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Short-wave group forcing is a major driving mechanism of infragravity waves. The
subharmonic response to wave group forcing approaches resonance in shallow water where
the group velocity is equal to the shallow-water wave-propagating speed. Currently, there
is a lack of understanding of the connection between the free and bound components of
group-induced infragravity waves and the consistency among existing solutions for off-
and near-resonance conditions in intermediate and shallow water. Here, a unified solution
of group-induced subharmonics is derived based on Green’s function for the first time.
The new solution is valid for any resonance intensity and is able to describe group-induced
subharmonic behaviour at all water depths consistently from a new angle. The proposed
solution reduces to existing solutions for intermediate depth (Longuet-Higgins & Stewart,
J. Fluid Mech., vol. 13, 1962, pp. 481–504; Zou, Phys. Oceanogr., vol. 41, 2011, pp.
1842–1859), shallow water and/or over a plane sloping beach (Van Leeuwen, PhD thesis,
TU Delft, 1992; Schäffer, J. Fluid Mech., vol. 247, 1993, pp. 551–588; Janssen et al.,
J. Geophys. Res., vol. 108, 2003, p. 3252; Contardo et al., J. Phys. Oceanogr., vol. 51,
2021, pp. 1465–1487; Liao et al., J. Phys. Oceanogr., vol. 51, 2021, pp. 2749–2765). Unlike
previous solutions, the Green’s function-based solution describes all subharmonics as free
subharmonics continuously radiated away from each point source in the group-induced
forcing field determined by wave radiation stress gradients. The superposition of all
these free subharmonics yields so-called bound subharmonics by previous studies due to
group-modulated emission of each free subharmonic through the source field bound to the
wave group. Therefore, this solution provides theoretical evidence that the group-induced
subharmonic at any observation point is dependent on the surrounding radiation stress field
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and topography. Under full-resonance conditions in shallow water, downwave-propagating
subharmonics excited at all source locations interfere with each other constructively;
therefore, their superposed amplitude is proportional to the travel distance of wave
groups. Combined with the conventional moving-breakpoint forcing model, the predicted
amplitude of the subharmonic in the surf zone by the present solution is in good agreement
with laboratory observations.

Key words: surface gravity waves

1. Introduction

Infragravity waves of frequency 0.004–0.04 Hz were first identified outside the surf
zone by Munk (1949) and Tucker (1950) from field observations. Since then, numerous
researches have confirmed that infragravity waves can be a dominant forcing factor for
nearshore water motion (Stockdon et al. 2006), coastal inundation (Cheriton, Storlazzi
& Rosenberger 2016; Henderson et al. 2022) and sediment transport (Roelvink et al.
2009; Palmsten & Splinter 2016). Infragravity waves may cause resonant response of
harbours (Diaz-Hernandez et al. 2015), marine structures (Zhao et al. 2022) and ice shelves
(Bromirski et al. 2017). Readers are referred to Bertin et al. (2018) for a full review of the
generation mechanisms and impacts of infragravity waves.

A ubiquitous mechanism for the generation of nearshore infragravity waves is the
second-order nonlinear forcing of short-wave groups. Longuet-Higgins & Stewart (1962)
(hereafter referred to as LHS62) showed that infragravity waves of the scale of short-wave
groups are induced by nonlinear group forcing through the wave radiation stress gradient.
Study LHS62 provided an equilibrium solution for one-dimensional (1-D) group-induced
infragravity waves on a flat bottom, which is the bound subharmonic in antiphase with the
group. The equilibrium solutions for the two-dimensional counterpart were proposed by
Hasselmann (1962) and McAllister et al. (2017).

As wave groups propagate over variable depth, however, the equilibrium solution is no
longer valid. For instance, with diminishing depth on a sloping beach towards the shore,
the incident bound infragravity waves increasingly lag behind wave groups and gain more
energy through nonlinear interaction with wave groups outside the surf zone, as observed
in laboratory experiments (Van Leeuwen 1992; Janssen, Battjes & van Dongeren 2003;
Guérin, de Bakker & Bertin 2019), numerical modelling (List 1992; Melito et al. 2022;
Liu et al. 2023) and field experiments (Elgar & Guza 1985; Masselink 1995; Contardo
& Symonds 2013; Inch et al. 2017). This process of energy transfer from primary waves
to infragravity waves is subject to offshore wave conditions and tidal modulation of local
depth (Thomson et al. 2006; Bertin et al. 2020) even in a microtidal environment (Melito
et al. 2022). The key indicator of the occurrence of energy transfer is the non-equilibrium
phase coupling between infragravity waves and wave groups due to the presence of
additional infragravity waves that lag the equilibrium bound subharmonic by π/2. In
intermediate water, the additional wave manifests itself as a bound subharmonic induced
by the perturbation of the bottom slope (Bowers 1992; Van Leeuwen 1992; Janssen
et al. 2003; Zou 2011); in shallow water, it is interpreted as a free subharmonic (Mei &
Benmoussa 1984; Nielsen & Baldock 2010; Moura & Baldock 2019; Contardo et al. 2021).
Free infragravity waves can also be generated in the surf zone as dynamic wave-induced
set-up through the moving-breakpoint forcing mechanism (Symonds, Huntley & Bowen
1982; Contardo, Symonds & Dufois 2018).
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Analytical solution for group-induced infragravity waves

For wave groups in intermediate water depth over a mildly sloping bottom, Janssen
et al. (2003) and Zou (2011) obtained analytical solutions to the 1-D linearised
shallow water equation with a forcing term of radiation stress curvature through the
perturbation approach. The off-resonant solution of Janssen et al. (2003) shows that the
phase lag of the infragravity wave with respect to group forcing shifts away from π toward
1.5π as depth decreases. Using a multiscale Wentzel–Kramers–Brillouin expansion
method, Zou (2011) proposed a second-order analytical solution that is the sum of an
equilibrium bound subharmonic described by the LHS62 solution for flat bottom, a
topography-induced bound subharmonic in quadrature with the LHS62 solution and two
free subharmonics propagating in opposite directions due to scattering at the edge of finite
topography.

As the group propagating velocity approaches the free long-wave propagating velocity in
shallow water, resonance occurs between group forcing and subharmonics propagating in
the same direction as wave groups, causing the solutions based on the perturbation method
to diverge. In this case, implicit solutions in integral form were derived by Symonds
et al. (1982), Van Leeuwen (1992) and Schäffer (1993) for a plane beach, and by Liao
et al. (2021) for arbitrary topography with a mildly sloping bottom. The near-resonant
solution of Liao et al. (2021) indicates that, with diminishing depth on a plane beach,
the group-induced subharmonic asymptotically leads the group forcing by π/2 at leading
order, and its amplitude increases as ∝ h−1 (h = depth), a shoaling rate lower than the
shallow-water limit of the LHS62 solution (∝ h−2.5) but higher than the free infragravity
wave growth rate (∝ h−0.25, known as Green’s law; Green 1838). Contardo et al. (2021)
(hereinafter CLHRDS21) proposed an alternative solution for shallow water of variable
depth, by discretising the topography into many steps, and applying the LHS62 solution
on both sides of each step to derive the free subharmonics scattered due to the abrupt depth
change. Study CLHRDS21 derived the total subharmonic as the superposition of the local
bound subharmonic given by the LHS62 solution and the free subharmonics scattered
from all the steps through which the wave groups have travelled.

However, the transition of group-induced subharmonic from weak resonance in
intermediate depth to strong resonance in shallow water is currently not well understood,
because there is no clear dividing line between the parameter regimes of the
above-mentioned models. This deficit directly leads to a debate on the releasing process
of bound subharmonics in shallow water. More specifically, it is often assumed that the
group-bounded subharmonic is released when the primary waves begin to break (e.g.
Masselink 1995; Bertin et al. 2018), while Baldock (2012) argued that it is released
when the group velocity equalled shallow water wave velocity so that resonance occurs,
regardless of wave breaking. In addition to the releasing condition, the underlying
mechanism for the transition from bound subharmonic to free mode during the releasing
process also remains unclear.

To understand the mutual transition between group-induced subharmonics in weak and
strong resonance, it is necessary to unify the aforementioned theoretical solutions in order
to provide a holistic view of the physical process of the generation of group-induced
subharmonics at all water depths. Although the general form of the solution for
group-induced subharmonics over 1-D topography was derived by Schäffer (1993) by
the method of variation of parameters (equation (4.10) therein), it was only applied
to the special case of bichromatic waves normally incident on a plane beach, leaving
its consistency with existing solutions and, more importantly, its physical interpretation
unaddressed. This issue is crucial for understanding the behaviour of group-induced
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subharmonics at all water depths, which forms the motivation and focus of the present
study.

In the present work, the solution of group-induced subharmonics is derived based
on the Green’s function method for the first time, which allows for a novel consistent
physical interpretation of generating mechanisms of group-induced subharmonics at all
water depths. Green’s function is the response function of a linear system to a unit forcing
at a point in space or time (Duffy 2015). It is a flexible and powerful mathematical
tool for solving non-homogeneous linear differential equations. The forcing term of the
equation is treated as spatially distributed unit point forcing weighted by local forcing
and thus the response is the weighted linear superposition of responses to all unit point
forcing. Green’s function has been applied in a wide range of problems related to water
waves, including harbour resonance (Miles 1974), internal waves (Voisin 1991), waves
over continental shelf (Miles 1972), wave–structure interactions (Telste & Noblesse 1986;
Wang, Ning & Zou 2020) and numerous studies based on the boundary element method
(e.g. Longuet-Higgins & Cokelet 1976; Liu et al. 2011; Ning et al. 2015; Zheng et al. 2020).
Using the present generalised solution proposed, existing solutions (Longuet-Higgins &
Stewart 1962; Van Leeuwen 1992; Schäffer 1993; Janssen et al. 2003; Zou 2011; Contardo
et al. 2021; Liao et al. 2021) for non-breaking waves are unified. Physically, the solution
treats the group-forcing field as a sum of force pulses distributed in time and space,
which constantly emit free waves away from each spatial point in the wave field. It is
shown that the group-induced subharmonic, previously taken as the sum of bound and
free subharmonics, may be interpreted as the results of the emission, propagation and
interference of all the free subharmonics generated by the point forcing in the domain.

