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Abstract

Despite the recent “epistemic turn” in the philosophy of measurement,
philosophers have ignored a nearly 80 year controversy about the relation-
ship between statistical inference and measurement theory. Some schol-
ars maintain that measurement theory places no constraints on statistics,
whereas others argue that the measurement scale (e.g., ordinal or interval)
of one’s data determines which statistical methods are “permissible.” I
defend an intermediate position: even if existing measurement theory were
irrelevant to statistical inference, it would be critical for scientific infer-
ence, which requires connecting statistical hypotheses to broader research
hypotheses.

1 Introduction

Despite the recent “epistemic turn” in the philosophy of measurement, philoso-
phers have ignored a nearly 80 year controversy about the relationship between
statistical inference and measurement theory.1 Statistical libertarians, as I will
call them, maintain that measurement theory places essentially no constraints
on statistics.2 In contrast, measurement bureaucrats (again, my term) endorse
Stevens’ doctrine of permissible statistics, according to which parametric meth-
ods (e.g., t-tests) should be applied only to interval or ratio-scaled data, whereas
ordinal data requires the use of non-parametric tests (e.g., Mann-Whitney U).3

To see what is at stake, imagine a CEO is worried about sexual harassment
in her company. She issues a two-question survey to 50 randomly selected em-
ployees. The first question asks employees to identify their gender, and the
second asks, “On a 1-7 scale – with 1 representing ‘completely dissatisfied’ and

1See [Tal, 2015] for a discussion of the “epistemic turn”. To my knowledge, the only philo-
sophical work that engages with this controversy is [Larroulet Philippi, 2021] and [Larroulet
Philippi, 2022]. As is common (e.g., [Tal, 2015]), I use the phrase “measurement theory”
to refer to the mathematical work that culminates in the three-volume Foundations of Mea-
surements texts [Krantz et al., 1971]. I avoid using the term “representational measurement
theory” (RTM) to describe those mathematical results because RTM is often used to denote
several further epistemological theses [Tal, 2021].

2See Atkinson [1988], Gaito [1980], Lord [1953, 1954], Velleman and Wilkinson [1993].
3Bureaucrats include Blalock [1960], Senders [1958], Siegel and Jr [1988], Thomas [2006],

Wilson [1971]. An intermediate position is defended by [Marcus-Roberts and Roberts, 1987],
who argue that only “meaningful” statistical hypotheses are of scientific interest (see Sec-
tion 3.2) but that there are no restrictions on what statistics it is appropriate to calculate.
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7 representing ‘completely satisfied’ – how satisfied are you with the company’s
sexual harassment policies?” When the survey has been completed by all 50 se-
lected employees, the CEO divides responses according to gender and calculates
the averages/means of men’s and women’s responses (3.2 and 2.1 respectively).
She then performs a t-test to assess whether those averages differ. She finds a
statistically significant difference. May the CEO conclude that men and women
in the company are satisfied to different degrees with the company’s sexual
harassment policies?

Libertarians maintain “yes”; bureaucrats say “no.” According to Libertar-
ians, if the averages of the men’s and women’s responses differ, then so must
the two distributions of responses. End of story.

For bureaucrats, however, the CEO’s data are merely ordinal, and averages
of ordinal data should not be invoked in statistical reasoning. To motivate
that prohibition, suppose the survey had omitted a numerical scale and instead
asked respondents to choose from seven categories describing their degree of
satisfaction in English words. Just as a researcher might be hesitant to “average”
non-numerical responses like “somewhat dissatisfied” and “very satisfied”, one
should be reluctant to calculate the means of the responses from the original
survey.

I defend an intermediate position: even if existing measurement theory were
irrelevant to statistical inference, it is critical for scientific inference which re-
quires connecting statistical hypotheses to broader research hypotheses.4 In
the CEO’s case, the statistical hypotheses concern the relationship between
two (probability) distributions over the numbers 1-7, which represent employee
responses on a fixed numerical scale. In contrast, the research hypothesis of
interest likely concerns whether attitudes about sexual harassment differ, or
whether men and women’s behavior differ in ways that matter to the CEO
(e.g., whether productive women are more likely to leave the company within
the year). Libertarians are correct that the CEO’s statistical inferences require
no measurement theory, but bureaucrats are correct that further assumptions
are necessary to draw research conclusions from the CEO’s statistical analysis.

