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Abstract

An investigation is made of the transition from periodic solutions through nearly-
periodic solutions to chaotic solutions of the differential equation governing forced
coplanar motion of a weakly damped pendulum. The pendulum is driven by hor-
izontal, periodic forcing of the pivot with maximum acceleration eg and dimen-
sionless frequency a>. As the forcing frequency a> is decreased gradually at a suffi-
ciently large forcing amplitude e , it has been shown previously that the pendulum
progresses from symmetric oscillations of period T (= In/w) into a symmetry-
breaking, period-doubling sequence of stable, periodic oscillations. There are two
related forms of asymmetric, stable oscillations in the sequence, dependent on
the initial conditions. When the frequency is decreased immediately beyond the
sequence, the oscillations become unstable but remain in the neighbourhood in
(6,0) phase space of one or other of the two forms of periodic oscillations, where
6(t) is the pendulum angle with the downward vertical. As the frequency is de-
creased further, the oscillations move intermittently between the neighbourhoods
in (0,6) phase space of each of the two forms of periodic oscillations, in paired
nearly-periodic oscillations. Further decrease of the forcing frequency leads to
time intervals in which the motion is strongly unstable, with the pendulum passing
intermittently over the pivot, interspersed with time intervals when the motion is
nearly-periodic and only weakly unstable. The strongly-unstable intervals dominate
in fully chaotic oscillations. Windows of independent, stable, periodic oscillations
occur throughout the frequency range investigated. It is shown in an appendix
how the Floquet method may be interpreted to describe the linear stability of the
periodic and nearly-periodic solutions, and the windows of periodic oscillations in
the investigated frequency range are listed in a second appendix.

1. Introduction

A pendulum forced by a horizontal acceleration eg sin cot of its pivot has
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the equation of motion

= ecos 0sin cot, (1.1)

where 6 is the angular displacement from the downward vertical, 8 is the
damping ratio (actual/critical), co is the ratio of the forcing frequency to
the natural frequency, and the unit of time is the inverse natural frequency.
The periodic solutions of (1.1) have been investigated previously [3], where
examples are presented of symmetry-breaking, period-doubling sequences of
solutions. One such sequence, at constant e = 1.2 as w is changed, is
described in terms of resonance curves and Poincare cross-sections in Figures
5 and 6 of [3] respectively. This sequence is continued here beyond the
periodic motion into chaotic breakdown. Following [3], the damping ratio is
S = 1/8 in the numerical calculations. Resonance curves are defined as plots
of (E)1^2 versus co, where

E = 02/2 + 1 - cos 0 (1.2)

is a measure of the energy of oscillations, and ( ) denotes a mean over a
complete period of periodic oscillations, or over a specified number of forcing
periods for nearly-periodic oscillations.

The calculation of the periodic solutions is based on numerical colloca-
tion applied to truncated Fourier expansions for 6{t) [3]. The nonperiodic
asymptotic solutions in time of (1.1) are calculated using the NAG subrou-
tine D02EBF for step-by-step integration of the equivalent pair of first-order
differential equations, with a local error tolerance of 10~n .

The torque-driven damped pendulum, whose equation of motion, in the
above notation, is

0 + 2<J0 + sin 0 = ecos cot, (1.3)

is used by Baker and Gollub [1] as the primary model for an excellent in-
troduction to chaotic dynamics. Many of the properties described there are
relevant to the horizontally forced, damped pendulum investigated here, and
are compared below. The emphasis here is on a qualitative description and
understanding of chaotic breakdown, rather than on the calculation of the
usual averaged quantitative descriptors such as Lyapunov exponents or at-
tractor dimensions, for which reference is made to [1].

Both problems are much simplified models for the oscillations of a damped
dynamical system such as a mechanical structure, a fluid in a container, or
an electrical circuit, that is subjected to periodic forcing. Parallels with the
periodic structure of the wake behind a bluff body in a flowing fluid are dis-
cussed in Section 7. One reason for the present investigation into the planar
oscillations of a forced pendulum is that there is then only one resonant mode
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of oscillations, but as is indicated above, a large variety of types of nonlinear
oscillations is still possible even for this simple model.

