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CONGRUENCE LATTICES OF REGULAR SEMIGROUPS
RELATED TO KERNELS AND TRACES

by MARIO PETRICH
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The kernel-trace approach to congruences on a regular semigroup S can be refined by introducing the left and
right traces. This induces eight operators on the lattice of congruences on S: t,, k, tr; Th K, Tr; t, T. We describe
the lattice of congruences on S generated by six 3-element subsets of the set {cot,, cok, a>tr, eT,, e.K, eT,} where co
and E denote the universal and the equality relations. This is effected by means of a diagram and in terms of
generators and relations on a free distributive lattice, or a homomorphic image thereof. We perform the same
analysis for the lattice of congruences on S generated by the set {eK, cok, ET, cot}.

1980 Mathematics subject classification (1985 Revision): 20M10.

1. Introduction and summary

Let S be a regular semigroup, #(S) the lattice of its congruences and E(S) the set of its
idempotents. For

kerp = {aeS\ape for some eeE(S)}, trp = p|£(S)

are the kernel and the trace of p, respectively. The study of congruences on S via their
kernels and traces is known as the kernel-trace approach. The fundamental result here
is that p is uniquely determined by the pair (kerp, trp), called a congruence pair. This
approach can be refined by introducing the left and the right traces as follows

ltrp = tr(pv j£?)°, rtrp = tr(p v^ )° ,

where the join is taken in the lattice of equivalence relations on S and 8° means the
greatest congruence on S contained in an equivalence relation 6 on S. The triple (ltrp,
ker p, r tr p) uniquely determines the congruence p. By

pK, pT, pTh pTr; pk, pt, pt,, ptr

we denote the greatest congruences on S having the same kernel, trace, left trace and
right trace, respectively, as p; and the same with least replacing greatest. This provides
eight operators on #(S) which we denote by K, T,.... Then K and k, T and t, T, and r,,
Tr and tr induce equivalence relations Jf, i7", &l, Fr, respectively, on #(S). The first one
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180 M. PETRICH

of these is a complete A-congruence, the remaining ones are complete congruences.
Note that

^ = ^ " A ^ , pT = pT,,*pTr, Pt = pt,vptr.

In general, these operators, with each congruence on S, produce a further eight
congruences (some of which may of course coincide). The operators themselves, through
their various properties, provide useful information about congruences on a regular
semigroup. In addition, one may consider the lattice generated by their values on a
single congruence p (or a set of congruences), especially if the congruence p is a
remarkable one. Another possibility is to iterate some (or all) of these operators on a
single congruence thereby obtaining various networks of congruences. Finally, one can
combine both of these procedures by iterating the operators and determining the lattice
generated by their values.

Denoting by a> and e the universal and equality congruences on S, respectively, we
attempt to describe the lattice generated by the set

{(otha>k,o}tr,ET,,eK,eTr}.

Observe that we may skip the operators T and t in view of the above identities. These
congruences have appeared under different notation and description as follows:

that is the congruence generated by the right partial order, the least band congruence,
the congruence generated by the left partial order, the greatest congruence contained in
jSf, that is ^,=^f°, the greatest idempotent pure congruence, and the greatest
congruence contained in 91, that is nr = (%°, respectively. (Recall that e^rf if and only if
e = fe.) These descriptions destroy our systematic notation but they put things into a
familiar garb thereby incidentally indicating that the task formulated above is a
formidable one.

It is therefore not at all surprising that we are not able to describe the lattice
generated by these congruences. There is another difficulty here which, on first sight,
does not seem germane to the problem; namely, that JT is not in general a congruence.
We are thus forced to consider not only certain special cases of the above problem, but
also to assume in almost all our considerations that X is a congruence. This is a strong
restriction, but primitive regular semigroups have this property (Petrich [9, Theorem
3.6]). For strong semilattices of simple regular semigroups, for Reilly semigroups and for
retract extensions of one Brandt semigroup by another, we gave necessary and sufficient
conditions for the kernel relation to be a congruence (Petrich [9, Theorems 4.3, 4.7, 5.5]
and Petrich [10, Theorem 5.7]). In addition to this restriction, we are forced to consider
the lattices generated by relatively small subsets of the set of congruences above;
namely, in Section 3 we describe the congruences generated by each of the sets
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{cot,, cok, cot,}, {ET,, cok, cotr}, {cot,, EK, cotr),
(1)

{£7], cok, eTr}, {ET,, EK, cotr}, {eT,, EK, sTr}.

Note that in each one of these sets there is exactly one representative of the left trace,
the kernel and the right trace.

