(Pic 0(ci)). (5)

Our main result interpolates between (1), (3), (4) and (5). We will need the Hilbert schemes
of points, X [n] = {zero-dimensional subschemes of X of length n}.

Theorem A. Let C → Λ be a family of complete, integral, locally planar curves of arithmetic
genus g. If the family is locally versal at λ ∈ Λ, then

∞∑
n=0

qnχ(C[n]
λ ) =

g∑
h=g̃

qg−h(1− q)2h−2 degλ Λh.

There is an equivalent local version. Let c be the germ of a plane curve singularity. Fix a
plane curve C such that c is the germ of C at some point p. We write c[n] for the subvariety
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of C [n] whose closed points parameterize subschemes of C which are set-theoretically supported
at p. This space depends only on the completion of C at p.

Theorem A′. Let c be the germ of a plane curve singularity which contributes δ to the
arithmetic genus and has b analytic local branches. If [c] ∈ V is the central point in the base
of a versal deformation, then

∞∑
n=0

qnχ(c[n]) =
δ∑

h=0

qδ−h(1− q)2h−b deg[c] Vh.

Theorem A is restricted to (1) and (3); it implies (4) and (5) because C [n] is a Pn−g bundle
over Pic 0(C) for large n [AK80]. The proof combines the methods of Fantechi, Göttsche, and
van Straten [FGS99], techniques of Pandharipande and Thomas [PT10], and the following
smoothness result. For a morphism X → Y , we denote the relative Hilbert scheme by
X

[k]
Y = {(y ∈ Y, [Z] ∈X [k]

y )}.

Theorem B. Let C → Λ be a family of complete, reduced, locally planar curves. If the family
is locally versal at λ ∈ Λ and λ ∈ Dk ⊂ Λ is a generic, sufficiently small k-dimensional polydisc,

then the total space of the relative Hilbert scheme C[h]

Dk is smooth if h6 k.

We recall facts about generating series of Euler numbers of Hilbert schemes in § 2, and prove
Theorem A in § 3, assuming Theorem B, which we prove in § 4. We present formulas for the
multiplicities in the case of ADE singularities in § 5. The final two sections discuss previous
appearances of the series in the left-hand side of Theorem A. In § 6, we explain its relation to
the contribution of Cλ to Gopakumar–Vafa invariants in Pandharipande–Thomas theory [PT10].
Section 7 suggests that Theorem A may relate a conjecture of Oblomkov and Shende [OS10],
which compares Euler numbers of Hilbert schemes of points on singular curves to the HOMFLY
polynomials of the links of the singularities, to work of Jaeger on state-sum formulae for
the HOMFLY polynomial [Ja91]. The reader is warned that the final section, in the words
of the anonymous reviewer, ‘is rather speculative, unfinished, and at best has the status of a
possible approach that might be tried.’

2. Background

We need the following properties of Euler numbers of complex varieties:

– χ(X\Y ) = χ(X)− χ(Y ) for X ⊂ Y a closed immersion;

– χ(A×B) = χ(A)χ(B);

– χ(A1) = 1.

The first property makes it natural to weight Euler numbers by constructible functions. For f a
constructible function on a space Z, we write χ(Z, f) :=

∑
i χ(f−1(i)) · i.

The remainder of the section collects for convenience facts about generating functions of
Euler numbers of Hilbert schemes of locally planar curves. All results are extracted from the
work of Pandharipande and Thomas [PT10, Appendix B]. Unless otherwise specified, C is an
integral, Gorenstein curve of arithmetic genus g and geometric genus g̃.

533

https://doi.org/10.1112/S0010437X11007378 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X11007378


V. Shende

The following statement is elementary.

Proposition 1. Let f = (f0, f1, . . .) be an arbitrary sequence of integers. Then there is a unique
sequence of integers n = (ng, ng−1, . . .) giving an equality of formal power series

∞∑
d=0

fdq
d =

g∑
h=−∞

nhq
g−h(1− q)2h−2.

The matrix T = T (g) such that n = T f is lower triangular with ones on the diagonal; in
particular,

ng = f0,

ng−1 = f1 + (2g − 2)f0.

The nh vanish for h < 0 if and only if fd − f2g−2−d = c · (d+ 1− g) for some c, in which case
c= n0.

Definition 2. Let nh(C) ∈ Z be defined by
∞∑
n=0

qnχ(C [n]) =
g∑

h=−∞
qg−h(1− q)2h−2nh(C).

Lemma 3. For C a smooth curve,
∑
qnχ(C [n]) = (1− q)−χ(C). If, additionally, C is proper of

genus g, then ng(C) = 1 and nh(C) = 0 for h 6= g.

Proof. For a smooth curve, the Hilbert schemes and symmetric products agree. Thus the
claim follows from Macdonald’s calculation of the cohomology of symmetric products of
curves [Mac62]. 2

Remark . The assertion of Theorem A can be restated as nh(Cλ) = degλ Λh.

Lemma 4. [Har86]. Let F be a torsion free sheaf on C. Write F ∗ for Hom(F,OC). Then
Ext>1(F,OC) = 0 and F = (F ∗)∗. Serre duality holds in the form Hi(F ) = H1−i(F ∗ ⊗ ωC)∗.
For F with rank one and torsion free, define its degree d(F ) := χ(F )− χ(OC). This satisfies
d(F ) =−d(F ∗), and, for L any line bundle, d(F ⊗ L) = d(F ) + d(L).

Proposition 5. We have nh(C) = 0 for h < 0. Moreover, n0(C) is the Euler number of the
compactified Jacobian of C. At the other extreme, ng−1(C) = χ(C) + 2g − 2 and ng(C) = 1.

