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COVARIANCE FACTORISATION AND ABSTRACT
REPRESENTATION OF GENERALISED RANDOM FIELDS

V.V. ANH, M.D. RUIZ-MEDINA AND J.M. ANGULO

This paper introduces a new concept of duality of generalised random fields using the
geometric properties of Sobolev spaces of integer order. Under this duality condition,
the covariance operators of a generalised random field and its dual can be factorised.
The paper also defines a concept of generalised white noise relative to the geometries
of the Sobolev spaces, and via the covariance factorisation, obtains a representation
of the generalised random field as a stochastic equation driven by a generalised white
noise. This representation is unique except for isometric isomorphisms on the param-
eter space.

1. INTRODUCTION

The problem of filtering and prediction plays a central role in the theory of stochastic
processes and random fields. Its importance is due not only to the practical applications it
has generated, but also because a large part of stochastic processes and random fields has
been developed for its solution. The pioneering work of Kolmogorov [6, 7, 8] and Wiener
[14] on prediction theory was concerned with a stationary stochastic process observed
on a semi-infinite interval of time (discrete time in Kolmogorov's theory and continuous
time in Wiener's theory). Wiener reduced the prediction problem to the solution of a
Wiener-Hopf integral equation and gave the spectral factorisation method to solve this
kind of integral equation. Kolmogorov reduced the problem to a Wold decomposition and
gave a solution to the prediction problem directly. For stationary Gaussian processes, the
prediction problem based on finite data was solved by Krein [9, 10]. In Krein's approach,
the problem was reduced to that of finding the differential equation of oscillation of a
nonhomogeneous string and its eigenfunctions from the given spectral density (that is,
an inverse problem). An explicit prediction formula was derived for the case of rational
spectral density using the theory of differential equations. A detailed account on Krein's
theory was described in Dym and McKean [4]. A physical basis for Krein's prediction
formula was given in Anderson [1].
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A direct extension of Wiener's theory was given in Zadeh and Ragazzini [15] for the
prediction of stationary processes with rational spectral density observed on a finite in-
terval. This extension was given a more rigorous treatment in Dolph and Woodbury [3],
where the relationship between the covariance function of an autoregressive process and
the Green function of a second-order self-adjoint linear differential equation was exploited.
An extension of Dolph and Woodbury's theory to the nonstationarity case of time-
dependent rational spectrum was obtained in Anh and Spencer [2]. Another line of signif-
icant development was detailed in Ramm [11] for random fields, where the random fields
are characterised by the covariance kernels R(x,y) = J A (P(A) /Q (A))$ (x,y, X)dp(X),
P(A) ,Q{\) being positive polynomials, A,dp,$ being respectively the spectrum, spec-
tral measure and spectral kernel of an elliptic self-adjoint operator in L 2 (K n ) ,n ^ 1.
Ramm's theory, which makes use of properties of Sobolev spaces of integer order, gen-
eralised the Wiener-Kolmogorov prediction theory to nonstationary random fields with
rational spectra.

The above lines of developments represent a small subset of the works on filtering
and prediction. A common feature of these approaches is the reduction of the problem
to that of spectral decomposition (in the spectral domain) or equivalently covariance
factorisation / Markovian representation / Wold decomposition (in the time / spatial
domain). Solution to the latter problem leads, under certain conditions, to a sample
path representation of the stochastic process or random field, commonly cast in the
form of a stochastic differential equation (SDE) (for stochastic processes) or a stochastic
partial differential equation (SPDE) (for random fields). This SDE / SPDE setting offers
a convenient framework for filtering and prediction of stochastic processes and random
fields.

