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1. Introduction

One of the still unsolved problems posed by Fuchs in his well-known book
"Abelian Groups" [2] is Problem 45: characterize the rings R for which
R = S(R+). I present here a partial solution.

In the first part of the paper, several properties of R which are simply due to
the existence of an isomorphism onto $(R+) are deduced, and I am able to
characterize R in case it is torsion, completely decomposable, not reduced,
finitely generated, or mixed with no elements of infinite p-height for all relevant
primes p.

In the second part, the properties of the isomorphism of R onto S(R+) are
considered, and two essentially different approaches are required, depending on
whether R is, or is not, commutative. If it is, then R is a relatively uncomplicated
ring, and one can hope for a complete characterization, though this paper does
not give one. If not, then R must be a complicated ring indeed; for example, the
group of units of R contains a copy of every finite group. The best one can hope
for in this case is either to exhibit such an R, or to prove its non-existence; once
again, I am unable in this paper to do either.

I use the standard notation of abelian group theory, as found for example
in Fuchs [2]. Sometimes group theoretic properties are assigned to rings; this
means that the additive group of the ring has the property. For example, a ring R
is called torsion-free if R+ is torsion-free. Some notation which may not be
familiar:

If xeR, then h(x){p) means the p-height of x in R+;
t(R) means the torsion subgroup of R+;
Rp means the p-primary component of R + .

*Parts of this paper appear in the author's Ph.D. Thesis, University of Washington, 1968,
which was written under the direction of Professor R. Beaumont.
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If S is a set of primes, S-pure means p-pure for all peS, and
S-divisible means p-divisible for all peS.
© and ©* mean respectively direct sum and direct product, either group or

ring theoretic.
Z, Q, Zp, C(n) mean the group or ring (depending on context) of integers,

rationals, p-adic integers, and integers modulo n.
c is the cardinality of the continuum.

2. General remarks on rings R s & (R+)

Using some well-known invariants of abelian groups, we first characterize
the divisible and torsion subgroups of such rings.

LEMMA 1. Let R ^ <f(R+), and suppose R+ = A® D, where A is reduced
and D is divisible. Then either D = 0, or D = Q and A is torsion.

PROOF. The rank m of the maximal torsion-free direct summand of D is
an invariant of R. Now End(R+), and hence R+ has a direct summand isomorphic
to End (© m 0, which is torsion free divisible, and so contained in D. Hence
m = 0 or 1.

If D contains a direct summand isomorphic to C{px), then End(R+) has a
direct summand isomorphic to End(C(p°°)) s Zp, so R+ has a direct summand
isomorphic to Hom(Zp,C(pcc)). Now Zp has a factor group isomorphic to ®CQ,
so Hom(Zp,C(p°°)) has a subgroup isomorphic to Horn (©cg, CO?00)), which is
torsion-free divisible of infinite rank, contradicting the first paragraph. Hence
D^Oorg.

Now suppose D ̂  Q, and let r be the torsion free rank of R + . Then End(R+)
has a direct summand isomorphic to Horn (R+,Q) ~ @*Q, so r = 1, and hence
A is torsion.

LEMMA 2. / / R^S(R+), then for each prime p, Rps C(pkp) for some
0 g kp < oo.

PROOF. If Rp^0, it is reduced by Lemma 1. The number rn of cyclic summands
of Rp of order p" is an invariant of R for all positive integers n; let k be minimal
such that rk # 0. Let B = ®j^k

Bj be a basic subgroup of Rp, where Bj^
(Brj C(pJ). Now Bk is a bounded pure subgroup, and hence a direct summand of
R+, so End(R+) has a direct summand isomorphic to Hom(Bk,R

+). But this is a
direct sum of cyclic groups of order ^ pk, so its rank r ^ rk. On the other hand,
Horn(Bk,R

+) has a subgroup isomorphic to Hom(Bk,B) s ©*k ©^(p*), where
u = Z/an r,- This subgroup has rank 2r"u ^ r ^ rt if rk is infinite, or rku ^ r ^ rk

if rk is finite. In either case, 0 # r f c ^ u ^ l , so rk = u = 1. Hence r,- = 0 for all
j > k and Rp = B = Bk^ C(pk).
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LEMMA 3. If R = <$(R+), and Rp # 0, then Rp has a unique complement
R'p = {xeR | h(x)(p) = oo}, which is an ideal in R; furthermore S{R'p)^R'p.

