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1. Introduction

One of the still unsolved problems posed by Fuchs in his well-known book
“Abelian Groups’ [2] is Problem 45: characterize the rings R for which
R = &(R"). T present here a partial solution.

In the first part of the paper, several properties of R which are simply due to
the existence of an isomorphism onto &(R*) are deduced, and I am able to
characterize R in case it is torsion, completely decomposable, not reduced,
finitely generated, or mixed with no elements of infinite p-height for all relevant
primes p.

In the second part, the properties of the isomorphism of R onto &(R™) are
considered, and two essentially different approaches are required, depending on
whether R is, or is not, commutative. If it is, then R is a relatively uncomplicated
ring, and one can hope for a complete characterization, though this paper does
not give one. If not, then R must be a complicated ring indeed; for example, the
group of units of R contains a copy of every finite group. The best one can hope
for in this case is either to exhibit such an R, or to prove its non-existence; once
again, I am unable in this paper to do either.

I use the standard notation of abelian group theory, as found for example
in Fuchs [2]. Sometimes group theoretic properties are assigned to rings; this
means that the additive group of the ring has the property. For example, a ring R
is called torsion-free if R* is torsion-free. Some notation which may not be
familiar:

If xR, then h(x)(p) means the p-height of x in R*;

#(R) means the torsion subgroup of R™;

R, means the p-primary component of R*.

*Parts of this paper appear in the author’s Ph.D. Thesis, University of Washington, 1968,
which was written under the direction of Professor R. Beaumont.
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If S is a set of primes, S-pure means p-pure for all pe S, and

S-divisible means p-divisible for all pe S.

® and ®* mean respectively direct sum and direct product, either group or
ring theoretic.

Z, Q, Z,, C(n) mean the group or ring (depending on context) of integers,
rationals, p-adic integers, and integers modulo n.

c is the cardinality of the continuum.

2. General remarks on rings R >~ & (RF)

Using some well-known invariants of abelian groups, we first characterize
the divisible and torsion subgroups of such rings.

LemMmAa 1. Let R = &(R™), and suppose Rt = A® D, where A is reduced
and D is divisible. Then either D =0, or D =~ Q and A is torsion.

Proor. The rank m of the maximal torsion-free direct summand of D is
an invariant of R. Now End (R*), and hence R* has a direct summand isomorphic
to End (®,,Q), which is torsion free divisible, and so contained in D. Hence
m=0 or 1.

If D contains a direct summand isomorphic to C(p*), then End (R*) has a
direct summand isomorphic to End(C(p®)) = Z,, so R has a direct summand
isomorphic to Hom(Z,, C(p®)). Now Z, has a factor group isomorphic to @,Q,
so Hom(Z,,C(p™)) has a subgroup isomorphic to Hom(®_.Q, C(p®)), which is
torsion-free divisible of infinite rank, contradicting the first paragraph. Hence
D=0 or Q.

Now suppose D = Q, and let r be the torsion free rank of R*. Then End (R*)
has a direct summand isomorphic to Hom (R*,Q) =~ @*Q, so r =1, and hence
A is torsion.

LemMA 2. If R~ &(R"), then for each prime p, R, = C(p*?) for some
0k, <.

Proor. If R,#0, it is reduced by Lemma 1. The number r, of cyclic summands
of R, of order p"is an invariant of R for all positive integers n; let k be minimal
such tha}t r#0. Let B= @®;»,B; be a basic subgroup of R,, where B~
®,, C(p’). Now B, is a bounded pure subgroup, and hence a direct summand of
R*, so End(R*) has a direct summand isomorphic to Hom (B,,R*). But this is a
direct sum of cyclic groups of order < p* so its rank r £ r,. On the other hand,
Hom (B,,R™) has a subgroup isomorphic to Hom(B,,B) =~ &* @, C(p"), where
u = X5, r;. This subgroup has rank 2™u < r < r, if r, is infinite, or ru < r < r,
if r, is finite. In either case, 0 #r, <u <1, so r, =u = 1. Hence r; =0 for all
j>k and R, = B = B, ~ C(p").
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LemMA 3. If R= &(R"), and R, # 0, then R, has a unique complement
R, = {xeR]h(x)(p) = oo}, which is an ideal in R; furthermore &(R})= R,.

PrOOF. Let H be any group such that R* = R, @ H.If pH # H,then End(R")
has a subgroup isomorphic to Hom(R, ® H/pH,R,). Thisisa p-group of rank > 1,
contradicting Lemma 2. Hence pH = H, so H < R,. Conversely, let xeR,, and
write x = x; + X,, where x; €R,, x, e H. Since h(x)(p) = o0, x; =0, so xe H.