To show how the distinction between statistical and research hypotheses
arises in scientific practice, I summarize the controversy on “interpretable ef-
fects” in psychology in Section 2.5 I argue that the controversy amounts to the
following: statistical conclusions reached in memory experiments do not math-
ematically entail6 research hypotheses about some purported latent attributes,
specifically, an attribute that might be “memory strength.” Moreover, many
psychologists believe that the data from some memory experiments are of ques-
tionable scientific interest unless unless the statistical hypotheses that the data

4The distinction between statistical and research hypotheses is standard in medical science.
See [Lawler and Zimmermann, 2021] for a discussion of cases in which the two types of
hypotheses are misaligned.

5The controversy originated with [Loftus, 1978]. See [Wagenmakers et al., 2012] for the
history.

6Henceforth, I say a set of premises mathematically entail a conclusion if the premises
of the argument and axioms of set theory together logically entail the conclusion. I say an
argument is mathematically valid if its premises mathematically entail its conclusion.
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support mathematically entail the relevant research hypotheses.
I remain agnostic what it is of “scientific interest” in psychology, but I inves-

tigate the consequences of the skeptical position about memory experiments. In
Section 3, I argue that the theory of“meaningfulness” developed in measurement
theory can help one identify general conditions under which which inferences
from statistical hypotheses to research ones are mathematically valid.7

Before beginning, it will be helpful to characterize the distinction between
statistical and research hypotheses more precisely. Statistical hypotheses are
(sets of) probability distributions that specify how likely various data are. Such
hypotheses always concern a particular experimental setup (which might be
repeatable). Statistical methods (e.g., hypothesis tests and estimators) allow
one only to evaluate how well different statistical hypotheses are supported by
data.

In contrast, research hypotheses have implications beyond a given experi-
mental context, and they may not specify any precise probabilities whatsoever.
A research hypothesis might, for example, concern (i) latent or unmeasured
attributes or (ii) the outcomes of different measurement procedures in other
experimental contexts. In the CEO’s case, the latent attributes are attitudes or
behavioral dispositions, which are not measured in the survey.

2 Conflating latent attributes with measured ones

Nearly 50 years ago, Loftus [1978] famously argued that many memory ex-
periments in psychology suffer from a serious methodological problem: a latent
attribute – call it memory strength – is conflated with what is directly measured
in experiments, e.g, the probability of correctly recalling a stimulus.

Imagine experimental subjects are divided into two groups; call them A and
B. Participants in both groups are presented with a sequence of five “random”
letters, which they will be asked to recall at two different later times (e.g., after
5 and 20 seconds respectively). But prior to the recall phase of the experiment,
different groups are subject to different conditions. Groups A and B might
receive different instructions, for example.

Suppose the results of the experiment are shown in Figure 1. Group A’s
average recall rates are represented by the two circular blue endpoints of the
bottom line, and Group B’s average recall rates are represented by the two
square orange endpoints of the top line.

7I use the theory of semantic meaningfulness in [Adams et al., 1965]. This theory was
inspired by the theory of “empirical” or “scientific” meaningfulness that was developed by
[Suppes and Zinnes, 1962] and later defended by [Roberts, 2009] and [Narens, 2012], among
others. I do not endorse the latter theories.
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Figure 1

The lines in the diagram are merely heuristic. Both groups are tested for
recall at only two discrete times, and so the lines do not indicate that, in
the experiment, the probability of correct recall decreases linearly over time.
However, the lines help one see an important fact: the slope of the A-group line is
steeper that of the B-group. One might hypothesize, therefore, that participants
in condition A forget at a rate faster than do participants in condition B. That
hypothesis, Loftus argues, is underdetermined by the experiment.

Why? Suppose memory strength – call it q – is a quantifiable, and suppose
observed recall rate at time t is a function rt of q. Loftus shows that, even if
recall rate increases with q, it is possible for q to decrease at the same rate or even
faster in condition B then in condition A unless one makes further assumptions
about the mathematical form of the function rt. Which assumptions? Loftus
proves that, if the recall rate is a linear function of q, then the desired inference
about memory strength is valid.