A key question stands out in this field of research: What kind of conditions would
allow a solution to the spectral decomposition / covariance factorisation problem? We
have seen above that the rational form of the spectral density features prominently in the
cited approaches. A more general condition is the Markovianness of stochastic processes
and random fields. A general theory of generalised Markov random fields is detailed
in Rozanov [12] and Rozanov [13]. In particular, the Markov property of generalised
random fields arising as solutions of linear SPDEs has been extensively investigated.
Here, the Markov property, based on the concept of splitting fields, is understood in the
wide sense and shown to be equivalent to a duality condition (that is, the existence of a
biorthogonal function in the sense of Rozanov [13]).

In this paper, we introduce a new concept of duality of generalised random fields (not
necessarily Gaussian) in terms of the geometric properties of Sobolev spaces of integer
order. This duality condition guarantees the factorisation of the covariance operator
of the random field. We also introduce the concept of generalised white noise and re-
formulate the problem of representation by an abstract equation. Here, the representation
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will take the form of existence of an isomorphism L on the parameter Hilbert space W
of the generalised random field X such that the geometry induced by the generalised
random field XL coincides with the geometry of the parameter space W. We show that
such an abstract representation exists and is unique under the duality condition defined in
this paper. Another issue, which is intrinsic to the problem of filtering and prediction, is
under what conditions L is a local operator, hence yielding an SPDE-type representation
of the random field. This important issue will be taken up in a subsequent paper.

2. GENERALISED RANDOM FIELDS

Let T C Rd, O 1, be a bounded domain. We denote by V = C$° (T) the space
of all infinitely differentiable functions with compact supports in T, provided with the
intersection topology induced by the sequence of norms associated with the Sobolev
spaces of integer order, H" (T), n € N :

oo

V=f)Vn;
n=0

23'denotes the space of distributions (continuous linear functionals) on V :

V'=\JVn,
n=0

with V'n being the dual space of Vn, for n € N. We denote by £>_„ the space Vn> for
n € N. We also denote by X>* the dual space of ~Dn provided with the inner product
induced from the inner product in Vn by the Riesz Representation Theorem:

with <f>* and ip* representing the respective dual elements of <fi and tp, and (•, -)x>n the
restriction of the inner product (•, -)H^(T) to Vn.

For a given complete probability space (Q, A, P), £2 (fi, A, P) represents the Hilbert
space of real-valued zero-mean random variables defined on (fl, A, P) with finite second-
order moments, and with inner product defined by

X,YeC2(Q,A,P).

DEFINITION 2.1: A random function X (•) from V into £2 (ft, A, P) is said to be
a generalised random field if it is linear and continuous in the mean-square sense with
respect to the T>—topology.

For a generalised random field X : V -» C2(Cl,A, P), we denote by H (X) the
closed span of {X (tp) : <p 6 X>} in £2 (f2, A, P). H (X) is provided with the inner product
(•, )ff(x)> which is the restriction of the inner product (•, -)c2(n) to H (X). From Definition
2.1, the generalised covariance function B(ip,£) = E[X((p)X(£)], with tp,f G V, is a
bilinear continuous operator on V x T).
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DEFINITION 2.2: For n e Z, a random function X (•) from Vn into C2 (ft, A, P) is
said to be an n-generalised random field if it is linear and continuous in the mean-square
sense with respect to the 23n-topology.

In this case, H (X) represents the closed span of {X (ip) : ip € !>„}.

From Definition 2.2, it is clear that, as n increases, test functions in the space Vn

are more regular, and a higher degree of singularity is allowed for the random field X.
Definition 2.1 corresponds to the limiting case n = oo. For m Js n, the restriction of an
n-generalised random field to Vm is an m-generalised random field.

The covariance functional B (•, •) of a generalised random field X admits a represen-
tation as

with Rn being a symmetric positive continuous linear operator from some Vn, n € Z,
into X>_n- For each m ^ n, a corresponding operator Rm from T>m into T>-m is then
defined for X (see Gelfand and Vilenkin [5, p.74]). The random field X can then be
extended by continuity on the space Vn, for any n 6 Z for which the operator R^ exists.
This extension is an n-generalised random field.