In the following, we first describe the problem considered and introduce the governing
equations in § 2. In § 3, the unified solution of the group-induced subharmonic is derived
based on Green’s function, along with the physical interpretation of its behaviour in
intermediate and shallow water. Unification of existing solutions through the present
solution is shown in § 4. Discussions on the generation and formation of group-induced
subharmonic from the perspective of Green’s function, the influence of topography, the
effect of moving-breakpoint forcing and possible extensions of the solution are presented
in §§ 5 and 6. Main conclusions are drawn in § 7.

2. Governing equations

By introducing the concept of radiation stress to represent the phase-averaged residual
momentum flux due to the presence of waves, LHS62 proposed the theory of
low-frequency subharmonic induced by the nonlinear group forcing of radiation stress.
For regular waves under non-breaking conditions, the radiation stress S accurate to second
order in wave steepness is expressed as (Longuet-Higgins & Stewart 1960)

S = E
(

2cg

c
− 1

2

)
, (2.1)

where E denotes the wave energy, cg is the wave group velocity and c is the wave phase
speed.

Consider a unidirectional bichromatic wave group propagating in the positive direction
of x with the surface elevation

η (x, t) = 1
2 A (x, t) ei(

∫ x k dx′−ωt) + c.c., (2.2)
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Analytical solution for group-induced infragravity waves

where

A (x, t) = A1 (x) e
i
2(
∫ x kg dx′−ωgt) + A2 (x) e− i

2(
∫ x kg dx′−ωgt), (2.3)

A1 and A2 are the real amplitudes of the two wave components; A(x, t) is the slowly varying
modulated complex amplitude; k and ω are the wavenumber and radian frequency of the
short wave; kg and ωg are the wavenumber and radian frequency of the wave group; and
c.c. denotes the complex conjugate and will be omitted hereinafter. Assuming that the
two wave frequencies are close to each other, substituting (2.3) into the equation of wave
energy

E(x, t) = 1
2ρg |A(x, t)|2 , (2.4)

where g is the gravitational acceleration and ρ is the water density, gives

E(x, t) = 1
2ρg

[
A2

1(x) + A2
2(x) + 2A1(x)A2(x) cos

(∫ x
kg d x′ − ωgt

)]
. (2.5)

Equation (2.5) can be decomposed into a steady component and an unsteady oscillatory
component. With the cos function expressed in complex form, the oscillatory wave energy
is given by

Ẽ (x, t) = 1
2ρgA1 (x) A2 (x) exp

(
i
(∫ x

kg d x′ − ωgt
))

. (2.6)

Assuming negligible breaking and bottom-friction-induced dissipation which may have
a significant effect on wave radiation stress (Zou, Bowen & Hay 2006), the evolution of
wave energy is governed by (see (2.6) in Mei & Benmoussa (1984) and (2.4a) in Zou
(2011))

∂

∂t
E + ∂

∂x

(
cgE

) = 0, (2.7)

and substituting (2.5) into (2.7), we have

A2
1 + A2

2 = [(A2
1 + A2

2)cg]0

cg
, A1A2 = (A1A2cg)0

cg
, (2.8a,b)

where the subscript 0 denotes quantities at the incoming boundary of waves.
Substituting (2.6) into to (2.1) yields the oscillating component of the radiation stress:

S̃ (x, t) = 1
2 Ŝ (x) e−iωgt, (2.9)

where

Ŝ (x) = ρgA1A2

(
2cg

c
− 1

2

)
exp

(
i
∫ x

kg d x′
)

=
∣∣∣Ŝ (x)

∣∣∣ exp
(

i
∫ x

kg d x′
)

. (2.10)

Substituting (2.8b) into (2.10), we obtain∣∣∣Ŝ (x)
∣∣∣ = ρg

(
A1A2cg

)
0

(
2
c

− 1
2cg

)
. (2.11)

Following LHS62 (equations (3.33) and (3.34) therein), the 1-D linearised mass and
momentum conservation equations for the subharmonic under the forcing of radiation
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Incident waves

Primary waves

Subharmonics

z

x

h(x)

η(x, t)

ξ̃(x, t)

Figure 1. Definition sketch of variables for wave groups propagating over variable bottom.

stress are

ρ
∂ξ̃

∂t
+ ∂M̃

∂x
= 0, (2.12)

∂M̃
∂t

+ ρgh
∂ξ̃

∂x
= −∂ S̃

∂x
, (2.13)

where ξ̃(x, t) and M̃(x, t) are the surface elevation and mass flux of the subharmonic,
respectively, and h is the still water depth (see figure 1 for the definition of variables).
Equations (2.12) and (2.13) are equivalent to the linearised equations (2.1) and (2.2) in
Schäffer (1993). Eliminating M̃ in (2.12)–(2.13) yields

∂2ξ̃

∂t2
− g

∂

∂x

(
h
∂ξ̃

∂x

)
= 1

ρ

∂2S̃
∂x2 . (2.14)

Equation (2.14) is the governing equation of the surface elevation of group-induced
subharmonics for 1-D wave groups propagating over a depth small compared with the wave
group length (Longuet-Higgins & Stewart 1962). For non-breaking waves outside the surf
zone, (2.9)–(2.11) are adopted, and (2.14) is consistent with the governing equation (2.11)
in Mei & Benmoussa (1984), equation (7) in Janssen et al. (2003) and equation (2.7)
in Zou (2011). For breaking waves in the surf zone, Symonds et al. (1982) and Schäffer
(1993) adopted the saturated breaking model assuming the wave height is proportional to
local depth to model the forcing term and then solved equation (2.14), but no satisfactory
verification against experiment has been reported. Using numerically modelled flow field
to calculate the radiation stress, Rijnsdorp, Smit & Guza (2022) showed that the linearised
equation (2.14) remains adequate in the outer surf zone. Furthermore, Rijnsdorp et al.
(2022) demonstrated that the nonlinearity of infragravity wave itself starts to become
important only in the inner surf zone over a mildly sloping beach of bottom slope 1/100.
Liu et al. (2023) showed that fully nonlinear analysis of the infragravity wave energy
budget is required for reef topography where the depth sharply reduces when offshore
waves propagate over the foreslope into the reef flat.
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Analytical solution for group-induced infragravity waves

The group-induced subharmonic surface elevation ξ̃(x, t) oscillates in time with the
same frequency ωg as the wave radiation stress S̃ in (2.9), i.e.

ξ̃ (x, t) = 1
2 ξ̂ (x) e−iωgt, (2.15)

where ξ̂ is the complex amplitude of ξ̃(x, t). Substituting (2.9) and (2.15) into (2.14), we
obtain the governing equation for the subharmonic complex amplitude ξ̂(x):

1
h

d
d x

(
h

dξ̂

d x

)
+ k2

f ξ̂ = − 1
ρgh

d2Ŝ
d x2 , (2.16)

where kf = ωg/
√

gh is the wavenumber of free subharmonics propagating at the speed
of shallow-water wave. Equation (2.16) is consistent with the governing equation (4.9) in
Schäffer (1993), equation (10) in Janssen et al. (2003) and equation (3.4) in Zou (2011).
A novel unified solution to (2.16) is developed based on Green’s function in the present
study.

3. Unified solution based on Green’s function

3.1. General form of solution
The Green’s function G(x, y) of a 1-D linear differential equation describes the response
at x to a unit forcing at y, where x and y denote two spatial coordinates in 1-D space.
Assuming a continuously varying water depth h(x), the governing equation (2.16) becomes
a Sturm–Liouville type equation. The corresponding Green’s function satisfies (see
equations (3.3.6), (3.3.9) and (3.3.10) in Duffy 2015) the following equations:

1
h

d
d x

[
h

d
d x

G (x, y)
]

+ k2
f G (x, y) = δDirac (x − y) , (3.1a)

lim
x→y−

G (x, y) = lim
x→y+

G (x, y) , (3.1b)

lim
x→y+

∂G (x, y)
∂x

− lim
x→y−

∂G (x, y)
∂x

= 1, (3.1c)

where δDirac(x − y) is the Dirac Delta function that physically describes the unit point
forcing oscillating at the wave group frequency at x′ = x − y = 0 and satisfies δDirac(x′) =
0 for x′ /= 0 and

∫ +∞
−∞ δDirac(x′) d x′ = 1. An example of G(x, y) over a flat bottom is later

shown in figure 3.
Let f̂ (x) be the complex amplitude of the forcing term of (2.16), i.e.

f̂ (x) = − 1
ρgh

d2Ŝ
d x2 . (3.2)

For any given response position x, we can always find a subdomain a < x < b where the
equality

f̂ (x) =
∫ b

a
f̂ (y) δDirac (x − y) dy (3.3)

is valid.
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Incoming waves

Sketch of variable bottom

Downwave-propagating free subharmonic

Upwave-propagating free subharmonic

Re[σ̂( y)] |σ̂( y)|

x = y

x = a x = b

Figure 2. Diagram of two downwave-propagating (red) and upwave-propagating (blue) free subharmonics
emitted from an arbitrary spatial point x = y in the source field σ̂ (y) (3.7) due to group forcing. The source
field σ̂ (y) due to the forcing of radiation stress varies at the spatial scale of wave group length (see (3.22)
for an example). The superposition of all the free subharmonics emitted everywhere yields the group-induced
subharmonic.