PROOF. Let H be any group such that R+ = Rp®H. UpH # H, then End (R+)
has a subgroup isomorphic to Horn (Rp © H/pH, Rp). This is a p-group of rank > 1,
contradicting Lemma 2. Hence pH = H, so H <= R'p. Conversely, let x e Rp, and
write x = x1 + x2, where xx eRp, x2 GH. Since h(x)(p) = oo, xx = 0, so xeH.

R'p is clearly an ideal, and Hom(Rp,R'p) = Horn (R'p,Rp) = 0, so <g(R+) =
£{Rp) © S{R'P) ^Rp® R'p, so R'p s <f (#;).

LEMMA 4. Let K ^ <?(.R+)> /e/ S be the set of relevant primes for R, and let
U = @*eSRp. Let A = {xeR\h(x)(p)= oo for all peS}.Then R is an ex-
tension of A by a ring T such that t(R) <= T<= U, and T is an S-pure subring
of U containing the identity.

PROOF. For each relevant prime p, we have by Lemma 3 a unique decomposi-
tion R+ = RP®R'P, where Rp = {xeR|h(x)(p) = oo}. Thus each xeR can be
uniquely expressed as x = xp + x'p, where xpeRp, xpeR'p. Hence the mapping
e: R -> U given by e(x)(p) = xp is a well denned ring homomorphism with kernel
A. Let T be the image of e; clearly e(l) is the identity of U, and e \,iR) is the identity
map, so t(R) cT c [ / .

If T is not p-pure in U for some peS, write T = RP®T'; then T is not
p-pure in ®q+pRq, so pT" ^ T". Hence End(i?+) has a subgroup isomorphic
to Hom(i?p© T']pT',Rp), which is a ^-group of rank > 1, a contradiction.

LEMMA 5. Let R s <f(.R+) with R+ torsion-free and completely decompos-
able. Then R is a direct sum of finitely many rank 1 rings of incomparable types.

PROOF. Suppose R+ = ®ieIAt for some index set /, where each At is a rank 1
torsion-free group. Then End(i?+) contains as a direct summand ©fej End(y4j).
Since End(i?+) is completely decomposable and of rank | / | , / is finite, and
End(R+) = ©,6 / End(^j). Hence for each i # j , HomO^,^-) = 0, so the At have
incomparable types. Since the type of End(y4;) is less than the type of Ah

Ai = End(At) for all i, so At is a rank 1 ring. Finally since Wom{Ai,AJ) = 0 if
i #7, each A, is an ideal in R.

The characterizations promised in the Introduction follow from these
lemmas:

THEOREM 1. If R is torsion, then R = ${R+) if and only if R is cyclic.

PROOF. It is well known that C(n) ^ S(C(n)) for all positive integers n.
Conversely, if R is torsion then by Lemma 2,

peS p s s
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for some set S of primes. Hence S is finite, so R is cyclic.

THEOREM 2. If R+ is completely decomposable, then R = $(R+) if and only
if R = C(n) © A, where n is a non-negative integer and A is a direct sum of rank
1 rings of incomparable type, and A is divisible by each prime which divides n.

PROOF. A modest calculation shows that $(C(n) © A) s C(n) © A.
Conversely, let R+ = t(R)®A, where A is torsion-free and completely

decomposable. Then Hom(t(R),A) = 0, and by Lemma 4, Hom(A,t(R)) = 0, so
R is the ring direct sum of its ideals t(R) and A. Thus

so t(R) s J?(t(R)), A ^ S(A). The result now follows from Theorem 1, Lemma 5,
and Lemma 4.

THEOREM 3. IfR is not reduced, then R s £(R+) if and only ifR = £> © C(«)
for some non-negative integer n.

PROOF. Certainly S(Q© C(n)) ^Q® C(n).

Conversely, by Lemma l , R s t(R) © Q and by Lemma 2,

t(R)^ © C{pk")
peS

for some set S of primes. Then End(i?+) contains a direct summand
®*es

c(pkp)@Q; by Lemma 1 again, ®*eSC(pkp) is torsion, so S is finite. Hence
t(R) £ C(n) for some n.

THEOREM 4. / / i?+ is finitely generated, then R £ <fCR+) ;/ and onZj> j /
i? = Z, or i? ̂  C(n) for some non-negative integer n.

PROOF. By Theorem 2, R is the direct sum of a cyclic ring and finitely many
copies of the integers. But the torsion-free components have incomparable
types, so there is at most one. Furthermore, Z is not divisible by any prime, so if
R has a non-zero torsion subgroup, then R is torsion.

THEOREM 5. If R is a mixed ring, S the set of relevant primes, and R has
no element of infinite p-height for all psS, then R s £{R+) if and only if:

(1) Rp S C(pkp), 0<kp<ooforallpeS
(2) / / U is the ring ©*eSRP>tnen R JS a subring with identity of U.
(3) R is S-pure in U.