Proof. Let Pic n(C) be the moduli of rank one, torsion free sheaves of degree n. There is
a map AJn : C [n]→ Pic n(C) taking a subscheme Z ⊂ C to I∗Z , the dual of the ideal sheaf
cutting it out [AK80]. The inclusion IZ →OC dualizes to a section OC → I∗Z , thus the fibre
AJ−1

n (F ) = P(H0(F )). Viewing h0 : [F ] 7→ h0(F ) as a constructible function on Pic n(C), we have
χ(C [n]) = χ(Pic n(C), h0). The involution F 7→ ωC ⊗ F ∗ induces an isomorphism ι : Pic n(C)∼=
Pic2g−2−n. By Serre duality, ι ◦ h0 = h1, and, by the Riemann–Roch theorem,

χ(Pic n(C), h0)− χ(Pic2g−2−n(C), h0) = χ(Pic n(C), h0 − h0 ◦ ι) = (n+ 1− g)χ(Pic n(C)).

The choice of a degree 1 line bundle induces isomorphisms Pic n(C)∼= Picn+1(C), hence these
spaces have the same Euler number. The result now follows from Proposition 1. 2
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Corollary 6. Let P1, P1
node, P1

cusp be rational curves that are smooth, have one node, and have
one cusp respectively:

– n0(P1) = 1 and all other nh vanish;

– n0(P1
node) = 1 and n1(P1

node) = 1 and all other nh vanish;

– n0(P1
cusp) = 2 and n1(P1

cusp) = 1 and all other nh vanish.

Proof. The proof follows from the ‘in particular’ of Proposition 1 and the vanishing of
Proposition 5. 2

More can be said by working locally at the singularities.

Definition 7. Let c be the germ of a Gorenstein curve singularity, let δ be its delta invariant,
and b the number of analytic local branches. Define nh(c) by the formula

δ∑
h=−∞

qδ−h(1− q)2hnh(c) = (1− q)b
∞∑
n=0

qn χ(c[n]).

Remark . Theorem A′ asserts that when c is planar, nh(c) = deg[c] Vh.

Proposition 8. If C has singularities c1, . . . ck and geometric genus g̃, then

nh(C) =
∑

i1+···+ik+g̃=h

ni1(c1) · · · nik(ck).

Proof. Stratifying the Hilbert scheme of C by the number of points at each of the ci, we see
∞∑
n=0

qnχ(C [n]) =
( ∞∑
n=0

qnχ

((
C

∖∐
ci

)[n]))∏
i

( ∞∑
n=0

qnχ(c[n]
i )
)

= (1− q)2g̃−2+
∑
b(ci)

∏
i

∞∑
n=0

qnχ(c[n]
i ).

Substituting in the definitions of the nh, we obtain

g∑
h=0

qg−h(1− q)2h−2nh(C) = (1− q)2g̃−2
∏
i

δ∑
h=−∞

qδ−h(1− q)2hnh(c).

Collecting terms and writing z2 = q−1(1− q)2, we obtain

g∑
h=0

z2hnh(C) = z2g̃
∏
i

δ∑
h=−∞

z2hnh(c).

Comparison of the coefficients of z yields the result. 2

Corollary 9. If C is a rational curve with a single singularity c, then nh(C) = nh(c).

Corollary 10. For c the germ of a plane curve singularity, nh(c) vanishes for h < 0.

Corollary 11. For C a complete, locally planar curve, nh(C) vanishes for h < g̃(C).
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Corollary 12. If C is nodal of geometric genus g̃ and arithmetic genus g, then nh(C) =
(
g−g̃
g−h
)
.

Corollary 13. The following are equivalent.

Theorem A: for a family C → Λ of integral locally planar curves locally versal at λ, nh(Cλ) =
degλ Λh.

Theorem A′: for c a plane curve singularity, nh(c) = deg[c] Vh .

Proof. The ‘A′ =⇒ A’ direction follows from comparing the relation between the multiplicities
asserted in (2) with the relation between the nh established in Proposition 8. To see ‘A =⇒ A′’,
consider locally versal deformations of curves with unique singular points. 2

We now remark on the relation between smoothness of relative Hilbert schemes and relative
compactified Jacobians. The result and its proof are closely analogous to [PT10, Theorem 4].

Proposition 14. Let C → S be a family over a smooth base of complete integral Gorenstein
curves of arithmetic genus g. Then the following are equivalent.

(i) The total space of the relative Hilbert scheme C[n]
S is smooth for some n> 2g − 1.

(ii) The total space of the relative compactified Jacobian Pic0(C/S) is smooth.

(iii) The total space of the relative Hilbert scheme C[n]
S is smooth for all n> 2g − 1.

(iv) The total space of the relative Hilbert scheme C[n]
S is smooth for all n.

Proof. It suffices to take S to be a small polydisc. As in Proposition 5, the Riemann–Roch
theorem for Gorenstein curves ensures that the Abel–Jacobi map C[n]→ Picn(C/S) is a bundle
with fibres Pn−g once n> 2g − 1. Choose a section of S→C with image in the smooth locus
of each fibre gives a line bundle of relative degree 1 over S, to induce identifications between
Picn(C/S) for varying n. Thus (i) implies (ii) and (ii) implies (iii). The section also induces
an embedding C[n]

S ⊂ C
[n+1]
S . For p ∈ C[n]

S corresponding to a subscheme supported away from the
section, some analytic neighborhood p ∈ U ⊂ C[n+1]

S is analytically a product of U = U ∩ C[n]
S with

a disc. Thus if C[n+1]
S is smooth, so is U . By choosing different sections, we may cover C[n]

S

with such neighborhoods. Thus (iii) implies (iv). It is clear that (iv) implies (i). 2

Corollary 15. Let C → Λ be a family of integral, locally planar curves, locally versal at λ ∈ Λ.
Let δ be the difference between the arithmetic and geometric genera of the curve Cλ. Then for

any h, any k > δ, and any generic, sufficiently small λ ∈ Dk ⊂ Λ, the relative Hilbert scheme C[h]

Dk
is smooth.