Applying the multiplication and then integration on the right-hand side of (3.3) to
both sides of (3.1a) and comparing with the governing equation of subharmonic complex
amplitude (2.16), the inhomogeneous solution ξ̂g(x) to (2.16) is found in the form of

ξ̂g (x) =
∫ b

a
f̂ (y) G (x, y) dy, (3.4)

which physically describes the group-induced subharmonic at x as the linear superposition
of the responses at x induced by all the wave group forcing f̂ (y) distributed in the
domain a < y < b. The generalised solution to (2.16) can be constructed as the sum of
homogeneous and inhomogeneous components (cf. Ince 1956, § XI):

ξ̂ (x) = ξ̂g (x) + ξ̂f (x) , (3.5)

where the homogeneous solution ξ̂f (x) denotes the free infragravity wave that satisfies
the homogeneous counterpart of governing equation (2.16). Physically, the response to
each point forcing f̂ (y) over a < y < b propagates away from the source point x = y as
free subharmonics (figure 2), because (3.1a) indicates that G(x, y) is the homogeneous
solution to (2.16) at all x in the domain except for x = y. Therefore, (3.4) shows that the
group-induced subharmonic at an observation point x is the linear superposition of free
subharmonics generated from all source points x = y in the wave field due to local group
forcing. Note that, at the observation position x within this domain, the response to group
forcing outside this domain appears as ambient free subharmonic ξ̂f in solution (3.5).

Equation (3.4) may be rewritten as

ξ̂g (x) =
∫ b

a
f̂ (y) G (y, y)

[
G (x, y)
G (y, y)

]
dy. (3.6)

The initial complex amplitude of each emitted subharmonic generated per unit distance
is f̂ (y)G(y, y), whose spatial variation from y to x is described by G(x, y)/G(y, y)
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Analytical solution for group-induced infragravity waves

(figure 2). Accordingly, f̂ (y)G(y, y) is defined as the source field of the group-induced
subharmonic σ̂ (y), i.e.

σ̂ (y) = f̂ (y) G (y, y) . (3.7)

Let ξ̂+
h (x) and ξ̂−

h (x) be the linearly independent homogeneous solutions of (2.16)
that describe the downwave- and upwave-propagating free subharmonics, respectively.
The Green’s function that satisfies (3.1) can be constructed using two distinct linear
combinations of ξ̂+

h (x) and ξ̂−
h (x) (see Ince 1956, p. 257). Assuming open boundaries at

both x = a and x = b, we seek a solution of G(x, y) that satisfies the following boundary
condition:

G(b, y)
G(y, y)

= ξ̂+
h (b)

ξ̂+
h (y)

,
G(a, y)
G(y, y)

= ξ̂−
h (a)

ξ̂−
h (y)

, (3.8a,b)

which physically indicates that the local response generated at source location y arrives at
boundary x = a and x = b as an upwave- and downwave-propagating free wave so that the
spatial evolution of its complex amplitude is described by ξ̂+

h or ξ̂−
h .

The solution for the governing equation (3.1) and the boundary condition (3.8a,b) is
given by

G (x, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

G (y, y)
ξ̂+

h (x)

ξ̂+
h (y)

, for x > y,

G (y, y)
ξ̂−

h (x)

ξ̂−
h (y)

, for x < y,

(3.9)

with

G (y, y) = ξ̂+
h ξ̂−

h

ξ̂−
h

d
d x

ξ̂+
h −ξ̂+

h
d

d x
ξ̂−

h

∣∣∣∣∣∣∣
x=y

, (3.10)

where the denominator of (3.10) is the Wronskian of ξ̂−
h and ξ̂+

h , and it is non-zero owing
to the linear independence between ξ̂+

h and ξ̂−
h .

In (3.9), the Green’s function at the source point x = y, G(y, y), represents the initial
complex amplitude of the subharmonic generated by the local unit point forcing, while
the factor ξ̂±

h (x)/ξ̂±
h (y) = G(x, y)/G(y, y) describes the relative changes in amplitude and

phase of G(x, y) from x = y to x = x.
Substituting (3.9) into (3.6), and recalling the definition of the source field σ̂ (y) (3.7),

yields

ξ̂g (x) = ξ̂+
g (x) + ξ̂−

g (x) , (3.11)

where

ξ̂+
g (x) =

∫ x

a
σ̂ (y)

ξ̂+
h (x)

ξ̂+
h (y)

dy, ξ̂−
g (x) =

∫ b

x
σ̂ (y)

ξ̂−
h (x)

ξ̂−
h (y)

dy. (3.12a,b)

The superscripts + and − denote the two components that form due to the downwave- and
upwave-propagating free subharmonics being generated on the upwave and downwave
sides of x, respectively.
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Given the complex amplitudes of the ambient downwave- and upwave-propagating
subharmonics at the boundary, i.e. ξ̂+

f (a) and ξ̂−
f (b), the ambient free subharmonic in

the domain a < x < b can be expressed as

ξ̂f (x) = ξ̂+
f (x) + ξ̂−

f (x), (3.13)

where

ξ̂+
f (x) = ξ̂+

f (a)
ξ̂+

h (x)

ξ̂+
h (a)

, ξ̂−
f (x) = ξ̂−

f (b)
ξ̂−

h (x)

ξ̂−
h (b)

(3.14a,b)

describe the downwave- and upwave-propagating components, respectively. Note that
ξ̂±

f (x) differs from ξ̂±
h (x) in that the former’s boundary values vary with the boundary

locations in the manner of a group-induced subharmonic instead of a free subharmonic,
in order to incorporate the contribution of the source field in the incremental domain due
to changing boundary locations. This is later demonstrated by the relationship between
ξ̂−

f (a) and ξ̂−
f (b) in (3.17).

Substituting (3.11)–(3.14a,b) into (3.5) yields

ξ̂ (x) =
∫ x

a
σ̂ (y)

ξ̂+
h (x)

ξ̂+
h (y)

dy + ξ̂+
f (a)

ξ̂+
h (x)

ξ̂+
h (a)

+
∫ b

x
σ̂ (y)

ξ̂−
h (x)

ξ̂−
h (y)

dy + ξ̂−
f (b)

ξ̂−
h (x)

ξ̂−
h (b)

.

(3.15)

Equation (3.15) is the general form of the solution to (2.16), and its exact form depends on
the expression of the wave radiation stress field and homogeneous solution. However, the
solution in the form of (3.15) requires the information at two boundaries on both sides of
x. To facilitate its practical applications, (3.15) can be rewritten as a solution with only one
boundary for integration retained:

ξ̂ (x) =
∫ x

a
σ̂ (y)

ξ̂+
h (x)

ξ̂+
h (y)

dy + ξ̂+
f (a)

ξ̂+
h (x)

ξ̂+
h (a)

+
∫ a

x
σ̂ (y)

ξ̂−
h (x)

ξ̂−
h (y)

dy +
∫ b

a
σ̂ (y)

ξ̂−
h (x)

ξ̂−
h (y)

dy + ξ̂−
f (b)

ξ̂−
h (x)

ξ̂−
h (b)

= ξ̂+
f (a)

ξ̂+
h (x)

ξ̂+
h (a)

+ ξ̂−
f (a)

ξ̂−
h (x)

ξ̂−
h (a)

+
∫ x

a
σ̂ (y)

[
ξ̂+

h (x)

ξ̂+
h (y)

− ξ̂−
h (x)

ξ̂−
h (y)

]
dy, (3.16)

where

ξ̂−
f (a) = ξ̂−

f (b)
ξ̂−

h (a)

ξ̂−
h (b)

+
∫ b

a
σ̂ (y)

ξ̂−
h (a)

ξ̂−
h (y)

dy (3.17)

is the complex amplitude of upwave-propagating free wave at x = a, which includes the
contributions of free waves entering the region through the right-hand boundary x = b
and those generated due to the group forcing in the region a < x < b. The solution in the
form of (3.16) is more computationally feasible than (3.15) and is used for the calculation
in figure 6, but the former is physically not as intuitive as the latter because the effect
of group forcing on the upwave-propagating components is manifested by deducting the
contribution of sources along integral path from the overall contributions of sources.
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Figure 3. (a) Real and (b) imaginary parts of the normalised Green’s function for a flat bottom (3.21).

3.2. Flat bottom
Over a flat bottom, the governing equation (2.16) reduces to

d2ξ̂

d x2 + k2
f ξ̂ = f̂ , (3.18)

where the forcing term f̂ is given by (3.2). According to (2.10)–(2.11), over a flat bottom f̂
may be rewritten as

f̂ (x) = k2
gŜ (x)

ρgh
= k2

gŜ (a)

ρgh
eikg(x−a) = f̂ (0) eikgx, (3.19)

which is in phase with the wave group. In addition, over a flat bottom, the homogeneous
solutions to the governing equation (2.16) and thus the local response to unit point forcing
described in equation (3.10) are given by

ξ̂±
h (x) = C±e±ikf x, G (y, y) = 1

2ikf
, (3.20a,b)

where C± is a non-zero constant.
Substituting (3.20a,b) into (3.9), we derive the Green’s function for a flat bottom:

G(x, y) = 1
2ikf

eikf |x−y|, (3.21)

where the variation of G(x, y) with source location y and response location x is shown in
figure 3. For a point unit forcing at x = y described by δDirac(x − y)e−iωgt, the modulus
and phase angle of G(x, y) are the amplitude and phase lag with respect to the forcing
of the subharmonic at x. The gradient of the real part of G(x, y) is not continuous as the
right-hand side of (3.1c) is real.

Substituting (3.19) and (3.20b) into the source field σ̂ (y) = f̂ (y)G(y, y), we have

σ̂ (y) = f̂ (0)

2ikf
eikgy = k2

g

2ikf

Ŝ (a)

ρgh
eikg(y−a), (3.22)

which is spatially uniform in amplitude and leads the wave group by π/2 in phase as
Ŝ(a)eikg(y−a) is in phase with the wave group according to (2.10) and the phase of the
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complex factor i−1 is −π/2. Equation (3.22) indicates that each free subharmonic emitted
from the source field has the same amplitude and is initially in quadrature with the wave
group.