2. Periodic oscillations

Oscillations of the pendulum with a period mT (T — 2n/(o) are repre-
sented by the Fourier series

N

6 = ^2[ak cos(k(ot/m) + bk sin(koot/m)], (2.1)
k=0

where the number of harmonics, N, is chosen to be sufficiently large that
(2.1) satisfies (1.1) to any required precision (typically 10~4). The period-
doubling sequence when e = 1.2 is illustrated in Figure 1 (see next page)
(adapted from [3], Figure 5), where resonance curves are drawn for the dif-
ferent forms of periodic, asymmetric oscillations from period T to period
16T. The stable sections of the resonance curves are solid and the unstable
sections are dotted. The curve on the right is a portion of the resonance
curve for T-periodic oscillations. The resonance curve for 2T-periodic os-
cillations begins at the first period-doubling point co — 0.8828. It bifurcates
to the resonance curve for 4r-periodic oscillations at co = 0.8732, then to
the resonance curve for 8T-periodic oscillations at co = 0.8712. A stable
16T-periodic oscillation occurs at co = 0.8708. The resonance curves ap-
pear to be leapfrogging towards a limiting curve as the period multiplicity
increases. The co-bandwidth ratios are 4.8 and 5.0, in reasonable agreement
with Feigenbaum's universal ratio 4.67 [4]. Feigenbaum's ratio is derived
for one-parameter systems, but ratios here can be calculated for either co-
bandwidths or e-bandwidths (or even for <J-bandwidths). If the bandwidth
ratio is applicable to the remainder of the period-doubling sequence, the se-
quence should terminate before co = 0.8707. The asymptotic solution of
(1.1) at co = 0.8707 is found to remain nearly-periodic, without tending to
exactly periodic oscillations.

The phase-plane diagram 0 against 6/n, for the stable 16r-periodic os-
cillations at co = 0.8708 is shown in Figure 2 (see page 157). The path closes
after 16 circuits of the origin. It should be noted that there is a second solu-
tion whose diagram is the same as Figure 2 except that it is reflected about
0 = 0, because if 6(t) is a solution of (1.1) so is -6{t + T/2), and the as-
sociated reflection about 6 = 0 leaves the figure unchanged. The asymptotic
oscillations in time are determined by the initial conditions.
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FIGURE 1. Resonance curves for the period-doubling sequence of asymmetric oscillations
with periods T,2T,..., \6T . The order of the curves, from the top, is IT, ST, 167\ 4T ,
and T.

Although the asymptotic solution is nearly periodic when a> is reduced
from 0.8708 to 0.8707, it reverts to being exactly periodic with a period
of 20 T when ew is reduced again to 0.8706. The 20r-periodic oscilla-
tions have a very small window of stability, with the resonance curve having
a turning point between 0.8706 and 0.8707 on one side, and becoming
unstable (presumably through a period-doubling sequence) between 0.8706
and 0.8705 on the other side. The phase-plane diagram for the stable 20T-
periodic oscillations at at = 0.8706 is very similar to that in Figure 2, but the
two periodic solutions are believed to be independent. Other small windows
of sta1" \ periodic oscillations are described in Appendix B.

https://doi.org/10.1017/S0334270000008705 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000008705


[5] Chaotic breakdown of pendulum 157

- 1 . 0 - . 8 - . 6 - . 4 - . 2 . 2 . 4 . 6 . 8 1 . 0

FIGURE 2. The phase-plane diagram, 0 against 6/n , for the 167"-periodic oscillation with
e = 1, 2 , w = 0.8708 , and 5 = 0.125.

3. Nearly-periodic oscillations

The oscillations at frequencies in a neighborhood beyond the end of the
period-doubling sequence of Figure 1 are nearly-periodic, except for the small
window of 20!T-periodic oscillations described above. The phase-plane dia-
gram, 6 against 9/n, for 100 forcing periods of the nearly-periodic oscilla-
tions at a) = 0.8700 is drawn in Figure 3 (see next page). The path never
closes, but always lies near the closed path of Figure 2. Also, like the periodic
solution in Figure 2, there is a second set of nearly-periodic oscillations at
this frequency whose diagram is similar to Figure 3 except that it is reflected
about 0 = 0.