Figures 1 through 3 illustrate Loftus’ critique. Suppose the function rt is
the one shown in Figure 2. Then memory decreases faster in Condition B than
in Condition A (as shown in Figure 3), even though recall rates in Condition B
decrease more slowly than in Condition A (as shown in Figure 1).
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Figure 3

Loftus never distinguishes between statistical and research hypotheses, but
his critique beautifully illustrates the distinction. Even if statistical methods
establish that the distribution of observed recall rates in condition A differs
from that in B, Loftus’ critique challenges the inference from those statistical
conclusions to research hypotheses about memory.

One might object to Loftus’ critique by arguing that, in the memory ex-
periments in question, psychologists are not trying to draw inferences about a
latent attribute: the research hypotheses and statistical hypotheses alike con-
cern the measured probability of recall. Memory is “operationalized” in recall
rates. That critique would be legitimate if such recall rates were known to be
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of independent scientific interest. For example, perhaps those recall rates can
predict performance in many other important “memory” tasks. But crucially,
the differences in recall rates must be predictive, for otherwise the conclusion
that subjects’ recall rates decrease faster in one condition than in another is
irrelevant.

3 Inference, Meaningfulness, and Scales

Loftus shows that, in important scientific settings, there may be an inferential
gap between research hypotheses about latent attributes and statistical hypothe-
ses about measured outcomes. I now argue that, in many of those settings, the
theory of meaningfulness developed by measurement theorists specifies the as-
sumptions necessary to bridge the inferential gap. To do so, I first argue that
the theory of meaningfulness provides a plausible answer to the question, “Un-
der what conditions does an attribute (e.g., memory strength) have the type
of quantitative structure for which differences (e.g., between memory strength
at two different times) are meaningful?” The answer, I claim, is that the at-
tribute admits an interval-scale.8 Similarly, claims about ratios of an attribute
are meaningful if and only if the attribute admits a ratio-scale. I discuss scale
types in Section 3.1.

My main contribution is to show that scale-classifications also play an im-
portant epistemic role as they can be used to identify mathematically valid
inferences from statistical hypotheses to a research ones. Because inferences
from statistical hypotheses to research ones are often not easily formalized, it is
important to identify which are mathematically valid.

3.1 Scales and Scale Types

Length can be quantified in inches and centimeters. Mass is quantified in kilo-
grams and tonnes. In general, anything that is quantifiable can be quantified
in many ways. Roughly, a scale is a way of quantifying a property. Scales are
rarely unique.

But scales are often related. For example, an inch is 2.54 centimeters; a yard
is three feet, and generally, one can convert any unit of length into another by
multiplying by a constant. When all scales for an attribute are multiples of one
another, the attribute is called ratio-scaled.

Not all scales are ratio-scales. Consider calendar date. In all calendar sys-
tems, there is an arbitrarily chosen “zeroth” year, and calendar date is de-
termined by counting from that zero. Different zeroes can be chosen, e.g., in
Islamic calendars, Muhammad’s pilgrimage fixes the zeroth year. And instead
of counting years, one could count days, weeks, or units of time determined by
lunar rather than solar events. Thus, in converting calendar date in one system
to another, one must first multiply (e.g., to convert years to days) and then add

8As I am not a psychologist, I will not assess whether there is evidence that ‘memory
strength’ admits an interval scale.
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another number (e.g., to correct for choices of “zeroth” year). When all scales
for a property are related in this way, one says the property is interval-scaled.

The reader might ask, “what determines which scales are ‘permissible’ ways
of quantifying an attribute?” For the purposes of this paper, my answer is, “con-
sult Foundations of Measurement” [Krantz and Tversky, 2006, Krantz et al.,
1971, 2006]. There, the reader will find a body of mathematical theorems that
show that, if certain relations hold among objects (or events) with a given at-
tribute, then then set of permissible scales must always be of one of the few
types identified by Stevens [1946]. Importantly, as Michell [1997] observes, the
theorems in Foundations of Measurement specify the quantitative structure of
an attribute even if the attribute cannot be measured, in any realistic sense.
This is important because Krantz et al. [1971] are often said to endorse “pos-
itivist” assumptions, e.g., that “empirical relations be directly observable, or
‘identifiable’ ” [Mari et al., 2023, p. 94]. Those philosophical assumptions,
however, play no role in the mathematical results about scale types.