Proof. It is shown in [FGS99] that the relative compactified Jacobian over Dk is smooth in this
situation; more precisely, smoothness holds once TλDk is transverse to the reduced tangent cone
of the equigeneric stratum. The result now follows from Proposition 1. 2

3. The proof of Theorem A

Theorem 16. Let C → Λ be a family of integral, locally planar curves. Assume Λ is locally
versal at λ. Let Λh be the locus of curves of geometric genus less than or equal to h.
Then nh(Cλ) = degλ Λh.
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Proof. The right-hand side of this equality vanishes unless g̃ 6 h6 g since in this case λ /∈ Λh;
the left-hand side vanishes as well by Proposition 5 and Corollary 11. So assume g̃ 6 h6 g.
Then Λh is of pure codimension g − h, and is the closure of the locus Λ+

h of curves with g − h
nodes [DH88, Tes80].

Choose a small polydisc λ ∈D = Dg−h × D⊂ Λ subject to the following conditions:

(i) D0 := Dg−h × {0} intersects Λh only at λ;
(ii) Dε := Dg−h × {ε} intersects Λh generically, i.e., at degλ Λh points of Λ+

h . That is, the points
of intersection correspond to nodal curves of genus h;

(iii) the relative Hilbert schemes C[i]
D , C[i]

D0
, C[i]

Dε
are smooth for i6 g − h.

Each of these conditions is generically true; the third by Theorem B, which we prove
as Corollary 20 in § 4; so we may satisfy them all simultaneously. By condition (iii) above,
C[i]
D0

and C[i]
Dε

are deformation equivalent smooth varieties for i6 g − h. In particular, they are
diffeomorphic, and hence have the same Euler numbers.

We define constructible functions ni, χi : Λ→ Z by their values on the fibres: for p ∈ Λ,

ni : p 7→ ni(Cp),
χi : p 7→ χ(C[i]

p ).

Observe that χ(D0, χi) = χ(C[i]
D0

) = χ(C[i]
Dε

) = χ(Dε, χi) for i6 g − h. However, by Proposition 1,
there is a linear change of variables between the χ0, . . . , χg−h and the ng, . . . , nh. Therefore,

χ(D0, nj) = χ(Dε, nj) for g > j > h.

As we know from Corollary 11 that nh is supported on Λh, we have

nh(Cλ) = χ(D0, nh) = χ(Dε, nj) =
∑

p∈Dε∩Λh

nh(Cp) = #Dε ∩ Λh = degλ Λh.

We have already explained the first two equalities. The third holds again because nh is supported
on Λh. The fourth because each Cp is nodal of geometric genus h so nh(Cp) = 1 by Corollary 12.
The final equality holds by definition of the multiplicity. 2

4. Smoothness of relative Hilbert schemes

Let V ⊂ C[x, y] be a finite-dimensional, smooth family of polynomials, and consider the family
of curves

CV := {(f ∈ V, p ∈ C2) | f(p) = 0} ⊂ V × C2.

We have C[k]
V ⊂ V × (C2)[k]. The Hilbert scheme of points on a surface is smooth [Fog68], and for

I ⊂ C[x, y] the tangent space is TI(C2)[k] = HomC[x,y](I, C[x, y]/I), where a map η corresponds
to the tangent vector I(η) := {φ+ εφ′ | φ ∈ I, η(φ) = φ′ mod I} ⊂ C[x, y, ε]/ε2. Writing Ĩ for the
image of I in C[x, y]/f , we have an exact sequence:

0→ T(f,Ĩ)C
[k]
V → TfV × TI(C2)[k] (f+εg,η)7→η(f)−g mod I−−−−−−−−−−−−−−−−→ C[x, y]/I. (6)

If f is squarefree, then all fibres in a neighborhood of f ∈ U ⊂ V will be reduced, and the
relative Hilbert schemes C[k]

U are reduced, of pure dimension k + dim V , and locally complete
intersections [BGS81]. Thus for squarefree f , the space C[k]

V is smooth at (f, Ĩ) if and only
if dim T(f,Ĩ)C

[k]
V = k + dim V . By counting dimensions, this occurs if and only if the final map of
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the sequence in (6) is surjective. The easiest way to ensure this is to ask for surjectivity already
at η = 0, i.e., that TfV � C[x, y]/I.

We now recall basic notions from the deformation theory of singularities; for details we refer
to [GLS07]. Let (X, x) be the germ of a complex analytic space. A deformation of (X, x) is a flat
morphism of germs of complex analytic spaces, (X , x)→ (B, b), together with an isomorphism
from (X, x) to the fibre over b. A deformation (X , x)→ (V, v) is said to be versal if given
a flat morphism (Y , y)→ (A, a), a closed subgerm (A′, a)⊂ (A, a), a map φ′ : (A′, a)→ (V, v)
and an isomorphism of deformations (Y |A′ , y)∼=A′ (X |A′ , x), there is a (non-unique) extension
φ : (A, a)→ (V, v) of φ′ which admits a compatible isomorphism (Y , y)∼=A (X |A, x). If the
Zariski tangent map to φ is always uniquely determined by the given data, then (X , x)→ (V, v)
is said to be miniversal. The existence of a versal deformation (X , x)→ (V, v) guarantees the
existence of a miniversal (X , x)→ (V, v), and, moreover, there are compatible isomorphisms
(V, v)∼= (V, v)× (Ck, 0) and (X , x)∼= (X , x)× (Ck, 0).