Substituting (3.20a) into (3.11)–(3.12a,b) yields the solution for ξ̂g:

ξ̂g(x) =
∫ b

a
σ̂ (y)eikf |x−y| dy. (3.23a)

Invoking (3.22) further yields the expressions

ξ̂g(x) = f̂ (0)

2ikf

∫ b

a
ei(kgy+kf |x−y|) dy

= k2
g

2ikf

Ŝ (a)

ρgh
e−ikga

∫ b

a
ei(kgy+kf |x−y|) dy. (3.23b)

Taking the integral in (3.23b) over the upwave side of x (a < y < x) yields the solution for
ξ̂+

g as defined in (3.12a):

ξ̂+
g (x) = k2

g

2ikf

Ŝ (a)

ρgh
e−ikga

∫ x

a
ei[kgy+kf (x−y)] dy

= k2
g

2ikf

Ŝ(a)

ρgh
ei(kf x−kga)

∫ x

a
ei(kg−kf )y dy

= − k2
g

2kf

Ŝ(x) − Ŝ(a)eikf (x−a)

ρgh(kg − kf )
, (3.24)

where the relationship Ŝ(x) = Ŝ(a)eikg(x−a) is used. Similarly, the solution for ξ̂−
g is derived

by integrating over the downwave side x < y < b as

ξ̂−
g (x) = k2

g

2kf

Ŝ(x) − Ŝ(b)e−ikf (x−b)

ρgh(kg + kf )
, (3.25)

where the relationship Ŝ(x) = Ŝ(b)eikg(x−b) is used. Let ξ̂+
b and ξ̂−

b be the corresponding
components bound to Ŝ(x) and therefore wave group in (3.24) and (3.25), i.e.

ξ̂±
b (x) = ∓ k2

g

2kf (kg ∓ kf )

Ŝ(x)
ρgh

. (3.26)

Equations (3.24) and (3.25) can be rewritten as

ξ̂+
g (x) = ξ̂+

b (x) − ξ̂+
b (a) eikf (x−a),

ξ̂−
g (x) = ξ̂−

b (x) − ξ̂−
b (b) e−ikf (x−b).

}
(3.27)

3.2.1. Intermediate water
In intermediate water, cg <

√
gh and kg > kf . Figure 4(a) shows the spatial variation of the

phase of all subharmonics emitted for the source location y and the observation position x,
as described by exp[i(kgy + kf |x − y|)] (the integrand in (3.23b)). On the one hand, at each
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ξ̂+

g(x) for a ≤ y ≤ x

ξ̂–
g(x) for x ≤ y ≤ b

ξ̂g(x) = ∫a
bei(kg y + kf |x – y|) dyf ̂ (0)

2ikf

|Ŝ(x)|/(ρgh)
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y

(a)
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Figure 4. Diagram of the emission, propagation and interference of subharmonics generated from the source
field σ̂ (y) = f̂ (y)G(y, y) due to group forcing of bichromatic waves over a flat bottom in intermediate depth
(kg > kf , where kg = ωg/cg and kf = ωg/

√
gh are the wavenumbers of wave group and free subharmonic

propagating as shallow-water wave, respectively). Here f̂ is the forcing term and G(y, y) is the Green’s function
at x = y. (a) Term exp[i(kgy + kf |x − y|)] gives the spatial variation of product of source field and Green’s
function as shown in (3.23), which in turn describe the spatial variation of the free subharmonic with its source
position y and observation position x. The vertical and horizontal white arrows denote the wavenumber of each
emitted subharmonic component on the source and observation position, respectively. (b) The y axis denotes
the real part of the superposed downwave-propagating subharmonic (ξ̂+

g , (3.24)), showing the surface elevation
snapshot for t = 0. (c) Similar to (b) but for the upwave component (ξ̂−

g , (3.25)).

given y, the horizontal slice of figure 4(a) describes the phase change of the upwave- and
downwave-propagating subharmonics emitted from x = y, resembling the picture shown
in figure 2. On the other hand, at each given x, the vertical slice of figure 4(a) describes the
phase variation with the source location y of all subharmonics arriving at x. Figure 4(b,c)
shows that the superposition of all free subharmonics can be further decomposed into
a subharmonic bound to the wave group and a free subharmonic which are respectively
described by the first and second terms on the right-hand side of (3.27).

The emergence of a bound subharmonic from the superposition of all free
subharmonics is essentially the consequence of wave-group-modulated emission of each
free subharmonic through the source field bound to the wave group, which does not
conflict with the interpretation of the group-induced subharmonic as the superposition
of free subharmonics. More specifically, the modulated emission means the phase of
the source field by (3.22) varies with space as kgy due to direct modulation of group
forcing, indicating that free subharmonics with the same initial phase are generated at
equidistant locations separated by 2π/kg, i.e. one wave-group length. Consequently, a
de facto waveform with the same wavelength as the wave group forms and appears
phase locked to the wave group, i.e. so-called bound subharmonic in previous studies.
Similarly, in (3.27), the superposition of all the upwave-propagating free subharmonics
leads to a downwave-propagating bound subharmonic. However, for an observer at a fixed
observation position, the bound subharmonic does not exist because there is no space
for the aforementioned superposition of the emitted free subharmonics to occur, which
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Figure 5. Same as figure 4, but for shallow water where cg = √
gh and kg = kf , where kg = ωg/cg and

kf = ωg/
√

gh are wavenumbers of wave group and free subharmonic propagating as shallow-water wave,
respectively. The vertical and horizontal white arrows denote the wavenumber of the emitted subharmonic
component on the source and observation position, respectively. Values of the group-forcing lines in (b,c) are
the same for reference.

mathematically corresponds to an integral interval of zero length in (3.4), and only the
free subharmonics arriving from elsewhere will be observed.

Interestingly, (3.26) shows that ξ̂+
b (x) and ξ̂−

b (x) are respectively in antiphase and phase
with the wave groups, and |ξ̂+

b | is (kg + kf )/(kg − kf ) times larger than |ξ̂−
b |. Thus, the

expression for the total bound subharmonics ξ̂b = ξ̂+
b + ξ̂−

b is given by

ξ̂b (x) =
[

1
(kg + kf )

− 1
(kg − kf )

] k2
g

2kf

Ŝ (x)
ρgh

= − k2
g

k2
g − k2

f

Ŝ (x)
ρgh

, (3.28)

which is in antiphase with the group forcing. Equation (3.28) is the same as the LHS62
solution:

ξ̂LHS62 (x) = − Ŝ (x)
ρ(gh − c2

g)
. (3.29)

3.2.2. Shallow water
In shallow water, cg → √

gh and kg → kf , the diagram in figure 4 changes to that in
figure 5 and the emitted downwave-propagating subharmonics are now in phase with
each other. This is because according to (3.12a) the phase of the downwave-propagating
subharmonic emitted from y is arg[σ̂ (y)ξ̂+

h (x)/ξ̂+
h (y)] ∝ (kg − kf )y + kf x, which becomes

independent of its source position y as kg → kf , indicating that all downwave-propagating
subharmonics interfere with each other constructively. In addition, because the initial
amplitudes of all the downwave subharmonics are the same, the superposed amplitude of
|ξ̂+

g | increases proportionally with the number of forcing pulses, which in turn increases
linearly with travel distance kgx.
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g 
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Figure 6. Amplitude (a,b) and phase (c,d) of the complex amplitude ξ̂(x) of the subharmonic surface
elevation ξ̃(x, t) forced by bichromatic wave groups normally incident over a plane sloping bottom. Wave
conditions and topography of tests A-4 (a,c) and B-5 (b,d) of the flume experiment of Van Noorloos (2003).
Laboratory measurements (circles), the off-resonant solution of Zou (2011) ((B5), black dash-dotted lines),
the near-resonance solution of Liao et al. (2021) ((B7), black dashed lines), Janssen et al. (2003) ((B8),
black dotted lines), the present solution ξ̂ = ξ̂+

g + ξ̂sc + ξ̂−
g where ξ̂sc denotes the downwave free subharmonic

generated due to scattering at the slope toe ((B11), black solid lines) and its downwave- and upwave-propagating
group-induced subharmonic components, ξ̂+

g (blue lines) and ξ̂−
g (red lines) in (B12). Phase is the phase lag

with respect to wave groups plus π. Note that in (b), the phase of the upwave component ξ̂−
g was manually

shifted by π for plotting purposes.

This result can also be derived by taking the limit kg → kf for ξ̂+
g in (3.27). From

(2.10)–(2.11) we have Ŝ(x) = Ŝ(a)eikg(x−a) over a flat bottom. Substituting this for Ŝ(x)
in (3.26) and subsequently (3.26) into (3.27) for ξ̂+

g and then taking the limit kg → kf , we
have

lim
kg→kf

ξ̂+
g (x) = lim

kg→kf
− k2

g

2kf

Ŝ (a)

ρgh
eikg(x−a) − eikf (x−a)

kg − kf
= kf (x − a) Ŝ (x)

2iρgh
. (3.30)
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Thus, |ξ̂+
g | is proportional to the travel distance kg(x − a). Equation (3.30) also shows

that the downwave group-induced subharmonic leads the group forcing by π/2 because of
the complex factor i−1, since each emitted downwave-propagating subharmonic is initially
ahead of the group forcing by π/2 according to (3.22).

Remarkably, in (3.30), the bound subharmonic cannot be distinguished from the
free mode as in (3.27); hence, it is only meaningful to describe the superposed
downwave-propagating group-induced subharmonic as a whole. This phenomenon
indicates that ξ̂+

b is released when the system is in full resonance. To some extent, it is
consistent with the viewpoint of Baldock (2012) that the bound subharmonic is released
in shallow water with and without wave breaking. Nevertheless, the resonance only occurs
in the propagating direction of group forcing, not in the upwave-propagating direction.
Thereby, the present result partially differs from that of Baldock (2012) in that the bound
subharmonic component ξ̂−

b still exists in shallow water. This can be found by taking the
limit kg → kf for ξ̂−

b in (3.26):

lim
kg→kf

ξ̂−
b (x) = lim

kg→kf

k2
g

2kf
(
kg + kf

) Ŝ (x)
ρgh

= Ŝ (x)
4ρgh

. (3.31)

When the resonance occurs, |ξ̂+
g | far exceeds |ξ̂−

b | after a certain distance (figure 5b,c),
hence dominating ξ̂g.