We can get some insight into the structure of the entire lattice we are interested in by
describing the lattice generated by the set {cot, ET, cok, sK}, which we do in Section 4.
Note that cot = a—the least group congruence and ET=(I—the greatest idempotent
separating congruence on S.

The description of the lattice in question consists of the assertion that a given lattice
is a homomorphic image of a lattice given by a diagram. The latter lattice is then
shown, in most cases, to occur itself as the lattice of such congruences. We also describe
the latter lattices in terms of generators and relations.

For congruence lattices generated by various other special congruences on regular
semigroups, we mention only Pastijn and Petrich [5]. Related to our subject are the
semigroups generated by certain operators on the lattice of varieties of completely
regular semigroups studied by Petrich and Reilly [13]. Various networks of con-
gruences, that is systems of congruences resulting by iteration of some of the above
operators, were considered by Petrich and Reilly [12], Pastijn and Trotter [6] and the
author [11].

2. Preliminaries

We will use the notation and terminology of Howie [2] and Petrich [7]. In addition
to those in the introduction, we state a few frequently occurring symbols and concepts.

A regular semigroup S is E-unitary if E(S) is a unitary subset of S, equivalently for
aeS, e,aeeE{S) we always have aeE(S). For any (quasi) variety "V", we denote by fla-
ttie least congruence on S whose quotient is in V. A completely regular semigroup S is
a cryptogroup if the Green relation sV on S is a congruence.

Diagram 1 represents a free distributive lattice on the generators a, b and c; we
denote it by &@&{a,b,c), see Gratzer [1, 1.5, Theorem 10]. If {pa}aeA is a family of
relations on L = S'Qsif(a, b, c), we denote the quotient lattice L divided by the
congruence generated by {p.}aeA by ^SSf(a,b,c)/(pXeA-

We will use the following notation for a some (quasi) varieties of completely regular
semigroups

& — trivial semigroups,
— left zero semigroups,
—right zero semigroups,
—rectangular bands,
—groups,
—left groups,
—right groups,
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a v b v c

a v b

a v (b A c)

b v c

(a A b) v c

a A (b v c)

a A b

(a v b) A c

b A c

where z = [a A (b v c)] v [(a v b) A C].

DIAGRAM 1. The free distributive lattice &2)£e(a, b, c).

—rectangular groups,
—bands,
—£-unitary cryptogroups.

Lemma 2.1. In any regular semigroup S, the following hold.

(i) (otl = (^r)* = eje9.
(ii) cot = 0g,.

(iii) cok = 9m.

Proof, (i) The first equality is a consequence of Pastijn and Petrich [4, Theorem
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UCG

DIAGRAM 2. The lattice generated by {6j,0,0a, 0a,}.

4.12]. To prove the second equality, we let p = (gr)* and verify first that p is an
if ^-congruence. Let e,feE{S) and let x be an inverse of fe. Then exfeE{S) and
exf = e(exf) gives exf ^re. It follows that exfpe which evidently implies that efpe.
Consequently E(S/p) is a left zero semigroup and thus S/p is a left group. Therefore p is
an if ^-congruence.

Let A be an if ^-congruence on S and let e g r / . Then e=fe and hence ekfe whence
elf since feXf. Thus g r£<l and therefore p£A, proving the minimality of p, whence

(ii) This follows from an obvious fact that a congruence p on S is a group congruence
if and only if trp = «.

(iii) Similarly, a congruence p on S is a band congruence if and only if ker p = S.

Lemma 2.2. Let S be a regular semigroup. Then the sublattice of #(S) generated by
the set {6#9, 9m, 9a9} is a homomorphic image of the lattice depicted in Diagram 2.

Proof. With the vertices as labelled, Diagram 2 clearly represents a partially ordered
set. That the joins in Diagram 2 are correct follows from 9^ v 6$ = 0^ A a for any
quasivarieties si and 38. We now verify the correctness of meets.

1.
A Uea — (

®am w a s proved in Petrich [8, II.l .ll] for arbitrary semigroups.
Both 9#9 and 99 are S£^-congruences and thus so is their meet. Let
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pe^(S) be an if ̂ -congruence on S. Then T=S/pe&& and hence T s L x G for some
Le<£2£ and Ge^. This direct decomposition shows that there exist A,ae^(T) such
that A A <r = s, A is an if ^-congruence and a is a ^-congruence. Lift A and a to
congruences on S, say X and a. Then X is an if ^"-congruence, <J is a ^-congruence and
thus Q<gX £X and 0g,£CT. But then 0^^- A69^XA a = p which proves the minimality of
®<es A 0gr and establishes the desired relation.