The miniversal deformation of an isolated plane curve singularity has an explicit description.
Let (C, 0) be the germ at the origin of the zero locus of some f ∈ (x, y)C[x, y]. Fix g1 · · · gτ ∈
C[x, y] whose images form a basis of the vector space T 1 = C[x, y]/(f, ∂xf, ∂yf). Then consider
F : Cτ × C2→ Cτ × C given by F (t1, . . . , tτ , x, y) = (t1, . . . , tτ , (f +

∑
giti)(x, y)). Taking the

fibre over Cτ × 0 gives a family of curves over Cτ ; taking germs at the origin gives the miniversal
deformation (C, 0)→ (Cτ , 0) of (C, 0). Moreover, if g′1, . . . , g

′
s ∈ C[x, y] are any functions and

(C′, 0)→ (Cs, 0) the analogously formed deformation of (C, 0), then the tangent map Cs→T 1

is just induced by the quotient C[x, y]→ C[x, y]/(f, ∂xf, ∂yf). As soon as Cs� T 1, the family
C′→ (Cs, 0) is itself versal.

Proposition 17. Let (C, 0) be the analytic germ of a plane curve singularity and let (C, 0)→
(V, 0) be an analytically versal deformation of (C, 0). For sufficiently small representatives C → V,

the relative Hilbert scheme C[k]
V is smooth.

Proof. The relative compactified Jacobian over such a family is known to be smooth [FGS99,
Corollary B.2], so the result follows from Corollary 15.

The following direct argument was suggested to us by Rahul Pandharipande. Choose
V⊂ C[x, y] containing an equation f determining (C, 0), such that (CV, 0)→ (V, f) determines a
versal family for this singularity, and such that TfV contains all polynomials of degree less than
or equal to k. Then TfV projects surjectively onto C[x, y]/I for any I of colength k, hence by (6)
the space C[k]

V is smooth. Now let C → V be the miniversal deformation. By versality there are
compatible isomorphisms V∼= V× (Ct, 0) and C ∼= C × (Ct, 0) [GLS07, p. 237], and hence also
C[k]

V
∼= C[k]

V × (Ct, 0). Thus smoothness of the relative Hilbert schemes over any versal deformation
is equivalent to smoothness of relative Hilbert schemes over the miniversal deformation. 2

For fixed I of colength k, a generic choice of k-dimensional V ensures surjectivity of the final
map in (6). We must now show that some fixed V works for all I containing the equation of the
curve.

Lemma 18. Let O be the complete local ring at a point on a reduced curve, and let Ō be a
finite length quotient of O. Let W ⊂ Ō be a generic k-dimensional vector subspace. Then for Ī
the image in Ō of any ideal of colength less than or equal to k in Õ, we have W + Ī = Ō.

Proof. We employ the semigroup of the curve. Fix a normalization O ⊂ C[[t]]⊕r. Define

ord : C[[t]]⊕r\{zero divisors}→ N⊕r
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which takes an r-tuple of power series to the r-tuple of degrees of leading elements. Removing
the zero divisors ensures this is well defined.

All colength k ideals will contain the kth power of the maximal ideal M . Let Ō =O/Mk, and
Σ = ord(O)\ord(Mk). If ord(f) = ord(g), then some linear combination of f and g has higher
order. Therefore we may choose a vector space basis of Ō of the form {fs, s ∈ Σ| ord(fs) = s}.
For any ∆⊂ Σ, we define the projection π∆ : Ō → Span{fs}s∈∆ by

π∆ :
∑
s∈Σ

csfs 7→
∑
s∈∆

csfs.

Fix an ideal Ĩ ⊂O and write I = I/Mk. Let ι= ord(Ĩ). Then πι∩Σ|I is a vector space
isomorphism. Thus for a sub vector space W ⊂ Ō, we have W + Ī = Ō if and only if πΣ\ι|W
is surjective. This determines a Zariski open locus in the Grassmannian of (dimW )-dimensional
subspaces of Ō, which is non-empty if dimW >#Σ\ι= dim Ō/Ī = dimO/(Ĩ +Mk). It suffices
for dimW > dimO/Ĩ.

Thus requiring that π{s1,...,sk}|W is surjective for all {s1, . . . , sk} ⊂ Σ ensures that W is
transverse to all ideals of colength bounded by k. The intersection of these finitely many non-
empty Zariski open sets remains a non-empty Zariski open set. 2

Theorem 19. Let (C, 0) be the analytic germ of a plane curve singularity and let (C, 0)→ (V, 0)
be an analytically versal deformation of (C, 0). Then, for sufficiently small representatives C → V,

and generic discs 0 ∈ Dk ⊂ V, the space C[h]

Dk is smooth for h6 k.

