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Abstract

Most optical and IR spectra are now acquired using detectors with finite-width pixels in a square array. Each pixel records
the received intensity integrated over its own area, and pixels are separated by the array pitch. This paper examines
the effects of such pixellation, using computed simulations to illustrate the effects which most concern the astronomer
end-user. It is shown that coarse sampling increases the random noise errors in wavelength by typically 10–20 % at 2
pixels per Full Width at Half Maximum, but with wide variation depending on the functional form of the instrumental
Line Spread Function (i.e. the instrumental response to a monochromatic input) and on the pixel phase. If line widths are
determined, they are even more strongly affected at low sampling frequencies. However, the noise in fitted peak amplitudes
is minimally affected by pixellation, with increases less than about 5%. Pixellation has a substantial but complex effect
on the ability to see a relative minimum between two closely spaced peaks (or relative maximum between two absorption
lines). The consistent scale of resolving power presented by Robertson to overcome the inadequacy of the Full Width
at Half Maximum as a resolution measure is here extended to cover pixellated spectra. The systematic bias errors in
wavelength introduced by pixellation, independent of signal/noise ratio, are examined. While they may be negligible for
smooth well-sampled symmetric Line Spread Functions, they are very sensitive to asymmetry and high spatial frequency
sub-structure. The Modulation Transfer Function for sampled data is shown to give a useful indication of the extent of
improperly sampled signal in an Line Spread Function. The common maxim that 2 pixels per Full Width at Half Maximum
is the Nyquist limit is incorrect and most Line Spread Functions will exhibit some aliasing at this sample frequency. While
2 pixels per Full Width at Half Maximum is nevertheless often an acceptable minimum for moderate signal/noise work,
it is preferable to carry out simulations for any actual or proposed Line Spread Function to find the effects of various
sampling frequencies. Where spectrograph end-users have a choice of sampling frequencies, through on-chip binning
and/or spectrograph configurations, it is desirable that the instrument user manual should include an examination of the
effects of the various choices.

Keywords: astronomical instrumentation – instrumentation: spectrographs – instrumentation: detectors – techniques:
spectroscopic – methods: data analysis – methods: observational

1 INTRODUCTION

Detectors with pixels on a square array are in widespread
use in current optical and IR grating spectrographs. A key
issue confronting the designer or user1 of such instruments
is the size of the individual detector pixels with respect to the
width of the instrumental profile—in other words, how many
pixels should be used to sample the width of an unresolved
spectral line. If too few pixels are used, narrow or unresolved
spectral features will be undersampled, resulting in errors of

1 Users may have to decide on the slit width or grating configuration and
whether to use on-chip binning, all of which can affect the sampling rate.

position (i.e. wavelength) and possibly also flux which vary
depending on the phase of the spectral line with respect to the
pixel centres. The ability to distinguish closely spaced lines
will be compromised, as will detection of slight broadening
of a spectral feature. Random errors in wavelength and
width are also increased with coarse sampling. On the other
hand, if an unnecessarily large number of pixels are used to
span the instrumental width, then the spectrograph’s total
wavelength range will be reduced for a given detector size,
and the effects of readout noise, dark noise, and cosmic ray
hits will be exacerbated.

The approach that has most often been taken in the liter-
ature is to say that 2 pixels per Full Width at Half Maximum
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(FWHM) represents Nyquist sampling, which is satisfactory
but a bare minimum, and that for more accurate work (such
as accurate radial velocities or velocity dispersions), a larger
number of pixels such as 3 to 4 per FWHM should be used.
However, 2 pixels per FWHM is not the Nyquist limit and
the minimum acceptable sampling frequency depends on
the required accuracy and on the form of the instrumen-
tal profile, here referred to as the Line Spread Function
(LSF).

The CCD and IR array detectors perform two operations
on the LSF as it falls on the detector, in the process of
sampling (e.g. Bernstein 2002): First, the light which falls
within the area of a single pixel is integrated over the fi-
nite area of the pixel, and second, a single intensity value is
recorded and nominally ascribed to the location at the cen-
tre of the pixel. In this work, the pixels will be regarded
as having uniform sensitivity across their width (except in
Section 10.1).

Using Fourier Transform methods, it is quite straightfor-
ward to take any proposed LSF, convolve it with a rectangle
representing the smoothing effect of integrating the signal
over the pixel width, and then find the extent to which the
Fourier components lie beyond the true Nyquist frequency
(i.e. two samples per cycle of a sinusoid) for any given sam-
pling frequency. However, this does not answer the questions
which concern the instrument scientist or astronomer, namely
what level of errors will be introduced into the measurement
of wavelengths, line strengths, and widths, and how will the
ability to separate two closely spaced spectral lines be af-
fected? This paper aims to make a start towards answering
these more practical questions. The approach will be to il-
lustrate the effects of sampling, rather than to give another
mathematical analysis.

Spectra will be assumed to be 1-dimensional, i.e. repre-
senting an array giving intensity as a function of wavelength.
The integration or extraction over the spatial dimension to
produce such 1-dimensional spectra is not the issue here, and
the emphasis is on adequacy or otherwise of sampling as a
function of wavelength. Data samples will be assumed to be
digitised with sufficient precision that quantisation noise can
be neglected.

A comprehensive introduction to the basics of the sam-
pling process is given by Vollmerhausen, Reago, & Drig-
gers (2010); see also Anderson & King (2000). Bickerton &
Lupton (2013) presented Fourier methods to give accurate
photometry of sampled images.

2 EFFECTS OF SAMPLING

Sampling by pixels with uniform sensitivity and no interpixel
gaps (as assumed above) has a number of effects:

(1) The integration of the received intensity signal over the
width of a pixel has the effect of smoothing the incident
intensity profile, through convolution with a rectangular

profile having the width of one pixel. This broadens the
effective LSF and hence reduces the spectral resolving
power of the instrument, in the sense that it cannot re-
solve two closely spaced spectral lines as well as before
sampling.

(2) The noise errors of the key parameters of spectral
lines—namely, position (wavelength) and width will be
increased, and the flux errors will be increased unless
an integrated flux is used.

(3) If sampling is inadequate (i.e. too coarse), then sys-
tematic bias errors may be introduced in the fitted line
parameters.

(4) Coarse sampling may reduce the ability to distinguish
closely spaced spectral features.

While simple in principle, the quantification of the above
errors is complicated by the fact that the errors do not de-
pend solely on the sampling rate and the LSF functional
form—they also depend on the type of analysis performed
on the spectral data. This analysis can take many forms—
such as fitting a Gaussian or series of Gaussians to spectral
features (although the LSF will in general not be an exact
Gaussian), or fitting another functional form, or calculation
of a centroid wavelength, or perhaps interpolation (referred
to as ‘reconstruction’ in the literature on 2D imaging). An
important special case is the fitting of the exactly correct
LSF (including allowance for the convolution effect of the
finite pixel width) to unresolved spectral features. In this
case, unbiased wavelengths can be obtained even with sig-
nificant undersampling, because the process is analogous to
deconvolution.

The analysis and discussion below attempts to find
within this complex multi-dimensional problem some re-
sults which are useful to designers and users of sampled
spectrographs.

3 WAVELENGTH ACCURACY

It is expected that coarse pixellation will increase the ran-
dom wavelength uncertainty in locating an unresolved spec-
tral feature. The conceptually simplest view is that the ef-
fective LSF is the intrinsic (instrumental) LSF convolved
with the pixel rectangle—this necessarily broadens the LSF
and hence diminishes the wavelength accuracy. However, the
simple view does not take into account the dependence on
pixel phase, which is important at low sampling frequency,
so we proceed as follows. (The results here are given assum-
ing positive-going peaks, but would be equally applicable
to weak absorption features which leave the per-pixel noise
approximately constant.)

Defining σ as the rms noise in each pixel (wavelength
channel) and assuming that the noise is constant per unit
wavelength interval (at least in the vicinity of a given spec-
tral feature) and that the noise in separate pixels is uncor-
related, the formula for wavelength uncertainty σλ given by
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Sampling of Spectra 3

Clarke et al. (1969) can be used2:

σ 2
λ = σ 2

pk2

(∑
(B′)2 −

(∑
BB′

)2

/
∑

B2

) , (1)

where ‘pk’ is the peak amplitude of the response whose σλ

is to be found. B′ is the derivative with respect to wavelength
of the LSF B, which is assumed normalised to a peak of
unity (before pixel convolution). Some care is needed in the
evaluation of B′ when pixels are wide and the slope may
change greatly across one pixel. Inspection of the Clarke et al.
derivation shows that B′ for a given pixel refers to dB/dλ,
where B is interpreted as the continuous (i.e. unsampled) LSF
but integrated across the pixel and then point sampled at the
relevant pixel centre. Thus, equation (1) may be conveniently
evaluated for any LSF that is known as a continuous function,
by first convolving with the pixel rectangle and then sampling
B and B′ at the appropriate locations. The validity of the
formula for coarsely pixellated data treated in this way has
been verified by Monte Carlo tests.

