
ON THE CALCULATION OF THE
GENERALISED POISSON FUNCTION

ERKKI PESONEN

Helsinki

Drs. H. Bohman and F. Esscher have reported in a recent paper J)
an extensive research performed in Sweden on the different methods
of calculation of the distribution function of the total amount of
claims. In the present paper certain methods are discussed in so
far as they are different from those presented in the above quoted
paper. The consideration is restricted to the generalised Poisson
function even though some results can be easily extended. The
author has already commented on some of the results represented
in the sequel at a special meeting of the 17th International Congress
of Actuaries in Edinburgh.

1. Lemma. Let F(x) = F(x; n, S) = e~n 2 M*S**(#)/&! be the
0 r

generalised Poisson function under investigation. If S(x) = 2
1

diSi(x), where S ai = 1 (the functions S$ need not be distribution
functions, neither must the constants a% be real numbers of interval
[0,1]), then

F(x; n, S) = F(. ; ain, Si) * . . . * F(. ; arn, Sr) (x),

as is easily verified by the use of characteristic functions. This
component representation is repeatedly used in the sequel.

2. A Modified Esscher Method. The Esscher method is based on
an observation that the well-known Edgeworth expansion is more
advantageously applicable to a conveniently modified distribution
function instead of the original generalised Poisson function. Let

us assume that the value of F(x) is required at a point xo > J xdF.

x) H. Bohman and F. Esscher: Studies in Risk Theory with Numerical
illustrations Concerning Distribution Functions and Stop Loss Premiums.
Part I.—Skandin. Aktuarietidskrift, 3-4 (1963), pp. 172-225.
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GENERALISED POISSON FUNCTION 121

The Esscher approximation formula is achieved by integrating
over the interval (xo, oo) the approximation

dF(x) = e-n-»z-w* dx 2 ck <D<*> (z), (i)

where p^ = J xk ehxdS; xo = w(3i; Co = i ; Ci = ca = CB = o;

The approximation (i) fits best in the neighbourhood of the
point xo. By taking this observation into account it is natural to
replace the equation xo = n$i, which defines the constant h, by
the equation x = n$i. After this modification h becomes a variable,
and integration gives

F(x2) —

where p*(A) = $ xk ehx dS; A(h) = p4 {h)l?>n$l{h);B(h) = sp|(A)
0

A); A;I = »Pi(Ai); %2 = «(Ji(/te). An example, S(«) = i — e—*
is treated in the next section.

3. Exponent polynomials. By selecting S%{x) = i — e~b*x in the
Lemma, a component representation of F(x) is gained, where each
component is a modified first order Bessel function of imaginary
type. If there is a device available which easily computes a strictly
restricted number of convolutions, the usefulness of this method
depends on how great is the required number r of components,
and how easily each component is computable. The calculation of
one component is essentially the same problem as calculating the
function

x

F(x; n, 1—e~x) — e-n + J f(x)dx,
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122 GENERALISED POISSON FUNCTION

where
(nx)k

k\ {k + i)!'

For small n, say }/nx < 10, the series obtained by integration
is easily calculated directly, but as soon as ]fnx becomes great,
the direct calculation is very laborious. Fortunately in this case
it is possible to use the asymptotic properties of Bessel functions
by means of the expansion

i/« e-flx-Mn)* \ 3 15
flx)= V 7 = ^ 7 = I — ~r ( Vn^)-1 — — (
J v ; r x 2 J/TT I ^ W * L 16 Ky ' 512 v

72765 +
+ Remainder. (3)

It is interesting to compare this expansion with the result
obtained by the modified Esscher method for S(x) = 1 — e~x.
On applying the formula (2) the calculation gives

dF -,/w e-flx-Mn)* [ 3 ]
— = y- r v — 1 — — (I/»*)-H

or the very same as the first two terms of the expansion (3). Since
both the remainder of the expansion (3) and the terms of higher
order, given explicitly, are insignificant unless if ]/nx is quite small,
the modification (2) gives, practically speaking, an exact result
in the case S(x) = 1 — e-x.

4. Step function approximation. If we approximate the function
S(x) in the Lemma by a step function, F(x) becomes a multiple
convolution of ordinary Poisson functions. The usefulness of this
method depends on whether it is possible to rest content with a
relatively small number of steps. In order to test numerically how
many steps are required, it is possible to proceed as follows: Let
step points of the approximation be xi < X2 < . . . {xo = 0) and let

— (mi = J xdSI(S(xi+i) —S(xi)

^appr = n*F4.
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GENERALISED POISSON FUNCTION 123

By replacing this approximation alternatively with functions
F- = U*Fi and.F+ = Il*F'l, where

x

m*X* " ' I , \u

Fi{x) = e x' ) j [ \k\, and

'*'•1
upper and lower bounds for the approximation .Fappr are obtained
in the sense that both the function F and Fappr are "approximately
between" the functions F~ and F+. All of these functions have
the same mean, and the standard deviation is greatest for F+ and
smallest for F~. Owing to the steps this error estimation is not
exact. A part of this question is discussed also in item 7.

5. Monte Carlo method. The idea is to obtain by simulation a
random sample {xi, x%, . . .} of a random variable, the distribution
function of which is F(x). For that purpose the distribution function
of the number of claims

P(N) = e-

is needed, and the functions

S*°* (x) (=S(x) ); S*1* (*); S*** (*);. . .; S** (*)

up to a sufficiently large value of k (in general no more than
2fc «# n + 4 ]/n). For the first simulation a random number N of
claims is generated by means of the distribution P(N) and a random
number generator. Then N is written as a binary number N =
S ajc2k («*; = o or 1), and finally, using the formula

SN* = n*

the first member xi of the sample is obtained by means of S «fc
random numbers and of functions S2** {a^ = 1). By repeating the
procedure sufficiently often a sample of requisite size is obtained;
this sample provides directly an estimate of the function F(x).
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I 2 4 GENERALISED POISSON FUNCTION

This method is suitable in practice particularly if n is small. On the
other hand, if n is large, difficulties arise when an attempt is made
to give an accurate calculation of the tails of the highest convo-
lutions S2**. These problems have been treated by this author in
comments at the Edinburgh meeting quoted in item i. Further
notes are found below.