3.3. Uneven bottom
Over an uneven bottom, assuming a mild bottom slope, i.e. |β| = |hx/(kgh)| <

|hx/(kf h)| � 1 and hxx/(kgh) = O(β2), substituting (2.10) into the forcing field (3.2)
yields

f̂ (x) =
k2

g

∣∣∣Ŝ∣∣∣
ρgh

⎛
⎝− 1

k2
g

∣∣∣Ŝ∣∣∣
d2
∣∣∣Ŝ∣∣∣

d x2 − 2i

kg

∣∣∣Ŝ∣∣∣
d
∣∣∣Ŝ∣∣∣

d x
− i

k2
g

dkg

d x
+ 1

⎞
⎠ ei

∫ x kg d x′
. (3.32)

Following Zou (2011), (3.32) can be decomposed into f̂M at leading order, which is
the forcing field for a flat bottom in (3.19), f̂S induced by bottom slope and f̂r due to
higher-order bottom gradient h2

x and hxx, i.e.

f̂ = f̂M + f̂S + f̂r, (3.33)

where

f̂ M =
k2

g

∣∣∣Ŝ∣∣∣
ρgh

exp
(

i
∫ x

kg d x′
)

,

f̂ S = f̂ M

⎛
⎝− 2i

kg

∣∣∣Ŝ∣∣∣
d
∣∣∣Ŝ∣∣∣

d x
− i

k2
g

dkg

d x

⎞
⎠ = f̂ MO (β) ,

f̂ r = f̂ M

⎛
⎝− 1

k2
g

∣∣∣Ŝ∣∣∣
d2
∣∣∣Ŝ∣∣∣

d x2

⎞
⎠ = f̂ MO

(
β2
)

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.34)

which is the same as the forcing field in Zou (2011).
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Analytical solution for group-induced infragravity waves

The homogeneous solution in this case can be obtained by the perturbation method
utilising the small parameter of hx/(kf h). At leading order of O(1), the homogeneous
solution is given by (cf. Zou 2011, equation (3.9c))

ξ̂±
h (x) = C±h−0.25 (x) exp

(
i
∫ x

±kf d x′
)[

1 + O
(

β
kg

kf

)]
, (3.35)

which is substituted into (3.10) to yield

G (y, y) = 1
2ikf (y)

[
1 + O

(
β

kg

kf

)]
. (3.36)

Linearised to the first order of bottom slope, the forcing field (3.33) becomes

f̂L = f̂M + f̂S =
k2

g

∣∣∣Ŝ∣∣∣
ρgh

⎛
⎝1 − 2i

kg

∣∣∣Ŝ∣∣∣
d
∣∣∣Ŝ∣∣∣

d x
− i

k2
g

dkg

d x

⎞
⎠ exp

(
i
∫ x

kg d x′
)

, (3.37)

which together with (3.36) are substituted into (3.7) to yield the expression for the source
field σ̂ (y):

σ̂ (y) =
k2

g

∣∣∣Ŝ∣∣∣
2ikf ρgh

⎛
⎝1 − 2i

kg

∣∣∣Ŝ∣∣∣
d
∣∣∣Ŝ∣∣∣

d x
− i

k2
g

dkg

d x

⎞
⎠ exp

(
i
∫ y

kg d x′
)[

1 + O
(

β
kg

kf

)]
.

(3.38)

Substituting (3.38) and (3.35) into (3.12a,b) yields

ξ̂+
g (x) =

∫ x

a

f̂ L (y)
2ikf (y)

[
h (x)
h (y)

]−0.25

exp
(

i
∫ x

y
kf d x′

)[
1 + O

(
β

kg

kf

)]
dy,

ξ̂−
g (x) =

∫ b

x

f̂ L (y)
2ikf (y)

[
h (x)
h (y)

]−0.25

exp
(

−i
∫ x

y
kf d x′

)[
1 + O

(
β

kg

kf

)]
dy.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.39)

The phase dependence of the integrand in (3.39) on source location y determines the
interference among all free components generated from different sources arriving at
observation point x. At leading order, f̂L(y) in (3.37) is in phase with the wave group
and hence its phase varies with y as

∫ y kg d x′. Therefore, in (3.39) the phase of each
component of ξ̂±

g mainly varies with y as
∫ y kg ± kf d x′, which largely determines the

relative magnitude between ξ̂+
g and ξ̂−

g as discussed in detail in Appendix C.

3.3.1. Shallow water
In shallow water, according to (3.26)–(3.27), as kg → kf and the resonance is intensified,
ξ̂+

g becomes the predominant part of the group-induced subharmonic, i.e. ξ̂g ≈ ξ̂+
g .

Without wave breaking, given the shallow-water approximations of cg ≈ c ≈ √
gh

and kg = ωg/cg ≈ ωg/
√

gh, (2.11) indicates |Ŝ(x)| = |Ŝ(a)|√h(a)/h(x). Hence the spatial
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evolution of Ŝ described by the energy conservation (2.10)–(2.11) becomes

Ŝ(x) = Ŝ(a)

[
h(x)
h(a)

]−0.5

exp
(

i
∫ x

a

ωg√
gh

d x′
)

. (3.40)

Substituting (3.40) into the forcing term (3.32) yields

f̂ (x) = ω2
g

gh (x)
Ŝ (a)

ρgh (x)

[
h (x)
h (a)

]−0.5

exp
(

i
∫ x

a

ωg√
gh

d x′
)

[1 + O (β)] (3.41)

at leading order.
Substituting (3.41) into the solution for ξ̂+

g in (3.39) yields

ξ̂+
g (x) = ωgŜ (a)

2iρg1.5

[
h (x)
h (a)

]−0.5 [
h0.25 (x)

∫ x

a
h(y)−1.75 dy

]
exp

(
i
∫ x

a

ωg√
gh

d x′
)

(3.42)

at leading order, which is dependent on the bottom profile. The amplitude of ξ̂+
g in (3.42)

is proportional to
∫ x

a h(y)−1.75 dy, which in turn is proportional to the horizontal length
of the bottom profile between a and x. More specifically, suppose that the topography
is horizontally stretched by a factor; considering the integrand in

∫ x
a h(y)−1.75 dy is

only a function of depth, the integral covering the same bottom profile would also be
enlarged by the same factor, and so is the amplitude of ξ̂+

g . This is essentially ascribed
to the same accumulative constructive interference process of the downwave-propagating
subharmonics demonstrated in figure 5, which causes the subharmonic amplitude to
increase linearly with travel distance. This finding is consistent with the semi-analytical
result of Liao et al. (2021) that the amplitude of a group-induced subharmonic over the
front slope of a shoal increases with the travel distance.

Over a uniform slope (hx = const.), (3.42) reduces to

ξ̂+
g (x) = 2i

3
ωg

hx

√
h (a)

g

[
h(a)

h(x)
−
(

h(a)

h(x)

)0.25
]

Ŝ (a)

ρgh (a)
exp

(
i
∫ x

a

ωg√
gh

dx′
)

. (3.43)

Invoking (3.40) reduces (3.43) further to

ξ̂+
g (x) = 2i

3
ωg

hx

√
h (x)

g
Ŝ (x)

ρgh (x)
− 2i

3
ωg

hx

√
h (a)

g
Ŝ (a)

ρgh (a)

[
h (x)
h (a)

]−0.25

exp
(

i
∫ x

a

ωg√
gh

d x′
)

,

(3.44)

where the first term is consistent with the shallow-water limit of the near-resonant solution
by equation (20) of Liao et al. (2021) and the second term represents a free subharmonic.
The second term appears because only the forcing inside the finite region a to x is
considered; therefore, ξ̂+

g (a) = 0 has to be satisfied at the boundary x = a. Equation (3.44)
indicates that the amplitude of group-induced subharmonic is inversely proportional to the
bottom slope in shallow water, which is due to the increase of group-induced subharmonic
amplitude linearly with travel distance. This result provides a theoretical explanation for
the well-known decrease of shoaling rate of group-induced subharmonic with the relative
bottom slope (e.g. Battjes et al. 2004; Van Dongeren et al. 2007; De Bakker, Tissier &
Ruessink 2016; Zhang, Toorman & Monbaliu 2020). The dependence of subharmonic
amplitude on the travel distance of wave groups corroborates the historical effect of spatial
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Analytical solution for group-induced infragravity waves

evolution of wave groups in the region of shallow water on the subharmonic amplitude in
the subsequent region as previously studied by Li et al. (2020) and Liao et al. (2021).
Apart from that, the present model indicates that the group-forcing field also affects the
subharmonic on the upwave side because of the generation of those upwave-propagating
subharmonics. The topographic effect on the group-induced subharmonics is examined in
detail in Appendix D.

4. Comparisons of present and previous solutions

The present unified solution is shown to reduce to the existing solutions (Van Leeuwen
1992; Schäffer 1993; Janssen et al. 2003; Zou 2011; Contardo et al. 2021; Liao et al. 2021)
in this section.