Q<eq A #.30 = 0»«»- The proof runs along the same lines as the preceding one using the
fact that every rectangular group is a direct product of a left zero semigroup and a right
group.

2. ^ s A 0 9 9 = 6a ( 9 . Again the proof runs along the same lines as above using the
fact that every rectangular group is a direct product of a left group and a right group.

3. da A 0<s = Qq1<g<s. This was proved in Petrich [7, Theorem 4.1].

4. Og,a A Q<a = Qste<s- Again the proof runs along the same lines as above using the fact
that every rectangular group is a direct product of a rectangular band and a group.

The remaining cases follow by either symmetry or monotonicity. It is clear that the
above lattice is generated by the set {0#9,9m, da^\. Since some of the vertices may
coincide, our lattice is a homomorphic image of the one depicted in Diagram 2.

Example 2.3. Let S be a free object in Wgy on a countably infinite set of generators.
Then for S, all the vertices in Diagram 2 are distinct.

As another example we may take a free completely regular semigroup S on a
countably infinite set of generators. In this case, acccording to Pastijn [3, Theorem 11]
the restriction of the kernel relation JT to the lattice of fully invariant congruences on S
is a congruence. That j f be a congruence is not needed in the next theorem. However,
all the remaining results are under the hypothesis that X be a congruence on the entire
lattice <&(S) but the discussion there pertains only to the lattice generated by the given
congruences, so only the congruence property of Jf on that lattice may be required, as
is the case in the example of a free completely regular semigroup.

3. Lattices generated by the sets (1)

For each of these sets, we obtain the lattice generated by it as a homomorphic image
of a lattice given by a diagram. In four out of six cases, we also provide an example of a
regular semigroup whose corresponding lattice is isomorphic to the one given by the
diagram. In three of these examples we also have that the kernel relation is a
congruence as required by the corresponding result.

Theorem 3.1. Let S be a regular semigroup. Then the sublattice of<£(S) generated by
the set {coth cok, cotr} is a homomorphic image of the lattice depicted in Diagram 3. The
latter lattice is isomorphic to the lattice
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u t ,

oik v u t

where x=(cot, A ootr) v co/c.

DIAGRAM 3. The lattice generated by {mt,, iok, at,}.

t,, cok, ootr)/(cot, A 03k g oitr, a>k A wtr g cot,)

and none of these relations may be omitted.

Proof. We will reduce the discussion of Diagram 3 to Diagram 2. By Lemma 2.1(i),
we have cot/ = 0J?9 and dually u>tr=Qa9. Also cot, v cotr = cot = 69 by Lemma 2.1(ii).
Finally, by Lemma 2.1(iii) we have oik = Qm. This together with Oy — oo identifies five
vertices in Diagram 3 with the corresponding ones in Diagram 2. Further, using Lemma
2.2, we have

ojt, v a>k = 9^cf v 8 9 = Ops,

x = (cot, A cotr) v cok = (BX9 A 0 ^ ) v da = 9m,9 v f l a = 0 a a ,

A wtr=

OJt, A COk A COtr = Q#9 A 0 a A 0,3,3 =
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wk v

k ) A OJt

Tr, A uk A cot

DIAGRAM 4. The lattice generated by {eT,, cok, wt,}.

It follows that Diagram 3 represents the sublattice of #(S) generated by the set
{cut,, cok, cotr} with some possible coincidence of vertices, so it is a homomorphic image
of the lattice depicted in Diagram 3. The last two assertions of the theorem can be
easily deduced from Diagram 1.

Example 2.3 provides an instance of a regular semigroup S for which the lattice
generated by the set {cot,, cok, cotr) is isomorphic to the one depicted in Diagram 3.

Theorem 3.2. Let S be a regular semigroup for which 3#~ is a congruence. Then the
sublattice of #(S) generated by the set {e7|, wk, cotr} is a homomorphic image of the lattice
depicted in Diagram 4. The latter lattice is isomorphic to

&@&(ETh cok, cotr)/{eT, g cok v cotr).

Proof. We will verify first that Diagram 4 depicts the lattice generated by the set
{eT,, cok, cotr} (with some possible coincidence of vertices). To this end, we will
systematically perform the join and the meet of each fixed vertex with all the others,
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omitting trivial ones as well as those following from some other case either by
monotonicity or by symmetry. These we list below and now observe that they follow
directly by showing their OF,-, Jf- and ^-equivalence in a routine manner. In this, the
congruence properties of &[, JT and STT will be used repeatedly.