Proof. As in Proposition 17, it suffices to show this for any versal deformation V. Let
(C, 0) be given by the germ at the origin of the zero locus of f ∈ C[x, y], and choose
g1, . . . , gτ whose images in C[[x, y]]/(f, ∂xf, ∂yf) form a basis; as discussed above the
miniversal deformation C → V = Cτ has as fibres the curves f +

∑
tigi = 0. Let 0 ∈ Dk ⊂ V

be a generic, k-dimensional disc. Lemma 18 ensures that the image of its tangent space in
C[[x, y]]/(f, ∂xf, ∂yf) is complementary to any ideal of colength h6 k. Thus the final map of
(6) is surjective, and C[h]

Dk is smooth at points over 0 ∈ Dk which correspond to subschemes
supported at the singularity. Finally, let z ⊂ C0 be any subscheme of length h; and let z′ be
its component supported at the singularity, say of length h′. Then an analytic neighborhood
of z in C[h]

Dk differs from an analytic neighborhood of z′ in C[h′]
Dk by a smooth factor. 2

Corollary 20. Let C → Λ be a family of integral, locally planar curves, locally versal at λ ∈ Λ.

Then for any generic, sufficiently small λ ∈ Dk ⊂ Λ, the relative Hilbert scheme C[h]

Dk is smooth
for h6 k.

Proof. This situation is analytically locally smooth over that in the theorem; and a compactness
argument yields smoothness uniformly over an open neighborhood on the base. 2

5. ADE singularities

A singularity is said to be simple if it has no non-trivial equisingular deformations. Simple
singularities of hypersurfaces famously fall into an ADE classification [AGV88]:

– An : y2 + xn+1;
– Dn : xy2 + xn−1;
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– E6 : y3 + x4;

– E7 : y3 + yx3;

– E8 : y3 + x5.

We calculate the Euler numbers of some related Hilbert schemes. Consider the non-reduced
germs at the origin A∞ : y2 = 0,D∞ : xy2 = 0, and E∞ : y3 = 0. In each case the curve is preserved
by the full C∗ × C∗ action on C2. The action lifts to the Hilbert schemes, and the fixed points are
monomial ideals in C[[x, y]] containing the equation. Counting fixed points gives the following
formulas: ∑

qnχ(A[n]
∞ ) =

1
(1− q)(1− q2)∑

qnχ(D[n]
∞ ) =

1− q + q3

(1− q)2(1− q2)∑
qnχ(E[n]

∞ ) =
1

(1− q)(1− q2)(1− q3)
.

We now observe that the equation for any simple singularity is equal to its ‘∞’ version
modulo (x, y)δ, where δ is the delta invariant of the singularity. In particular, the first δ punctual
Hilbert schemes are equal as subvarieties of the punctual Hilbert scheme of C2 at the origin. By
Corollary 10, their Euler characteristics suffice to determine the whole series. Explicitly, we have:

– A2δ−1: nh =
(
δ+h
δ−h
)
;

– A2δ: nh =
(
δ+h+1
δ−h

)
;

– D2δ−2: nh =
(
δ+h−3
δ−h

)
+ 2
(
δ+h−3
δ−h−1

)
+
(
δ+h−2
δ−h−2

)
;

– D2δ−1: nh =
(
δ+h−2
δ−h

)
+ 2
(
δ+h−2
δ−h−1

)
+
(
δ+h−1
δ−h−2

)
;

– E6: (n0, . . . , n3) = (5, 10, 6, 1);

– E7: (n0, . . . , n4) = (2, 11, 15, 7, 1);

– E8: (n0, . . . , n4) = (7, 21, 21, 8, 1).

Theorem A′ asserts these numbers are the multiplicities of the Severi strata. We present a
heuristic argument computing these multiplicities directly. To an ADE singularity c is associated
the Dynkin diagram with of the same name. Its points form a natural basis of vanishing
cycles [AGV88]. Generic points in Vh correspond to curves with δ − h nodes. As these singular
curves are deformations of c, only vanishing cycles of c can collapse at the nodes. Moreover,
simultaneously contracting intersecting cycles yields singularities worse than nodes. Thus the
multiplicity of Vh is the number of different ways to pick δ − h disjoint vanishing cycles, or,
equivalently, δ − h vertices of the Dynkin diagram so that no two are connected. The resulting
numbers are precisely the ones given.

We expect this argument can be made rigorous by using either the description of the
discriminant of the versal deformation of an ADE singularity in terms of the associated Weyl
group and root lattice [AGV88], or Grothendieck’s classification of the degenerations of ADE
singularities in terms of the Dynkin diagrams [Dem73]. Such results seem to be completely out
of reach for general singularities. On the other hand, there are so-called D-diagrams attached
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to all curve singularities [AGV88]; we would be extremely interested to learn of a procedure to
compute the Severi degrees from the D-diagrams.

6. BPS numbers

Our original motivation for considering the series on the left-hand side of Theorem A comes from
certain curve counting theories on three-folds. We now briefly sketch this connection; further
details may be found in the papers of Pandharipande and Thomas [PT09, PT10].

For Y a Calabi–Yau three-fold, a parameter count suggests that only finitely many genus
g curves will represent any given homology class β ∈H2(Y ). In fact, the curves may come
in positive-dimensional families; nonetheless, the Gromov–Witten invariants are defined to
be the degree of the virtual fundamental class of the Kontsevich moduli space of stable
maps [Beh97, BF97, LT98]. These invariants suffer from two major failings: first, they are
fractional due to the stack structure on the moduli space; second, maps from genus g curves
will give rise to undesirable maps from genus h > g curves due to ramified covers and collapsing
of components. Conjecturally, both problems may be simultaneously eliminated by the Faber–
Pandharipande [FP00] multiple cover formula, which repackages the Gromov–Witten numbers
into conjecturally integral invariants nGWh,β (Y ):

∑
β 6=0

∞∑
h=0

deg [Mg(Y, β)]viru2h−2vβ =
∑
β 6=0

∞∑
h=0

nGWh,β (Y ) u2h−2
∑
k>1

vkβ

k

(
sin(ku/2)
u/2

)2h−2

.