In the case of a well-sampled symmetric LSF observing
an unresolved spectral feature, this equation simplifies to

σ 2
λ = σ 2/

(
pk2

∑
(B′)2

)
. (2)

However, the general form (1) will be used here in order
to handle coarse sampling correctly. The results for a number
of LSF forms will now be examined.

Figure 1 shows the variation of random wavelength error
with sampling frequency for the case of a Gaussian LSF. All
curves show a rise in position errors as the sampling fre-
quency decreases. This is expected due to the lessened sen-
sitivity of wide pixels to the steep sides of the LSF. Below
about 2 pixels FWHM−1, there is increasing dependence of
the result on the pixel phase. The greatest errors occur for the
LSF peak centred in the middle of a pixel, while for the LSF
centred on the boundary between two pixels, errors are min-
imised and there is actually a turn-over, with coarser pixella-
tion resulting in lower position errors. This can be understood
as the pair of pixels starting to act as one axis of a quad-cell
position locator (i.e. using the flux ratio between the two ad-
jacent pixels to determine the peak location). The red line in
Figure 2 shows the LSF straddling the boundary of two pixels
for a sampling frequency of 1.5 pixels FWHM−1, illustrating
the rapid shift of flux between the two major pixels, as the
peak shifts slightly with respect to the pixels.

Figure 3 shows the similar set of curves, in this case for
a Lorentzian LSF. The sharpness of the Lorentzian’s core

2 See Robertson (2013) regarding correction of the typographical error in
equation (A7) of Clarke et al. (1969). This is the wavelength uncertainty
for a two-parameter fit (peak amplitude and wavelength); width is assumed
unresolved and is not fitted. Fitting the exact LSF with the minimum number
of parameters is the optimum process (as compared with fitting a Gaussian
to a non-Gaussian LSF, or using the centroid, etc.) so the resulting σλ

will be the minimum achievable. Note also that what is evaluated here
is the signal-/noise-dependent random error, not the bias error, which is
considered in Section 7.
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Figure 1. Wavelength uncertainty vs. sampling frequency for a range of
pixel-phase values. The LSF form is Gaussian. The uppermost (blue) curve
corresponds to pixel phase = 0 (peak centred on a pixel), while the lowest
(red) curve, which has a maximum at sample frequency ∼1.64, is for pixel
phase = ±0.5, i.e. a peak lying on the boundary between two pixels. Other
curves have pixel phases at intervals of 0.1. The noise in each pixel is uncor-
related and is appropriately scaled for the actual pixel widths, such that the
noise for unit dispersion axis interval remains constant. The vertical scale
of RMS position uncertainties has been normalised to unity at very large
sample frequency.
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Figure 2. Gaussian LSF (black) with superposed sampled versions of the
same LSF (blue: pixel phase 0, red: pixel phase 0.5). The sampling frequency
is 1.5 pixels FWHM−1.

with respect to its wings results in a pronounced depen-
dence of the wavelength error on pixel phase. Thus, the
red line in Figure 4, at pixel phase 0.5, shows the case
where the ‘quad-cell’ effect holds the wavelength error nearly
constant with decreasing sample frequency. On the other
hand, the blue line, at pixel phase 0, corresponds to sharply
increased σλ.

Figure 5 shows the σλ vs. sampling frequency curves for a
sinc2 LSF. This LSF form arises in the case of a diffraction-
limited slit, and has the important property that its Fourier
Transform is band-limited, i.e. if it is sampled at or above
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Figure 3. Wavelength uncertainty vs. sampling frequency for a Lorentzian
LSF, otherwise as for Figure 1.
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Figure 4. Lorentzian LSF (black) with superposed sampled versions of the
same LSF (blue: pixel phase 0, red: pixel phase 0.5). The sampling frequency
is 1.75 pixels FWHM−1.

the Nyquist rate, there will be no aliasing. This topic will be
expanded in Section 9 but the important point to note from
Figure 5 is that the divergence of the curves for different pixel
phases begins below the sampling frequency of 1.77 pixels
FWHM−1, which corresponds closely to Nyquist sampling.
In other words, where there is no aliasing, there is also no
dependence of σλ on pixel phase.

The next LSF to be considered is intended to represent the
result of projecting the image of a multi-mode fibre on to
the wavelength axis. The ideal result is a half ellipse (e.g.
Bracewell 1995), but the extremely steep sides of the ellipse
will inevitably be smoothed to some extent by optical aberra-
tions in the spectrograph, so what is used here is the projected
circle convolved with the Gaussian that produces the mini-
mum final FWHM (Robertson 2013, hereafter referred to as
Paper 1). This provides an example representative of pro-
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Figure 5. Wavelength uncertainty vs. sampling frequency for a sinc2 LSF.
Since the sinc2 function has minor lobes with amplitudes decaying slowly
away from the central peak, it is not possible to include all the function’s
non-zero values as was effectively done for other LSFs. In this case, the sum-
mations were continued to dispersion axis positions of ±225.76 × FWHM,
in order to obtain a close approximation to the band-limited nature of sinc2.
The pixel-phase curves are coloured as in Figure 1.
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Figure 6. Wavelength uncertainty vs. sampling frequency for a range of
pixel-phase values. The LSF form is the convolved projected circle. At a
sample frequency of 2 pixels FWHM−1, the lowest (blue) curve corresponds
to pixel phase = 0 (peak centred on a pixel), while the highest (red) curve
is for pixel phase = ±0.5. Other curves again have pixel phases at intervals
of 0.1.

jected multi-mode fibres subject to some spectrograph aber-
rations. Figure 6 shows the variation of random wavelength
errors with sampling frequency and pixel phase. The oscilla-
tory behaviour, with pixel phase 0 being best at some sam-
pling frequencies, and phase 0.5 best at others, is radically
different from the Gaussian, Lorentzian, and sinc2 cases. The
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Figure 7. Convolved projected circle LSF (black) with superposed sampled
versions of the same LSF (blue: pixel phase 0 at 2.03 pixels FWHM−1 (i.e.
at the local minimum of the position uncertainty curve), red: pixel phase 0.5
at sampling frequency 1.82 pixels FWHM−1 (i.e. at the local maximum)).

reason is the steep-sided and flat-topped nature of the LSF.
As equations (1) and (2) show, the accuracy of wavelength
determination depends on the regions of greatest slope. Thus,
σλ will be minimised at the pixel phases and sampling fre-
quencies that are able to derive good position discrimination
from both sides of the LSF. The red line in Figure 7 shows
the sampled LSF at pixel phase 0.5 and sample frequency
1.82 pixels FWHM−1, which is a local maximum in σλ. In
this configuration, there is minimal sensitivity of the relative
pixel intensities to small changes in wavelength, due to the
flat-topped nature of the LSF. On the other hand, the blue
line in Figure 7 shows pixel phase 0 at 2.03 pixels FWHM−1,
giving a local minimum of σλ. Here, a small shift of the LSF
with respect to the pixels produces a maximal change in val-
ues for the pixels on either side of the centre. The flattened
top of the LSF in effect decouples the contributions of the
two sides, resulting in particular combinations of pixel phase
and sample frequency that are optimum.

The final LSF is that of an actual spectrograph, the
AAOmega instrument is operating at the Anglo-Australian
Telescope (Saunders et al. 2004). This instrument uses multi-
mode fibres and thus can be expected to give results similar
to those of the convolved projected circle. It is nevertheless
interesting to see whether curves such as Figure 6 are borne
out in practice. An arc frame of CCD data from AAOmega
was used, and 266 fibre images were selected from the central
part of the CCD where the LSF is sufficiently constant. Each
fibre image was projected to the wavelength axis, then images
were aligned to their centroid and scaled to flux equality and
plotted together, as shown by the black points in Figure 8.
Because there is some tilt of the lines along the AAOmega
spatial axis, and also a number of lines of different wavelength
were used, the result is good coverage of all pixel phases (i.e.
position of centroid with respect to the pixel boundaries).
There are 266 fibre profiles with an average of 14.3 points
per profile, giving 3 800 points, hence virtually continuous
coverage of the LSF.
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Figure 8. Arc line profile from AAOmega, using a sub-area of 1 000 (spa-
tial) × 500 (wavelength) pixels near the centre of the data frame. Two-
hundred-sixty-six unblended and unsaturated fibre images were selected for
processing. The horizontal axis is in units of pixels, and the vertical axis is
intensity in arbitrary units. The blue curve is a three-parameter empirical
fit, I = 0.2800 exp ( − 0.1854|p|2.4174), where p is the horizontal axis inde-
pendent parameter in pixels. The residuals with respect to this fit are also
shown—indicating that the fit is good but not perfect. The fitted curve has
FWHM = 3.450 pixels.

What this shows (as the set of black-plotted points) is the
true LSF received by the detector, after convolution with the
pixel response. Anderson & King (2000) refer to this as the
effective PSF (ePSF).

As expected, this LSF cannot be satisfactorily fitted with a
Gaussian, because the peak is too broad and the wings too low
relative to the best-fit Gaussian. The blue curve in Figure 8
shows an empirical fit that is adequate for the present pur-
poses. Using that fit, the LSF profile was successfully decon-
volved to remove the effect of pixel convolution, assuming
the pixel response is a perfect rectangle of width 1 pixel. Be-
cause the profile is well sampled, pixel deconvolution makes
only a minimal difference.