PROOF. Suppose R is a subring of U satisfying (1), (2) and (3). The exact
sequence of rings

0 -> t(R) - »R -»Rlt(R) -* 0 induces an exact sequence of groups
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0 -> Hom(R+/t(R),R+) -+ End(i?+) -* Hom(t(R),R+).

Since R is S-pure in U, Rjt(R) is S-pure in C//t(i?), and hence S-divisible. Since
R has no elements of infinite p-height for all peS, Horn (Rlt(R),R) = 0. Hence
End(K+) is embedded in Hom(t(R),R) by the mapping /H>/ | ( ( R ) . But any
fe Hom(t(R),R) sends t(R) into *(/?), and this mapping is a ring homomorphism.
Hence $(R+) is embedded as a subring of ${t{R)). Now it is well know that
<$(t(R)) is the ring of all multiplications in U, so if fe£(R+), then / is multipli-
cation in R by some xe U; in particular, x = / ( l ) eR . Thus the mapping XH
multiplication by x is a ring homomorphism of R onto <?(.R+).The kernel is zero,
since lei? .

Conversely, we have by Lemma 4 that R+ s T , an S-pure subring of
U = ®*eSRp containing the identity, and Rp s C(pkp) by Lemma 2.

REMARKS. If S is any infinite set of primes, and kp a positive integer for each
pe S, there are c non-isomorphic subrings of

®* C(pkp)l © C(pkr),
peS peS

each of which is S-divisible. Hence there are c non-isomorphic rings R with fixed
torsion subring © P E S C ( / P ) which satisfy the hypotheses of Theorem 4.

It is well known that if R is a p-pure subring of Zp, or an S-pure subring of
© * E S Z P , where S is any collection of primes, then R s $(R+).

Other example of rings R s S(R+) can be constructed by noting that if / is
any index set, and Rt, iel, a collection of rings such that Rt s <£{Rt) and such
that Hom(@%iRJ,Ri) = 0, then

©* R,2l*(®* R*).

Finally, we have a slight improvement on Lemma 4.

THEOREM 6. Let R be a mixed ring with relevant prime set S, and let

A = {x e R | h(x)(p) = oo for all p e S}.

/ / R £ <?(R+), ffcen #„ = C(p*")> 0 < kp < ao for all peS, and R is an extension
of A by a ring T such that T^ £(T+) and

t(R)a:Ta:®* Rp.
peS

The extension splits if A^ $(A+).

PROOF. By Lemma 4, it suffices to prove that T ^ $(T+) and the remark about
splitting. The first statement follows from Theorem 5. If A £ &{A+), then A has
an identity 1A; multiplication by 1A is a retraction of R onto A.
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3. The nature of the isomorphism: the commutative case

Let R be any ring with identity 1. Then the mapping/i-»-/(l)L is a retraction
of ${R+) onto RL, the ring of left multiplications in R. This mapping is a group
homomorphism with kernel K = {/:/(l) = 0}. Hence ${R+) is a group theoretic
direct sum of the ring RL and the left ideal K, so we have the following:

LEMMA 6. For a ring R with identity 1, the following statements are
equivalent:

(1) R is commutative and R ^ S(R+).

(2) The mapping xt-> xL, left multiplication by x, is an isomorphism of R
onto S{R+), with inverse/(->/{1).

(3) Every endomorphism of R+ is a left multiplication in R.

PROOF. (l)-» (2) By the preceding remarks, RL, which is isomorphic to R, is
a direct summand of End(.R+). But a group with commutative endomorphism
ring cannot have a proper isomorphic direct summand, so RL = $(R+), and the
ring isomorphism x i-> xL maps R onto ${R+).

(2)->(3) is trivial.
(3)-» (1) Clearly <S(R+) = RL^R. In particular, the right multiplications in

R are left multiplications; let xR be a right multiplication, and suppose xR = yL.
Then x = xR(l) = yL(l) — y> s o XR = XL'> hence R is commutative.

DEFiNinoN.Let us call a ring R which satisfies the conditions of Lemma 6 an
E-ring, and the additive group of an JS-ring an E-group. This definition of £-group
coincides with that in [3], where an .E-group was denned by condition (3). In
Corollary 4 below, we see that every ring with identity over an .E-group is an
£-ring.

COROLLARY 1. Every endomorphic image of an E-group R+ is the additive
group of a principal ideal of R.

COROLLARY 2. A group direct summand of an E-ring R is a ring direct
summand, and hence R+ cannot be decomposed as an infinite direct sum.