The periodic oscillations whose resonance curves are drawn in Figure 1
have unstable solutions near co = 0.8700, suggesting that one method for
analysing the nearly-periodic oscillations is to compare their spectral compo-
sitions with those of the unstable periodic oscillations at the same frequency.
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FIGURE 3. The phase-plane diagram, 0 against 6/n , over 100 forcing periods with e = 1.2,
w = 0.8700, and <5 = 0.125.

Because the spectral components of the periodic oscillations are in phase-
locked relationships with the periodic forcing, a suitable comparison of spec-
tral compositions can reveal the extent of phase-locking in the nearly-periodic
oscillations. Consecutive 16r-intervals of the nearly-periodic oscillations
were calculated, and an ensemble average taken over these consecutive inter-
vals to extract the phase-locked part of the oscillations at integer multiples of
the frequency co/16. The result is an averaged 16r-interval whose spectral
composition described the phase-locking in the nearly-periodic oscillations at
the given parameter values.

The comparison of the Fourier amplitudes at o) = 0.8700 is illustrated in
Figure 4. The crosses, connected by lines, include all the spectral components
of the averaged 16!T-interval whose magnitudes exceed 0.01. Since these
components are all integer multiples of co/2, they are compared with the
spectral components of the unstable 2r-periodic solution at co = 0.8700,
denoted by circles in Figure 4. The agreement is excellent, and the corre-
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FIGURE 4. The frequency spectrum of an ensemble average over 16 forcing periods for the
nearly-periodic oscillations with e = 1, 2 , co = 0.8700 and <5 = 0.125 . The joined crosses
are the spectral amplitudes greater than 0.01, and the circles are the spectral amplitudes of the
unstable 27"-periodic solution at the same parameter values.

sponding agreement between the phases is also excellent, showing that the
phase-locked part of the nearly-periodic oscillations is almost identical with
the unstable 2r-periodic solution at this frequency. The phase-free part of
the nearly-periodic oscillations has spectral amplitudes less than 0.01 of the
phase-locked oscillations.

When a similar comparison was made at co = 0.8705, closer to the end
of the period-doubling sequence than the example in Figure 4, excellent
agreement was found between the spectral composition of the averaged 16T-
interval and the unstable 4r-periodic solution at this frequency. The phase
locking of the spectral components at frequencies co/4 and 3eu/4 that occurs
here is loosened as the forcing frequency is reduced to the value co = 0.8700
of Figure 4. When the frequency is reduced further and a similar com-
parison made at co = 0.868, the phase locking of the spectral components
at frequencies co/2 and 3<a/2 is loosened also. Agreement is found only

https://doi.org/10.1017/S0334270000008705 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000008705


160 Peter J. Bryant [8]

between the spectral composition of the averaged 16!T-interval and the unsta-
ble T-periodic solution at this frequency, or in other words, the phase-locking
in the nearly-periodic oscillations at this frequency is confined predominantly
to the spectral components at integer multiples of co.

In summary, the nearly-periodic oscillations are characterised by a loos-
ening of the phase-locking that occurs between the spectral components of
the exactly periodic oscillations. The loosening increases with an increase
in the interval between the forcing frequency and the frequency at the end
of the sequence of exactly periodic oscillations. This is consistent with the
observation made in the previous investigation [3], that the nearly-periodic
oscillations near but beyond the end of a period-doubling sequence retain the
dominant features of the exactly periodic oscillations they follow.

Roquet's method (Appendix A) confirms that the strictly-periodic solu-
tions in the neighbourhood in phase space of the nearly-periodic oscillations
are linearly unstable, and that the nearly-periodic oscillations themselves are
linearly unstable. However, it is clear that the nearly-periodic oscillations are
stable in a nonlinear sense, because the nonlinear modification of the unsta-
ble linear perturbations results in solutions which makes only small but finite
departures in phase space from the corresponding strictly-periodic solutions.