In the following development, we assume X to be an n-generalised random field, and
denote W = T>n and F = T>*n. The following concept of duality between two generalised
random fields is fundamental in the construction of the results in this paper.

DEFINITION 2.3: An n-generalised random field X : £>* —>• C2 (£l,A, P) is said
to be the dual relative to Vn of the n-generalised random field X : Vn —> C2 (fi, A, P)
if it satisfies:

(i) H(X) = H(X),a.nd

(ii) (X (ip), X {f))H(x) = (<t>, f')vn, for <P e T>n, and / 6 V'n, with / • being

the dual of / with respect to the X>n-topology.

From this definition, and considering the isoporphism between a Hilbert space and
its dual, it is clear that the dual (relative to P*) of X is equal to X.

REMARK 2.1. The existence of a 'biorthogonal function', in the sense of Rozanov [13,
Chapter 3, Section 1], implies, by continuity and using the isomorphism between dual
Hilbert spaces, the existence of the dual n-generalised random field X, for an n-generalised
random field X. Conversely, the restriction to T>*m,m > n, of the dual relative to Vn of
an n-generalised random field is its dual relative to Vm. Therefore, the existence of the
dual relative to Vn, for some n S Z, implies the existence of the 'biorthogonal function'.
However, our concept of duality relative to Vn is fundamental for deriving the covariance
factorisation using the theory of Hilbert spaces.

We denote by ~H {X) the reproducing kernel Hilbert space (RKHS) of X, defined as
the closed span of {B (0, •) : cj> € W} with respect to the norm of £ 2 (Q, A, P) (note that
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here B(<j>,-) is identified with X{(j>), for each <p € W). Similarly, ti(X) will represent
the RKHS of X, defined as the closed span of {B (/, •) : / e F } with respect to the
norm of £ 2 (fi, A, P), with B being the covariance functional of X. In H (X) and ft (X)
we consider the topologies induced by the C2 (fi)-norm.

3. COVARIANCE FACTORISATION

Under the existence of the dual X (relative to Vn) of an n-generalised random field
X, we prove that the covariance operator Rn (respectively, Rn for X) can be factorised.
This factorisation leads to an abstract representation of the n-generalised random field
X in terms of a generalised white noise (see Section 4).

We first introduce some operators. Assume X and X are dual (relative to Vn)
n-generalised random fields. We define the following two isometric isomorphisms, J :

and J:H(X) - > H ( l ) by

Y —> JY, with (JY) {<j>) = EYX (4>), V0 e W

and

Z —* JZ, with (JZ) (/) - EZX ( / ) , V/ e F,

respectively. Also, we define the following two operators:

K : H {X) —> F, with / —> Kf = f

and

K : U(X) —> W, with 4> —>K4> = <j>.

Note that, by definition, H{X)CF and K(X) CW,as sets of functionals.
We denote

U:=KJ:H (X) —> F,

and

U :=KJ:H(X) —> W.

The following lemma gives the relationship between an n-generalised random field
X and its dual X relative to T>n (if it exists), and between their respective covariance
operators, Rn and Rn.

LEMMA 3 . 1 . Assume that X and X are dual (relative to Vn) n-generalised ran-
dom Belds. Then

(i) H (X) = F and 7i(X) = W, as sets of functions;

(ii) UX is the identity operator on the space W, and, reciprocally, XU is the identity
operator on the space H(X); similarly, UX is the identity operator on the space
F, and, reciprocally, XU is the identity operator on the space H (X);
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(iii) with operator A defined as

A := UU~l : F —> W

the following relationships hold:

(a) X (<t>) = X {A~l(j>) ,V<j>€W, and X (/) = X (Af), V/ € F;

(b) Rn<j> = A~l<t>, V(j> 6 W, and R\f = Af, V/ 6 F; then, R^Rn is the identity

operator on the space W, and RnRn is the identity operator on the space F.