4.1. Solution over a plane sloping beach
The solution of the group-induced subharmonic over a plane sloping beach was obtained
by Van Leeuwen (1992) and Schäffer (1993). For a plane sloping beach with x = 0 at
the shoreline, h = hxx, where hx < 0 is a constant, the governing equation (2.16) can be
rewritten with the new dependent variable

u = 2ωg

ghx

√
gh (4.1)

as

u2 d2ξ̂

du2 + u
dξ̂

du
+ u2ξ̂ = − 4h

ρgh2
x

d2Ŝ
d x2 , (4.2)

whose homogeneous solutions are given by

ξ̂+
h (x) = H(2)

0 [u(x)] = J0 [u(x)] − iY0 [u(x)] ,

ξ̂−
h (x) = H(1)

0 [u(x)] = J0 [u(x)] + iY0 [u(x)] ,

}
(4.3)

where H(1)
0 and H(2)

0 are the first- and second-kind Hankel function of order zero and J0

and Y0 are the zeroth-order Bessel function of the first and second kind. Note that H(2)
0

instead of H(1)
0 becomes ξ̂+

h (x) because as x increases the phase of ξ̂+
h (x) must increase.

The Wronskian of ξ̂−
h and ξ̂+

h in the denominator of (3.10) now becomes

ξ̂−
h (x)

d
d x

ξ̂+
h (x) − ξ̂+

h (x)
d

d x
ξ̂−

h (x)

=
[

H(1)
0 (u)

d
du

H(2)
0 (u) − H(2)

0 (u)
d

du
H(1)

0 (u)

]
du
d x

= − 4i
πu

ωg√
gh

= −2i
π

hx

h
. (4.4)

Substituting (3.2), (4.3) and (4.4) into (3.7) yields

σ̂ (y) = − iπh
2hx

H(1)
0 [u(y)]H(2)

0 [u(y)]
ρgh

d2Ŝ
d x2 . (4.5)
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Substituting (4.3) and (4.5) into the solution (3.16) yields

ξ̂(x) = H(1)
0 [u(x)]

[
ξ̂−

f (a)

H(1)
0 [u(a)]

+ iπ
2ρghx

∫ x

a
H(2)

0 [u(y)]
d2Ŝ
d x2 dy

]

+ H(2)
0 [u(x)]

[
ξ̂+

f (a)

H(2)
0 [u(a)]

− iπ
2ρghx

∫ x

a
H(1)

0 [u(y)]
d2Ŝ
d x2 dy

]
, (4.6)

which is equivalent to the solution given by equation (4.16) in Schäffer (1993). Moreover,
the non-homogeneous part of (4.6) can be easily converted to the solution given by
equation (3.1.62) in Van Leeuwen (1992) using the definition of Hankel function in (4.3).

4.2. Off-resonant solution for intermediate water
Let μ = 1 − k2

f /k2
g measure the departure of the system from resonance (Janssen et al.

2003), which decreases from O(1) in intermediate water to zero in shallow water, and let
β/μ measure the resonance intensity of the system. The parameter regime of βμ−1 =
O(β) in intermediate water and βμ−1 = O(1) are referred to as off- and near-resonance
conditions, respectively, as per Janssen et al. (2003). Under off-resonant condition, Janssen
et al. (2003), Zou (2011) and Liao et al. (2021) derived the analytical solution of
subharmonic for uneven bottom using perturbation expansion with small parameter β.
Accurate to order O(β), their group-bounded subharmonic solutions are equivalent to each
other:

ξ̂b = − Ŝ
ρghμ

⎧⎨
⎩1 + iβ

μ

⎡
⎣
⎛
⎝ 2h∣∣∣Ŝ∣∣∣

d
∣∣∣Ŝ∣∣∣

dh
+ h

kg

dkg

dh

⎞
⎠ (1 − μ) − 1 − 2h

μ

dμ

dh

⎤
⎦+ O(β2)

⎫⎬
⎭ .

(4.7)
For an uneven bottom in intermediate water, the solution (3.11) can be first transformed

into (3.39). The phase factor of the integrand in (3.39) is exp(i
∫ y kg ± kf d x′) for ξ̂±

g (x),
and applying the integration by parts technique to (3.39) using this phase factor twice, and
retaining the variable upper bound of the integral, yields

ξ̂±
b = ± f̂ L

2ikf

⎧⎨
⎩ 1

i
(
kg ∓ kf

) + 1(
kg ∓ kf

)2
[

h0.25fL
kf
(
kg ∓ kf

)
]−1

d
d x

[
h0.25fL

kf
(
kg ∓ kf

)
]⎫⎬
⎭

×
[

1 + O
(

β
kg

kf

)]
, (4.8)

where fL = f̂L|Ŝ|Ŝ−1 = ( f̂ M + f̂ S)|Ŝ|Ŝ−1 is the linearised forcing term excluding the phase
factor of wave group.

Substituting (3.37) and μ = 1 − k2
f /k2

g into (4.8), we have

ξ̂±
b (x) = ∓ Ŝ

ρghμ

kg ± kf

2kf

⎡
⎢⎢⎢⎢⎣

(
1 − 2i

kg|Ŝ|
d|Ŝ|
d x

− i
k2

g

dkg

d x

)
− kg ± kf

ik2
gμ

(
|Ŝ|

h0.25μ

)−1

× d
d x

(
|Ŝ|

h0.25μ

)
− 1

ik2
gμ

d
d x

(
kg ± kf

)+ O
(

β
kg

kf

)
⎤
⎥⎥⎥⎥⎦ .

(4.9)
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Adding ξ̂+
b and ξ̂−

b in (4.9) yields

ξ̂b = ξ̂+
b + ξ̂−

b

= − Ŝ
ρghμ

⎧⎨
⎩1 + iβ

μ

⎡
⎣
⎛
⎝ 2h∣∣∣Ŝ∣∣∣

d
∣∣∣Ŝ∣∣∣

dh
+ h

kg

dkg

dh

⎞
⎠ (1 − μ) − 1 − 2h

μ

dμ

dh

⎤
⎦+ O

(
β2
)⎫⎬
⎭ ,

(4.10)

which is the same as solution (4.7). Note that the relative error for ξ̂±
b in (4.9) is of

O[hx/(kf h)], but the error for ξ̂b in (4.10) is of O(β2) (see Appendix A for more details).

4.3. Near-resonant solution for shallow water

4.3.1. Liao et al. (2021) solution
In the case of near resonance in shallow water (βμ−1 = O(1)), Liao et al. (2021) derived
the following solution of group-induced subharmonic (cf. equation (19) therein):

ξ̂g (x) = − iŜ (x)
2ρgh (x)

∫ x

a

∣∣∣∣∣ Ŝ (y)

Ŝ (x)

∣∣∣∣∣
√

kg (y) h (x)
kg (x) h (y)

kg (y) exp
(

−i
∫ x

y

μ

2
kg d x′

)
dy [1 + O (β)] .

(4.11)

The relationship Ŝ(x)/|Ŝ(x)| = Ŝ(y)/|Ŝ(y)| exp(i
∫ x

y kg dx′) could be derived from (2.10)

and then substituted together with f̂M in (3.34) into (4.11) to obtain

ξ̂g (x) =
∫ x

a

f̂ M (y)
2ikg (y)

[1 + O (β)]

√
kg (y) h (y)
kg (x) h (x)

exp
(

i
∫ x

y

(
1 − μ

2

)
kg d x′

)
dy. (4.12)

In this condition, (3.26)–(3.27) indicate that |ξ̂+
g | is greater than |ξ̂−

g | by an order of factor
(kg + kf )/(kg − kf ) = (1 + √

1 − μ)/(1 − √
1 − μ), which is of O(μ−1) = O(β−1) for

μ = O(β) � 1 in shallow water. Besides, as shown in Appendix A, the error of (3.39) is
now of O(β) relative to leading order, and hence we aim to prove that the solution for ξ̂+

g
in (3.39) at leading order

ξ̂g (x) =
∫ x

a

f̂ M (y)
2ikf (y)

[1 + O (β)]
[

h (x)
h (y)

]−0.25

exp
(

i
∫ x

y
kf d x′

)
dy (4.13)

is consistent with (4.12).
Because kf /kg = √

1 − μ = 1 + O(β) and kg − kf = kg(1 − √
1 − μ) = kg[μ/2 +

O(β2)], hence [1 − μ/2 + O(β2)]kg = kf and at leading order the integrands of (4.12)
and (4.13) are consistent with each other and so are the two solutions.

4.3.2. Janssen et al. (2003) solution
For the near-resonance condition (βμ−1 = O(1)), Janssen et al. (2003) derived the
following governing equation for the complex amplitude of subharmonic ξ̂ (equation (23)
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therein). Using the notations of the present study, it reads as

dξ̂

d x
+ ξ̂

[
hx

2h
+ (kg)x

2kg
+ ikg(

μ

2
− 1)

]
= − ikgŜ

2ρgh

⎛
⎜⎝1 −

2ikg

∣∣∣Ŝ∣∣∣
x

kg

∣∣∣Ŝ∣∣∣ − i(kg)x

k2
g

⎞
⎟⎠+ O(β2).

(4.14)

Recalling the expressions for the leading- and first-order forcing terms ( f̂M and f̂S;
equation (3.34)), (4.14) reduces to

dξ̂

d x
+ ξ̂

[
hx

2h
+ (kg)x

2kg
+ ikg

(
μ

2
− 1

)]
= 1

2ikg
(f̂M + f̂S) + O(β2), (4.15)

which has the solution

ξ̂g (x) =
∫ x

a

f̂ M(y) + f̂ S (y)
2ikg (y)

√
kg (y) h (y)
kg (x) h (x)

exp
(

i
∫ x

y

(
1 − μ

2

)
kg d x′

)
dy. (4.16)

At leading order, (4.16) is equivalent to the solution of Liao et al. (2021) (equation (4.12)
therein), which has been demonstrated above to be equivalent to the present solution (4.13).