4. Paired nearly-periodic oscillations

The oscillations remain nearly-periodic near one or other of the two re-
lated, unstable, T-periodic solutions as the forcing frequency is decreased
from the value co — 0.8700 of Figures 3 and 4 to co — 0.8668, apart from
a window of stable, lOr-periodic oscillations at co = 0.8677. However,
when the forcing frequency is reduced from co = 0.8668 to co = 8.8667,
the oscillations become nearly-periodic about both of the related, unstable,
T"-periodic solutions, with intermittent switching between them. The paired
nearly-periodic oscillations persist at frequencies down to about co = 0.8640.

The envelope of the paired nearly-periodic oscillations at co = 0.8660
over 200 forcing periods is drawn in Figure 5. The upper curve joins the
maximum points of 6/n and the lower curve joins their minimum points. It
can be seen that from 10 periods to 30 periods approximately, the oscillations
lie between a minimum of about -0.6 and a maximum of about 0.4, and
from 45 periods to 145 periods approximately, they reverse to lie between a
minimum of about -0.4 and a maximum of about 0.6. The latter values
are about the same as the minimum and maximum values of 8/n in Figure
2, and the former values correspond to the related solution -6{t + T/2)/n.
The switching between the two forms of nearly-periodic oscillations in the
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FIGURE 5. The envelope over 200 forcing periods for the paired nearly-periodic oscillations
with e = 1.2, <u = 0.866 and S = 0.125.

figure is seen to be intermittent, and remains intermittent when the solution
is continued to larger times. It is noted that for both forms, the envelope at
magnitude 0.6 is rather smoother than the envelope at magnitude 0.4, but
the reason for this difference is not known.

The arguments of [5], when applied to the present phenomenon, sug-
gest that the probable reason for the intermittent switching between the two
nearly-periodic states is that the basins of attraction of the two states are
interwoven on arbitrarily small length scales, and the basin boundaries are
fractal sets. This complicated geometry has extraordinary sensitivity to the
noise that is always present in a numerical calculation or in a physical motion.

The paired nearly-periodic oscillations occur in the frequency band co =
0.8667 to co = 0.8640 beyond the end of the dominant period-doubling
sequence at the forcing amplitude e = 1.2. The question arises as to whether
they occur beyond the end of other period-doubling sequences at this forcing
amplitude, and if so, what form do they take.
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The largest window of stable, periodic oscillations in this frequency neigh-
bourhood is one of 7r-periodic, inverted oscillations, beginning with sym-
metric oscillations from co = 0.8407 to co = 0.8420 and asymmetric os-
cillations from co = 0.8421 to co = 0.8427. Period-doubling occurs with
14!T-periodic, inverted oscillations from co = 0.8428 to co = 0.8429 and
28r-periodic, inverted oscillations at co = 0.8430. The 7r-periodic, in-
verted oscillations have the Fourier decomposition (2.1) with m = 1, where
a0 = n and all even harmonics are zero for the symmetric oscillations, and
a0 lies near n for the asymmetric oscillations. The phase-plane diagrams
for each of the two asymmetric oscillations at co = 0.8425 are drawn in
Figure 6. Each of the solutions may be obtained from the other by reflecting
about both 0 = 0 (modulus In) and 0 = 0, since if 6{t) is a solution
of (1.1), so is —6{t + IT IT). These two solutions are identical when the
oscillations are symmetric. The asymmetric 14!T-periodic and 28!T-periodic
oscillations have two related forms also, with phase-plane diagrams close to
those in Figure 6.