P R O O F : (i) By definition, % (X) C F. Now, let / € F. Then, by the duality of X

and X relative to Vn,

f (4>) = (/*, 4>)vn - (x ( / ) , x (4>))H{X), W € w.

Thus, there exists Z = X (/) € H (X) such that

/ (0) = EZX {<t>), V<A € W.

That is, f eH(X).

Similarly, it can be proved that U{X) = W.

(ii) Let <j> 6 W. From the duality condition,

(X ( / ) , x (d>) )H{X) = </•, 4>)Vn = (/, <A%., v / G F.

That is,

EX (/) X (0) - [J(X (t))] (/) = [C?(X (0))] (/) = ^ (/), V/ G F.

Hence, [/(X (0)) = <̂>, for each <j> € W. Then, C/X is the identity operator on W.

Reciprocally, let Z € H(X) = H (X). Then, UZ = JZ = <j>z e U{X) = W is defined

by

(UZ)(f) = EZX(f), V/eF.

Again, from the duality condition,

( / ) , X ( t / Z ) ) H W = (X ( / ) , X (0Z) ) w ( x ) = (/, ^ > p . = EZX (/)

Then

(X(UZ)-Z) ^XU), V/GF.

As X (F) is dense in H(X) =H {X), X(C?Z) = Z. Hence, XU is the identity operator

on H{X).

Similarly, it can be proved that UX an XU are identity operators on F and H (X),

respectively.
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(iii) (a) For each / € F ,

X (Af) = X [{UU-1) (/)] = (XU) [U-1 (/)] =X(f).

The other assertion is similarly obtained.

(b) Let f € W. From (iii)(a) and the duality of X and X relative to Vn,

= (X (0 , X (</,))H(x) - (X (A~lt), X (*)>H(x)

* ,4>)Vn - {{A-lZ)\<p)Vn = (fat - A~HY ,4>)Vn, v^ e w.

Then, i^ f = A'1^, for each ( 6 f . Analogously, £ „ / = Af, for each f e F. The
remaining assertions are similarly deduced. D

The next corollary gives additional information about the relationships between the
spaces U (X) and F, and U(X) and W, respectively.

COROLLARY 3 . 2 . Under the condition of Lemma 3.1, the spaces (W, (•, •)-Dn)

(respectively, (F, (•, -)vn)) and (u{X),{-,-)n^ (respectively, {% {X), (•, -)H(X))) are

topologically equivalent.

PROOF: Let {<An}neN be a sequence in W convergent to (j> € W in the Dn-norm.
From the continuity of X and Lemma 3.1, the following implications hold:

( „ ) x (</>) *=> Jx fa)H-^) Jx (</>)
1 {4>n) ^ K-1 ( 0 ) .

Conversely, suppose that {< n̂}n€m S 1i(X) converges to <j> e H(X) in the 7{(X)-norm.
Then, from the above equivalences,

that is,

By continuity of the inner product (•, •)#(*), and the duality condition, we have, for each
/eF,

0 = Qim X{K<j>n -K4),X (f))H[x) = Um {X{K<j>n -K<j>),X (f))H(x)
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Then,

(Yimk<j>n-K<j>) LJ\

for all / € F. Hence,

K<t>n ^ K<t>.

The proof for F and U {X) is similar. D

From Corollary 3.2, the operators K and K are isomorphisms between % (X) and F,

and ^(X) and W, respectively. Also the operator A is an isomorphism (non isometric)
between F and W.

Since, from Lemma 3.1, the operators R^ and Rn are injective, the binary operators

(<I>,II>)B = B(4>,II>), V0,veVK,

{f,g)S = B(f,g), V / , 5 6 F ,

define, under the duality condition, inner products on the spaces W and F, respectively.
In the following corollary, it is proved that the topologies defined by these inner products
are dual, and hence the operators Rn and Rn are adjoint to each other with respect to
these inner products; that is,

with ip*B being the dual element of ip € W with respect to the topology induced by {-,-)B-

COROLLARY 3 . 3 . Under the conditions of Lemma 3.1, (W,(-,-)B) =

(H{X), (-, ) ^ ~ ) ) and (F, (., -)s) = {H (X), {•, .)H{X)) are dual Hilbert spaces.

