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Abstract

The steady, axisymmetric flow induced by a point sink (or source) submerged in an
inviscid fluid of infinite depth is computed and the resulting deformation of the free
surface is obtained. The effect of surface tension on the free surface is determined and
is the new component of this work. The maximum Froude numbers at which steady
solutions exist are computed. It is found that the determining factor in reaching the
critical flow changes as more surface tension is included. If there is zero or a very
small amount of surface tension, the limiting factor appears to be the formation of small
wavelets on the free surface; but, as the surface tension increases, this is replaced by
a tendency for the lowest point on the free surface to descend sharply as the Froude
number is increased.
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1. Introduction

Studies of the manner of withdrawal of water from water storages are important to
aid in understanding the nature of the flow and to enable better management of water
resources, especially in dry climatic zones. Much work has been done in dealing with
stratified water bodies and different geometries. Here we consider the very simple case
of a single, uniform body of water with axisymmetric withdrawal through a submerged
point outlet. In this work, we include the effect of surface tension, the addition of
which not only adds an extra physical dimension to the problem bringing into context
the earlier work without surface tension [3, 26], but also has a regularizing effect on
the calculations.
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418 G. C. Hocking et al. [2]

A recent paper [11] showed that the maximum flow rate at which steady solutions
to this problem exist was significantly over-estimated in the earlier work [3, 26].
More accurate solutions indicate that as soon as small waves begin to form on the
free surface, the steady solutions fail. These results are consistent with unsteady
simulations [19].

It is reasonable to assume that the effect of surface tension will be to dampen these
waves, thus allowing the flow to exist at higher flow rates. Indeed, the results herein
show this to be the case. As the amount of surface tension increases, the maximum
flow rate for steady flow increases.

Early work on withdrawal of water through a line sink (two-dimensional flow)
[2, 18, 22] was focused on a cusp shape that formed on the free surface and was
believed to represent the critical transition (the so-called critical drawdown in the case
of a sink) between a single-layer flow and a two-layer flow, in which both layers are
being withdrawn; for example, air is also drawn into the sink in the case of an air–
water interface. Peregrine [17] was the first to compute single-layer solutions at low
flow rates that had a stagnation point on the free surface directly above the sink. In two
dimensions, it is possible to show that for ideal fluid flow the only possible solutions
are either a cusp shape or a stagnation point flow so long as the flow is restricted to a
single layer [23].

Cusped solutions in more general geometries for a line sink were found [7, 23, 25],
while Vanden Broeck et al. [16, 27] and Forbes and Hocking [4, 9] computed further
solutions with a stagnation point on the free surface. Vanden Broeck and Keller [25]
found many solutions with a cusp shape in a fluid of finite depth, but in all cases the
situation with a fluid of infinite depth gave cusp solutions at a unique flow rate [7, 23].
A gap was found between the maximum flow rate at which solutions with a stagnation
point and solutions with a cusp were obtained. When surface tension was included
in the problem [4, 9], a fold in the parameter space led to multiple solutions and a
maximum flow rate beyond which no steady solutions with a stagnation point could be
obtained.

Some of this uncertainty regarding critical drawdown of the free surface for
flow into a line sink was resolved by Hocking and Forbes [8, 10], who computed
steady, two-layer supercritical flows. They found that as the (supercritical) flow rate
was reduced, the limiting two-layer flow approached the single-layer cusped-surface
solutions, seeming to verify that the cusped solutions are indeed the critical transition
flows.

In the corresponding three-dimensional axisymmetric case of flow into a point
sink, attempts to compute cusp-like solutions [5] met with limited success, with such
solutions only found over a narrow range in parameter space. Forbes and others
[3, 6, 12, 26] considered the steady, axisymmetric flow into a point sink submerged
beneath a free surface in semi-infinite and finite-depth fluid domains. They found
that there is a maximum flow rate beyond which steady solutions do not exist, but no
evidence of drawndown surfaces was obtained.
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[3] Flow into a point sink with surface tension 419

Recent work by Hocking and Zhang [13] in the analogous flows into a point sink
in porous media have provided solutions in the steady, supercritical flow regime and
shown the relationship between single-layer and two-layer flows, but such solutions
have not been obtained in the surface-water case.