Figure 6 shows the theoretical predictions of the amplitude and phase of group-induced
subharmonic on a plane sloping bottom under the conditions of the A-4 and B-5 series in
the bichromatic wave experiment of Van Noorloos (2003) using the off-resonant solution
of Zou (2011), the near-resonant solutions of Liao et al. (2021) and Janssen et al. (2003)
and the present solution. To compare with laboratory measurements, the free subharmonic
generated due to scattering at the toe of the slope was also calculated and added to the
group-induced subharmonic in figure 6 (see Appendix B for details of calculation). Note
that although the component ξ̂−

g is induced by upwave-propagating free subharmonics,
its waveform actually propagates in the downwave direction as indicated by ξ̂−

b in (3.27)
and (4.9) as well as the slowly varying phase difference between ξ̂−

g and the wave group
(red lines in figure 6c,d). For this reason, and also because the incoming and outgoing
subharmonics were separated in Van Noorloos (2003) by detecting the propagation of
waveform, the component ξ̂−

g should be included in the total solution ξ̂+
g + ξ̂sc + ξ̂−

g to
compare with the incoming subharmonic in Van Noorloos (2003) (circles in figure 6).

As the water depth diminishes, the amplitude predicted by the off-resonant solution
of Zou (2011) diverges as expected; the near-resonant solution of Janssen et al. (2003)
slightly overestimated the subharmonic amplitude but underestimated the subharmonic
phase lag behind the wave group. The near-resonant solution of Liao et al. (2021)
predicts the amplitude similar to the present solution but with lower phase lag. Among
the three near-resonant solutions included, the present solution agrees with laboratory
measurements the best. In addition, figure 6 also indicates that in shallow water,
the downwave-propagating group-induced subharmonic ξ̂+

g eventually dominates the
group-induced subharmonic, thus becoming the major contributor to both its amplitude
and phase. Despite the dominance of ξ̂+

g , however, discernible discrepancy between the
total solution ξ̂+

g + ξ̂sc + ξ̂−
g (black solid lines) and the downwave-propagating component

ξ̂+
g remains over the full depth range. The disagreement between experiment and theory

becomes more evident at deeper water for scenario of test B-5 than A-4, due to the larger
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Analytical solution for group-induced infragravity waves

primary wave amplitude A1 + A2 and therefore the onset of wave breaking at deeper water.
This is discussed further in figure 10.

4.3.3. Contardo et al. (2021) solution
Contardo et al. (2021) discretised a 1-D topography into a succession of small steps. By
applying the LHS62 solution for the flat bottom on both sides of the step and applying the
mass and momentum matching conditions across the step, the scattered free subharmonics
induced by the wave group propagating across each single depth discontinuity were
calculated. Assuming an in-phase relationship with the wave radiation stress, the initial
complex amplitude of the transmitted free subharmonic is given by

σ̂CLHRDS21 (x) =

(∣∣∣ξ̂LHS62

∣∣∣ kgh
)∣∣∣x

x−
x
+ (kf h)

∣∣
x−
x

(∣∣∣ξ̂LHS62

∣∣∣)∣∣∣x
x−
x

(kf h)
∣∣
x−
x + (kf h)

∣∣
x

Ŝ∣∣∣Ŝ∣∣∣ , (4.17)

where |x−
x and |x denote the quantities at the locations immediately before (x − 
x) and
after (x) the step respectively, corresponding to the subscripts ‘sea’ and ‘shore’ adopted
by Contardo et al. (2021), and |xx−
x denotes the difference between the variables at x and
x − 
x. The total downwave subharmonic is the superposition of the bound subharmonic
as described by LHS62 and all the transmitted free subharmonics generated over the steps
through which the wave groups have passed. In the case of continuous depth change,
consider that the depth changes from h(x − 
x) to h(x) within a small distance 
x and
then taking the limit 
x → 0 yields

σ̂CLHRDS21 (x) =
⎡
⎣kg + kf

2kf

d
∣∣∣ξ̂LHS62

∣∣∣
d x

+

∣∣∣ξ̂LHS62

∣∣∣
2kf h

d(kgh)

d x

⎤
⎦ Ŝ∣∣∣Ŝ∣∣∣ , (4.18)

which, as shown below, is consistent with the present solution after subtracting the LHS62
solution from ξ̂+

g in (4.13) at leading order.
With the phase factor exp(i

∫ y kg d x′) in f̂M(y), the phase factor of the integrand for ξ̂+
g

in (4.13) is exp(i
∫ y

(kg − kf ) d x′). Applying integration by parts utilising this phase factor
once and combining with the LHS62 solution (3.29) reduces ξ̂+

g in (4.13) to

ξ̂+
g (x) =

[
ξ̂LHS62 (x) − ξ̂LHS62 (a)

ξ̂+
h (x)

ξ̂+
h (a)

]
[1 + O (β)] +

∫ x

a
σ̂ r (y)

ξ̂+
h (x)

ξ̂+
h (y)

dy, (4.19)

where the term in the first square brackets ξ̂LHS62(a)ξ̂+
h (x)/ξ̂+

h (a) appears due to boundary
condition ξ̂+

g (a) = 0 and the residual source field σ̂r due to the subtraction of the LHS62
solution is

σ̂r =
⎧⎨
⎩kg + kf

2kf

d
∣∣∣ξ̂LHS62

∣∣∣
d x

+

∣∣∣ξ̂LHS62

∣∣∣
2kf h

d(kgh)

d x
[1 + O (β)]

⎫⎬
⎭ Ŝ∣∣∣Ŝ∣∣∣ , (4.20)

which is the same as σ̂CLHRDS21 in (4.18) at leading order.
The present unified solution of group-induced subharmonic (3.11) reduces to the existing

solutions as summarised in figure 7.
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Generalised solution

(3.15)

hx = 0?

hxx = 0?

No

No

Yes

Yes
Longuet-Higgins &

Stewart (1962)

solution, (3.29).

ξ̂±
h (x) = the first and

second kind Hankel

function of order zero.

First-order off-resonant solution of

Janssen et al. (2003), Zou (2011)

and Liao et al (2021) (4.10).

Leading order term in near-resonant

solution of Liao et al. (2021) (4.13),

Janssen et al. (2003) (4.16) and

Contardo et al. (2021) solution (4.20).

Van Leeuwen (1992)

and Schäffer (1993)

solution, (4.6)

kg > kfξ̂±
h (x) ∝ e±ikf  x

|β| = |hx|/(kgh) < |hx|/(kf h) � 1

ξ̂±
h (x) ∝ h–0.25(x)ei∫x ±ikf  dx′ [1 + O( hx

kf h
)]

βμ–1 = O(β) βμ–1 = O(1)

Figure 7. The present generalised solution based on Green’s function (3.15) of group-induced subharmonic
reduces to the solution over a flat bottom (Longuet-Higgins & Stewart 1962), a variable bottom (Zou 2011)
at off-resonant condition of intermediate water, a variable bottom at near-resonant condition of shallow water
(Janssen et al. 2003; Contardo et al. 2021; Liao et al. 2021) and over a plane beach (Van Leeuwen 1992; Schäffer
1993). Here kg = ωg/cg and kf = ωg/

√
gh are the wavenumber of the wave group and free subharmonic

propagating at the speed of shallow-water wave; μ = 1 − k2
f /k2

g is the degree of departure from resonance; and

ξ̂+
h (x) and ξ̂−

h (x) are the linearly independent homogeneous solutions of (2.16) that describe the downwave-
and upwave-propagating free subharmonics, respectively.

5. Effect of moving-breakpoint forcing

As long as the forcing term f̂ for breaking waves can be theoretically pre-described, the
present solution of group-induced subharmonic (3.11) can, in principle, be applied to
the surf zone, assuming negligible nonlinearity of the subharmonic so that the linearised
shallow-water equation is valid. As the first step, the present solution is combined with the
seminal moving-breakpoint forcing model (Symonds et al. 1982; Schäffer 1993; Contardo
& Symonds 2016). The sum of downwave and upwave components instead of individual
components was solved in previous moving-breakpoint models. In contrast, these two
components are independently described in the present model; therefore, the spatial
evolution of the downwave component in the excursion region of moving breakpoint can
be examined.
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Breaking limit

Amplitude modulation

Modulated amplitude

Mean amplitude

x

x

x = 0

h = hxx

xa xm xc

B
III

Figure 8. Sketch of bottom topography and spatial variation of the amplitude of bichromatic waves normally
incident on a plane sloping bottom. Positions xa, xm and xc are where waves with the minimum, mean and
maximum amplitude break. Reproduced from figure 3 in Schäffer (1993).

In the surf zone , the energy conservation equation (2.7) and the corresponding radiation
stress solution (2.10)–(2.11) are no longer valid due to significant breaking-induced
dissipation. Following Schäffer (1993), we consider weakly modulated bichromatic wave
groups (modulation rate δ = A2/A1 � 1 is the ratio of amplitudes of two components of
bichromatic waves) normally incident onto a plane sloping bottom (figure 8). Let xa and
xc be the horizontal coordinates of the boundaries of the moving-breakpoint region B in
figure 8, and the groupiness is assumed to vanish shoreward of region B. At xc, waves with
the maximum amplitude A1(1 + δ) start to break, i.e.

h (xc) = 2
√

2A1 (xc) (1 + δ)/γ, (5.1)

where γ = significant wave height/depth at breakpoint is the breaker index that ranges
between 0.5 and 1 (Goda 2010). Similarly, at xa, waves with the minimum amplitude
A1(1 − δ) start to break, i.e.

h (xa) = 2
√

2A1 (xa) (1 − δ)/γ. (5.2)

The steady components of radiation stress in the surf zone and shoaling zone indicated
by regions I and II in figure 8 are

S̄(I) = 1
16

ρgγ 2h2
(

2cg

c
− 1

2

)
, S̄(II) = 1

2
ρgA2

1(1 + δ2)

(
2cg

c
− 1

2

)
. (5.3a,b)

To leading order of O(δ), Schäffer (1993) derived the complex amplitude of the radiation
stress gradient oscillating with group frequency in the moving-breakpoint region B:

dŜ
(B)

d x
= 2

π

(
dS̄(I)

d x
− dS̄(II)

d x

)
sin τ + O(δ), (5.4)
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where 0 ≤ τ(x) ≤ π denotes the group phase when wave breaking ceases and is given by

2
√

2A1(x){1 + δ cos[τ(x)] + O(δ2)} = γ h (x) . (5.5)

The spatial evolution of A1 and A2 during energy conservative shoaling can be solved
from (2.8a,b) as

A1(x)
A1(xa)

= A2(x)
A2(xa)

=
√

cg(xa)

cg(x)
, (5.6)

and therefore δ = A2/A1 remains spatially invariant.
Substituting (5.1) and (5.2) into (5.5) yields τ(xa) = π and τ(xc) = 0. In addition, at x =

xm where the primary component of the bichromatic wave breaks, we have 2
√

2A1(xm) =
γ h(xm) and τ(xm) = π/2 according to (5.5).