P R O O F : We first show the identity between the spaces (W, (•, }B) =

,<•,•>«(*)), and (F,(;.)s) = (H(X),(;-)H(X)). Let 0,f € W. From the

proof of Lemma 3.1(i),

(<t>, OB = B {<!>, o = (x (0), x

The second identity is similarly proved. Now, denote by <j>'B the dual element of <f> 6 W
with respect to the topology induced by (•, -)B. For each ip £ W,

4>'B W = (4>, ^ ) B = B (<j>, V) = ({RntY , i>)Vn = {Rn<t>) W •

That is, 4>B = Rntf) in F, for each <j>eW. Similarly, f'~ = R,,} in W, for each / € F.
According to the Riesz Representation Theorem, to prove the assertion in the corollary
we need to show that
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In effect,

From this identity it is also clear that Rn and Rn are adjoint operators with respect to

the inner products (-, - )B and (•, -}g. D

The geometries of the spaces (W, (•, •)*>„)• (W, (•, -)B), (F, <•, - ) o . ) and (F, (•, -)s) are

then related by the following identities:

(4>, f')vn = W, !)vn = (R«</>, 1)B = <*, Rnf)B, V0 e w, V/ e F .

In the next corollary we show that the operators Rn and Rn are essentially self-adjoint.
Let Iw and Ip denote the following isomorphisms:

Iw : W —> W* = F, Iw (<f>) = <f>\ V<f> G W, and

IF : F - 4 F' = W, IF(f) = f\ V/ G F.

COROLLARY 3 . 4 . Under the conditions of Lemma 3.1, IFRH &nd Rnlw are self-
adjoint operators on W, and RnlF and IwRn are self-adjoint operators on F.

P R O O F : Let <j>, ip e W. Then,

( (IFRn) (<{>) , V ) O n = ( {Rn<t>Y , 4>)Vn =

Now, let f,g € F. Then,

')', g*)^ = B (f'.g*)

= {f,Rn9')vn = (f,(RnIF)g)v.n.

The other cases are similarly proved in terms of B instead of B. D

The following theorem gives a factorisation of each of the operators Rn and Rn, and
shows that dual random fields X and X are esentially inverse adjoint to each other.

Let us denote by J the isometric isomorphism

J:H(X)—>[H(X)Y

given by the Riesz Representation Theorem; that is, for each Y € H (X),

J (Y) = Y', with Y* (Z) = (Y, Z)H(X), for all Z € H {X).
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THEOREM 3 . 5 . Let X and X be dual (relative to Vn) n-generalised random
fields. Then, the covariance operator Rn of X can be factorised as

Correspondingly, the covariance operator Rn of X can be factorised as

Rn=UU~l.

The operators

w = ju~x = (uj-iy\

are, respectively, the adjoint operators ofU and U. Also, the operators

r = JJ~1 = (JJ-1)-1,

-xyl
r = JJ~1 = (jj-x

are. respectively, the adjoint operators of J and J.

REMARK 3.1. According to the theorem and from Lemma 3.1(i), we can say that R^ =
JJ~l and Rn — JJ~l as mappings, and that J and J are essentially inverse adjoint
operators, considering in the respective image spaces either the inner products (•, -)B and
(•, -)g , or the inner products (-,-)vn and (v)r>;.

P R O O F : The first part of the theorem is straighforward from Lemma 3.1(iii):

= Af=(UU-l)f, V/€F.