The deconvolved LSF represents the LSF as it fell on
the detector, so it can be used as input to the calculation
of σλ vs. sampling frequency as before. Figure 9 shows
the results. Indeed the oscillations do occur, although at
the actual AAOmega sampling frequency of 3.41 pixels
FWHM−1, there is minimal dependence on pixel phase. But if
2-pixel sampling had been adopted, it would have been quite
significant.

Figure 10 shows the deconvolved AAOmega LSF and its
pixellation at phases 0 and 0.5.

The results given in this section show that sampling at 2
pixels FWHM−1 causes a loss of typically 10–20% in wave-
length accuracy relative to the limit of continuous sampling.
There is, however, a considerable variation among the differ-
ent LSF forms, and increasing dependence on pixel phase for
coarse sampling.
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Figure 9. Wavelength uncertainty vs. sampling frequency for a range of
pixel-phase values. The LSF is from the AAOmega spectrograph. At a
sample frequency of 2 pixels FWHM−1, the lowest (blue) curve corresponds
to pixel phase = 0 (peak centred on a pixel), while the highest (red) curve
is for pixel phase = ±0.5. Other curves again have pixel phases at intervals
of 0.1. (The actual sample frequency for the intrinsic LSF of AAOmega is
3.41 pixels FWHM−1.)
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Figure 10. AAOmega spectrograph LSF (black) with superposed sampled
versions of the same LSF (blue: pixel phase 0, red: pixel phase 0.5). The
sampling frequency is 2.0 pixels FWHM−1 (not equal to the actual as-built
pixel scale). The unsampled LSF has a FWHM of 3.41.

4 WIDTH ACCURACY

Pixellation has an even greater effect on the accuracy of width
measurements for barely resolved spectral features, such as
in the measurement of galaxy velocity dispersions. It is intu-
itively obvious that coarse pixellation will impede the deter-
mination of an accurate width measurement. In this section,
examples of two LSFs are given to illustrate this point.

When three parameters (location, peak height, and width)
are to be fitted to a profile, it is not possible to give an ex-
plicit equation for the width uncertainties that is analogous
to equation (1). Instead the procedure adopted was to use the
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Figure 11. Width uncertainty vs. sampling frequency for a range of pixel-
phase values. The LSF is Gaussian. The lowest (blue) curve corresponds
to pixel phase = 0 (peak centred on a pixel) while the highest (red) curve
is for pixel phase = ±0.5. Other curves have pixel phases at intervals of
0.1. The noise in each pixel is uncorrelated and is appropriately scaled for
the actual pixel widths, such that the noise for unit dispersion axis interval
remains constant. The vertical scale of RMS width uncertainties has been
normalised to unity at very large sample frequency.

non-linear least squares fitting facility nlinfit in MATLAB3.
The input data set was the (unbroadened) LSF sampled at
the appropriate sampling frequency and pixel phase, and the
fitting function was the same LSF. With starting values for
the location, peak height and FWHM deliberately differing
from the correct values by 5–10%, nlinfit then determined the
best fit parameter values (using the correct integration across
pixels for the fitting function). Instead of injecting noise and
then performing numerous Monte Carlo simulations to assess
the scatter of fitted parameter values, use was made of the Ja-
cobian matrix J of the non-linear regression model, which
can be returned by nlinfit. Calculation of σ 2(JTJ)−1 gives the
covariance matrix of the three parameters, when the noise is
assumed to be independent and have the same RMS value σ

in each pixel.
Figure 11 shows the results for a Gaussian LSF. Since the

input function and the fitting function were both unbroad-
ened, the results represent the noise in width for small width
extensions. The plots have been normalised to unity at large
sample frequencies, i.e. the numerical values again show the
factor by which sampling increases the noise. This figure
shows that pixel-phase dependence develops below about
2.4 pixels FWHM−1, and worsens rapidly below 2 pixels
FWHM−1. In contrast to the case for wavelength uncertain-
ties, the lowest errors for width are obtained at pixel phase 0
(peak centred on a pixel) and the worst at pixel phase ±0.5
(peak at the boundary of two pixels). This can be understood
since in the latter case, the width determination will rely on

3 www.mathworks.com.au
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Figure 12. Width uncertainty vs. sampling frequency for the convolved pro-
jected circle LSF. The colour coding for pixel phases is as before.

the values in the two pixels either side of the central two, and
there is little signal in them at low sample frequencies (e.g.
the red histogram pixels at ±1 in Figure 2). Saunders (2014)
also noted that the best pixel phase for position (wavelength)
determination is the worst for widths.

Figure 12 shows the corresponding plot for the convolved
projected circle LSF. In this case, the steep sides and low
wings of the LSF exacerbate the problem of finding widths
at pixel phase 0.5 and low sample frequencies, and as a re-
sult at 1.5 pixels FWHM−1, it reaches an RMS width error
almost 4 × worse than the fine-sampled limit. Any sampling
frequency below 2 pixels FWHM−1 experiences severe noise
enhancement at pixel phases close to 0.5. Even at 2.5 pixels
FWHM−1, there is significant pixel phase—dependent en-
hancement of the width uncertainties.

5 PEAK ACCURACY

This section considers the effect of pixellation on the random
noise errors affecting the peak amplitude of an unresolved
spectral feature. Clarke et al. (1969) give an equation anal-
ogous to equation (1) for the uncertainty of the peak ampli-
tude, when making a two-parameter least squares fit to an
unresolved feature:

σ 2
pk = σ 2

∑
B2 −

(∑
BB′

)2

/
∑

(B′)2

. (3)

Figure 13 shows the result for a Gaussian LSF. As with
wavelength (position) and width uncertainties, pixel-phase
dependence develops below about 2 pixels FWHM−1. How-
ever, the average effects are small, with less than 3% increase
in noise at 2 pixels FWHM−1 due to pixellation. The largest
errors occur for pixel phase 0.5, where the signal is spread
out over a larger effective number of pixels than for pixel
phase 0.
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Figure 13. Peak uncertainty vs. sampling frequency for the Gaussian LSF.
As before, the noise is constant per unit wavelength interval, and is indepen-
dent from one pixel to the next. The uncertainties are normalised to unity
at large sampling frequency, in order to show the effects of pixellation. The
colour coding for pixel phases is as before.
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Figure 14. Peak uncertainty vs. sampling frequency for the convolved pro-
jected circle LSF. The colour coding for pixel phases is as before.

Since σ pk and the pixel noise σ have the same dimensions,
they can be validly compared. Defining neff as the effective
number of pixels in the ‘resolution element’,

σ 2
pk = σ 2

neff
, (4)

and equation (3) could be used to find neff.
Figure 14 shows the corresponding change in σ pk for the

convolved projected circle. Again, the average increase in
errors due to pixellation is small, less than about 4% at 2
pixels FWHM−1.
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6 CONSISTENT SCALE OF SPECTRAL
RESOLVING POWER

Sampling by finite-width pixels causes a reduction in spectral
resolving power, since the effective LSF is the unsampled
LSF convolved with a rectangle equal to the pixel width.
While it is possible to calculate a resolving power loss by
simply comparing the widths of the original LSF as incident
on the detector and the width after pixel convolution, this
gives only an average over pixel phases, and does not show
the important differences which arise as a function of pixel
phase at low sampling frequency. Moreover, as will be shown
below, it does not give an accurate picture of the effects of
pixellation on the various LSF forms.

The obvious difficulty in calculating a pixel-phase-
dependent resolving power lies in how resolving power
should be defined in the case of coarse sampling. The ap-
proach taken here follows that of Paper 1, where it was argued
that the modern conventional definition of spectral resolving
power as R = λ/δλ with δλ taken as the FWHM is unsatis-
factory because FWHM is a poor measure of the truly impor-
tant aspects of resolution, namely the ability to distinguish
closely spaced spectral lines, or to measure accurate wave-
lengths of unresolved lines. Taking the latter property as the
basis, a consistent measure of resolution δλσλ = β FWHM
was developed4. The formula for calculation of β was given
for the case where the LSF is continuous or finely sampled.
We now consider the important case of pixellated data. (The
other consistent resolving power scale of Paper 1, based on
the ‘α’ scaling factors, will not be considered here because
the ‘β’ scale is easier to use in practice. However, Section 8
does consider one effect of sampling on resolution of closely
spaced features.)

This approach will take into account both the broadening
effect of the sampling (effectively convolution of the LSF
with the pixel rectangle) and the increase of wavelength er-
ror due to pixellation, as seen in Figures 1, 3, 6, and 9. In
this context, ‘wavelength uncertainty’ refers to random noise
errors—the bias errors which also depend on pixel phase but
which are not diminished by high signal/noise data are con-
sidered later.

The analysis requires knowledge of the ‘intrinsic LSF’,
which is used to mean the continuous LSF that has fallen
on the detector, before sampling. This is known in the case
of model LSFs such as the Gaussian, Lorentzian, and the
convolved projected circle, and could also apply to smooth
model LSFs derived from optical design software models or
an empirical LSF processed as for the AAOmega LSF above
(with deconvolution to remove the effects of pixel sampling,
at least approximately). With the intrinsic LSF known, the
effects of any proposed sampling frequency can be evaluated.