2 . 0
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FIGURE 6. The phase-plane diagram, 8 agains 0/n, for each of the two 7 T-periodic asym-
metric, inverted, stable oscillations with e = 1.2 , co = 0.8425 and S = 01.25 .
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When the forcing frequency is increased beyond the end of the period-
doubling sequence, the resulting nearly-periodic oscillations remain in the
neighbourhood in phase space of one or other of the two related solutions in
Figure 6 over the range from co = 0.8431 to co = 0.8432. Paired nearly-
periodic oscillations are found to occur from co = 0.8433 to w = 0.8439,
except at co = 0.8436, and the unstable oscillations from co = 0.8440 on-
wards have no spectral preference to integer multiples of the frequency co/1.
The intermittency of the paired oscillations at co = 0.8436 was found to be
constant with a cycle of 3 oscillation periods, equal to 21 forcing periods.
More detailed examination showed that the solution there describes stable,
21 ^-periodic oscillations on a path in phase space between the two unstable,
related 7!T-periodic oscillations.

The two asymmetric solutions in Figure 6 are very close over much of
their paths, but two points on the phase-plane diagrams where there is a
reasonable separation are the minima and maxima near 6 = n, with the
minima at about 6 = 0.4 and the maxima at about 6 = - 0 . 4 . The locations
of these minima and maxima over 350 forcing periods are plotted in Figure 7

10 15 20 25 30 35

Oscillation porlods

40 45 50

FIGURE 7. The envelope over 50 oscillation periods, equal to 350 forcing periods, for two
stationary values in the ( 0 , 0) phase plane of the paired nearly-periodic oscillations with n =
1.2, co = 0.8435 and <5 = 1.25.
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for the paired nearly-periodic oscillations at co = 0.8435. The 350 forcing
periods are equivalent to 50 oscillation periods, and each curve in Figure
7 is formed by joining the 50 stationary values. Although there appears to
be faster intermittent switching between the two nearly-periodic oscillations
here than in Figure 5, the intermittency is about the same because each os-
cillation period is equal to 7 forcing periods. Like Figure 5, the curves are
smoother where the stationary values are near the larger magnitude than near
the smaller magnitude.

5. Fully chaotic oscillations

Paired nearly-periodic oscillations are found from co = 0.8667 to co —
0.8640, beyond the dominant period-doubling sequence. When the forc-
ing frequency is decreased further to co = 0.8639, the pendulum not only
switches intermittently between the paired nearly-periodic oscillations but
also passes intermittently over the top, 6 — n{ mod 2n). It has intervals of
low instability in paired nearly-periodic oscillations interspersed with inter-
vals of high instability characterised by repeated passes over the top in both
directions. The phase plane diagrams for consecutive intervals of 50 forcing
periods at co = 0.862 are drawn in Figures 8 and 9 (see page 166).

Figure 8 begins with 28 forcing periods or paired nearly-periodic oscilla-
tions about 0 = 0 , during which the phase difference between the pendulum
motion and the forcing of the pivot remains within a narrow range. The range
of the phase difference gradually increases after the 28th forcing period until
the pendulum passes over the top, 6 = —n, and oscillates 3 times about
6 = -2n . It then returns over the top to oscillate about 0 = 0 again with
phase differences between forcing and response outside the nearly-periodic
range. The oscillations are sufficiently unstable that they repeat the traverse
each way over the top, then continue to go over the top in both directions
during the next 50 forcing periods, illustrated in Figure 9. When the solution
is continued at this frequency, it is found to have intervals like that in Figure
8 in which the motion consists of paired nearly-periodic oscillations within
a narrow range of phase differences, interspersed with intervals like Figure
9 of more unstable oscillations passing intermittently over the top with the
whole range of phase differences between the forcing and the response.

The appearance of the (6, 6) phase plane diagram changes as the motion
changes from a single closed curve for periodic oscillations (Figures 2 and
6), to a narrow band of curves for nearly-periodic and paired nearly-periodic
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FIGURE 8. The phase-plane diagram, 6 against 6/n , over 50 forcing periods with e = 1.2 ,
a) = 0.862, and S = 0.125.

oscillations (Figure 3), to curves spread over much of the given part of the
phase plane (Figures 8 and 9) for fully chaotic oscillations (particularly when
6 is reduced to modulus 2n). A good indicator for the type of pendulum
motion is the proportion of the given part of the phase plane through which
the phase plane curve passes. This is easily found numerically by placing a
fine grid on the phase plane and counting the number of squares in the grid
through which the curve passes in a large time, with multiple passes through
the same square being counted once only. The angle 6 is reduced to modulus
2n so that complete circuits of the pivot contribute larger magnitudes of 6
without additional values of 0. The area of the (6,6) phase plane through
which the curve passes, arbitrarily normalised, is shown in Figure 10 (see
page 167) for the forcing frequency range co = 0.80 to co = 0.88.