6. Mixed methods. By using the Lemma the function F can be
partitioned into several components. By applying independently
to each component a proper calculation technique, different kinds
of mixed methods emerge.

Fig. i.

As an example a mixed method is reviewed, which Finnish
insurance companies plan to use in connection with evaluation
of the maximum and minimum amount of a so-called equalisation
reserve. In improving this method decisive importance has been
attached to the desire to obtain a single computer program which
could handle all combinations of n and S occuring in practice.
Let us assume that the function F is represented in component form

F = Fi * F2 * F3,

where Fi consists of claims < E,, F% claims between E, and TJ, and
F3 of claims > yj. The intention is to use a normal approximation
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for the function Fi and the Monte Carlo method for the others.
I t is worthwhile to mention t h a t in this approach it is not useful
to actually calculate the functions Fi, F2 and F3 separately, since
the final convolution Fi * Fz * F3 can also be calculated by simu-
lation simultaneously with other simulations.

The first problem is to find the greatest number \ such tha t F\
can be considered to be a normal distribution. If the company is
very small, then \ = o so t h a t F\ degenerates to the elementary
distribution function e (x). If this is not the case, let

77, (y\ p— V V* L. <?** (v\

where v = nS {1); Si (*) = S{x)jS{Q for x < £. Further let

OLI = J xidSi. A necessary condition in order that F± can be
0

approximated by a normal distribution is that the second term of
the Edgeworth expansion is small, i.e. for all x

I <x3 (X—0
—7= - ^ O <3> < e, say,

hence

OC3/6 |/27TV a.%2 < £.

This condition does not indicate, strictly speaking, that for all x

but for practical purposes it gives a satisfactory test especially in
applications where large values of x are the most important. For
large values of x this condition implies in general that the error is
significantly less than e; moreover the components F2 and F3 then
play a decisive role. *,

This test calls for calculation of integrals J xkdS (k = 1, 2, 3)
0

for a sequence xi < X2 < . . .; the greatest %i satisfying the test
inequality gives a suitable £ value.

A still faster though slightly more inaccurate, and for a small
company perhaps unnecessarily severe test, is derived from the
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126 GENERALISED POISSON FUNCTION

one described by using the following assumption, which intuitively
fits practical cases in a satisfactory way. That is, if the distribution
consisting of claims £i < x < £2 can be approximated by a normal
distribution function, then the distribution consisting of claims
< £2 can also be approximated by a normal distribution. After
simple calculations one obtains for s = .01 the following rule *):
a suitable \ value is the greatest number satisfying the inequality

-S (15) >i32/n.

As soon as the number i; is found, the second limit TJ can be
chosen so that

1 - S fo)
T^s® = -01'say"

If Y) is defined in this way, the simulation of F3 requires in
practical cases such small random numbers N of claims that
uncomfortably high convolutions Sf* are not needed, and conse-
quently no tail difficulties arise.

7. Majorant distributions. In many applications the cumbersome
calculation of a generalised Poisson distribution would be avoidable
if it were possible to find an easily computable distribution function
more dangerous than F(x). The following proposition and notably
its generalisations would solve the problem in quite a satisfactory
way:

Proposition. Let S{M) = 1 and T = E {X}/M, where E {X} =
CO

J xdF. Then for all x > E {X}
0

F(x + M) > G(x),

5
i) Let£ = 52 and lt=lx (t < 1). Let a< = J x*dSI(S(Z)—S(tQ). Then

as/aa3/2 < if—3, so that if v = n(S(Q — S(^)), then the necessary condition
for normal approximation gives a rule v > t—6/727re2. In a sense an optimal
value of t is reached by requiring that the needed mean number of claims
to length unit, ?i as a measure, reaches its minimum. By differentiating the
result t = 5/6 is obtained.

https://doi.org/10.1017/S0515036100010692 Published online by Cambridge University Press

https://doi.org/10.1017/S0515036100010692
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where

G(x) = « - 2 A?
0

If also F(%) is an ordinary Poisson distribution, i e.

r—i
F(x) =e-n ^ — { n > T ) >

0

the proposition can be proved in the following manner:
One may assume M = i. It has to be proved that if x > T then

for all n > T

Vl = GW * = - (« + i) .

T

The function g(n) has steps at points ni = i ———, where i is an
x -\-1

integer. Elsewhere g'(n) = — e-nnl\t\ < o. Hence, it is sufficient
to prove that g(n%—) > G(x) for all i > \x + i]- This requirement
is certainly fulfilled if g(»<—) > g(wM —) for all i > [x + i], since

If x > T, then for all w > ——— T ( = n[X+1-\)
x -\- i

thus
T / f» 1

— — I - ( * + i)
^ + I \ L T V 'J

Consequently for all continuity points n >
n *-i
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128 GENERALISED POISSON FUNCTION

Hence for all i > [x -f- i]

g(m—) = g{nt.i) + J g' {n)dn > g(nt.i) + (

A; + 1 ' \ ' i — i

Since e^'1 > y for all real y, the inequality

-<i"1) /» —IN*"1

results, so that really g(nj—) > g(w«—1—)•

The author does not know whether the proposition is generally
true. Intuitively it seems to be correct, but if this is the case the
proof is probably not simple.
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