4 Rσλ = λ/δλσλ calculated on this scale is the Rayleigh criterion resolving
power of an instrument with a sinc2 LSF which has the same wavelength
noise error as the instrument in question when receiving the same incident
total line flux and subject to noise that is constant per unit wavelength
interval.

Following Paper 1, the ‘β’ scale of consistently defined
resolving power is based on equating the wavelength errors
for the LSF in question and that of a sinc2 LSF, i.e.

σλ (sinc2,cont) = σλ (LSF,pix,phase), (5)

where the left-hand side represents the σλ of a sinc2 LSF that
is continuous or very finely sampled, while the right-hand
side is the σλ of the LSF under study, which is pixellated and
observed at some particular pixel phase. Thus, given a certain
LSF form, sampling frequency, and pixel phase, equation (5)
can be used to give the FWHM of the sinc2 profile required
to satisfy the equality.

The analysis will closely follow that of Paper 1. Since a
variety of pixel widths are now considered, it is necessary to
write the spectral noise as

σ1 = σ
√

�λ. (6)

Here, σ 1 is the noise for unit wavelength (dispersion axis)
interval and is constant both within a spectrum and between
the two LSFs considered, while σ is then the noise in a pixel
(wavelength channel) of width �λ, and is assumed to be
uncorrelated between pixels.

In order to use the Clarke et al. formulas (equations (1) or
(2)), it is convenient to define S by

1/S = �λ

(∑
(B′)2 −

( ∑
BB′

)2

/
∑

B2

)
, (7)

or, if the simple formula is adequate,

1/S = �λ

(∑
(B′)2

)
. (8)

S will play the role for pixellated data that the ‘noise width’,

Z = 1∫ +∞
−∞ (B′)2dλ

(9)

plays for continuous symmetric LSFs. The crucial difference
is that S depends on the sample frequency and pixel phase
as well as on the LSF form. Following the same procedure
as in Paper 1, i.e. equating the RMS wavelength errors for
the pixellated LSF and a continuous sinc2 LSF under the
condition of equal fluxes (peak × equivalent width), the result
is

β = 1.3809 S
1
3

LSFEW
2
3
LSF/FWHMLSF, (10)

where EW stands for the equivalent width (area/peak height).
Hence, the resolution element which should be used in place
of FWHMLSF is

δλσλ = β FWHMLSF = 1.3809 S
1
3

LSFEW
2
3
LSF. (11)

The value of β reflects the effects of pixellation, LSF form,
and conversion to the Rayleigh criterion of a sinc2 profile
to define what ‘just resolved’ means. To calculate the final
resolving power on the consistently defined scale, use

Rσλ = 1

β

λ

FWHMLSF
. (12)
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Figure 15. Relative resolving power Rσλ/R = 1/β, where Rσλ is the resolv-
ing power of the LSF in question, as subject to pixellation and measured on
the consistently defined ‘β’ scale, and R = λ/FWHM is the conventionally
defined resolving power of the LSF, in the limit of fine sampling. The plot
shows the relative values of Rσλ/R for the four LSFs, when all have the
same unsampled FWHM. On this scale, the value 0.886 corresponds to the
resolving power of a fine-sampled sinc2 LSF (again with the same FWHM),
using the Rayleigh criterion to define resolution. The shaded areas indicate
the range covered by different pixel phases. From the top, the curves are
red—convolved projected circle; grey—AAOmega LSF; blue—Gaussian;
green—Lorentzian. The black curves show the effect of pixel convolution
on the conventional R = λ/FWHM.

Figure 15 shows the results for the four LSFs discussed
in section 3. Rather than assume some arbitrary resolving
power for comparison, they are presented as relative resolv-
ing power, which is just 1/β as calculated from equation (10).
The factors which affect this plot are (1) for a given FWHM,
the basic LSF form affects the resolving power when mea-
sured on the consistent scale which is based on equality of
σλ. This is the reason the Lorentzian’s values are low, while
the convolved projected circle is high; (2) sampling by finite
width pixels reduces the resolving power by increasing the
wavelength uncertainties as the sample frequency is reduced;
(3) pixel phase becomes increasingly important at low sam-
ple frequencies; (4) the absolute values on the vertical scale
are relative to the value 0.886 (=1/1.129) which applies to a
sinc2 LSF with fine sampling and using the Rayleigh criterion
to define ‘just resolved’.

The black curves show the result of calculating the resolv-
ing power reduction due to sampling by simply convolving
the LSF with the pixel rectangle and comparing the FWHM
with that of the intrinsic LSF. For convenience, the values
have been scaled to agree with the corresponding consistently
defined relative resolving power at the limit of fine sampling.
Only for the Gaussian LSF does this simplistic calculation
show approximately the correct dependence on sample fre-
quency. For the others, it is a poor approximation, especially
for the convolved projected circle or the AAOmega LSF—

which represent forms encountered in any spectrograph fed
by multi-mode fibres. Furthermore, the simplistic calculation
is unable to take account of the dependence on pixel phase.

As an example, Rσλ has been calculated for the AAOmega
configuration above, using the deconvolution of the empirical
fit to the LSF (shown in Figure 8) and the known centre wave-
length (725.21 nm) and dispersion (0.1568 nm pixel−1). The
above process gives Rσλ = 1282.8–1286.9, with the range of
values being due to different pixel phases. The range is nar-
row because the profile is well sampled. For comparison, the
conventional R = λ/FWHMLSF = 1358.7. In this case, the
difference between the conventional R and Rσλ is small (i.e.
β is close to 1), due to two competing effects: the LSF has
steeper sides than a sinc2 profile, which will raise Rσλ, but
then the result is scaled down to give resolving power equiv-
alent to that from the Rayleigh criterion. There is little loss
of resolving power due to pixellation because the sampling
frequency is 3.41 pixels FWHM−1.

7 SYSTEMATIC BIAS ERRORS

As well as the increased random errors described above in
Sections 3–5, pixellation of a spectrum can also lead to bias
errors. In general, such errors will depend on the pixel phase
of a spectral feature. They are insidious because they differ
from the usual noise errors in that they are not reduced by high
signal/noise ratio, and thus must eventually dominate (per-
haps with other systematic errors) for very high S/N spectra.
In that case, they would set a quasi-random noise floor, when
considering an ensemble of spectral features of various pixel
phases. Such errors will occur if the spectral features are fit-
ted using a functional form which does not exactly match the
LSF, such as the common practice of fitting (say) a Gaussian
to features which are not exactly Gaussian. There are also
small bias errors in using the model-independent centroid as
a location parameter.

Bias errors in the flux of a spectral line can in principle
be easily avoided simply by summing the contributions of
the wavelength channels (pixels) which include the line, but
this is a noisy process, subject to truncation error in the line
wings. Flux bias will be introduced if an incorrect functional
form is fitted.

7.1. Exact LSF fitted to spectral features

It is not possible to give a general formula which includes
all possible LSFs and fitting functional forms. In general,
the only approach is to carry out simulations, and a number
of these will be presented below. The first case to consider
is when the exactly correct functional form is fitted, i.e. the
intrinsic LSF is known exactly, and it is integrated over sam-
ples for every spectral feature, taking due account of the pixel
phase. No plots will be shown for this case because it results
in bias-free fitting, even when there is a degree of undersam-
pling (i.e. the LSF contains Fourier components beyond the
Nyquist limit).
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Figure 16. Bias errors of position, peak height, and width for a plain Gaus-
sian fitted to a sampled Gaussian LSF. For position and width, the errors are
relative to the FWHM of 1.0, and the peak bias is relative to the Gaussian
LSF peak = 1.0. The filled areas show the range of values covered by dif-
ferent pixel phases. The annotation ‘× 10−3’ on the vertical axis of panel
‘a’ applies only to that panel.

7.2. Gaussian fits

A common practice in spectral analysis is to fit a Gaussian
profile to spectral lines, on the basis that although the LSF
is not exactly Gaussian, it is likely to be fairly close. This
section examines the resulting biases.

The first case is that of a Gaussian intrinsic LSF, but the
fitting function is a plain point-sampled Gaussian, i.e. not
integrated across samples. Thus, there are misfit errors which
are worse for lower sampling frequency. Note that it is neces-
sary to make a three-parameter fit, allowing a variable width
as well as position and peak height, because the fitted form is
not the correct one. Figure 16 shows the results for each of the
three parameters. The position bias increases rapidly below
2 pixels FWHM−1, reaching pixel-phase dependent extremes
of ±0.0010 (0.1% of the FWHM) at 1.5 pixels FWHM−1.
Such errors would be unimportant in low to moderate
signal/noise data, and the crude fit of an inappropriate LSF
would not be used in high-precision work. The bias errors
in peak height and width are substantial at low sampling
frequencies, with the effect of functional form mismatch
overshadowing the effect of pixel phase. With the peak un-
derestimated and the width overestimated by a similar factor,
the flux error is much reduced and reaches only 0.13% at
1.5 pixels FWHM−1.