In the three-dimensional unsteady flow due to a point sink, Tyvand [24] performed
an analysis for small time, while Xue and Yue [28] and Lubin and Springer [15]
did numerical calculations. More recently, Stokes et al. [20, 21] performed detailed
computations to determine the critical drawdown values for withdrawal into point
and ring sinks. Their work showed that it is not simply the case that a constant flow
rate would progress through some unsteady flow history before settling into a steady
state or to drawdown. In fact, it has been shown that there are a number of possible
outcomes including nonuniqueness in parameter space, jet and splash formation, and
multiple critical drawdown values, depending on flow history.

It is, therefore, still of interest to consider the steady-flow problem. Our concern
here is with the extension of the existing steady-flow results for a point sink to consider
the effect of surface tension. In the two-dimensional case (line sink [4, 9]), this was
found to provide considerable information about the flows including nonuniqueness in
the solution space. Holmes and Hocking [14] recently showed that this nonuniqueness
also occurs when the submerged sink is situated in a flowing stream.

In the current work, we find that for very small surface tension the results are much
the same as the case with no surface tension. However, with even moderate surface
tension the limiting steady solutions have a large dip in the free surface near to (but
not directly above) the outlet. This dip increases in depth sharply as the maximum
Froude number is approached. The presence of surface tension stabilizes the flow, so
that steady solutions exist at higher flow rates.

2. Problem formulation

Consider the steady, irrotational, axisymmetric flow of an inviscid, incompressible
fluid beneath a free surface. The flow is driven by a point sink of strength m situated at
a depth H beneath the undisturbed level of the free surface. Under these assumptions,
the problem can be formulated in terms of a velocity potential φ(r, z), so that the radial
velocity component is u = φr and the vertical velocity component is v = φz, where r
is a radial coordinate centred on the location of the point sink and z is the vertical
coordinate with z = 0 corresponding to the level of the free surface if there is no flow.
The sink sits at a depth of z = −H and the surface is subject to surface tension T , while
the fluid is semi-infinite in extent (not bounded below).

Nondimensionalizing the velocity and length with respect to m/H2 and H,
respectively, where the quantity m is the total flux from the full point sink, the problem
is to solve

∇2φ(r, z) = 0, z < η(r), (r, z) , (0,−1), (2.1)
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where z = η(r) is the nondimensional elevation of the free surface, subject to

F2

2
(u2 + v2) + η − β

(rη′′ + η′(1 + η′2))
r[1 + η′2]3/2 = 0 on z = η(r), (2.2)

where the last term on the left-hand side represents the effect of surface tension, and

φrη
′ − φz = 0 on z = η(r), (2.3)

where the subscript denotes partial differentiation, is the usual kinematic condition that
states that flow cannot be through the surface.

These equations include the main parameters that control this flow, the Froude
number, F, and the nondimensional surface tension, β, given by

F =

( m2

gH5

)1/2
, β =

T
ρgH2 , (2.4)

in which ρ is the fluid density and g is the gravitational acceleration. In most
cases, the Froude number can be thought of as an effective flow rate; large F values
corresponding to strong flow.

In the limit as the point sink (with unit strength) is approached at (r, z) = (0,−1), the
velocity potential should take the form

φ→
1

4π
√

r2 + (z + 1)2
. (2.5)

A change of sign reverses the flow direction from a sink flow to a source flow.
However, in the case of steady flow, the quadratic nature of the velocity term in the
dynamic condition (2.2) means that solutions generated apply for both source and sink
flows.

3. Asymptotic solution

It is of interest to derive the solution for small Froude number and surface tension,
both to analyse the flow and also for verification of the numerical solutions computed
in the next section. Assuming that the Froude number is small, and hence that the
disturbance to the free surface is small, we can linearize about a flat surface. Consider
the expansions in powers of the Froude number:

φ(r, z) = φ0(r, z) + F2φ1(r, z) + O(F4),
η(r) = F2Z1(r) + F4Z2(r) + O(F6).