That Diagram 4, as labelled, represents a partially ordered set is clear for all pairs
except

(eT, v a>tr) A cok g eT, v (cok A a>tr)

and its dual, both of which are easily verified as indicated above. And now for the joins
and meets.

1. (eT, v cok) A (eT, v cotr) = eT, v (cok A cote).

2. wk v (eT, A a>tr) = eT,v cok.

3. [(eT, v cotr) A cok] v cotr-eT, v ootr,

[{eT, v ootr) A cok] v (eT, A cotr) = eT, v (a>k A totr),

[(eT, v cotr) A co/c] A cotr = cok A cotr,

[(e7] v cotr) A cok] A e7; = eT, A ook.

4. (e7] A CU/C) v (eTt A <ytr) =e7],

(fi7] A cot) v a»tr = e7] v cotr.

5. (co/c A cut,.) v (e7] A a;tr) = (e7] v cok) A cotr.

6. e7j v [(sT, v tu/c) A cotr] = eT, v (cofe A cotr).

1. [eT, v (cofc A cotr)] v cotr = eT, v cotr.

Simple inspection will show that, except for trivial cases following by symmetry, we
have covered all possibilities. Therefore Diagram 4 depicts a lattice with the vertices as
labelled. In any particular semigroup S, some of the vertices may coincide which shows
that the lattice generated by {eT,, cok, cotr) is a homomorphic image of the one pictured
in Diagram 4.

That the -lattice depicted in Diagram 4 admits the representation in terms of
generators and relations as indicated in the theorem can be checked easily on the free
distributive lattice pictured in Diagram 1.

We have no example of a regular semigroup S for which Jf is a congruence and the
lattice generated by the set {eT,, cok, cotr} is isomorphic to the lattice depicted in
Diagram 4.

The proofs of the next four theorems follow the general pattern of the proof of
Theorem 3.2. We will thus restrict arguments in these proofs to the bare minimum
omitting the relevant discussions.
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tot

A ut

0) t» A EK A lot

DIAGRAM 5. The lattice generated by {cor,, eK, cor,}.

Theorem 3.3. Let S be a regular semigroup for which $C is a congruence. Then the
sublattice of ^(S) generated by the set {cot,, sK, cotr} is a homomorphic image of the lattice
depicted in Diagram 5. The latter lattice is isomorphic to

,, EK, (ot,)/(eK ^ (ot, v cotr).

Proof. We follow the pattern of the proof of Theorem 3.2. That Diagram 5, with
vertices as labelled, represents a partially ordered set is clear for all pairs of elements
except

COt, A (EK V Q)tr) ^ (CDt, A COtr) V EK

and its dual, both of which are easily verified. Key joins and meets follow.

1. (cot, v EK) A (EK v cotr) = (cot, A cotr) v eK.

2. cot, v (EK A cotr) = cot, v EK.
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3. [tut, A (eK v cotr)] v (eK A cotr)=(cot, A cot,) v eK,

[cot, A (eK v cotr)] v cat, = eK v ajfr,

[cot, A (eK v <wtr)] A eK = cot, A eK,

{cot, A (eK v cotr)] A cotr = cot, A a>tr.

4. (cot, A eK) v cotr = eK v cotr,

(cot, A eK) v [(cot, v eK) A cotr] = (cot, A cotr) v eK.

5. \_(cot, A cotr) v eK] v cotr = eK v cotr,

[(cot, A cotr) v eK] A cotr = (cot, v eK) A cotr.

6. (cot, A cotr) v (eK A cotr) = ((ot, v eK) A cotr.

As in the proof of Theorem 3.2, we conclude that the lattice generated by the set
{cot,, eK, cotr} is a homomorphic image of the one depicted in Diagram 5. The proof of
the last assertion of the theorem follows similarly as in the proof of Theorem 3.2.

An example of a completely simple semigroup S for which the lattice generated by the
set {cot,,eK,(otr} is isomorphic to the one depicted by Diagram 5 is provided by any
Rees matrix semigroup with normalized sandwich matrix P in which at least two but
not all rows (respectively columns) are identical.

Theorem 3.4. Let S be a regular semigroup for which JT is a congruence. Then the
sublattice of^S) generated by the set {eT,, cofc, eTr} is a homomorphic image of the lattice
depicted in Diagram 6. The latter lattice is isomorphic to

&®<£(eT,, cok, eTr)l(eT{ A eTr S cofe).

Proof. We follow the pattern of the proof of Theorem 3.2. That Diagram 6, with
vertices as labelled, represents a partially order set is clear for all pairs of elements
except

eT, v (cok A eTr) ^ (eT, v eTr) v cok

and its dual, both of which are easily verified. Key joins and meets follow.