The data of Figure 16 a are presented as a function of pixel
phase in Figure 17. As expected, the position error is zero
when the pixels are symmetric with respect to the peak, at
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Figure 17. Bias errors of position as a function of pixel phase, for a plain
Gaussian fitted to a Gaussian LSF. The highest amplitude curve is for sam-
ple frequency of 1.5 pixels FWHM−1, the others are at 1.6 and 1.9 pixels
FWHM−1.
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Figure 18. Bias errors of position, peak height, and width for a plain Gaus-
sian fitted to an LSF derived from convolution of a projected circle with a
Gaussian that gives the minimum final intrinsic FWHM. For position and
width, the errors are relative to the FWHM of 1.0, and the peak bias is relative
to the intrinsic LSF peak = 1.0. The filled areas show the range of values
covered by different pixel phases.

phases 0 and ±0.5, and varies approximately sinusoidally
at other pixel phases. The error decreases rapidly with in-
creasing sample frequency, and is negligible above 2 pixels
FWHM−1.

The next LSF considered is the projected circle convolved
with the Gaussian which results in the minimum final intrinsic
FWHM, as used in Figure 7. The results for biases in position,
peak, and width for this case are shown in Figure 18. The
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Figure 19. Bias errors of position as a function of pixel phase, for a plain
Gaussian fitted to the convolved projected circle LSF. The highest amplitude
curve is for sample frequency of 1.5 pixels FWHM−1, the others are at 2.16
and 2.96 pixels FWHM−1.

position bias errors are much larger than for the Gaussian
LSF (at sample frequency 1.5, the range is 24 × greater), and
extend to beyond 2 pixels FWHM−1. The peak and width
errors also have greatly increased pixel-phase dependence,
and unlike Figure 16, the biases do not asymptote to zero at
high sample frequency because in this case, the Gaussian fit
is inherently an incorrect functional form. Quite apart from
issues of pixellation, this is an illustration of the danger of
using an inappropriate functional form, since these errors
would be apparent in even moderate S/N data. For calculation
of the flux (area), the peak and width errors again tend to
compensate, and the maximum flux error is +3.5% at 2.21
pixels FWHM−1.

Figure 19 shows the position bias errors vs. pixel phase.
Again an approximately sinusoidal form is seen, but with
much larger amplitude, which could affect moderate S/N
spectra. Figure 20 shows one example of the misfit which
occurs when attempting to fit this LSF with a plain
Gaussian.

The above two LSFs are perfectly symmetrical, an ideal
which is not achieved in practice, due to complex residual
optical aberrations and other effects. These can give rise to
fine structure in the LSF, which is of particular importance
because LSF structure finer than the pixel scale will cause
a shift in the fitted location of the feature, as it moves from
contributing in one pixel to the next one. It is an example
of the desirability of band limiting the data before sampling,
which is not possible in this case. Thus, the smoothing ef-
fect of integrating over pixels does not reduce this bias. The
final LSF to be considered in this section is an example of
the difference that some asymmetric fine structure can make
to the bias errors. Figure 21 shows an LSF constructed by
perturbing a Gaussian with three sinusoids, having spatial
periods of 1, 0.5, and 0.25 × the FWHM. Figures 22 and 23
show the results. Compared with the fits to the pure Gaus-
sian LSF in Figure 16, the bias errors in position are much
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Figure 20. Example of the misfit of a pure Gaussian to the convolved pro-
jected circle. Thick black line: intrinsic convolved projected circle LSF; blue
‘histogram’ plot: the LSF sampled at 1.5 pixels FWHM−1 and pixel phase
−0.29, which gives the maximum position bias error; red curve: the Gaussian
which best fits the sampled data.
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Figure 21. Thick blue curve—Gaussian LSF perturbed by some high-
frequency noise. Thin red curve—the unperturbed parent Gaussian LSF. The
perturbation is a sum of three sine curves with amplitudes Ai = [0.1, 0.05,
0.03], pixel phases at sine wave zero crossing φi = [ − 0.33, 0.85, −0.6],
and frequencies fi = [1, 2, 4] where f1 corresponds to one cycle across the
FWHM. The final perturbed curve is a Gaussian of peak and FWHM = 1
multiplied by (1 + the sum of sine waves).

larger (15× greater at sample frequency 1.5) and continue to
much larger sampling frequencies, despite the perturbation
of the Gaussian form being relatively minor. The bias errors
in these figures were computed relative to the unperturbed
parent Gaussian, thus the zero points on the vertical scales
are essentially arbitrary, and attention should be focussed on
the range and variation of the errors. The flux (area) errors
are not large, with the greatest being −1.8% at 2.1 pixels
FWHM−1.

In Figure 23, the same three sample frequencies are plotted
as for the pure Gaussian case (Figure 17); it is notable that the
position errors are much larger and do not decrease nearly as
quickly as sample frequency increases. Thus, the smoothness
of the intrinsic (unsampled) LSF is an important criterion if
accurate wavelengths are to be obtained from a spectrograph
when using simple line fitting procedures.
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Figure 22. Bias errors of position, peak height, and width for a plain Gaus-
sian fitted to a perturbed Gaussian LSF. For position and width, the errors
are relative to the parent FWHM of 1.0, and the peak bias is relative to the
parent Gaussian LSF peak = 1.0. The filled areas show the range of values
covered by different pixel phases. The errors have been calculated relative to
the original unperturbed LSF, and therefore have essentially arbitrary zero
point offsets.
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Figure 23. Bias errors of position as a function of pixel phase, for a plain
Gaussian fitted to the perturbed Gaussian LSF. The blue curve is for sample
frequency of 1.5 pixels FWHM−1, red is at 1.6, and green at 1.9 pixels
FWHM−1.

7.3. Centroid position

The centroid (centre of gravity) of an isolated spectral feature
is

CT =
∫ ∞

−∞ F (x)x dx∫ ∞
−∞ F (x)dx

, (13)

where F(x) is the spectral intensity as a function of location x
along the dispersion axis, and CT represents the true centroid,

i.e. free from the effects of pixellation. This formula assumes
that any background level has been subtracted, so the peak is
sitting on zero background level. For pixellated data, one has
to use

CP =
∑

Fixi∑
Fi

, (14)

where the sum is over all pixels containing any part of the
peak. The difference of these two expressions represents the
bias of the pixellated centroid:

CP − CT =
∫ ∞

−∞ F (x)(xi − x) dx∫ ∞
−∞ F (x)dx

, (15)

where xi is the centroid of pixel i which is nearest to the
particular value of x. For pixels assumed to have uniform
sensitivity, xi is the x coordinate value at the centre of the
pixel. The (xi − x) factor in this equation imparts a sawtooth
characteristic to the integrand, which results in near cancel-
lation of the positive and negative parts. The overall result
is further reduced by near cancellation of the contributions
from the ascending and descending slopes of the LSF. The re-
sult is that centroid bias values can be very small under some
circumstances. The bias results for some example LSFs will
be considered below.

The principal advantage of the centroid is that it is model-
independent, providing that it is clear where in the wings of
the feature the summation should be truncated. The outstand-
ing disadvantage is the centroid’s noise response. In the case
of uniform noise of standard deviation σ in each pixel, it can
be shown that the variance of the pixellated centroid is given
by

σ 2
CP

= σ 2

(
∑

Fi )2

∑
(xi − CP)2, (16)

which results in the variance increasing quadratically and
without limit as more pixels are included in the wings of
the feature. In this respect, least squares fits to the LSF are
obviously superior. However, the centroid is still of interest
for the reasons given above, and in fact, if the summation
for centroid evaluation is suitably truncated, its noise need
not be excessive: for example, in the case of a Gaussian LSF,
the centroid noise given by equation (16) equals the two-
parameter least squares fit noise (equations (1) or (2)) when
the centroid summation includes 98–99% of the flux.

Figure 24 shows the centroid bias for the case of a Gaussian
LSF. Bias is negligible at 2.0 pixels FWHM−1, and even at 1.5
pixels FWHM−1, it reaches a maximum (at particular pixel
phases) of only 7.05 × 10−5 of the FWHM. The behaviour as
a function of pixel phase is shown in Figure 25, illustrating
the near-sinusoidal form of the very small bias errors. The
maximum bias is 14 × less than that shown in Figure 16 for
the fit of a plain Gaussian to a Gaussian LSF, illustrating the
bias-resistant nature of the centroid in this case.

For the convolved projected circle LSF, the steeper sides
and flattened top produce much larger errors, as shown in
Figures 26 and 27. At 1.5 pixels FWHM−1, the maximum
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Figure 24. Bias error of centroid positions for a Gaussian LSF. The filled
area shows the range covered by different pixel phases.
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Figure 25. Bias errors of centroid position as a function of pixel phase for a
Gaussian LSF. The largest amplitude curve (blue) is at 1.50 pixels FWHM−1;
the other two are at 1.594 and 1.715 pixels FWHM−1.
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Figure 26. Bias error of centroid positions for the convolved projected circle
LSF. The filled area shows the range covered by different pixel phases.

error is 9.24 × 10−3, i.e. 131 × greater than for the Gaussian
LSF. Furthermore, there is a secondary maximum in the bias
errors at 2.08 pixels FWHM−1, where the largest error is
1.42 × 10−3.