Gopakumar and Vafa [GV98] explained the physical meaning of the nGWh,β (Y ). They consider
M2-branes in the M-theory in the space R4,1 × Y , i.e., real three-dimensional manifolds whose
projection to Y is a complex curve in the class β and whose projection to R4,1 is the world-line
of a particle. Integrating out the Calabi–Yau degrees of freedom suggests that at low energy, the
state space of the particle is the cohomology of the relative compactified Jacobian of the family of
embedded curves in class β. We write this as H∗(MGV). The theory transforms under SO(4, R) =
SU(2)L × SU(2)R; in particular, this group should act H∗(MGV). The SU(2)R induces a weight
grading. Forgetting the action and collapsing the grading, so that the odd graded pieces
become negative virtual SU(2)L representations, yields H∗(MGV)|L ∈ Rep(SU(2)L). Enumerative
invariants may be extracted via the prescription

H∗(MGV)|L =
∑
h

nGVh,β (Y )(C⊕ Vstd ⊕ C)⊗h.

In a certain limit, the M2-branes become strings, and the nGVh,β (Y ) are related to the Gromov–
Witten invariants by precisely the multiple cover formula. That is, nGVh,β (Y ) = nGWh,β (Y ). The
nGVh,β (Y ) may be calculated by computing the kernels of powers of the SU(2)L raising operator,
which, at least in simple cases, is the cup product with the class of the relative theta divisor.
In [KKV99], it is shown how the Abel–Jacobi map expresses these traces in terms of the Euler
numbers of relative Hilbert schemes of points. According to Kawai [Kaw03], the Hilbert schemes
should be interpreted as moduli of D2–D0 branes.

The moduli of D2–D0 branes is made mathematically precise in the work of Pandharipande
and Thomas [PT09, PT10]. They define

Pn(Y, β) = {[φ :OY → F ] |F pure, χ(F ) = n, [supp(F )] = β, dimC F/φ(OY )<∞}.
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This space carries a virtual class [Pn(Y, β)]vir of dimension zero. Integers nPTh,β are defined by

log
(

1 +
∑
β 6=0

∑
n

(−q)nvβ deg[Pn(Y, β)]vir

)
=
∑
h>−∞

∑
β 6=0

nPTh,β(Y )
∑
k>1

vkβ

k
(q−k/2 − qk/2)2h−2.

It is conjectured [MNOP06, PT09] that nPTh,β(Y ) = nGWh,β (Y ).
We consider only irreducible β; for these, the expression simplifies to∑

n

(−q)n deg[Pn(Y, β)]vir =
∑
h>−∞

nPTh,β(Y )(q−1/2 − q1/2)2h−2.

In [PT09, PT10], it is observed that the Pn carry symmetric perfect obstruction theories;
Behrend [Beh09] has shown the resulting virtual degrees can be computed as deg[Pn(Y, β)]vir =
χ(Pn(Y, β), νb). Here νb is a constructible function depending only on the scheme structure in
an analytic local neighborhood, and not on the obstruction theory. This makes it possible to
discuss the contribution of a single curve. That is, if C → Λ is the family of curves in class β,
then for λ ∈ Λ we define nPTh,β(Cλ) by∑

n

(−q)n χ (Pn(Cλ), νb|Pn(Cλ)) =
∑
h>−∞

nPTh,β(Cλ)(q−1/2 − q1/2)2h−2.

Here, the space Pn(Cλ)⊂ Pn(Y, β) is the locus where the sheaf F is (scheme-theoretically)
supported on the curve Cλ. The function νb|Pn(Cλ) is restricted from Pn(Y, β) and is not intrinsic
to Pn(Cλ). If nPTh : Λ→ Z is the function λ 7→ nPTh (Cλ), then nPTh,β(Y ) = χ(Λ, nh).

Assume Cλ is integral and locally planar. Then [PT10, Appendix B], since Cλ is Gorenstein,
we can identify Pn+1−g(Cλ) = C[n]

λ . It follows from Corollary 15 that if the total space of
the relative compactified Jacobian of the family C → Λ is smooth at points over λ, then
νb|Pn(Cλ) = (−1)n−1+g+Λ. This certainly holds at points where Λ is smooth and C → Λ is locally
versal; in fact [FGS99], it suffices for its image in the product of the versal deformations of
the singularities to be transverse to the tangent cone of the equigeneric stratum. In this case,
(−1)dim ΛnPTh (Cλ) = nh(Cλ), the left-hand side being the invariants discussed in this article.

The nPTh (Cλ) should count the ‘number of curves of geometric genus h occurring at λ’. In the
situation we have been discussing, Theorem A gives a sense in which this is true.

7. The HOMFLY polynomial of the link

A knot is a smooth embedding S1→ S3, considered up to isotopy; more generally, a link is
an smooth embedding of possibly several circles. Singularities naturally give rise to links. If
p ∈ C ⊂ S is a point on a curve on a surface, and Bε(p) is a small ball containing p, then we
write Link(C, p) for C ∩ ∂Bε(p)⊂ ∂Bε(p). Data about the singularity is reflected in the topology
of the link; for instance, the link is trivial if and only if the p is a smooth point, and the number of
components of the link is equal to the number of analytic local branches at p. In fact [Zar71], the
link determines the equisingularity class of the germ of C at p. For discussions of the interplay
between singularities and knots, see [AGV88, Mil68, Wal04].