This count of the number of squares in the phase plane is a measure of the
entropy of the oscillations ([1], pp. 87-88), a concept with the same sense
as in statistical mechanics. A figure showing the entropy variation for the
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FIGURE 9. The phase-plane diagram, 6 against O/n , over the next 50 forcing periods from
Fig. 8, with € = 1.2 , w = 0.862 , and 6 = 01.25 .

one-parameter logistic map ([1], Figure 4.10) bears a striking similarity to
Figure 10 even though the difference equation for the logistic map is appar-
ently unrelated to the differential equation (1.1) above.

The stable oscillations are 2!T-periodic from the right of the figure to the
frequency co = 0.8732, at which period-doubling occurs and the area tra-
versed in the phase plane almost doubles, from 0.004 to 0.0075. Period-
doubling occurs again at co = 0.8712, at which the area traversed in the phase
plane almost doubles again to 0.013. These areas are all very small because
the motion is represented by a single closed curve in the (6,6) phase plane.
Similarly, all other windows of exactly-periodic oscillations in the frequency
range of Figure 10 are described by small phase plane areas, appearing as
downward spikes in the figure. The oscillations in these windows are tabu-
lated in Appendix B.

Apart from the downward spikes described above, the area remains less
than 0.08 but has an upward trend from co = 0.8707 to co = 0.8668. This is
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FIGURE 10. The proportion of the (6, 0) plane arbitrarily normalised, through which the
phase-plane diagram passes, with e = 1.2 and 3 = 0.125 .

the range of nearly-periodic oscillations described in Section 3 and illustrated
in Figure 3, in which the motion remains near one, but not both, of the two
related unstable exactly-periodic oscillations. The area increases discontinu-
ously at w = 0.8668, then has an upward trend from 0.29 to 0.37 between
co = 0.8667 and co = 0.8640. This is the range of paired nearly-periodic os-
cillations described in Section 4, in which the motion switches intermittently
between both of the two related unstable exactly-periodic oscillations.

Over much of the remainder of the frequency range of Figure 10, the area
lies in the range 0.7 to 0.95, apart from the downward spikes indicating
periodic oscillations. The values for the area exhibit some scatter because of
the intermittency between intervals of low instability and intervals of high
instability in the fully chaotic oscillations, as illustrated in Figures 8 and 9.
Although the counting of squares in the phase plane was made over 1000
forcing periods, counts over consecutive intervals of 1000 forcing periods at
the same frequency yielded different values for the count within the scatter
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illustrated. The scatter could have been reduced by using a larger counting
interval, with correspondingly more computation. Lower values of the area
occur in the frequency range co = 0.862 to co = 0.8595, including the
frequency co = 0.862 of Figures 8 and 9. This appears to be associated with
longer intervals of nearly-periodic oscillations of low instability than occur
elsewhere.

The large window of 7 r-periodic oscillations, described in Section 4 and
illustrated in Figure 6, can be seen near the centre of Figure 10. It is noted
that the area on the right of this window in Figure 10 increases steadily
from co = 0.8429 to co = 0.8439, apart from the downward spike of 21T-
periodic oscillations at co = 0.8436. This range spans, in order, the period-
doubling sequence, the nearly-periodic oscillations, and the paired nearly-
periodic oscillations described by Figure 7. Similar ranges of increasing area
can be seen on one side of other windows in Figure 10, such as the window
of 4r-periodic running oscillations near co = 0.8225. These also describe
period-doubling followed by the gradual breakdown of the phase locking of
the exactly-periodic oscillations.