The final LSF form considered here is the perturbed Gaus-
sian, as shown in Figure 21. The result for its centroid bias
as a function of sample frequency is shown in Figure 28. The
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Figure 27. Bias errors of centroid position as a function of pixel phase for
the convolved projected circle LSF. The largest amplitude curve (blue) is at
1.50 pixels FWHM−1; the other two are at 1.653 and 2.083 pixels FWHM−1.
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Figure 28. Bias error of centroid positions for the perturbed Gaussian LSF.
The filled area shows the range covered by different pixel phases.

errors are far larger than for the centroid of a pure Gaussian—
with the maximum range of errors at 1.5 pixels FWHM−1 be-
ing 1.24 × 10−2, which is 88 × greater than the range for the
pure Gaussian at the same sample frequency. This shows the
great importance of high-frequency distortion of the LSF for
centroid bias. The presence of high-frequency components
in the LSF also produces (in this example) a secondary maxi-
mum in bias range at a sampling frequency as high as 4 pixels
FWHM−1, where the range is 2.4 × 10−3. Other tests (not
shown) used an asymmetrical Gaussian, constructed from
two half-Gaussians of equal peak height but unequal widths,
joined at the peak: For FWHMs differing by a factor of 1.10,
the centroid bias was 22 × greater than for the symmetrical
Gaussian and for a width ratio of 1.44 the bias was 160 ×
greater (at 2 pixels FWHM−1).

8 RESOLVING CLOSELY SPACED FEATURES

The consistent scale of resolving power described in section 6
provides a quantitative measure which takes into account the
effect of finite pixel widths. Nevertheless, users of pixellated
spectra are likely to want further information regarding how
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Figure 29. Illustration of the effects of pixellation on the ability to see two
equal height Gaussian peaks as separate. The horizontal axis gives the pixel
phase of the first of the two peaks. The vertical axis shows the separation of
the two peaks that is required for there to be a local minimum in the pixellated
data which is 81.1% of the lower of the two pixellated main peaks. Curves
are given for sampling frequency values from 1.75 to 5 pixels FWHM−1,
as labelled. The horizontal grey line at separation/FWHM = 1.1196 is the
limiting separation in the case of finely sampled LSFs. The points labelled
‘a’,‘b’,‘c’ refer to sample frequencies and pixel phases whose LSFs are
shown in Figure 30.

much the pixellation affects the ability to distinguish two
closely spaced spectral lines. There are many ways one might
quantify the effects of pixellation—for example, the increase
in flux or wavelength uncertainty of one spectral line as an-
other draws closer. However, there are a large number of
variable parameters and it is not clear that such results would
be helpful. Perhaps, the most basic property of resolved lines
that an observer looks for is the presence of a relative mini-
mum between the two peaks (in the case of emission lines).
In this section, the effects of pixellation on such a relative
minimum are examined.

Following the standard adopted in Paper 1, the criterion for
two spectral features that are individually unresolved to be
regarded as just resolved from each other is that there should
be a relative minimum between the two (intrinsically equal)
peaks, that is 81.1% of the height of either peak. This is based
on the Rayleigh criterion separation of two sinc2 LSFs and
has the advantage that the criterion itself is independent of the
noise properties of the data. The procedure adopted was to

first choose an LSF functional form and sampling frequency,
and then place the first peak at the origin with a specified
pixel phase. An iterative procedure was then used to find the
separation of the two (intrinsic) peaks which results in the
relative minimum of the sampled data being 81.1% of the
height of the lower of the two sampled main peaks (they will
in general be unequal due to the sampling). Figure 29 shows
the results for Gaussian LSFs. The curves have a complex
structure because changing the separation changes the pixel
phase of the second peak, which in turn affects the desired
separation if the pixellated second peak is the lower of the
two. Changing separation also changes the contribution to
the first peak from the wings of the second peak. The curves
are not symmetric about zero pixel phase of the first peak
because the second peak lies towards positive x values and so
contributes predominantly on that side. The horizontal grey
line indicates the separation in the limit of fine sampling.

Figure 30 shows the intrinsic and pixellated LSFs for the
three cases pointed out in Figure 29. It is clear why a larger
separation is needed in case ‘a’ than in case ‘b’ to maintain
the 81.1% relative minimum. The structure of the minimum
separation curves is one illustration of the complex non-linear
effects which are introduced by sampling. Even at 2 pixels
FWHM−1, there is a substantial (10.1%) variation of the criti-
cal separation with pixel phase, which may be compared with
the far smaller (0.6%) range for the resolving power based
on wavelength accuracy for the same LSF and sampling fre-
quency as shown in Figure 15. This is due to the different
resolution criteria employed in the two cases.

A corresponding calculation (not shown) was carried out
for the convolved projected circle LSF. It gave results that are
qualitatively similar to those of the Gaussian in Figures 29
and 30 although with smaller critical separations as a multiple
of the FWHM.

9 THE FOURIER VIEW OF SAMPLING

9.1. Overview

The performance of optical imaging systems is often quanti-
fied using the Optical Transfer Function (OTF), which is the
normalised Fourier Transform of the Point Spread Function
(PSF). The modulus of the OTF is known as the Modulation

Dispersion axis position
−2 0 2 4

In
te

ns
ity

0

0.2

0.4

0.6

0.8

1

1.2

a

Dispersion axis position
−2 0 2 4

In
te

ns
ity

0

0.2

0.4

0.6

0.8

1

1.2

b

Dispersion axis position
−2 0 2 4

In
te

ns
ity

0

0.2

0.4

0.6

0.8

1

1.2

c

Figure 30. LSF plots for the three cases indicated in Figure 29.
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Figure 31. Illustration of the effects of sampling. Blue: Gaussian intrinsic
LSF, with FWHM = 1 and peak = 1; red histogram-style line: the LSF
sampled at 2 pixels FWHM−1 and pixel phase = 0.25; black diamonds: the
sampled points; green: the intrinsic LSF convolved with the pixel rectangle.

Transfer Function (MTF) and gives a direct measure of a sys-
tem’s ability to transmit fine detail from object to image. As
well as giving an insight into performance of a sub-system,
the MTF has the useful property that for successive compo-
nents of an imaging system (e.g. atmosphere, optics, detec-
tor), the final MTF is the product of the component MTFs,
provided that the transfers between the sub-systems are
incoherent.

The process of sampling of a function on a regularly
spaced grid naturally lends itself to a study through the use
of Fourier methods, since there is a maximum spatial fre-
quency to which the sampling can respond. It is well known
that of the Fourier components making up a function (here a
1-dimensional spectrum), any with spatial frequencies higher
than the Nyquist limit of two samples per cycle will be aliased
and thus incorrectly ascribed to a lower frequency. This sec-
tion will examine the implications. An important simplifi-
cation in this analysis is that to the extent that the LSF is
constant over a region of a spectrum, that spectrum can be
regarded as the convolution of the intrinsic spectrum with the
LSF (with noise added after convolution). Thus, it will suffice
to examine the Fourier properties of the LSF instead of full
spectra.

Figure 31 illustrates the process by which a continuous
LSF is rendered as a sequence of separated samples. It also
shows the broadening effect of pixel convolution—in that the
green line showing the intrinsic LSF convolved with the pixel
rectangle passes exactly through the black sample points.
Thus, instead of summing the LSF across the width of each
pixel, an exactly equivalent process is to convolve the LSF
with the pixel rectangle and then point sample it at the centres
of the nominal pixels. In the illustrated case, at a sampling
frequency of 2 pixels FWHM−1, the convolved LSF has a
FWHM 1.060 × greater than the intrinsic LSF, due to the
effects of pixel smoothing.

A notable complication in using the MTF to study sam-
pling is that an assumption underpinning the use of the MTF
is that the process (in the present case, the formation of the
observed spectrum from convolution of the ideal spectrum
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Figure 32. Modulation Transfer Function of a sinc2 LSF, sampled at 1.7718
pixels FWHM−1. In order to obtain good accuracy of the transform, the sinc2

subsidiary lobes were included out to ±100 ×FWHM. The first set of com-
putations used 4 096 points over this range, giving a well-sampled transform;
the horizontal axis was then rescaled to show the results for a sampling fre-
quency of 1.7718 pixels FWHM−1. This is the reason that frequencies above
the Nyquist frequency of 0.5 cycles pixel−1 can be shown. Red curve: sinc
function due to smoothing by contiguous pixels of uniform sensitivity; blue
straight line: the transform of the sinc2 LSF; brown line: product of the above
two, showing the MTF of the sampled LSF; grey vertical line: the Nyquist
frequency for sampling; black dashed line: the LSF transform multiplied by
two sinc factors (see text). Not visible in the plot are six additional lines, all
coincident with the brown line. They were computed by actually sampling
the sinc2 LSF at 1.7718 pixels FWHM−1 and six different pixel phases, and
then Fourier Transforming.

with the LSF) should be linear and shift invariant. But the
form of the sampled LSF depends on the pixel phase, so the
process is not shift invariant. It is nevertheless still possible
to derive some useful insight from Fourier methods. In par-
ticular, as pointed out by e.g. Hamming (1983), sin and cos
are the eigenfunctions of equally spaced sampling. A sinu-
soidal function will be rendered with the correct functional
form, amplitude, and phase provided the sampling frequency
is above the Nyquist limit of two samples per cycle. Since the
MTF treatment considers an LSF as made up of sinusoidal
Fourier components, sampling is expected to cause no errors
for components below the Nyquist frequency, provided that
they have not been corrupted by aliased components from
above the Nyquist frequency. The results in the present work
support that conclusion.