R}, is clearly an ideal, and Hom(R,,R;) = Hom (R},R,) =0, so &(R*)=
&(R,) ® E(R,) = R, ®R,, so R, = &(R)).

LemMMA 4. Let R~ &(R™), let S be the set of relevant primes for R, and let
U= @:est- Let A={x eRIh(x)(p): oo for all peS}. Then R is an ex-
tension of A by a ring T such that {R) = T< U, and T is an S-pure subring
of U containing the identity.

Proor. For each relevant prime p, we have by Lemma 3 a unique decomposi-
tion R* = R, ® R, where R, = {x eRIh(x)(p) = o00}. Thus each xe R can be
uniquely expressed as x = x, + x,, where x,eR,, x, € R,. Hence the mapping
e: R— U given by e(x)(p) = x, is a well defined ring homomorphism with kernel
A. Let T be the image of e; clearly e(1) is the identity of U, and e I,(R) is the identity
map, so {R)ce T < U.

If T is not p-pure in U for some pe S, write T =R, @ T'; then T’ is not
p-pure in @,.,R,, so pT’ # T'. Hence End(R") has a subgroup isomorphic
to Hom(R,® T’/pT’,R,), which is a p-group of rank > 1, a contradiction.

LEMMA 5. Let R = &R™) with R* torsion-free and completely decompos-
able. Then R is a direct sum of finitely many rank 1 rings of incomparable ty pes.

PRrOOF. Suppose R = @;; 4; for some index set I, where each A4 is a rank 1
torsion-free group. Then End(R™) contains as a direct summand @7, ; End (4,).
Since End(R*) is completely decomposable and of rank II I, I is finite, and
End(R") = @;.; End(4,). Hence for each i # j, Hom(4,, 4;) = 0, so the 4; have
incomparable types. Since the type of End(4;) is less than the type of 4,
A; ~ End(4;) for all i, so A4; is a rank 1 ring. Finally since Hom (4;,4;) =0 if
i #j, each 4, is an ideal in R.

The characterizations promised in the Introduction follow from these
lemmas:

THEOREM 1. If R is torsion, then R = &(R™) if and only if R is cyclic. .

ProOOF. It is well known that C(n) = &(C(n)) for all positive integers n.
Conversely, if R is torsion then by Lemma 2,

® Cp**)=R=&ERY = @*C(p*)

* p€S PES
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for some set S of primes. Hence S is finite, so R is cyclic.

THEOREM 2. If R* is completely decomposable, then R = §(R™) if and only
if R = C(n) @ A4, where n is a non-negative integer and A is a direct sum of rank
1 rings of incomparable type, and A is divisible by each prime which divides n.

ProoF. A modest calculation shows that &(C(n) @ A) = C(n) @ A.

Conversely, let RT™ = (R)® A, where A is torsion-free and completely
decomposable. Then Hom (#(R), A) = 0, and by Lemma 4, Hom (4, #(R)) = 0, so
R is the ring direct sum of its ideals #(R) and A. Thus

E(R™) = 6((R) @ 6(4),
so H(R) = &(1(R)), A = &(A). The result now follows from Theorem 1, Lemma 5,

and Lemma 4.

THEOREM 3. If R is not reduced, then R =~ &(R*) if and only if R = Q @ C(n)
for some non-negative integer n.

ProoF. Certainly £(Q @ C(n)) = Q ® C(n).
Conversely, by Lemma 1, R @ t(R) @ Q and by Lemma 2,

HR)= @ C(p*")
peS
for some set S of primes. Then End(R*) contains a direct summand
®F.sC(p")® Q; by Lemma 1 again, @7, s C(p**) is torsion, so S is finite. Hence
HR) = C(n) for some n.

THEOREM 4. If R* is finitely generated, then R = &R™Y) if and only if
R = Z, or R = C(n) for some non-negative integer n.

ProoF. By Theorem 2, R is the direct sum of a cyclic ring and finitely many
copies of the integers. But the torsion-free components have incomparable
types, so there is at most one. Furthermore, Z is not divisible by any prime, so if
R has a non-zero torsion subgroup, then R is torsion.

THEOREM 5. If R is a mixed ring, S the set of relevant primes, and R has
no element of infinite p-height for all pe S, then R = &(R*) if and only if:

(1) R, = C(p*?), 0 < k, < oo for all pe S

() If U is the ring @:esR,,, then R is a subring with identity of U.