1. (eT, A cok) v (cok A eTr) = (e7; v eTr) A cok.

2. eT, A (cofc v e7^) = e7} A cok.

3. [eT; v (cofc A eTr)] A (cofc v eTr) = (eT, v eTr) A cofc,

[e7] v (cofc A eTr)] A eTr = cofc v eTr,

[e7J v (cok A Tr)] v eTr = eT, v eTr.

4. (cot, v cofc) A eTr = cofc A eTr,
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A uk) v

eT

uk A eT

DIAGRAM 6. The lattice generated by {eThcok,eT,}.

(cot, v cok) A [(eT; A co/c) v eTr] ={eT, v eTr) A CO/C.

5. [(eT; v eTr) A cok'] A eTr = cok v £Tr,

[(eTJ v eTr) A wfe] v eTr = (eT; A wk) v eTr.

6. (eTJ v eTr) A (cok v eTr) = (eT; A cok) v eTr.

As in the proof of Theorem 3.2, we conclude that the lattice generated by
{eTu cok, eTr} is a homomorphic image of the one depicted in Diagram 6. The proof of
the last assertion of the theorem follows similarly as in the proof of Theorem 3.2.

We now present an example of a primitive regular semigroup for which the lattice
generated by the set {eT,, cok, eTr} is isomorphic to the one depicted in Diagram 6.

Example 3.5. First let B = Jfo(I,e,I;P) where 7 = {1,2, 3}, e stands for the trivial
group and
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P =

~e e 0'

0 0 e

0 0 e

Since the structure group of B is trivial, we write its nonzero elements as (i,j) and
present them as an array:

(1,1)

(2,1)

(3,1)

I

(1,2)

(2,2)

(3,2)

(1,3)

(2,3)

(3,3)

where full lines mean ^"-classes and broken lines if °-classes. Hence ,
e#<3?Vco, if0 A 32° = e, JS?° v <%°/<y.

Next let A be a 2x2 rectangular band with a zero adjoined and let S be the
orthogonal sum of A and B. In the first column below we list all the congruences
occurring in Diagram 6 noting that e7] = j5f°, eTr = ̂ °, wk = P—the least band congru-
ence, and omitting the symmetric ones. In the second column we put their intersections
with A and in the third their intersections with B.

V ,

^°v p

if°A0

£

£

y0

CO

£

CO

(<£° V@°)AP £

(U

For the lattice operations can be performed componentwise. Comparing these among
themselves and with their duals, we see that the congruences in Diagram 6 are all
distinct in this case. By Petrich [9, Theorem 3.6], Jf is a congruence for S.

Theorem 3.6. Let S be a regular semigroup for which Jf" is a congruence. Then the
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eT,, v (eK A wt )
c r

•-'I

M. PETRICH

eK v a

DIAGRAM 7. The lattice generated by {tTlteK,wt,}.

sublatttice of #(S) generated by the set {eT,, eK, o)tr} is a homomorphic image of the
lattice depicted in Diagram 7. The latter lattice is isomorphic to

, eK, wtr)/(eT, A eK g wtr).

Proof. We follow the pattern of the proof of Theorem 3.2. That Diagram 7, with
vertices as labelled, represents a partially ordered set is clear for all pairs of elements
except

(eTt v eK) A cot, <S (eT, A a>tr) v eK
and its dual, both of which are easily verified. Key joins and meets follow.

1. {eT, A cotr) v (eK A a>tr) = (eT, v eK) A cotr.

2. eT, A (eK v a)Ir) = £7] A cotr.

3. [e7] v (eK A cot,.)] v cotr = eT, v cotr,
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[eT, v (eK A art,)] v eK = eT, v eK,

[eT, v (eK A cor,)] A (eK v cot,)={eT, v eK) A cot,,

[eT, v (eK A art,)] A eK = eK A a>rr.

4. (eT, v a)tr) A (eT, v EK) = ET, V (eK A cotr),

(eT, v a)tr) A (eK v cotr) = cotr,

(sT, v cotr) A [(eT, A art,) v eK] =(eT, V eK) A cot,,

(eT, v cotr) A eK = eK A a>tr.

5. [(eT, v eK) A cot,'] A eK = sK A a>fr.

6. cut, A [(eT, A cot,.) v eK] =(e7] v eK) A artr.

7. (e7] v eK) A (eK v cot,) = (ET, A cotr) v eK.

As in the proof of Theorem 3.2, we conclude that the lattice generated by
{ET,, EK, cotr} is a homomorphic image of the one depicted in Diagram 7. The proof of
the last assertion of the theorem follows similarly as in the proof of Theorem 3.2.