9.2. Fourier Transforms of LSFs

The first case considered, shown in Figure 32, is for a sinc2

LSF. It is well known that the Fourier Transform of a sinc
function is a rectangle, while that of a sinc2 function is a tri-
angle peaked at the origin (e.g. Bracewell 1978). The FWHM
of

sinc2(x) =
(

sin(πx)

πx

)2

(17)
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Figure 33. Modulation Transfer Function of a sinc2 LSF, sampled at 1.5
pixels FWHM−1. Otherwise as for Figure 32. In this case, the curves for the
six different pixel phases diverge sharply at spatial frequencies affected by
aliasing. (The latter curves must terminate at the Nyquist frequency because
they were computed by actually sampling at 1.5 pixels FWHM−1.)

is 0.88589, and its Fourier Transform is band-limited to fre-
quencies less than 1. Hence, a sinc2 function with FWHM=
1.77178 pixels has a transform band-limited to frequencies
less than 0.5 cycles pixel−1, i.e. the Nyquist frequency for
sampling. In Figure 32, the straight blue line shows the nor-
malised Fourier Transform of sinc2, when sampled at the
Nyquist frequency. The red curve which reaches zero at twice
the Nyquist frequency is a sinc function which represents
the effect of pixel convolution on the spatial frequencies
(since sinc is the Fourier Transform of the rectangle rep-
resenting uniform pixel sensitivity). It reaches a null at one
cycle per pixel, where pixel smoothing would result in zero
modulation transfer. The brown curve shows the product of
these two functions, i.e. the MTF of a sinc2 LSF sampled by
contiguous rectangular pixels of uniform sensitivity at 1.7718
samples/FWHM. (These three curves were computed using
fine sampling and then rescaling the horizontal axis.)

The dashed curve relates to the statement (e.g. Boreman
2001; Fischer, Tadic-Galeb, & Yoder 2008), that in addition
to the sinc factor due to convolution with the rectangular
pixels, there is another identical sinc factor from the sam-
pling process itself, due to ‘sample scene phase averaging’.
But after convolving the LSF with the pixel rectangle, the
sampling is then done at points representing the centres of
pixels. Thus, there is no additional convolution with a rect-
angle, and no further sinc factor in the MTF. This is demon-
strated in Figure 32 because the brown curve also includes
six Fourier Transforms of the LSF actually sampled at 1.7718
samples/FWHM. There is no dependence on pixel phase, and
all transforms match the expectation that one sinc factor is
appropriate. This conclusion is supported by the analysis of
Yaroslavsky (2013).

To illustrate the utility of the frequency approach,
Figure 33 shows again the MTF of a sinc2 LSF, but this
time undersampled at 1.5 pixels FWHM−1. The maximum
spatial frequency of the LSF is now 0.5906 cycles pixel−1,
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Figure 34. Modulation Transfer Function of the convolved projected circle
LSF, sampled at 2 pixels FWHM−1. The colour coding of curves is as for
Figures 32 and 33. For this sampling frequency and LSF shape, there is a
null at 0.498, i.e. near the Nyquist frequency.
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Figure 35. Enlarged view of the lower part of Figure 34, showing more
clearly the curves for six different pixel phases.

so frequencies between 0.5 and 0.5906 are aliased, with their
Fourier components folded back into the range 0.4094–0.5.
It is precisely in this range that the six curves for different
pixel phases diverge from the mean. This demonstrates that
pixel-phase dependence occurs only for spatial frequencies
corrupted by aliased signal: For uncorrupted frequencies,
the amplitude of a Fourier component is correctly measured
irrespective of pixel phase, so the MTF, which measures the
relative amplitude of components, is unaffected. Figure 5
shows that the same applies for σλ as a function of sampling
frequency—all pixel phases give the same result until alias-
ing begins at low sample rates. This behaviour is as expected
since sinusoids are the eigenfunctions of equally spaced
sampling.

The above discussion of the sampling MTF for a sinc2

LSF has illustrated important points, but in order for the sinc2

function to properly exhibit its band-limited nature, a large
number of subsidiary lobes were included in the evaluations.
This is quite unrealistic for astronomical spectra, where noise
and complex structure limit the effective LSF to the main lobe
only. Thus, as a final example, the MTF of the convolved pro-
jected circle LSF is shown in Figures 34 and 35. As expected,
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the steep sides of this LSF (even after convolution with a
Gaussian) result in substantial high spatial frequency com-
ponents and at the sampling frequency of 2 pixels FWHM−1,
there is considerable amplitude beyond the Nyquist limit. The
aliasing of these components results in the curves for the six
different pixel phases being distinct over most of the observ-
able spatial frequency range. This is consistent with the σλ

curves of Figure 6 which show pixel-phase dependence over
essentially the entire sample frequency range plotted.

10 MISCELLANEOUS COMPLICATIONS

10.1. Non-uniform pixel sensitivity

The results described above assumed that each pixel has uni-
form sensitivity which drops sharply to zero at the pixel
boundary, i.e. the pixel response as a function of position is a
rectangular function. This ideal shape will not be achieved in
practice—the response may drop off towards the edges of the
pixel, possibly in an asymmetric fashion, and in thick CCD
chips there may be charge diffusion which leads to some re-
sponse to photons which actually arrived in adjacent pixels
(Widenhorn et al. 2010). Jorden, Deltorn, & Oates (1994)
used a small-diameter light spot to measure the intrapixel
sensitivity variations of a number of CCDs and found varia-
tions of order 10%. Barron et al. (2007) used a similar tech-
nique to measure sub-pixel sensitivity variations in a num-
ber of near-IR detectors and found high QE detectors had
less than 2% variation, while moderate QE devices showed
strong asymmetric intrapixel structure. Departures from ideal
performance of thick chips were discussed by Stubbs (2014).

Lauer (1999b) examined this issue for the case of under-
sampled HST images, and showed how to construct maps
of intrapixel sensitivity variations. His analysis used a set of
dithered images which allow the ePSF (i.e. the optical PSF
convolved with the pixel response function) to be obtained
with fine sampling. (This is essentially the same process as
used here to create the AAOmega LSF in Figure 8.)

Intrapixel variations can be expected to cause minor de-
partures of the actual σλ curves from those illustrated in
Figures 1–9, which are in any case intended only as illus-
trations of some possible forms. More important in practice
is the accurate determination of the effective LSF. Sensitivity
loss at the edge of each pixel and/or leakage from adjacent
pixels would smooth out the abrupt change of signal from
one pixel to the next as the illumination peak moves—hence,
the ‘quad-cell’ effect which resulted in low σλ for pixel phase
0.5 in Figures 1, 3, and 5 would be diminished and the local
maximum in σλ may not occur (e.g. Spinhirne et al 1998).
Note that the ‘effective LSF’, i.e. the instrumental LSF con-
volved with the pixel response as found in Figure 8, auto-
matically includes the effects of any departure of the pixel
response from the ideal rectangular function—without those
departures being known explicitly.

Intrapixel sensitivity variations can be expected to have a
significant effect on position bias errors, if they interact with
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Figure 36. Modulation Transfer Function of the convolved projected circle
LSF, sampled at 2 pixel widths per FWHM and dithering with pixel spacing=
0.5 × pixel width. The colour coding of curves is as for Figures 32 and 33.
The green line shows six coincident lines for different pixel phases.

high spatial frequency sub-structure of the optical LSF. For
any given system detailed measurements would be needed to
quantify the effects.

A more subtle issue is the non-linear response known as
the ‘brighter–fatter’ effect, whereby accumulated charge af-
fects the apparent width of pixels, leading to bright objects
appearing to be up to a few percent wider than faint objects
(Antilogus 2014; Rasmussen 2014; Guyonnet et al. 2015).
However, the pixel sampling frequency is not of particular
importance in that case.

10.2. Dithering and non-contiguous pixels

While detectors with contiguous pixels represent the most
common case, it is also appropriate to examine what happens
when the pixel spacing is not equal to the pixel width. The
spacing is less than the width when dithered (sub-stepped)
exposures are combined, while the spacing would be greater
than the width for sparse arrays. In all cases, the process
can be considered as convolution of the intrinsic LSF with
the pixel response (i.e. convolution with the pixel width) and
then point sampling at the appropriate spacing, which is less
than the width for dithering, equal to the width for contigu-
ous pixels, or greater than the width for sparse arrays. The
use of dithering in improving undersampled images, partic-
ularly those from HST, has been studied by many authors,
e.g. Lauer (1999a; 1999b), Bernstein (2002), Fruchter and
Hook (2002), Fruchter (2011), and Boreman (2001). Lauer
noted that for accurate reconstruction of a sampled function,
it must be band-limited, i.e. it should avoid corruption of
Fourier components by aliasing.