A central project of knot theory is the classification of knots and links by means of invariants.
Given the close relationship between a singularity and its link, one may ask what various
topological invariants of the link capture about the geometry the singularity, and, conversely,
what algebro-geometric invariants say about the topology. For example, Campillo, Delgado, and
Gusein and Zade have proven that the multivariate Alexander polynomial of the link is a certain
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graded Euler number of the ring of functions at the singular point [CDG03]. It is known that
the link type in turn can be recovered from the multivariate Alexander polynomial [Yam84].

There is a generalization of the (usual univariate) Alexander polynomial, variously called
the skein, Jones–Conway, HOMFLY, or HOMFLY-PT polynomial [FYHLMO85]. We denote it
by P. It associates an element of Z[a±1, z±1] to any oriented link, and is characterized by its
behavior when strands of the link pass through one another:

a−1 P( )− aP( ) = z P( ),
a−1 − a = z P(©).

We write P∞ ∈ Z[z±1] for the coefficient of the lowest power of a.
Suppose C is rational with a unique singularity at p. Oblomkov and the present author [OS10]

have conjectured a relation between the Hilbert schemes of points on C and the HOMFLY
polynomial of the link of C at p. Here we state only its specialization to P∞:

Conjecture 21 [OS10]. Let p ∈ C be a point on a locally planar curve; let c denote the analytic
germ at this point. Let c have b branches and contribute δ to the arithmetic genus. Then,

P∞(Link(C, p)) =
δ∑

h=0

nh(c)z2h−b.

Theorem A′ gives an enumerative interpretation of the coefficients on the right-hand side.
One may ask whether any such meaning exists for the analogous coefficients on the left-hand
side. We will find one in the work of Jaeger [Ja91].

Recall that the braid group is π1(Confn(C), ?), where

Confn(C) = {n unlabelled, distinct points in C}.

At the basepoint ? ∈ C(n), we label the n points as p1, . . . pn. The braid group is generated by
τ1, . . . , τn−1, where τi is the counter-clockwise half-twist interchanging pi and pi+1 while leaving
all other points fixed. Their inverses are the analogous clockwise half-twists. The relations are
generated by τiτj = τjτi if |i− j| 6= 1 and τiτi+1τi = τi+1τiτi+1. A braid may be ‘closed’ to form
an oriented link; this is done by associating to a loop S1→ C(n) its evaluation graph in the solid
torus S1 × C, and then embedding the solid torus in the usual way into S3. The orientation lifts
from the orientation of S1. That any link may be obtained in this manner is a classical theorem
of Alexander [Alx23].

We now describe Jaeger’s formula. Fix some sequence τ±1
i1

. . . τ±1
iN

. We denote both the
sequence and its product braid by β. Consider now the set of all sequences formed from β
by replacing some of the τi with symbols 6τi and likewise some τ−1

i with 6τ−1
i . Jaeger calls these

‘circuit partitions’. Such a sequence determines an element of the braid group by viewing all 6τ±1
i

as identity elements.
Consider tracing through the braid closure of the new sequence in the following manner.

Start at the point (1, p1) ∈ S1 × C, and move according to the orientation lifted from the circle.
While travelling, keep track of the strand number, which begins at 1 and when passing τ±1

i is
changed by the transposition i↔ i+ 1. Continue until returning to (1, p1). If there are multiple
link components, now jump to the first point (1, pk) which has not yet been encountered, set the
strand number to k, and continue. Along this path, each of the half-twists or removed half-twists
is encountered twice. The sequence is admissible if the first encounter of a given 6τ (respectively
6τ−1) has lower (respectively higher) strand number than the second.
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We write A(β) for the set of admissible sequences. Denote by w(β) the writhe, i.e., the
number of τ minus the number of τ−1; it does not depend on the presentation of the braid.
Given π ∈A(β), let b(π) denote the number of components of the braid closure of the braid
associated to π. Jaeger proves [Ja91]:1

P(β) = aw(β)
∑

π∈A(β)

(−1)#6τ−1
z#6τan−b(π)P(©)b(π).

Example. Consider the braid on n= 2 strands given by τ3
1 ; the corresponding knot is the right

handed trefoil which is the link of an ordinary cusp. Then the admissible sequences are 6τ1 6τ1 6τ1,
6τ1 6τ1τ1, τ1τ1 6τ1, 6τ1τ1τ1, τ1τ1τ1. The resulting formula for the HOMFLY polynomial is

P(trefoil) = a3(z3P(©)2 + z2aP(©) + 2zP(©)2 + aP(©)) = a2(2− a2 + z2)P(©).

Thus P∞(trefoil) = 2z−1 + z, matching the n0(cusp) = 2 and n1(cusp) = 1 observed in
Corollary 6.

Henceforth we discuss only positive braids, i.e., those which are products of counter-clockwise
half twists. The description of links of singularities as iterated torus knots (see e.g. [Wal04]) yields
positive braid presentations. For such braids the writhe w is just the number of twists appearing,
and it can be seen from Jaeger’s formula that the number w − n is an invariant of the closed
braid. Since τ±1 changes the number of link components by 1, any circuit partition π with
b(π) = n must have an even number of τ±1. Denote the set of admissible circuit partitions
with 2r half twists by An,r(β). Counting link components, we see that n− b(β)6 w − 2r.
Restricting Jaeger’s formula to the lowest degree term in a,

P∞(β) =
(w+b−n)/2∑

r=0

#An,r(β) zw−n−2r.

Remark . The polynomial P∞(L) has non-negative coefficients if L admits a positive braid
presentation. Thus Conjecture 21 predicts that nh(C)> 0. The identification of the nh(C) as
multiplicities establishes this positivity.