What is now important for us is to understand how scale classifications can
clarify questions about meaningfulness.

3.2 Meaningfulness

Contrast two claims: “Ada is more than twice as tall as Boris” and “Ada’s height
in inches is more than twice that of Boris.” Notice that the first sentence is true if
and only if the second is true. That may be surprising because the first is a scale-
free assertion – it contains no mention of units of length – whereas the latter
is scale-specific. But according to an influential definition of “meaningfulness”,
one should not be surprised at all: the first sentence has a truth-value if and
only if its truth-value matches that of the second.9

To understand the proposed theory of meaningfulness, consider the scale-free
assertion “Ada’s is three taller than Boris.” That claim is nonsense. If Ada is
three inches taller than Boris, then she is not three feet taller than Boris. Units
matter. These examples motivate the following proposal: a scale-free sentence
about an attribute is meaningful (i.e., it has a truth-value) if and only if all the
scale-specific instances of the statement have the same truth-value. In other
words, a scale-free sentence is meaningful if the units do not matter.

Scale-free hypotheses are ubiquitous in science. Consider Galileo’s law of
free fall, which asserts that the distance traveled by an object in free fall is pro-
portional to the square of the time of the descent. Galileo’s law does not require
that distance be measured in a specific unit like meters, nor that time be mea-
sured in a unit like seconds. Similarly, Boyle’s law about pressure and volume is
scale free: neither units of neither pressure nor volume are mentioned. Scale-free
hypotheses also occur in the social sciences. For example, economists do not
mention a specific currency when they claim that profits are maximized when
marginal revenue equals marginal costs. These examples show it is important
to understand when scale free hypotheses are meaningful.

9See references in footnote 3.
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To see how the theory of meaning works, consider the scale-free hypothesis
“memory strength decreases more rapidly in condition A than in condition B
between times t1 to t0.” Loftus argued that hypothesis could not be inferred
from the observed recall effects.

Now, that scale-free hypothesis is meaningful, according to the above the-
ory of meaning, if for any two scales for memory M1 and M2 the following
biconditional holds:

M1(t1, A)−M1(t0, A) > M1(t1, B)−M2(t0, B) if and only if

M2(t1, A)−M2(t0, A) > M2(t1, B)−M2(t0, B) (1)

where Mj(t, x) represents the memory strength along scale j ∈ {1, 2} at recall
time t ∈ {1, 2} in condition x ∈ {A,B}. Some quick algebra shows that Equa-
tion 1 holds if there is a positive number c > 0 and some number d (possibly
negative) such that M2(t, x) = c ·M1(t, x) + d for all times t and all conditions
x. That is, the assertion is meaningful if memory is an interval-scaled attribute.

This example suggests that there is some relationship between (1) meaning-
fulness and (2) the validity of inferences that have scale-free conclusions. Under-
standing that relationship is important because whereas statistical hypotheses
are almost always scale-specific (as they describe the data of a particular experi-
ment, which must be measured in specific units), scientists’ research hypotheses
are often scale-free.

3.3 Mathematical Validity and Research Hypotheses

The theory of meaningfulness allows us to immediately identify a set of mathe-
matically valid inferences that have scale-free conclusions. Let M be a scale; let
φM be some scale-specific proposition about the attribute A, and let φA be the
corresponding scale-free proposition. For instance, if M is inches and φM is the
assertion “Ada’s height in inches is twice that of Boris”, then φA is the asser-
tion “Ada’s height is twice that of Boris.” Here’s a theorem (stated imprecisely).

Fact: The inference from φM to φA is valid if (1) φA is meaningful and (2) M
is a permissible scale for the attribute A.

The fact follows immediately from definitions. Suppose 1 and 2 hold. Since
φA is meaningful (by 1), φA is true if and only if φS is true for any scale S.
Because M is a scale for A (by 2), it follows that if φM is true, then φA must
be true (and so the inference is valid).