The MTF is useful in showing the effects of varying the
sampling rate in this way. For example, Figure 36 shows the
MTF of the convolved projected circle LSF sampled at 2 pixel
widths per FWHM as in Figure 34, but with the data com-
bined with a second exposure offset by half a pixel width,
so that the final pixel spacing is half of the pixel width. This
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results in 4 pixel spacings per FWHM. The horizontal axis
shows spatial frequencies from 0 to 1 cycle per pixel width;
with dithering, this is equivalent to 0 to 0.5 cycles per pixel
spacing. Since the Nyquist frequency is related to sampling,
not pixel convolution, the entire range shown in Figure 36
is below the Nyquist frequency. Comparison of the two fig-
ures shows the benefit of dithering: the second lobe of the
LSFs MTF, which lay beyond the Nyquist frequency without
dithering, is now correctly sampled. As a result, there is neg-
ligible corruption due to aliasing and negligible dependence
on pixel phase. This is an example of an LSF which has sig-
nificant high spatial frequency content, and benefited from
sub-stepping to reduce the pixel spacing.

10.3. Poisson noise

The above examinations of systematic bias errors, separation
of closely spaced features and the Fourier picture are indepen-
dent of the noise characteristics of the data, but the treatment
of wavelength, width, and peak errors in Sections 3–5, and
the consistent resolving power scale in Section 6 do assume
noise that is constant across pixels. This is suitable for weak
emission or absorption lines on a spectral continuum level, or
any spectrum where detector noise dominates. However, for
strong features where Poisson shot noise from the observed
object dominates, the assumption of constant noise can be
only an approximation. It is therefore appropriate to examine
briefly the differences in the case of Poisson noise.

The discussion will be limited to the case of a Poisson
noise dominated unresolved emission peak sitting on zero
background level. This would describe strong emission fea-
tures in a spectrum. Since the Poisson noise approaches zero
as the LSF intensity drops in the wings of the profile, there
is no need to make a least-squares fit of the LSF to the data
in order to find the location (wavelength). Instead, the cen-
troid can be used directly. In the limit of fine sampling of a
Gaussian peak, the RMS centroid error is given by the simple
formula:

σλ = σG√
N

, (18)

where σ G is the FWHM/2.3548 of the Gaussian LSF and N
is the total number of photon counts in the peak. This is the
same as the formula for the standard error of the mean of
a Gaussian statistical distribution. When the peak has been
split into finite-width pixels, the equation for the variance of
the centroid is

σ 2
CP

= 1

N2

∑
Fi(xi − CP)2, (19)

where Fi is the count in pixel i located at xi and CP is the posi-
tion of the pixellated centroid. This expression is often used
in the context of the position uncertainty of the image spots
formed by a Shack–Hartmann wavefront sensor (e.g. Rous-
set 1999). It has been used here to evaluate the RMS centroid
uncertainty as a function of sampling frequency, as shown in
Figure 37. This may be compared with Figure 1 which shows
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Figure 37. Wavelength uncertainty vs. sampling frequency for a Gaussian
LSF subject to Poisson noise. The position (wavelength) is taken from the
centroid of the observed LSF. The full range of pixel phases is shown as six
curves, but they are coincident except for minor differences near 1.5 pixels
FWHM−1. The curves have been normalised to unity at very large sample
frequency.

the same for constant (normally distributed) noise. Although
the two figures show a broadly similar increase of wavelength
uncertainty for coarser sampling, it is notable that in the Pois-
son case, there is much less dependence on pixel phase, with
minimal separation of curves at different pixel phase even
at 1.5 pixels FWHM−1. The maximum enhancement of the
RMS error over the fine-sampling limit is only 1.098 ×, as
compared with the range 1.093 − 1.235 × for constant noise5.

Finding the parameters of such a pixellated Poisson-
dominated peak is equivalent to fitting a histogram from a
counting experiment in the particle physics context, and for-
mulas for the bias, variance, and skewness of the distribution
of any parameter derived from such data were given by Eadie
et al. (1971).

11 CONCLUSIONS

There are a number of consequences of sampling spectra into
pixels, and this paper is intended to illustrate the principal
effects which are of concern to the end-users of such sampled
data. In summary:

(1) Random noise errors in wavelength are increased by
sampling (Section 3). Uncertainties are typically∼10–
20% worse at a sample frequency of 2 pixels FWHM−1

but depend on the functional form of the LSF. The
important case of the projected circle convolved with
a Gaussian (representing a projected multi-mode fi-
bre with some spectrograph aberrations) shows strong
dependence on the pixel phase (i.e. the position of a
spectral feature with respect to the pixel centre), with

5 A Table of the factor by which the RMS centroid uncertainty is increased by
pixellation over that given by equation (18) was given by Goad et al. (1986;
referenced by Rousset 1999). However it appears that the factors given by
Goad et al. are for correction of the variance not the RMS, since their square
roots agree with the values in Figure 37 (which has been verified by Monte
Carlo simulations).
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uncertainties increased by 20% at 2 pixels FWHM−1

and certain pixel phases.
(2) If the width of a spectral feature is to be determined, the

effects of pixellation on random noise errors are con-
siderably more severe than for wavelength (Section 4),
especially below 2 pixels FWHM−1, and they are
strongly dependent on pixel phase.

(3) Pixellation causes only a minor increase in the random
noise of the fitted peak amplitude of an unresolved
spectral feature (Section 5). Increases of 5% or less at
2 pixels FWHM−1 are to be expected, but with some
dependence on pixel phase.

(4) Pixellation tends to smooth out the relative minimum
between two closely spaced emission lines (or equiva-
lently, the relative maximum between two absorption
lines). If one wishes to see a relative minimum of 81%
of the peak (equal to the Rayleigh criterion separation
for two finely sampled sinc2 LSFs), then the separa-
tion required is significantly increased by sampling,
but in a complex manner due to the effects of pixel
phase (Section 8).

(5) As demonstrated in Robertson (2013; Paper 1), the
FWHM is a poor measure of spectral resolution, when
LSFs of different forms need to be compared. In
Section 6, the method for calculating resolving power
on a consistent scale based on wavelength accuracy is
extended from that given in Paper 1 to include effects
of pixellation.

(6) Pixellation of spectra can produce systematic bias er-
rors in wavelength that depend on pixel phase and
the method of wavelength determination, but are
not reduced by high signal/noise data. As shown in
Section 7, such errors may be negligible for well-
sampled symmetric LSFs. But they are greatly in-
creased by asymmetry in the LSF and/or high spatial
frequency components that are not adequately sam-
pled by the detector. Thus, any fine structure in the in-
trinsic LSF (i.e. the unsampled image as it falls on the
detector plane) will have a significant role in produc-
ing wavelength bias errors, and a smooth symmetrical
PSF that varies at most slowly across the detector is
desirable for high precision work.

(7) The MTF (normalised amplitude of the Fourier Trans-
form of the LSF) can show the extent to which spatial
frequencies making up the LSF are aliased due to in-
adequate sampling frequency. Any Fourier component
which is aliased will then corrupt another component
which is below the Nyquist frequency and would have
otherwise been correctly recorded. Pixel-phase depen-
dence develops for spatial frequencies that have been
corrupted by aliased signal from above the Nyquist
frequency.

(8) There has developed in the literature a practice of re-
ferring to a sampling frequency of two samples per
FWHM as being the Nyquist limit. This is incorrect,
since it is not the same as two samples per cycle

of a sinusoid, and most common LSFs have aliased
high-frequency components when sampled at 2 pix-
els FWHM−1. Nevertheless, it is true that for most
LSF forms resulting from spectrographs, two sam-
ples/FWHM is a reasonable minimum if high preci-
sion is not required. In the case of a diffraction-limited
slit input, two samples/FWHM is slightly more than
needed to avoid any aliasing (but this assumes that sub-
sidiary lobes of the diffraction pattern can be included
in the analysis—which is unlikely in spectra with noise
and many features). For high precision work with
typical non-diffraction-limited LSFs, a larger sam-
pling frequency should be used. For example, Chance,
Kurosu, & Sioris (2005) recommend 4.5–6.5 pixels
FWHM−1 of a Gaussian LSF after pixel convolution to
avoid any significant aliasing, and the HARPS planet-
finder spectrograph (Mayor et al., 2003) uses 3.2 pixels
FWHM−1.

(9) A recommendation from this work is that it is de-
sirable for designers of spectrographic instruments to
carry out simulations using computed LSFs (suitably
smoothed to remove spurious high-frequency features
such as from a finite number of rays traced, but retain-
ing all ‘real’ fine structure). Then the extent to which
noise in parameter estimates is increased, the amount
of pixel-phase dependence and the bias errors can be
found for any proposed camera speed and detector
pitch.

(10) For instruments where the end users have choices re-
garding sampling frequency (e.g. from on-chip bin-
ning or different spectrograph configurations), it is
highly desirable that the instrument team should carry
out simulations using the actual LSF and so provide
in the user manual data regarding the effects on noise,
bias, separation of peaks, pixel-phase dependence,
etc., which can aid the user in deciding which con-
figuration to use.
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