We have no example of a regular semigroup S for which Jf is a congruence and the
lattice generated by the set {eT,, eK, cot,} is isomorphic to the lattice depicted in
Diagram 7.

Theorem 3.7. Let S be a regular semigroup for which J f is a congruence. Then the
sublattice of^(S) generated by the set {eT(, eK, ET,} is a homomorphic image of the lattice
depicted in Diagram 8. The latter lattice is a free distributive lattice on the set
{ETheK,eT,}.

Proof. We follow the pattern of the proof of Theorem 3.2. That Diagram 8, with
vertices as labelled, represents a partially ordered set is clear for all pairs of elements
except

(ET, v ET,} A eK g y g (eT, A eTr) v eK,

eT, A (eK v eTr) ^ y, (eT, v eK) A eTr g y

all of which can be easily verified. Key joins and meets follow.

1. (eT, A eK) v [(eT, v eK) A eTJ = y,

(sT, A eK) v (eK A ET,)=(ET, V eTr) A eK,

(eT, A eK) v (eT, A ETr) = ET, A (eK v eTr).

2. [eT, A (eK v £Tr)] v (eK A eTr) = >>,

[eT, A (eK v eTr)] v ET,={ET, A eK) v eTr,
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eK v £T

eT& v (eK A E T r )

where y = {eT, A (eK v eTr)] v [(eT, v eK) A eTr]

DIAGRAM 8. The lattice generated by {eT,, eK, eTr}.

[eT, A (eK v e7;)] A eTr = eT, A eTr,

[eT, A (eK v eTr)] A [(eT, v eTr) A eK] = eT, A eK,

[eT, A (eK v eTr)] A (eK A eTr) = eT, A eK A eTr.

3. eT, as labelled.

4. [eT, v (eK A eTr)] v eTr = BTt v eTr,

[eT, v (eK A eTr)] v eK = eTlv eK,

[eT, v (eK A eTr)J v (eK v eTr) = eT, v eK v eTr)
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[eT, v (eK A eT,)] A eTr = (eT, v eK) A eTr,

[eT, v (eK A eTr)] A eK = eT, v eK,

[eT; v (eK A £Tr)] A (eK v eTr) = y.

5. (e7] v eK) A (eK v eTr) = (eTJ A eTr) v eK,

(e7] v eK) A [{eT, A eK) v eTr] = y.

6. eK v [(eT( v eK) A eTr] =(eT, A eTr) v eK,

eK A [(eT; A eK) v eTr] =(sT, v eTr) A eK.

7. (eT; A eTr) v (eK A eTr) = (eT, v eK) A eTr.

8. [(eT, v eTr) A eK] v (eT; A eTr) = y,

[(eT, v eTr) A eK] v eTr = (eTJ A eK) v eTr,

[(eTJ v eTr) A eK] A (eT, A eTr) = eT, A eK A eTr,

[(eTJ v eTr) A eK] A eTr = eK A eTr.

9. y veK=(eTJ A eTr) v eK,

y v eTr = {eT, A eK) v eTr,

y AeK=(eT, v eTr) A eK,

y A eTr = (eTt v eK) A eTr.

10. [(eT, A eTr) v eK] v (eT, v eTr) = eT, v sK v eTr,

[(eT, A eTr) v eK] v eTr = eK v eTr,

[(eT, A eTr) v eK] A (eT, v eTr) = y,

[(eT, A eTr) v eK] A sTr = (eT, v eK) A eTr.

11. (eT;veT r )A(eKveT r ) = (

As in the proof of Theorem 3.2, we conclude that the lattice generated by
{eT,,eK,eTr} is a homomorphic image of the one depicted in Diagram 8. The proof of
the last assertion of the theorem follows by a direct comparison of Diagrams 8 and 1.

We now present an example of a primitive regular semigroup for which the lattice
generated by the set {eT;, eK, eT }̂ is isomorphic to the one depicted in Diagram 8.