Substituting these expansions into the conditions described above (equations (2.1)–
(2.5)), at first order we find that the potential φ0 satisfies Laplace’s equation (2.1) and
the normal-derivative condition φ0z = 0 on z = 0. Together with the condition (2.5),
the solution for φ0 is found to be

φ0(r, z) =
1

4π

[ 1√
r2 + (z + 1)2

+
1√

r2 + (z − 1)2

]
,

where the second term represents an image sink above the free surface.
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The approximation at O(F2) to equation (2.2) yields a second-order ordinary
differential equation in Z1(r) of the form

βZ′′1 (r) +
β

r
Z′1(r) − Z1(r) =

1
2
φ2

0r(r, 0) =
r2

8π2(r2 + 1)3 (3.1)

with boundary conditions Z′1(0) = 0 and Z1 → 0 as r→∞.
It is possible to solve this problem exactly using Hankel transforms. If we let

Z1(r) =

∫ ∞

0
A(k)J0(kr)k dk, (3.2)

and noting that from Bessel’s equation J′′0 (kr) + (1/kr)J′0(kr) = −J0(kr), then (3.1)
transforms, after re-arrangement, to

−

∫ ∞

0
k(1 + βk2)A(k)J0(kr) dk =

r2

8π2(r2 + 1)3 ,

which can be inverted (Hankel inverse transform) to give

A(k) = −
1

8π2(1 + βk2)

∫ ∞

0

r3

(r2 + 1)3 J0(kr) dr.

After substitution into (3.2), this can be converted to the form

Z1(r) =
F2

64π2

∫ ∞

0

k2

βk2 + 1
[kK0(kr) − 2K1(kr)]J0(kr) dk,

where K0 and K1 are Bessel K functions of orders 0 and 1, respectively [1]. These
integrals do not appear to be easily solved, but it is a simple matter to evaluate them
using quadrature.

Figure 1 shows a comparison between the linear solution and the full numerical
solution for Froude numbers F = 1.5, 3 and 4.5 and surface tension β = 0.02. The
linear solution compares well for even quite large values of F = 3 and 4.5. In the case
F = 1.5, there is only a slight discrepancy at the bottom of the dip around the central
stagnation point. As F increases, the comparison is not so good, as we would expect,
with differences showing at the point of highest curvature near the bottom of the dip at
around r ≈ 0.7. The nonlinear effect is to pull the surface downward more, as it did in
the analogous case of a line sink [4, 9]. It is this effect which is later shown to cause
the breakdown of the solutions when surface tension is included.

4. The numerical method

To consider the full nonlinear steady flow problem we need to implement a
numerical scheme using an approach similar to that of [3] and [12]. The flow is
assumed to be axisymmetric and an integral equation is derived for the elevation and
velocity potential on the free surface.

https://doi.org/10.1017/S1446181116000018 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181116000018
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Figure 1. Comparison between the linear and the full numerical solutions for the surface shape for Froude
numbers F = 1.5, 3 and 4.5 (curves top to bottom in order), with surface tension β = 0.02. The solid lines
are the full nonlinear solution in each case and the dashed are the linear. The limiting solution for this
case is at F ≈ 5.5.

4.1. Formulation The formulation of the integral equation follows that given by
Forbes and others [3, 11, 12]. The numerical scheme is described in detail by Hocking
et al. [11]. For convenience, we briefly outline the derivation here.

We use Green’s second identity to derive an integral equation for the unknown
analytic function Φ(r, z) and surface elevation z = η(r). Let Q be a fixed point on the
free surface with coordinates (r, θ, η(r)) and P( ρ, ξ, ζ) be another point which is free to
move over the same surface. Since Φ is an analytic function over the full region except
at the sink itself, we can define another function Ψ = 1/RPQ which is also analytic,
except when P and Q are the same point, that is,

Ψ =
1

RPQ
=

1
[r2 + ρ2 − 2rρ cos(ξ − θ) + (z − ζ)2]1/2 .

Invoking Green’s second identity and noting that both Φ and Ψ satisfy Laplace’s
equation throughout the region enclosed by ∂V ,"

∂V

[
Φ
∂Ψ

∂n
− Ψ

∂Φ

∂n

]
dS = 0,

where n denotes the outward normal direction, and ∂V consists of the surface of the
free surface S T with the point Q carefully excluded by a small hemispherical surface,
S Q, and a small sphere about the sink, S ε .
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It is not difficult to show that the contributions from all of these surfaces leads to an
integral equation of the form

2πΦ(Q) =
1

(r2 + (z + 1)2)1/2 −

"
S T

Φ(P)
∂

∂n

( 1
RPQ

)
dS P.