6. Nearly-periodic oscillations with intermittent switching

There is a transition on the left of Figure 10 from chaotic oscillations to
stable r-periodic symmetric oscillations at co = 0.8029. This is the turning
point co = co+ for r-periodic symmetric oscillations, in the notation of [3],
illustrated in [3], Figure lc. Stable r-periodic symmetric oscillations exist
at all frequencies less than <y+ .

It can be seen in Figure 10 that the area traversed by the phase plane di-
agram increases from 0.35 at co — 0.8030 to a fully chaotic level of about
0.8 at co = 0.8050. The oscillations in this frequency range lie in a tran-
sition between the stable r-periodic symmetric oscillations and the fully
chaotic oscillations. The phase plane diagram over 100 forcing periods at
co = 0.8030 is drawn in Figure 11. The motion consists of nearly-periodic
oscillations about 6 = 0 switching over a short disturbed time interval to
nearly-periodic oscillations about 6 — 2n. The motion over the next 100
forcing periods consists almost entirely of nearly-periodic oscillations about
6 = In, with only a short disturbed time interval in the middle when the
pendulum makes two oscillations about 0 = 0 before returning. This mo-
tion is described as nearly-periodic oscillations with intermittent switching.
As the frequency is increased from the value co = 0.8030 of Figure 11, the
rate of intermittent switching and the range of values of 6 both increase
until fully chaotic oscillations are attained.
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FIGURE 11. The phase-plane diagram, 6 against 0/n , over 100 forcing periods with e =
1.2, « = 0.8030, and 8 = 0.125.

The major difference between these oscillations and the nearly-periodic
oscillations of Section 3 or the paired nearly-periodic oscillations of Section 4
is that unstable oscillations exist at the frequencies of Section 3 and Section 4,
but not at the present frequencies. The oscillations in Section 3 and Section
4 remain in the neighbourhood in phase space of one or both of the two
related, weakly-unstable periodic solutions at the same frequency, without the
pendulum passing over the pivot. The oscillations here remain for extended
time intervals in the neighbourhood in phase space of the periodic solution
at the turning-point frequency, different from the forcing frequency, but the
pendulum passes intermittently over the pivot at other times.

The common feature between these oscillations and those in Section 3
and Section 4 is that the motion is only weakly chaotic, in the sense that it
continues to display a strong ordered element. It is the ordered element that
results in the phase plane diagram passing through a smaller proportion of
the phase plane area than fully chaotic oscillations, as is indicated by Figure
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10. Intermittent attractors, such as that illustrated in Figures 8, 9 and 11
are investigated in some detail in [5], where the intrinsic intermittency is
illustrated in terms of transitions among basins of attraction for solutions
of (1.3) with positive and negative mean angular velocities. The present
investigation suggests that intermittency is a more general phenomenon in
the chaotic breakdown of periodic oscillations of forced, damped pendulums.

7. Discussion

The primary purpose of this investigation is to examine the nature of the
chaotic motion in the frequency neighbourhood of stable periodic motion for
the very simple dynamical system consisting of a forced, damped, coplanar
pendulum. It was found that the chaotic motion retains major elements
of the periodic motion at neighbouring frequencies, and does not become
fully chaotic unless the forcing frequency differs sufficiently from those in
the periodic range. The weakly chaotic motion is found beyond the end of a
period-doubling sequence and also beyond a turning-point stability boundary.
It persists for a larger frequency range in the first case than it does in the
second case, presumably because the loss of stability is more abrupt in the
second case.

Similar properties are known for much more complex, forced dynamical
systems. The review by Berger and Wille [2] of periodic flow phenomena
in the laboratory and in the atmosphere describes a number of properties
parallel to those investigated here. Strictly-periodic vortex shedding occurs
for two-dimensional flow around a circular cylinder at low Reynolds numbers
(~ 102) and low turbulence levels, yet a periodic vortex-street wake still
persists in a fully turbulent flow around bluff bodies at Reynolds numbers
greater then 106. The bluff body forces the wake periodically, resulting in
recognisable near-periodicity in the fully turbulent wake. The review reports
'controversial' experiments by Tritton [6] in which the wake behind a circular
cylinder was observed to jerk between two vortex street modes for a particular
range of Reynolds number and turbulence level. This behaviour is similar to
that of the paired nearly-periodic oscillations of Section 4, and may not have
been due to some non-uniformity in the flow, as was suggested at the time.