So what? Recall, statistical hypotheses are about data in a given experimen-
tal context on a fixed scale (e.g., the CEO’s data is on a 1-7 scale for satisfaction;
the memory experiment’s data is probability of recall in a specific context). In
contrast, research hypotheses are often scale-free precisely because researchers
desire replicable results that do not depend on choice of measurement units.
Thus, the inference from a statistical hypothesis (e.g. that men’s and women’s
responses differ on average) to the corresponding scale-free research hypothesis
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is mathematically valid if (1) the research hypothesis is meaningful and (2) the
measurement scale is a permissible way of quantifying the attribute.

The above simple fact is a generalization of Loftus’ positive suggestion. It
entails that if memory strength admits an interval scale (and so the hypothesis
that memory decreases faster in one condition than another is meaningful), then
one can validly infer the research hypothesis from the measured results about
recall rate if the recall rate is a permissible scale for memory, i.e., it is a linear
function of memory strength. However, the above fact is a generalization of
Loftus’ claim because it applies to all scale types, not just interval ones.

The epistemological importance of the fact above, however, should not be
overstated. Notice that in Loftus’ critique – as in the above fact – (1) the focus is
on validity of arguments rather than inductive strengths and (2) the conclusion
of the inference φA is the scale-free hypothesis corresponding to the premise
φM . That is a very restricted form of inference.

First, many strong arguments are not mathematically valid. Second, many
valid inferences are not of the above form and yet have scale-free conclusions.
For instance, let ψ and φ be scale-specific and scale-free hypotheses respectively.
Suppose φ is meaningful. Then ψ → φ and ψ together entail φ.

In fact, it is possible to describe such a case of modus ponens when the scale
of ψ is not even a permissible scale for the relevant attribute. Suppose two
cross country teams race one another. Let φ be the (scale-free) hypothesis that
asserts “The average time of Team 1 is faster than that of Team 2.” Notice that
hypothesis is meaningful because its truth does not depend on whether times
are recorded in seconds, milliseconds, etc. However, suppose the finishing times
of runners are not recorded, only the ranks, with 1 being assigned to the first-
place runner, 2 to the second-place and so on. The assignment of ordinal ranks
is not a permissible scale for time. But let ψ be the scale-specific proposition
“All runners on Team 1 have a lower rank than all runners on Team 2.” Then
ψ → φ is a mathematical truth, and so if one has evidence for the scale-specific
claim ψ, then one obtains evidence for the scale-free hypothesis φ.10

Despite these limitations, the theory of meaningfulness provide a first step in
(i) understanding the debate between statistical libertarians and measurement
bureaucrats and (ii) identifying a partial resolution.

4 Conclusion

As others have convincingly argued, measurement theory helps scientists iden-
tify if if an attribute is quantifiable at all.11 I have further argued that if,
conditions for quantifiability are met, measurement theory characterizes auxil-
lary assumptions that are sufficient to facilitate mathematically valid inferences
from statistical hypotheses about measured outcomes to research hypotheses
about latent attributes. Namely, by the simple fact established in Section 3.3,

10More generally, this argument would work if ψ were replaced with the claim that the
ranks of Team 2 stochastically dominate those of Team 1.

11In addition to [Michell, 1986], see [Heilmann, 2015] and [Wolff, 2020].
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it suffices to show that the measured outcomes are values along a permissible
scale for the attribute.

If the measurement scale is not a permissible (or if there is no latent at-
tribute with the relevant mathematical structure), then often, further data and
statistical analyses will be necessary to facilitate inference to research hypothe-
ses. This is the most plausible way of describing the CEO case at the outset of
this paper. “Satisfaction with sexual harassment policies” is likely not a latent
attribute admitting an interval scale, and what researchers are likely interested
in is making inferences from the survey to other behaviors. But such infer-
ences would require data that would allow one to explore statistical associations
between survey responses and the relevant behaviors.

This paper has only begun to address the question of when scale-specific
propositions provide evidence for scale-free ones. I have studied only a very
narrow set of mathematically valid inferences, and a general theory of inductive
inference for scale-free hypotheses is still in its infancy [Larroulet Philippi, 2021,
2022].
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