Example 3.8. First let B = J?°{I,G,I;P) where / = {1,2,3,4}, G is a group with
identity e, aeG, a # e and

P =

~e a~l 0 0

0 0 e e

0 0 e a

_e a 0 0_
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We represent partitions of / by grouping the elements which belong to their classes. In
terms of admissible triples we easily obtain

£7] = if0~((12)(34),G)e))

Next let A be a 2 x 2 rectangular band with a zero adjoined and let S be the
orthogonal sum of A and B. In the first column below we list all the congruences
occurring in Diagram 8. In the second column we put their intersections with A and in
the third their intersections with B.

cp§ cp cpO

<^0 A /J2)0 „ -%/> / c /"̂  -^

JSf°vt ' co J S ? 0 V T ~ ( ( 1 2 ) ( 3 4 ) , G , ( 1 4 ) ( 2 ) ( 3 ) )

T v 0° co T v ̂ ° ~ ((12)(3)(4), G, (14)(23))

i f0 AT if i f0 A T~((12)(3)(4),e,£)

i f °VTV^° co i f0 VTV^°~((12)(34),G,(14)(23))

(i?° A ̂ °) v T co .a

(if0 V^°) AT ^ (if°V^°)AT~(

if°v(TA^°) S> JS?°V(TA«°)~((12)(34),G,(14)(2)(3))

( i f °AT)v^° 9 (JS?°AT)V*°~((12)(3)(4),G,(14)(23))

i f ° A (T v ̂ °) if i

(if0 v T) A 3t° M (J

v ^ y

For the lattice operations can be performed componentwise. Comparing these among
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themselves and with their duals, we see that the congruences in Diagram 8 are all
distinct in this case. By Petrich [9, Theorem 3.6], Jf is a congruence for S.

4. The lattice generated by {eK, cok, sT, cot}

As in the preceding section, we represent this lattice as a homomorphic image of a
lattice depicted by a diagram.

Lemma 4.1. Let S be a regular semigroup and let X,pe%>(S).

(i) t r A s t r p o t r ( A A p) = trA<=>tr(A v p) = trp.

(ii) kerAskerpoker(A A p) = kerp.

(iii) / / Jf is a congruence for S, then ke rAskerpoker (A v p) = kerp.

Proof. Straightforward using Pastijin and Petrich [4, Lemma 2.5(i) and Corollary
4.9].

Theorem 4.2. Let S be a regular semigroup for which X is a congruence. Then the
sublattice of #(S) generated by the set {eK, cok, ET, cot} is a homomorphic image of the
lattice depicted in Diagram 9. The latter lattice is isomorphic to

3F®<£(EK, cok, eT, <M}/(EK g cot, eT ^ cok}

and none of these relations may be omitted.

Proof. Since tr e E tr (eK A cok) £ tr EK and kere£ker(cot A eT)EkereT, Lemma 4.1
gives that the joins and meets in the interval [e, eK v eT] are as indicated in Diagram 9
for the left side down to right side up lines contain ^"-related congruences and the right
side down to left side up lines contain jT-related congruences. The same type of
argument goes through for the interval [cok A cot, oi\. In view of symmetry of the
diagram, it suffices to verify the following cases.

1. (eK v eT) v [(col v eT) A co/c]Jf eT v (cot v eT) = cot v eT,

(cot v eT) A (eK v cok)Jf (cot v eT) A (e v co) = cot v eT,

(eK v eT) v [(cot v eT) A cok]^"eK v (co A cok) = eK v cok,

(cot v eT) A (eK v cok)^"(co v e) A (eK v cok) = sK v cok,

and therefore

(eK v eT) v [(cot v eT) A cok] = (cot v ET) A (eK v cok). (2)

2. (eK v eT) A [(cot v eT) A cok]JfeT A (cot v eT) = eT,

(eK A cok) v eTX(e A co) v eT=eT,
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wt

ujt A (eK

EK V ( j j t A cT)

eT

EK A A eT

DIAGRAM 9. The lattice generated by {EK, cok, ET, <ot).

(eK v eT) A [(cot v eT) A cok]$~eK A [(CO V e) A (ok~]-eK A cok,

(eK A cofc) v eT$~eK A CO/C

and therefore

(eK v eT) A [(cot v eT) A cok'] -(eK A cok) v eT

3. The equalities

(cot A cofe) A [(eK A cok) v eT] = (eK A CO/C) V (cut A eT),

(3)

(4)
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(cot A co/c) v l(eK A co/c) v eT\=(cot v eT) A cok (5)

can be established similarly as equalities (2) and (3) above. In fact, (4) can be obtained
from (2) and (5) from (3) by the following transformation

CO*-*E, t*-*K, k<-*T, V « - » A . (6)

4. (eK v eT) v (cot A co/c)JfeT v cot,

(cot v eT) A (eK v cok)Jfcot v et, as computed above

(EK V eT) V (cot A cok)3~£K v cofc,

(cot v eT) A (eK v cok)&~sK v cok, as computed above

and therefore

(EK v eT) v (cot A co/c) = (cot v eT) A (eK v co/c).