PROOF. Let p e S(R+) be the projection of R+ onto the direct summand eR+.
Then e = p(l), so

e2 = P(l)2 = e • p(l) = p(p(l)) = p(l) = e.

Hence e is an idempotent, so eR is a ring direct summand. Since R has identity 1,
R cannot be an infinite direct sum of ideals.

COROLLARY 3. / / R is any ring with identity, then £{R+) is commutative
if and only if R is an E-ring.
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PROOF. If £{R+) is commutative, let/e<?(R+). Then for all xeR,

= xL-f(l) = x

s o / = /(l)L. Condition (3) of Lemma 6 is satisfied.
The converse follows from the definition of £-ring.

COROLLARY 4. If R is an E-ring, and S any ring with identity over R+,
then R^S.

PROOF. Since S(R+) = £(S+) is commutative, S is an £-ring by Corollary 3.
Hence S s i(S+) £ R.

LEMMA 7. Lef R be a ring with identity 1, anrf let F be an isomorphism of
R onto £(R+). Then for every *eMult(R+), there exists a unique asR such
that x*y = F(F(a)(x))(y) for all x,yeR.

PROOF. There is a chain of well-known group isomorphisms

R+ £• End (R+)F-^ Horn (R+, End (R+J) -> Mult (R+),

where for all a e R +, a t-> F(a) t+fa *-* *„, where /a(x) (3;) = F(F(a) (x)) (>>) = x*ay.

NOTE. The left multiplications in R correspond to elements of Mult(R+) of
the form x*y = F(ax)(y) for some a eR, and in particular, the identity map on
R+ corresponds to the multiplication x*1y = F(x)(y). Clearly 1 is a left identity
for *1; and we have the following criteria for commutativity of R:

LEMMA 8. Let R be a ring with identity 1, let F be an isomorphism of R
onto S(R+); let at-> *a be the mapping defined in Lemma 7. Then the following
conditions are equivalent:

(1) R is an E-ring
(2) Every multiplication *a is associative
(3) Every multiplication *a is commutative
(4) *! is associative
(5) *! is commutative
(6) 1 is a right identity for *t.

PROOF. (I)H-(2) and (3).
Since R is an £-ring, we may replace F, if necessary, by the isomorphism

x -> xL. Then every multiplication in R+ has the form x *a y = axy, so is necessarily
associative and commutative.

(2) -»• (4) and (3) -> (5) are trivial
(4)-* (6) For ailx,y,zeR,

F(F(x)(y))(z) = (Xl*y) *x z = x*t (y *t z) = F(x) (F(y)(z)) = F(xy)(z),
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so F(F(x)(y) = F(xy). Hence x*xy = F(x)(y) = xy for all x, yeR and 1 is a

right identity.

(5)->(6) F o r a l l x e K , x * x l = 1 *tx = F ( l ) (x ) = x.

(6) -> (1) If x = x *! 1 = F(x) (1) for all x, then

so by the Remarks preceding Lemma 6, <f(.R+) = RL and .R is an £-ring.

COROLLARY 5. If R is an E-ring, there is a 1-1 correspondence between
elements a of R, and rings Ra over R + . This correspondence maps 1 into R, and
units u of R into rings Ru with identity u~l such that Ru s R.

PROOF. By Lemma 8, every element *a of Mult(i?+) is associative, and so
defines a ring Ra over R + , whose multiplication is given by x* y = axy; since
every ring R' over R+ gives rise to some multiplication in R+, this correspondence
is 1-1. The original ring R = Ru and clearly u" 1 is an identity for Ru. Of course
all rings with identity over R+ are isomorphic by Corollary 4.

LEMMA 9. Any endomorphic image of an E-group is an E-group; every
endomorphism of an endomorphic image of an E-group R+ can be extended to
an endomorphism of R +.

PROOF. If 7? is an .E-ring, any endomorphic image of R+ has the form aR+

f jr some a e R by Corollary 1. Define a multiplication * on aR+ by ax * ay = axy.
Then * induces a commutative ring S over aR+ with identity a. Let feS'{aR+);
then f-aLeS{R+), so for all axeaR,

f(ax) = (/• flJ(l) • x =/(a) • x = ayx,

where ay =f{a)eaR + . Hence/(ax) = ay* ax, so / i s multiplication by aj in S.
By Lemma 6, S is an £-ring, and aR+ an .E-group.

Let feS(aR+), say /(a) = ay. Then yLed?(R+) is an extension of/, for if
ax e aR,

/(ax) = ay * ax = axy.