Next, we show that U and JU*1 are adjoint operators. For Y e H (X) and <j> € W, we
have

( (Uyy 4>) = (X (UY)X (0) ) = (Y LH (fl ) = <y (W4>y ) H { x y, 4>)Vn = (X (UY), X (0) )H(X) = (Y, LH (fl )H{X) = <y, (W4>y )

The proof for U and JU~X is similar. Finally, we prove that J and J J~x are also adjoint
operators. For Y € H (X) and <j> € U{X), we have

nx), t)n( - j = < (UY)*S, Kcf>)B = {K (UY), K4>)B = {UY, K<t>)B
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Here, fwX), for / 6 H (X), denotes the dual element of / with respect to the topology
induced by the inner product (-, -)-H(X)-

The proof for J and J J~l is similarly derived. D

The following well-known adjointness relationships are straightforward after Theo-
rem 3.5:

1 = (JU-1)'1 = (U*yl;

4. GENERALISED WHITE NOISE AND ABSTRACT REPRESENTATION

In this section we study, for an n-generalised random field X, the problem of existence
of an isomorphism L on (W, {•, -)vn) such that the geometry induced by the n-generalised
random field XL coincides with the geometry of the parameter space (W, (•, -)Vn) :

(XL (0), XL {i>))mx) = (*, i>)v*, V0, V € Vn.

The meaning of the above problem can be interpreted through the following defini-
tions of generalised white noise relative to a Hilbert space structure and abstract equation.
(Here, the concepts of generalised random field and duality introduced in Section 2, Def-
initions 2.2 and 2.3, are implicitly extended for a general Hilbert space H as parameter
space.)

DEFINITION 4.1: A generalised random field e (•) with parameter space a Hilbert

space (if, (-,•)//) is called a generalised white noise relative to H if

(e(u),e(v))H{X) = (u,v)H, Vu,v e H.

Given a generalised white noise e relative to a Hilbert space H, it is immediate that
the generalised random field ? = elw, with In- '• H* —> H being the isometric isomor-
phism between the dual space H' of H and H established by the Riesz Representation
Theorem, is a generalised white noise relative to H*. Then, the proof of the following
statement is straighforward.

PROPOSITION 4 . 1 . For the generalised white noise e relative to H, the gener-
alised white noise e = EIH- relative to H* is its dual generalised random Geld (relative
toH).

Now, let X b e a generalised random field on H. We say that X satisfies an abstract
equation if it can be represented as

X (Lu) =£•(«), V « e H
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with L being an isomorphism on (H, (-,-)#), and e(-) being a generalised white noise
relative to H. (The above expression is interpreted as an identity in the space C2 (fi, A, P)

for each u € H.)

Depending on whether the generalised white noise e in the above abstract equation
is predetermined or not, we distinguish between weak-sense and strong-sense abstract
representations.

DEFINITION 4.2: We say that a generalised random field X defined on a Hilbert
space (H, (•, •)//) has a (weak-sense) abstract representation

X (Lu) = eL (u), Vu 6 H,

if there exists an isomorphism L : H —> H such that

(XL («), XL (v) )H{X) = (u, v)H, VU, V€H;

that is, if EL = XL is a generalised white noise relative to H. We write X {L,ei) to
denote this abstract representation.

DEFINITION 4.3: We say that a generalised random field X defined on a Hilbert
space (H, {•, •)//) has a (strong-sense) abstract representation in terms of a given gener-
alised white noise e relative to H,

X(Leu)=e{u), VueH,

if there exists an isomorphism Le : H —> H such that

X (Leu) = e (u)

in C2 (Q, A, P) for each u G H. We write X (Le, e) to denote this abstract representation.

In the following theorem we show that under the existence of its dual (relative to
T>n), an n-generalised random field has a (weak-sense) abstract representation, which is
unique except for isometric isomorphisms on W.

THEOREM 4 . 2 . Let X be an n-generaiised random Geld such that its dual relative
to Vn, X , exists. Then,

(i) X has a (weak-sense) abstract representation X (L,EL);

(ii) ifX (LI,ELI) and X (L2,£L2) are two (weak-sense) abstract representations

for X, then the operator V = L\XL2 is an isometric isomorphism on W.