Following the work of Forbes and Hocking [3], the surface integral can be specified
in terms of the variables of the problem as

2πΦ(Q) =
1

(r2 + (z + 1)2)1/2 −

∫ ∞

0
Φ(P)K(a, b, c, d) dρ,

in which the kernel function is

K(a, b, c, d) = ρ

∫ 2π

0

a − b cos(ξ − θ)
[c − d cos(ξ − θ)]3/2 dξ

and the intermediate quantities a to d are defined as

a = ρηρ(P) − (η(P) − η(Q)), b = rηρ(P),
c = ρ2 + r2 + (η(P) − η(Q))2, d = 2rρ.

Forbes and Hocking [3] reduced this to the form

K(a, b, c, d) =
4ρ

d
√

c + d

[
bK

( 2d
c + d

)
+

(ad − bc
c − d

)
E
( 2d
c + d

)]
,

where K and E are the complete elliptic integrals of the first and second kinds as
defined by Abramowitz and Stegun [1]. At this point we note that E is well behaved
over the interval of interest, but that K has a logarithmic singularity as P→ Q in the
integral over the free surface.

This problem was solved using a formulation based on arclength along the surface,
so that s is the distance from ρ = 0 to Q, and σ is the distance along the surface to P.
The standard formula (dr

ds

)2
+

(dη
ds

)2
= 1 (4.1)

defines the arclength s in terms of r and η. We define a surface potential φ(s) and,
applying the chain rule, we find that, along the surface,

∂φ

∂r
= Φr(r, η) + Φz(r, η)

dη
dr
.

Eliminating Φz from the Bernoulli equation (2.2) and the kinematic condition (2.3)
and combining leads to a single relation

1
2

F2
(dφ

ds

)2
+ η(s) − β

[
η′′(s)
r′(s)

+
η′(s)
r(s)

]
= 0 on z = η(r). (4.2)
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Rewriting the integral equation in terms of arclength,

2πφ(s) =
1

(r2(s) + (η(s) + 1)2)1/2 −

∫ ∞

0
φ(σ)K(A, B,C,D) dσ, (4.3)

where

A = r(σ)η′(σ) − r′(σ)(η(σ) − η(s)), B = r(s)η′(σ),
C = r2(σ) + r2(s) + (η(σ) − η(s))2, D = 2r(s)r(σ).

Forbes and Hocking [3] showed that this integral equation could be replaced by the
nonsingular form

2πφ(s) =
1

(r2(s) + (η(s) + 1)2)1/2 −

∫ ∞

0
(φ(σ) − φ(s))K(A, B,C,D) dσ, (4.4)

as the extra term can be shown to be zero. This version allows an accurate quadrature
scheme to be used (with care as σ→ s), and in this work cubic spline integration
was used for all calculations. It is the results of this form (4.4) that are described in
this paper rather than the product integration form described by Hocking et al. [11],
although the results obtained using that method are almost identical to those presented
here.

This integral equation is coupled with the condition (4.1), subject to (4.2), to give
the complete formulation of the problem. The arclength formulation allows the method
to find multiple-valued or overhanging free-surface shapes if they exist.

4.2. Computational details The equations derived in the previous section are
highly nonlinear because of the quadratic dependence on velocity, the nonlinear
surface-tension term and the fact that the surface shape is unknown. The equations
were, therefore, solved numerically using collocation. A grid of points was chosen
at values of arclength s = s0, s1, s2, s3, . . . , sN . An initial guess for the surface shape
η = η0, η1, η2, . . . , ηN and potential function φ = φ0, φ1, . . . , φN on the surface was made
and used to compute the error in the integral equation (4.3) and the condition on the
surface (4.2). The initial guess was then updated using a damped Newton’s method
until the error in all equations dropped below 10−8.