5. (EK v eT) A (cot A co/cpfeT A cot,

(EK A cok) v (cot A ET)JT(E A co) v (cot v eT) — cot v eT,

(e/C v eT) A (cot A cok)F£K A cok,

(EK A CO/C) v (cot A ET)9~EK A CO/C v (co A e) = eK A CO/C,

and therefore

v eT) A (cot A cok) = (£K A CO/C) V (cot A eT).

We have proved that Diagram 9 depicts the lattice generated by the set {eK,cofe,eT,cot}
with a possible coincidence of vertices. But this means that our lattice is a homo-
morphic image of the one depicted in Diagram 9.

We now prove the next assertion of the theorem. To facilitate our notation, we let

a = sK, b = cot, C = ET, d = cok.

Our task is to construct the free distributive lattice L on the generators a, b, c, d
subject to the relations a ̂  b and c £ d. We consider L as a subdirect product of copies
of the nontrivial subdirectly irreducible distributive lattice Y = {0,1}. Since L is
generated by four elements, all homomorphisms of L into Y may be represented by at
most 24 quadruples of 0's and l's. In the obvious notation, for such a string
(xl,x2,x3,xA) to qualify as an endomorphism, it is necessary and sufficient that

Xj = 1=>X2= 1, X3 = 1=>X 4 =1,

x2 = 0=>x,=0, x4

By a simple selection, and omitting the trivial strings (0000) and (1111), which give
no information, we arrive at the following list.
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a b e d

0 0 0 1

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 1

1 1 0 0

1 1 0 1

We now label the four columns by a, b, c and d and construct the lattice L generated
by these elements with coordinatewise operations within the lattice y={0,1}. Since L is
a distributive lattice, its elements can be written as joins of meets of generators. We thus
first make a complete list of all meets of generators thereby obtaining

a,b,c,d; a A d, b A C, b A d (7)

and a A C = (0 0 0 0 0 0 0), which is the zero of L and need not be taken into further
consideration. All the joins of the first part of (7) are

awe, aw d, bvc (8)

and fe v d = (l 1 1 1 1 1 1 ) , which is the identity of L and may be henceforth omitted. The
only join of the second part of (7) is

(a A d) v (b A c). (9)

For the joins of elements in the first and second parts of (7), we get

a v (b A c), aw(b/\d), c v (a A d), cw{bf\d), awcw{br\d), (10)

where we have omitted the terms which have occurred earlier. Computing these meets
and joins for the elements in (7)-{10), we obtain the lattice in Diagram 10.

Relabelling several vertices and going back to the original notation eK, cot, eT
and cok, we see that Diagrams 10 and 9 essentially coincide. This establishes the
isomorphism assertion of the theorem.

We are indebted to Jifi Sichler for an outline of this part of the proof.
In order to prove the last assertion of the theorem, it suffices to construct quadruples

of 0's and l's which satisfy exactly one of the given relations for both choices. Indeed,

a
c

<b
Sd

a

1
0

b

0
0

c

0
1

d

0
0
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b v d = (1111111)

201

b v c = C0111111)

b = (0011111)

a v (b A d) = (0001111)

A c ) = (0000111)

a = (0000011)

a v d = (1101111)

a A d = (0000001)

a v c v (b Ad)
(0101111)

(a A d) v (b A c)
= (0000101)

d = (1101101)

c v (b A d) = (0101101)

c v (a A d) = (0100101)

c = (0100100)

b A c = (0000100)

a A c = (0000000)

DIAGRAM 10

We have no example of a regular semigroup for which X is a congruence and the
lattice generated by {eK, u>k, eT, cot} is isomorphic to the lattice depicted in Diagram 9.

5. Remarks

From Section 3 and by symmetry, we have the following relations
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cott A cok ^ (otr, cok A cotr ^ cat,,

sT,^a>kv a>tr, EK ̂  cot, v cotr, eTr ̂  cot, v co/c,

eTi A eK ^cotr, eTt AsTr •£cok, sK A £Tr^cott.

By a change of notation, we are dealing with a lattice generated by the set
{a., Pi\i= 1,2, 3} where the above relations become

^A/^03, p2Ap3SPu
for{y,*} = {l,2,3}.

«,- ^ 0; v Pk, a, A a, g 0k

Alternatively, we may introduce new relations by setting

For any p e ^(S) and 0> e {Jfh &', X~r), we may write

pP for the greatest congruence ^"-related to p,

pp for the least congruence ^"-related to p.

Some of the above relations then become

sT^wk,, EK^cot, eTr^cokh

EKt ̂  cotr, ET g co/c, e/Cr ̂  cot,.

The second relation in each of the preceding two lines also appears in Diagram 9.
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