P R O O F : (i) Let {AVjn€N and {7n} be two orthogonal bases of H (X) = H(X)
and W, respectively (note that H (X) and W are separable Hilbert spaces). The linear
operator Q : (W, (-, •)©.) —> (H (X), (•, -)H{X)) defined by

7m —> Qlm = Xm
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is an isometric isomorphism. Now, we define L := UQ, with U being as defined in
Section 3. Then, from Lemma 3.1,

(XL (ft , XL (</,) ) H { X ) = (XUQ (</>), XUQ &) ) H ( X ) = (Q (<j>), Q (^) ) H { X )

(ii) Assume

X{L14>)=eLl(4>), V0€W,

X\

with Li and L2 being isomorphisms on W, and with eLl and eLl being generalised white
noises relative to W. Then, with V = L~[1L2,

Vn = {L-x
lL2^L-x

xL2il>)Vn = {X {LxLx
lL24>), X (L.L^ L2i}>) )£ J ( f J )

, X (L2

for each <t>,i>€W. D

COROLLARY 4 . 3 . If X {L^e^) and X (L2,eL2) are two (weak-sense) abstract
representations for X, then the cross-covariance functional B£Li<eL^ (•, •) between e ,̂, and
£L2 is given by

BeLl,eL2 (4>, 1>) = (eLl (d>), eL, (rp) ) c H n ) = (<i>, V^)Vn = ( V - V , <P)vn, V^, V G 2>B)

with V = L\~XL2.

PROOF: For each 0, ip e W,

H{X) = (XL, (4>), XL2 (r/,) ) H ( x ) = (XLX (0), Jf Lj ( ^ ) ) H { X )

Also, since from Theorem 4.2(ii) V is an isometric isomorphism on W,

(<t>,ViP)Vn = {V-l4>,V~W^)Vn = {V-x<t>,i>)Vn, for 0,V G W

COROLLARY 4 . 4 . Under the conditions of Theorem 4.2, if X (L, eL) is a

sensej abstract representation forX, then X fL,1j\, with

L := RnLIF = UQIF = UQ

is a (weak-sense) abstract representation for X; in this case, ej = £L!F- (Here, we denote
Q = QIF :F —> H(X) = H (X) and IF denotes the isomorphism IF:F-+W debited
in Section 3.)
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P R O O F : For f,g e F,

(XL ( /) , XL (g) ) H { X ) = (XUQ (/), XUQ (g) )H{X) = (Q(f),Q (</*) )H(X)

Also,

£ £ = XL = XRnLIp = XLIp — EIJIF. n

We now prove that a necessary and sufficient condition for an n-generalised random
field X, with the existence of its dual, to have a (strong-sense) abstract representation
in terms of a given generalised white noise e on W is that X and e generate the same
subspaces in C2{Q, A, P). This abstract representation, relative to e , is unique.

THEOREM 4 . 5 . Let X be an n-generalised random field such that its dual relative
to T>n exists. Let e be a generalised white noise relative to T>n. Then,

(i) X has a (strong-sense) abstract representation in terms of e,X (LE,e), if
and only if H (X) = H' (e);

(ii) if such a representation exists, it is unique; that is, Le is unique.

P R O O F : (i) First, we assume H (X) = H (e). We then define

Xm - e ( 7 J , Vm € N,

for a given orthonormal basis {7 m } m 6 N of (W, (•, •)©„). As {Xm}mSti generates H (e) —
H (X), and since, for m , p £ N ,

(Xm,Xp)H{X) = (e{jn),e(yp) ) H { X ) = {yn,yp)vn = 5n,p,

oo

we have that {^m}m6N is a n orthonormal basis of H (X). Now, for 4> = 5Z ^mTm 6 W>
m=l

and with L defined as in the proof of Theorem 4.2(i),

( OO \ / OO \ 00 OO

J2 KLym )=x[Y1 <t>mUXm = ]T <f>mxuxm = £ ,j>mxm
m=l / \m=l / m=l m=l[

m=l \m=l /

Conversely, assume that X (X(̂ ) = e (0), V<̂  € VK. As L is an isomorphism on W,

H{e) = sp£2(n){e W ;<A e W} = sp£2(n>{X(L<A);0

= sp£J<n»{X 0/0 ; V 6 VK} = H (X).