(3) Ris S-purein U.

ProoF. Suppose R is a subring of U satisfying (1), (2) and (3). The exact
sequence of rings

0- #(R) > R— R/t(R) — 0 induces an exact sequence of groups
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0 - Hom(R*/#(R),R*) - End(R*) —» Hom (f(R),R ™).

Since R is S-pure in U, R/t(R) is S-pure in U/t(R), and hence S-divisible. Since
R has no elements of infinite p-height for all pe S, Hom (R/t(R), R) = 0. Hence
End(R"%) is embedded in Hom(#(R),R) by the mapping fo f |,(R). But any
Je Hom (#(R), R) sends #(R) into #R), and this mapping is a ring homomorphism.
Hence &(R™) is embedded as a subring of &(t(R)). Now it is well know that
&(t(R)) is the ring of all multiplications in U, so if fe &(R™), then f is multipli-
cation in R by some x € U; in particular, x = f(1)e R. Thus the mapping x
multiplication by x is a ring homomorpbism of R onto &R™). The kernelis zero,
since 1 eR.

Conversely, we have by Lemma 4 that R* =T, an S-pure subring of
U = @/ sR, containing the identity, and R, = C(p*?) by Lemma 2.

REMARKS. If S is any infinite set of primes, and k, a positive integer for each
p €S, there are ¢ non-isomorphic subrings of

®* c(p*) ] ® (™),

peS pPeS
each of which is S-divisible. Hence there are ¢ non-isomorphic rings R with fixed
torsion subring @, s C(p*") which satisfy the hypotheses of Theorem 4.

It is well known that if R is a p-pure subring of Z,, or an S-pure subring of
@:ESZP, where S is any collection of primes, then R = &(R™).

Other example of rings R = §&(R™) can be constructed by noting that if I is
any index set, and R;, i €1, a collection of rings such that R; =~ &(R;") and such
that Hom(®%,;R;,R;) = 0, then

®* R,.gg(@* Rf).
iel iel
Finally, we have a slight improvement on Lemma 4,
THEOREM 6. Let R be a mixed ring with relevant prime set S, and let
A= {xeR|h(x)(p) = oo for all peS}.

If R= &R*), then R, = C(p"”), 0<k,< o forall peS, and R is an extension
of A by a ring T such that T~ &(T™) and

{(R)yc Tc ®* R,.

pesS

The extension splits if A= &(A™).

Proor. By Lemma 4, it suffices to prove that T~ &(T*) and the remark about
splitting. The first statement follows from Theorem 5. If A = £(A*), then A has
an identity 1,; multiplication by 1, is a retraction of R onto A.
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3. The nature of the isomorphism: the commutative case

Let R be any ring with identity 1. Then the mapping f+ f(1), is a retraction
of &(R*) onto R, the ring of left multiplications in R. This mapping is a group
homomorphism with kernel K = {f: f(1) = 0}. Hence &(R*) is a group theoretic
direct sum of the ring R; and the left ideal K, so we have the following:

LeEMMA 6. For a ring R with identity 1, the following statements are
equivalent:

(1) R is commutative and R = &R™).

(2) The mapping x+ x,, left multiplication by x, is an isomorphism of R
onto &(R™), with inverse f+ f(1).

(3) Every endomorphism of R* is a left multiplication in R.

ProoF. (1) — (2) By the preceding remarks, R;, which is isomorphic to R, is
a direct summand of End(R™). But a group with commutative endomorphism
ring cannot have a proper isomorphic direct summand, so R, = &(R™"), and the
ring isomorphism x + x, maps R onto &(R™).

(2)— (3) is trivial.

(3)- (1) Clearly &(R*) = R, = R. In particular, the right multiplications in
R are left multiplications; let xz be a right multiplication, and suppose xz = y;.
Then x = xzx(1) = y, (1) =y, so xg = x,; hence R is commutative.

DerinNITION.Let us call a ring R which satisfies the conditions of Lemma 6 an
E-ring, and the additive group of an E-ring an E-group. This definition of E-group
coincides with that in [3], where an E-group was defined by condition (3). In
Corollary 4 below, we see that every ring with identity over an E-group is an
E-ring.

COROLLARY 1. Every endomorphic image of an E-group R™ is the additive
group of a principal ideal of R.

COROLLARY 2. A group direct summand of an E-ring R is a ring direct
summand, and hence R* cannot be decomposed as an infinite direct sum.

Proor. Let pe &(R*) be the projection of R¥ onto the direct summand eR*.
Then e = p(1), so

e?=p(1)? =e-p(1) = p(p(1)) = p(1) = e.