Appendix A: Floquet's method

Floquet's method is used to calculate the linear stability of solutions to
(1.1) and to determine the initial form of their instability when it occurs.
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The method is summarised here because its predictions of instability must
be interpreted carefully to correspond to actual instability, as determined by
step-by-step integration of (1.1).

If 6 = 60(t) is a solution of (1.1), perturbations 6(t) to the solution
satisfy the pair of first order differential equations

6=p, (Al)

p = -28p — 0(cos 60 + e sin 60 sin cot), (A2)

after linearisation in 6. The linear stability of an wT'-periodic solution
(2.1) is calculated by expansion of p and 8 in Fourier series of the same
form as (2.1) except that the coefficients are time-dependent, followed by
substitution of the series for 0O, p and 6 into (Al) and (A2). A Fourier
analysis (using Fast Fourier Transforms) is made of the resulting equations,
with the assumption that the Fourier coefficients depend only slowly in time,
to obtain a set of 4iV+2 linear first order differential equations with constant
coefficients for the 4iV+2 independent Fourier coefficients in the expansions
of p and 6. The set is solved numerically by setting .the time dependence of
the 4N+2 Fourier coefficients proportional to eXwtlm followed by calculation
of the eigenvalues k and eigenvectors of the resulting square matrix of order
4AT + 2 (using the NAG subroutine F02AGF).

The eigenvalues have the form

k = kr + iXi, (A3)

which substituted into equations of the same form as (2.1) yield solutions

N

0 = 2^, \ake cos(k(ot/m) + flke
K' •' ' sm(kcot/m)\. (A4)

k=0

where all ak, fik are constants. Although this is a formal solution of the set
of AN + 2 linear first order differential equations, it is inconsistent with the
assumption of slow time dependence in the Fourier analysis yielding these
equations unless A, < 1/2.

Provided N is taken sufficiently large, stability calculations for particular
examples produce either integer values for kt, or integer values plus 1/2
when period-doubling occurs. Instability occurs, in principle, when kr is
positive. However, step-by-step integration of (1.1) from initial conditions in
the neighbourhood of a given solution shows that instability of the solution
occurs in practice only when there are eigenvalues for which kr > 0 and
kt < 1/2. Eigenvalues for which kr > 0 but k( > 1/2 have no physical
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application for the reasons above, and the apparent instability proves to be
spurious.

Appendix B: Windows of periodic oscillations

The asymptotic solutions of (1.1) were calculated for the frequency range
0.80 < (o < 0.88, at frequency intervals of 0.0001, to obtain the data for
Figure 10. Zero initial conditions, 6 = 8 = 0, were used for each calculation,
the solution for the first 500 forcing periods was discarded, and the data for
Figure 10 was obtained from the next 1000 forcing periods. The downward
spikes in the figure indicate windows of periodic oscillations, which are tabu-
lated below. Not all windows of stable, periodic oscillations in the frequency
range were necessarily found, either because the window width is too small
for the frequency interval used, or because the numerical solution did not
enter the basin of attraction in phase space of the period solution.

Frequency
0.8050
0.8075

0.8080-0.8081
0.8130-0.8133
0.8221-0.8230

0.8313
0.8332
0.8337

0.8407 - 0.8439
0.8436
0.8448

0.8559-0.8561
0.86677
0.8695
0.8706

Periodic oscillations
Period 11T
Period 21T

Period 5T, mean angular velocity co/5
Period 97\ inverted

Period 4T, mean angular velocity ct>/4
Period 97\ inverted
Period 167\ inverted
Period 16T, inverted
Period IT, inverted
Period 21T, inverted

Period 11T, mean angular velocity to/11
Period IT, inverted

Period 10r
Period 16T
Period 207
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