(ii) Assume that Le and L^ are two isomorphisms on W such that

X (Le<j>) =e(<j>), V0 6 W, and
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Then, from the linearity of X,

X {Le<j> - L'e<j>) = 0, V0 e W.

As the random field X is injective,

that is,

R E F E R E N C E S

[1] B.D.O. Anderson, 'A physical basis for Krein's prediction formula', Stochastic Process.
Appl. 15 (1983), 133-154.

[2] V.V. Anh and N.M. Spencer, 'Riemann function approach to unbiased filtering and pre-
diction', J. Math. Anal. Appl. 192 (1995), 96-116.

[3] C.L. Dolph and M.A. Woodbury, 'On the relation between Green's function and covari-
ances of certain stochastic processes and its application to unbiased linear prediction',
Trans. Amer. Math. Soc. 72 (1952), 519-550.

[4] H. Dym and H.P. McKean, Gaussian processes, function theory, and the inverse spectral

problem (Academic Press, New York, 1976).

[5] I.M. Gelfand and N.Y. Vilenkin, Generalized functions, Vol. 4 (Academic Press, New

York, 1964).

[6] A.N. Kolmogorov, 'Sur Interpolation et extrapolation des suites stationnaires', C.R.
Acad. Sci. Paris 208 (1939), 2043-2045.

[7] A.N. Kolmogorov, 'Stationary sequences in Hilbert space', Bjv.ll. Moskov. Gosudarstv.
Univ. Matematika 2, No. 6 (1941), 1-40.

[8] A.N. Kolmogorov, 'Interpolation und extrapolation von stationaren zufalligen Folgen',

Izv. Akad. Nauk SSSR 5 (1941), 3-14.

[9] M.G. Krein, 'On some cases of effective determination of the density of an inhomogeneous
cord from its spectral function', Dokl. Akad. Nauk SSSR 93 (1953), 617-620.

[10] M.G. Krein, 'On a method of effective solution of an inverse boundary problem', Dokl.

Akad. Nauk SSSR 94 (1954), 987-990.

[11] A.G. Ramm, Random fields estimation theory (Longman, Essex, 1990).
[12] Y.A. Rozanov, 'Stochastic Markovian fields', in Development in Statistics 2, (P.R. Kr-

ishnaiah, Editor) (Academic Press, New York, London, 1979), pp. 203-234.

[13] Y.A. Rozanov, Markov random fields (Springer Verlag, Berlin, Heidelberg, New York,
1982).

[14] N. Wiener, The extrapolation, interpolation, and smoothing of stationary time series (J.
Wiley and Sons, New York, 1949).

[15] L.A. Zadeh and J.R. Ragazzini, 'An extension of Wiener's theory of prediction', J. Appl.
Phys. 21 (1950), 645-655.

https://doi.org/10.1017/S0004972700018803 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700018803


334 V.V. Anh, M.D. Ruiz-Medina and J.M. Angulo [16]

Centre In Statistical Science
and Industrial Mathematics

Queensland University of Technology
GPO Box 2434
Brisbane Qld. 4001
Australia
e-mail: v.anh@fsc.qut.edu.au

Department of Statistics & Operations Research
University of Granada
Campus Fuente Nueva s/n
E-18071 Granada
Spain
e-mail: jmangulo@goliat.ugr.es

mruiz@goliat. ugr.es

https://doi.org/10.1017/S0004972700018803 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700018803