Hence e is an idempotent, so eR is a ring direct summand. Since R has identity 1,
R cannot be an infinite direct sum of ideals.

CoROLLARY 3. If R is any ring with identity, then & R*) is commutative
if and only if R is an E-ring.
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Proor. If &(R™) is commutative, let fe &R™). Then for all xR,

JX) =fx, 1) = xf(1) = xg-f (1) =f(D)x,

so f = f(1);. Condition (3) of Lemma 6 is satisfied.
The converse follows from the definition of E-ring.

COROLLARY 4. If R is an E-ring, and S any ring with identity over R*,
then R >~ S.

PrOOF. Since &(RT)=&(S") is commutative, S is an E-ring by Corollary 3.
Hence S~ &(ST)=R.

LemMA 7. Let R be a ring with identity 1, and let F be an isomorphism of
R onto &R™). Then for every e Mult(R*), there exists a unique aeR such
that xxy = F(F(a)(x))(y) for all x,y€R.

Proor. There is a chain of well-known group isomorphisms
R* 5 End (R*)™S Hom (R, End (R*)) > Mult (R),
where for all ae R™, ab F(a) b f, +> %, where f(x)(y) = F(F(a)(x))(y) = x*,y.

NoTtE. The left multiplications in R correspond to elements of Mult(R*) of
the form x * y = F(ax)(y) for some a € R, and in particular, the identity map on
R™ corresponds to the multiplication x %; y = F(x)(y). Clearly 1 is a left identity
for %, and we have the following criteria for commutativity of R:

LEMMA 8. Let R be a ring with identity 1, let F be an isomorphism of R
onto £&(R*); let ar> *, be the mapping defined in Lemma 7. Then the following
conditions are equivalent:

(1) R is an E-ring

(2) Every multiplication , is associative
(3) Every multiplication *, is commutative
(4) *, is associative

(5) *, is commutative

(6) 1 is a right identity for *,.

Proor. (1) (2) and (3).

Since R is an E-ring, we may replace F, if necessary, by the isomorphism
x — x;. Then every multiplication in R* has the form x *, y = axy, so is necessarily
associative and commutative.

(2) = (4) and (3) — (5) are trivial

(4)— (6) For all x,y,z€R,

FFG)(0)(2) = (x1%p) #1 2 = x4 (y %, 2) = F(x) (F(»)(2)) = F(xy)(2),
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so F(F(x)(y) = F(xy). Hence x*,y = F(x)(y) = xy for all x, yeR and 1 is a
right identity.

(5)—>(6) Forall xeR, x*; 1 = 1%, x = F(1)(x) = x.

(6)> (1) If x = x*; 1 = F(x)(1) for all x, then

K ={fes®)|f(1) =0} =0,
so by the Remarks preceding Lemma 6, &(R*) = R, and R is an E-ring.

COROLLARY 5. If R is an E-ring, there is a 1-1 correspondence between
elements a of R, and rings R, over R*. This correspondence maps 1 into R, and
units u of R into rings R, with identity u=' such that R, ~ R.

ProoF. By Lemma 8, every element %, of Mult(R™) is associative, and so
defines a ring R, over R*, whose multiplication is given by x#*y = axy; since
every ring R’ over R* gives rise to some multiplication in R™, this correspondence
is 1-1. The original ring R = R, and clearly u~"' is an identity for R,. Of course
all rings with identity over R* are isomorphic by Corollary 4.

LEMMA 9. Any endomorphic image of an E-group is an E-group; every
endomorphism of an endomorphic image of an E-group R* can be extended to
an endomorphism of R*.

Proor. If R is an E-ring, any endomorphic image of R* has the form aR*
for some a € R by Corollary 1. Define a multiplication * on aR* by ax *ay = axy.
Then * induces a commutative ring S over aR* with identity a. Let fe &(aR*);
then f-a, e &(R™), so for all axeaR,

flax) =(fra))(1) x =f(a) x = ayx,

where ay = f(a)eaR™*. Hence f(ax) = ay * ax, so f is multiplication by ay in S.
By Lemma 6, S is an E-ring, and aR* an E-group.

Let fe &(aR™), say f(a) = ay. Then y, e &R™) is an extension of f, for if
axe€anR,

f(ax) =ay=*ax = axy.

Unfortunately, no such nice property seems to be true in general for rings
R = &(R*). We do know that #(R*) = R, @ K, where K = {f|f(1) = 0}. If R is
not commutative, then by Lemma 5, K # 0, so R* is isomorphic to a proper
direct summand, the inverse image of R;. Clearly, none of the rings described in
Theorem 1-5 have this property, so they are all E-rings. In addition, we have
the following partial result, corresponding to Theorem 6.