Unfortunately, no such nice property seems to be true in general for rings
R ^ S{R+). We do know that £{R+) = RL® K, whereK = {/|/(1) = 0}. If R is
not commutative, then by Lemma 5, K ^ 0, so R+ is isomorphic to a proper
direct summand, the inverse image of RL. Clearly, none of the rings described in
Theorem 1-5 have this property, so they are all £-rings. In addition, we have
the following partial result, corresponding to Theorem 6.

THEOREM 7. Let R be a mixed ring with identity with a set S of relevant
primes. Let
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A = {x e R | h(x)(p) = oo for all p eS},

and let U = ®*sSRp. Then R is an E-ring if and only if:
(1) Rp s (Cpkp), 0<kp<aoforallpeS
(2) R is an extension of A by an E-ring T such that t(R) c Tc U
(3) IffeS{R+), then the restriction of f'-/(1)L to A is the zero map.
(4) IffeS(R+), then the unique homomorphism f: T/t(R)-yA induced by

f — f(l)L is the zero map.

PROOF. Suppose R is an £-ring. Condition (1) follows from Lemma 2. By
Theorem 6, R is an extension of A by a ring T^ S(T+) such that t(R) c Tcz U.
Since T is commutative, it is an £-ring. Conditions (3) and (4) are trivial, since

Now assume that R satisfies conditions (l)-(4), let fe$(R+), and consider
the endomorphism/' = / — /(1)L. Since f'\Rpe<g(Rp), it is multiplication in Rp

by/'(lp)> where lp, the p-component of 1, is the identity of Rp. Hence/'(lp) = 0
for all peS, so / ' |((R) = 0. By condition (3), / ' \A = 0, so A ® t(R) is contained
in the kernel of/'; thus / ' induces a unique homorphism/on

whose image must be a subgroup of A, since Tjt(R) is S-divisible. Hence by condi-
tion (4) / = 0 so / =/( l )L . Thus R is an £-ring.

REMARK. Conditions (3) and (4) are of little use in either constructing fi-
rings, or deciding whether a ring is an .E-ring. It might be conjectured that they
could be replaced by stronger conditions, for example:

(3') A is an E-ring
(4') Hom(T,A) = 0.

However, (3') is true if (by Theorem 6) and only if (since <?(i?+) is commutative)
the extension of Theorem 7 splits, so (3') implies (4'). While no non-splitting
extension has been constructed, there seems no reason to believe they do not
exist. Condition (4') seems more reasonable, and I conjecture that it is a necessary
condition for R to be an .E-ring.

4. The nature of the isomorphism: the non-commutative case

Let R ^ <f(.R+), with R not commutative. Then we know from the remarks
preceding Lemma 6 that:

g(R+) = RL@K, where K = {/e£(R)|/(1) = 0} ¥= 0.

Hence End(i?+), and consequently R+, is an ID-group, that is, a group which is
isomorphic to a proper direct summand. (It is not difficult to find elements of K:
for example, if x is not in the centre of R, then xL — xR e K). Now if R+ is an
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/D-group, there exist monomorphisms <f>e${R+) such that R+ = (j>(R+)® H,
where H # 0. Beaumont and Pierce [1] have proved the following structure
theorem for 7Z)-groups R+:

Let M = n n «» <£"(K+), let P = ©*<„,//„, where //„ = <j>%H) s ff, and let
S = ®n<<oHn. Then i?+ is an extension of M by a group T such that S <= T a P,
and (f> | M is an automorphism of M.

In our case, let F:R-+${R+) be the isomorphism, and define <p by ^>(x)
= F-'Ocz.) for x e R + . Then F(0(R+)) = Rj. so F(ff) = K and by Beaumonts and
Pierce's result, R+ is an extension of r\n<a><p"(R+) by a subgroup of ©JoK. If i?
contains a fully invariant £-ring A, then clearly F can be modified so that F(x) = xL

for x e ^ , and in this case, <f>\A is the identity, so A+ <=f)n<ol(j)"(R+). In general
however, little else is known.

LEMMA 10. Let R s ^ ( R f ) , R not commutative. Then the group U of
units of R contains a copy of every finite group.

PROOF. It will suffice to show that U contains a copy of S(n), the symmetric
group on n symbols for every positive integer n. Now

R+ =

where </>'(H) = H, so each xeR+ can be expressed as

x = {xu4>{x2),---,<}>n-i(xn),y),

with x, e H for i = 1,2, • • • n. For a e S(n), define /„ e S(R+) by

is clearly an automorphism of R+, so the set {/„: <r e S(n)} is a group of units of
+) isomorphic to S(n).
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