Example. Consider the braid on n= 3 strands given by (τ1τ2)4; the corresponding knot is the
right handed (3, 4) torus knot, which is the link of the E6 singularity. Let us abbreviate τ1 = τ
and τ2 = σ. The admissible sequences π with b(π) = 3 are as follows:

T3,4 Admissible sequences
A3,0 (6τ 6σ)4

A3,1
(τ 6σ)2(6τ 6σ)2, (6τ 6σ)(τ 6σ)2(6τ 6σ), (6τ 6σ)2(τ 6σ)2

(6τσ)2(6τ 6σ)2, (6τ 6σ)(6τσ)2(6τ 6σ), (6τ 6σ)2(6τσ)2

A3,2

(τ 6σ)4, (6τσ)4

τ 6στ 6σ 6τσ 6τσ, τ 6στσ 6τσ 6τ 6σ, 6τ 6στ 6στσ 6τσ, 6τσ 6τστ 6στ 6σ
τσ 6τστ 6σ 6τ 6σ, 6τ 6στσ 6τστ 6σ, 6τστ 6στσ 6τ 6σ, 6τ 6σ 6τστ 6στσ

A3,3 (τ 6στσ)2, (τσ 6τσ)2, (τσ)3 6τ 6σ, 6τ 6σ(τσ)3, 6τ(στ)3 6σ

Jaeger’s formula gives P∞(T3,4) = z−1 + 6z + 10z3 + 5z5, matching the values for nh(E6)
in § 5.

1 Our expression is slightly different due to a different convention for the HOMFLY polynomial.
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Lemma 22. Consider a singularity with b analytic local branches, delta invariant δ, and Milnor
number µ. Let β be a positive braid presentation of the link of the singularity, with n strands
and w crossings. Then µ= w − n+ 1, or, equivalently, 2δ = w − n+ b.

Proof. Specialize Jaeger’s formula to the Alexander polynomial, and use known properties
relating its degree with the Milnor number of the singularity [Mil68]. 2

Fix a singularity, c, and a positive braid presentation β of its link. Let V+
δ−r ⊂ V(c) denote,

as usual, the locus of deformations of c with r nodes and no other singularities. Let Dr be
a generic disc in V(c). In light of Theorem A, Conjecture 21 is equivalent to the assertion
that #An,r = Vδ−r ∩ Dr. For r = 0, 1, this is straightforward. There is evidently a unique element
of An,0, and, as Vδ = V(c), a generic space of complementary dimension is a single point. An
element of An,1 must have two remaining τi, for some fixed i. The admissibility condition ensures
that the second τi must be the first one occurring in the original β after the first τi. Thus
#An,1 = w − (n− 1). This is equal to the Milnor number of the singularity, which is in turn
equal to the multiplicity of the discriminant locus.

We now speculate about how a bijection may be established between An,r and Vδ−r ∩ Dr.
That is, how to match deformations with r nodes to circuit partitions with 2r remaining half-
twists. View c as the germ at the origin of some curve C in C2. Choose a projection C2→ C; it
induces a finite map C→ C. In a small punctured disc D∗ ⊂ C the map is unramified; say it has
degree n. Thus the boundary of the disc gives a S1 family of n points moving in C; the closure of
the corresponding braid β is the link of the singularity. Now deform c very slightly to a smooth
curve c0 whose projection to D has only simple ramification, say at points in R⊂ D. Comparing
Euler numbers reveals that #R= 2δ − b+ n= w.

Above each point in D\R is a collection of n points in the fibre, which is C. Fix a point d
on the boundary of the disk and let ? ∈ Confn(C) be the points in c0 lying over it. We can thus
form the braid monodromy [Moi81]:

BM : π1(D\R, d)→ π1(Confn(C), ?).

The image of a loop containing no ramification points is the trivial braid; the image of the loop
∂D containing all the ramification points is a braid whose closure is the link of the singularity.
The image of a loop containing exactly one ramification point is a braid which interchanges two
points in the fibre by a positive half-twist. The description of β as an iterated torus link gives
a positive braid presentation on n strands; this presentation must have exactly w = µ+ n− 1
half-twists. As w = #R, we find it plausible that there exists a decomposition ∂D = `1 · · · `w into
loops `j containing one ramification point each, such that BM(`j) ∈ {τ1, . . . , τn−1}. Fix such a
decomposition.

Consider an intersection point of a generic hyperplane with Vδ−h. This corresponds to a
curve ch with exactly h nodes. By genericity, ch projects to D with only simple ramification, and
with no nodes over the ramification points. We denote the ramification points by R(ch)⊂ D,
and the images of the nodes by N (ch). Evidently #R−#R(ch) = 2h. We again have the braid
monodromy,

BM : π1(D\(R(ch) ∪N (ch)))→ π1(Confn(C), ?).
Choose a path in V(c) from c0 to ch. Traversing this path, some ramification points will
remain ramification points and others will collide to form nodes; thus we have a map φ :R→
R(ch) ∪N (ch). We define a circuit partition π(ch) by taking the sequence BM(`1) · · ·BM(`w)
and replacing the BM(`i) for i /∈ φ−1(N (ch)) with 6τ terms. The chosen path induces
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an inclusion π1(D\(R(ch) ∪N (ch))) ↪→ π1(D\R) compatible with the braid monodromy; by
construction, the braid associated to π(ch) comes from a loop in π1(D\(R(ch) ∪N (ch))) which
goes around all the nodes and none of the ramification points. Thus the braid closure has n
components.

The admissibility of π(ch) presumably depends on the path chosen from c0 to ch; and we do
not know how to choose paths in a systematic way. Even having done this, one must somehow
show every admissible circuit partition occurs exactly once. We leave the further study of these
matters to future work.
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