The numerical integration was performed using the method described by Forbes and
Hocking [3], but with an algebraically increasing grid spacing. In a typical simulation,
1000 evenly spaced points were used in the interval s ∈ [0, 5], and then another
1000 were spaced with a slowly increasing spacing until sN ≈ 250. As explained by
Hocking et al. [11], the value of sN needs to be very large to obtain convergence as
the computational window is increased. At very small values of surface tension β,
problems of convergence similar to those discussed in that paper [11] needed to be
overcome, but for even moderate values of surface tension the convergence behaviour
improved markedly. A number of simulations were performed to verify the results
using different computational windows and grid spacings. The values suggested above
as typical were found to produce consistent results.
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Figure 2. Free-surface shapes for β = 0.01 with sN = 10 and different values of Froude number. The last
case, F = 5.55, is the highest value for which steady solutions were obtained. It appears that the surface
is deepening quickly at around r = 0.7. These shapes are typical of all of the moderate surface tension
solutions.

5. Results

As indicated above, the solutions for the case where surface tension approaches
zero are identical to those obtained by Hocking et al. [11]. The limiting steady value of
F ≈ 3 is significantly lower than those obtained by Forbes and Hocking [3] (F ≈ 6.4)
and Vanden Broeck and Keller [26] (F ≈ 5.4). Computations with small values of
surface tension were found to behave similarly. For example, using β < 0.001 gave
solutions very similar to those with zero surface tension, and the limiting value of
Froude number, while slightly higher, again seems to occur at the first sign of the
formation of small wavelets on the surface. The inclusion of surface tension causes
the central point above the sink to move downward slightly increasingly as the surface
tension increases. In all cases, there is a dip that rings the central point at a distance
of r ≈ 0.7. The horizontal location of this dip is almost unaffected by different Froude
numbers and surface-tension values. However, the depth of the dip is lower for higher
surface-tension values at a fixed Froude number due to the stronger attractive force at
the most curved parts of the surface, as can be seen in the surface condition (4.2).

Figure 2 shows the shape of the free surface as the Froude number is increased
for β = 0.01. Importantly, the circular dip at around r ≈ 0.7 becomes deeper at an
increasingly rapid “rate” as the Froude number increases. The limiting solution seems
to correspond to the formation of a much stronger dip. Figure 3 shows the depth of
the bottom of the dip as a function of Froude number at several different values of
surface tension β. The behaviour of the curves suggests that for moderate surface
tension the change in dip depth with Froude number becomes vertical. The point at
which these curves become almost vertical corresponds to the limiting Froude number.
Figure 4 shows the dependence of the maximum Froude number on surface tension.
The maximum Froude number increases as the surface tension increases, as it did
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Figure 3. Plot of the deepest point on the free surface against Froude number for several different surface-
tension values β = 0, 0.005, 0.01 and 0.02. The depth increases more quickly as F gets closer to the
limiting steady value except in the case β = 0, where it appears to be the formation of small waves that
limits the steady solutions.

Figure 4. Plot of the maximum Froude number for each different value of surface tension. The value
increases as the surface tension increases.

in the two-dimensional case, but here there was no evidence of the nonuniqueness
found in that case [4, 9]. The maximum values of Froude number agree quite well
with the values at which steady solutions could be obtained using full unsteady
simulations [20].
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6. Conclusions

We have considered the steady flow generated by a point sink or source submerged
beneath a free surface. The numerical scheme has been verified by comparison with a
linearized solution and then used to investigate the behaviour of the flow. The new
results in this work are due to the inclusion of surface tension. At low values of
surface tension, the behaviour was almost identical to the case with none. However,
for moderate values around β = 0.002 and larger, it was found that the formation of a
deepening trough appeared to be the cause of the cessation of the steady solutions. No
evidence of a fold bifurcation such as that found in the case of flow into a line sink
[4, 9] was found in this work.

The stability of these steady solutions has not been considered here, but it would
certainly be of interest. The unsteady simulations presented by Stokes et al. [20]
showed that the history of the flow was important in determining the outcome.
A sudden initiation of the sink flow could cause an immediate and “catastrophic”
drawdown of the free surface, if the flow rate was sufficient, but if the flow was
increased slowly enough then this flow rate could be surpassed without drawdown,
eventually evolving to a steady state like those computed here. The maximum values
of Froude number obtained in that work, with the slowly evolving flow, agree quite
well with the limiting solutions obtained in the current work.