THEOREM 7. Let R be a mixed ring with identity with a set S of relevant
primes. Let
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A= {xeR|h(x)(p) = oo for all pe S},

and let U = @:ESRP. Then R is an E-ring if and only if:

(HhR, = (Cp*7), 0 <k, < oo for all peS

(2) R is an extension of A by an E-ring T such that {R)c T< U

(3) If fe &(R™), then the restriction of f — f(1), to A is the zero map.

(4) If fe &R™), then the unique homomorphism f: T/(R) — A induced by
f—f(Q), is the zero map.

PrOOF. Suppose R is an E-ring. Condition (1) follows from Lemma 2. By
Theorem 6, R is an extension of 4 by a ring T> &(T*) such that #R) c T< U.
Since T is commutative, it is an E-ring. Conditions (3) and (4) are trivial, since

=f(Dr

Now assume that R satisfies conditions (1)-(4), let fe &(R*), and consider
the endomorphism f' = f — f(1),. Since f’ IRPG(E(RP), it is multiplication in R,
by f'(1,), where 1,, the p-component of 1, is the identity of R,. Hence f'(1,) =0
for all pe S, so f' [,(R) = 0. By condition (3), f’ IA =0, so A® #(R) is contained
in the kernel of f’; thus f” induces a unique homorphism fon

RY/A®1(R) = T/{(R),

whose image must be a subgroup of A4,since T/(R) is S-divisible. Hence by condi-
tion (4) f= 0so f =f(1),. Thus R is an E-ring.

ReMARK. Conditions (3) and (4) are of little use in either constructing E-
rings, or deciding whether a ring is an E-ring. It might be conjectured that they
could be replaced by stronger conditions, for example:

(3’) Ais an E-ring

4y Hom(T,A4) =0.

However, (3') is true if (by Theorem 6) and only if (since &(R*) is commutative)
the extension of Theorem 7 splits, so (3') implies (4"). While no non-splitting
extension has been constructed, there seems no reason to believe they do not
exist. Condition (4’) seems more reasonable, and I conjecture that it is a necessary
condition for R to be an E-ring.

4. The nature of the isomorphism: the non-commutative case

Let R =~ &(RY), with R not commutative. Then we know from the remarks
preceding Lemma 6 that:

&R*) = R, ® K, where K = {fe&(R)|f(1) =0} #0.

Hence End(R™"), and consequently R*, is an ID-group, that is, a group which is
isomorphic to a proper direct summand. (It is not difficult to find elements of K:
for example, if x is not in the centre of R, then x; — xg € K). Now if R* is an
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ID-group, there exist monomorphisms ¢ € &(R*) such that R* = ¢(R*) @ H,
where H # 0. Beaumont and Pierce [1] have proved the following structure
theorem for ID-groups R™*:

Let M = N,<o ®"(RY), let P =@, H,, where H,= ¢"(H) = H, and let
S = @®,<,H, Then R is an extension of M by a group T such that S« T < P,
and ¢ l M is an automorphism of M.

In our case, let F: R— &R™) be the isomorphism, and define ¢ by ¢(x)
= F~!(x,;) for xe R*. Then F(¢(R*)) = R, so F(H) = K and by Beaumonts and
Pierce’s result, R* is an extension of [, ¢"(R*) by a subgroup of @ K.If R
contains a fully invariant E-ring A, then clearly F can be modified so that F(x) = x,
for x € 4, and in this case, ¢ I 4 is the identity, so A" €V, <, @ (R™). In general
however, little else is known.

LEmMA 10. Let R~ &(R"*), R not commutative. Then the group U of
units of R contains a copy of every finite group.

Proor. It will suffice to show that U contains a copy of S(n), the symmetric
group on n symbols for every positive integer n. Now

R*=HOHH)® e ¢" '(H)® ¢"(R"),

where ¢'(H) = H, so each x € R* can be expressed as

X = (x19 ¢(x2), ,,.,¢n—1(x")’ y)a
with x;€ H for i = 1,2, .- n. For o € S(n), define f, e &(R*) by

Solxq, d(x2), -0, 0™ l(xn)9 y) = (xa(l)9 ¢(xa(2))’ SN l(xa(n))9 )

f is clearly an automorphism of R*, so the set {f,: o € S(n)} is a group of units of
&(R*) isomorphic to S(n).
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