References
[1] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions (Dover, New York, 1970).
[2] A. Craya, “Theoretical research on the flow of nonhomogeneous fluids”, La Houille Blanche 4

(1949) 44–55; doi:10.1051/lhb/1949017.
[3] L. K. Forbes and G. C. Hocking, “Flow caused by a point sink in a fluid having a free surface”,

J. Aust. Math. Soc. Ser. B 32 (1990) 231–249; doi:10.1017/S0334270000008456.
[4] L. K. Forbes and G. C. Hocking, “Flow induced by a line sink in a quiescent fluid with surface-

tension effects”, J. Aust. Math. Soc. Ser. B 34 (1993) 377–391; doi:10.1017/S0334270000008961.
[5] L. K. Forbes and G. C. Hocking, “On the computation of steady axi-symmetric withdrawal from a

two-layer fluid”, Comput. & Fluids 32 (2003) 385–401; doi:10.1017/S0022112098008805.
[6] L. K. Forbes, G. C. Hocking and G. A. Chandler, “A note on withdrawal through a point sink in

fluid of finite depth”, J. Aust. Math. Soc. Ser. B 37 (1996) 406–416;
doi:10.1017/S0334270000008961.

[7] G. C. Hocking, “Cusp-like free-surface flows due to a submerged source or sink in the presence of
a flat or sloping bottom”, J. Aust. Math. Soc. Ser. B 26 (1985) 470–486;
doi:10.1017/S0334270000004665.

[8] G. C. Hocking, “Supercritical withdrawal from a two-layer fluid through a line sink”, J. Fluid
Mech. 297 (1995) 37–47; doi:10.1017/S022112095002990.

[9] G. C. Hocking and L. K. Forbes, “Withdrawal from a fluid of finite depth through a line sink,
including surface tension effects”, J. Engrg. Math. 38 (2000) 91–100;
doi:10.1023/A:1004612117673.

[10] G. C. Hocking and L. K. Forbes, “Supercritical withdrawal from a two-layer fluid through a line
sink if the lower layer is of finite depth”, J. Fluid Mech. 428 (2001) 333–348;
doi:10.1017/S0022112000002780.

[11] G. C. Hocking, L. K. Forbes and T. E. Stokes, “A note on steady flow into a submerged point
sink”, ANZIAM J. 56 (2014) 150–159; doi:10.1017/S1446181114000303.

https://doi.org/10.1017/S1446181116000018 Published online by Cambridge University Press

http://dx.doi.org/10.1051/lhb/1949017
http://dx.doi.org/10.1017/S0334270000008456
http://dx.doi.org/10.1017/S0334270000008961
http://dx.doi.org/10.1017/S0022112098008805
http://dx.doi.org/10.1017/S0334270000008961
http://dx.doi.org/10.1017/S0334270000004665
http://dx.doi.org/10.1017/S022112095002990
http://dx.doi.org/10.1023/A:1004612117673
http://dx.doi.org/10.1017/S0022112000002780
http://dx.doi.org/10.1017/S1446181114000303
https://doi.org/10.1017/S1446181116000018


428 G. C. Hocking et al. [12]

[12] G. C. Hocking, J.-M. Vanden Broeck and L. K. Forbes, “Withdrawal from a fluid of finite depth
through a point sink”, ANZIAM J. 44 (2002) 181–191; doi:10.1017/S1446181100013882.

[13] G. C. Hocking and H. Zhang, “A note on axisymmetric supercritical coning in a porous medium”,
ANZIAM J. 55 (2014) 327–335; doi:10.1017/S1446181114000170.

[14] R. J. Holmes and G. C. Hocking, “A line sink in a flowing stream with surface tension effects”,
Euro. J. Appl. Maths (in press); doi:10.1017/S0956792515000546.

[15] B. T. Lubin and G. S. Springer, “The formation of a dip on the surface of a liquid draining from a
tank”, J. Fluid Mech. 29 (1967) 385–390; doi:10.1017/S0022112067000898.

[16] H. Mekias and J.-M. Vanden Broeck, “Subcritical flow with a stagnation point due to a source
beneath a free surface”, Phys. Fluids A 3 (1991) 2652–2658; doi:10.1063/1.858154.

[17] H. Peregrine, “A line source beneath a free surface”, Report 1248, Mathematics Research Centre,
University of Wisconsin, Madison, 1972,
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=AD0753140.

[18] C. Sautreaux, “Mouvement d’un liquide parfait soumis à lapesanteur. Détermination des lignes de
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