The derivative of (5.4) gives the forcing term for governing equation of the subharmonic:

d2Ŝ
(B)

d x2 = 2
π

(
d2S̄(I)

dx2 − d2S̄(II)

dx2

)
sin τ + 2

π

(
dS̄(I)

d x
− dS̄(II)

d x

)
cos τ

dτ

d x
, (5.7)

where dτ/d x can be obtained from the derivatives of (5.5) and (5.6):

dτ

d x
= − γ hx

2
√

2A1δ sin τ

(
h

2cg

dcg

dh
+ 1

)
+ O (δ) . (5.8)

Positive and negative d2Ŝ(B)/d x2 indicate the forcing term is in phase or antiphase with
the wave group at xc, because the excursion of region B was small, and the group phase
variation was neglected.

Substituting the shallow-water approximation cg ≈ c ≈ √
gh and (5.8) into (5.7) yields

8π

3ρgγ 2h2
x

d2Ŝ(B)
1

d x2 =
[

1 − 3
(

A1

γ h

)2]
sin τ + 5

√
2

16
γ h
A1δ

[
1 + 2

(
A1

γ h

)2]
(− cot τ) . (5.9)

The second term on the right-hand side in (5.9) is of leading order O(δ−1), thus
determining the sign of d2Ŝ(B)/d x2. In the outer half of region B (xm < x < xc), 0 < τ <

π/2 and − cot τ < 0, hence d2Ŝ(B)/d x2 < 0; in the inner half (xa < x < xm), π/2 < τ <

π and − cot τ > 0, hence d2Ŝ(B)/d x2 > 0. According to (3.34), at leading order, d2Ŝ/d x2

prior to breaking is in antiphase with the wave group, and the above result indicates that the
opposite is true once wave groups pass xm. Therefore, the subharmonic locally generated in
region B (ξ̂+

(B)) interferes with the subharmonic entering region B constructively seaward
of xm, but destructively shoreward of xm (figure 9).

The overall effect of group forcing in region B depends on the spatial variation of the
source field magnitude. Substituting (5.9) into (3.2), (3.36) and (3.7), the source field in
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Im

Re

LHS62 solution

ξ̂+
(B) in xa < x < xm

t increasingt = 0

(d2Ŝ(B)/dx2 > 0)

ξ̂+
(B) in xm < x < xc

(d2Ŝ(B)/dx2 < 0)

Ŝ(xc)

ξ̂+
g(xc)

�ϕ

Figure 9. Diagram of phase difference between the downwave-propagating subharmonic (ξ̂+
g ) entering the

moving-breakpoint region B in figure 8 at x = xc and the downwave component generated in region B (ξ̂+
(B)).

Here 
ϕ ≤ π/2 denotes a certain phase lag between ξ̂+
g (xc) and radiation stress in addition to π, which is

developed during shoaling prior to breaking.

region B, σ̂ (B), is given by

64π

15ih2
x
σ̂ (B) = γ 2

δ

1
kf h

(
γ h

2
√

2A1
+ 1

4
2
√

2A1

γ h

)
(− cot τ) + O (1) . (5.10)

Given that A1 ∝ c−0.5
g ∝ h−1/4 (5.6) and 2

√
2A1(xm) = γ h(xm), the coefficient of − cot τ

in the above equation reduces to

1
kf h

(
γ h

2
√

2A1
+ 1

4
2
√

2A1

γ h

)
= 1

ωg

√
g

h (xm)

{[
h

h (xm)

]3/4

+ 1
4

[
h

h (xm)

]−7/4
}

. (5.11)

Because γ h/(2
√

2A1) = [A1(xm)/h(xm)]/(A1/h) = [h/h(xm)]5/4 and γ h � 2
√

2A1
(1 − δ), for δ < 0.23, we have h/h(xm) = (γ h/2

√
2A1)

4/5 ≥ (1 − δ)4/5 > 0.81 and (5.11)
decreases with decreasing depth. Thus the source field σ̂ (B) is stronger in the outer than in
the inner half of region B; therefore, the downwave subharmonic is slightly enhanced over
region B.

As an example of applying the present solution to the moving-breakpoint forcing model,
the present solution shown in figure 6 is re-calculated here with the forcing term in region
B replaced by d2Ŝ(B)/d x2 in (5.7) and the results are shown as dashed lines in figure 10 (see
Appendix B for details of calculation). Note that ξ̂−

g (x) in region shoreward of xa is set to
zero because the present model assumes zero groupiness and hence zero group forcing in
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Total solution with breaking

(a) (b)
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Figure 10. Amplitude (a,b) and phase (c,d) of the complex amplitude ξ̂(x) of the subharmonic surface
elevation ξ̃(x, t) induced by bichromatic wave groups normally incident over a plane sloping bottom. Weakly
modulated test case A-4 (a,c) and strongly modulated test case B-5 (b,d) of the flume experiment of Van
Noorloos (2003). Laboratory measurements (circles), the present solution for non-breaking wave ξ̂ = ξ̂+

g +
ξ̂sc + ξ̂−

g where ξ̂sc denotes the downwave free subharmonic generated due to scattering at the slope toe ((B11),
black solid lines) and its downwave- and upwave-propagating group-induced subharmonic components, ξ̂+

g

(blue solid lines) and ξ̂−
g (red solid lines) in (B13). The counterpart solution combined with moving-breakpoint

forcing model for breaking waves is shown as dashed lines. The yellow shaded area denotes the moving
breakpoint within [xa, xc]. Phase is the phase lag behind wave groups plus π. Note that in (b), the phase of
the upwave component ξ̂−

g was manually shifted by π for plotting purposes.

this region; therefore theoretically no upwave-propagating component of group-induced
subharmonic exists. For the same reason, no phase lag was calculated shoreward of xa
where there is no wave group.

In both the weakly and strongly modulated test cases, the present solution predicts the
spatial variation of the subharmonic amplitude to be in good agreement with observation,
despite that the model was developed for weak modulation initially. As the water depth
decreases, the predicted amplitude of the downwave-propagating subharmonic in test A-4
first increases in the outer half of the moving-breakpoint region and then decreases in the
inner half by almost the same amount. The trend of the spatial evolution of amplitude is
consistent with the analysis above for (5.9) in the case of the weak modulation in test A-4.
For the strong modulation case of test B-5, the amplitude of the downwave-propagating
component keeps increasing in the moving-breakpoint region. The predicted phase lag
between the subharmonic and group deviates from observation in the moving-breakpoint
region, possibly due to growing discrepancy between theoretical predictions of the wave
group and observations in the surf zone. It is well known that wave groupiness is
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subject to drastic change after wave breaking, possibly due to greater decay of higher
waves (Svendsen & Veeramony 2001) or the modulation of breaking water depth by
group-induced subharmonics (Janssen et al. 2003; Liu & Li 2018). Accurate estimation
of the wave group phase from observations inside the surf zone would improve the
prediction of phase lag. Albeit minor compared to the breaking effect, partial reflections of
downwave-propagating components may also be included to further improve the accuracy
of theoretical predictions (Contardo et al. 2023).

6. Future work

The exact form of the solution (3.11) directly relies on the spectral expression for the
radiation stress, which is not well established for irregular waves in the surf zone. For
bichromatic waves, (2.1) combined with the concept of breaker index results in the
steady component of radiation stress solution in the surf zone S̄(I) in (5.3a) used in
the moving-breakpoint forcing model. This approach does not account for the effect of
surface rollers, and therefore can be erroneous. For instance, for plunging-type wave
breaking, there is little change in the radiation stress between the breakpoint and the
plunge point (Bowen, Inman & Simmons 1968), indicating that the radiation stress in the
outer surf zone does not decrease with depth as quickly as what is predicted by S̄(I) ∝ h2

in (5.3a,b). Accordingly, dS̄(I)/d x in (5.7) can be overestimated, as can the growth of
downwave-propagating subharmonic in the outer half of the moving-breakpoint region.
Similarly, Rijnsdorp, Smit & Zijlema (2014) found that a non-hydrostatic model incapable
of reproducing surface rollers tends to over-predict the amplitude of the subharmonic in
the moving-breakpoint region. Zou et al. (2006) derived a generalised analytical solution
for the vertical distribution of wave radiation stress in the presence of bottom slope,
bottom friction and depth-induced wave breaking in the shoaling region and surf zone
and conducted field observations to verify the theory. The cross-shore evolution of wave
energy is described by the wave energy flux conservation equation including dissipation
due to bottom friction and breaking in analogy with a travelling bore as in Thornton &
Guza (1983). Existing models that account for the surface roller effect, such as those
of Svendsen (1984) and Dally & Brown (1995), only consider the steady component of
radiation stress that is not responsible for driving the subharmonic. Moreover, despite
some efforts (e.g. Reniers et al. 2002; Contardo & Symonds 2016), the extension of the
spectral expression of radiation stress from bichromatic to irregular wave groups in the
surf zone is not as straightforward as it is for non-breaking waves. Future work of spectral
expression of radiation stress for realistic irregular waves in the surf zone is needed, based
on high-resolution datasets of velocity profiles from numerical or physical experiments,
as per Ting & Kirby (1994), Chang & Liu (1999), Lin & Liu (1998), Wang, Zou & Reeve
(2009), Kimmoun & Branger (2007), Bakhtyar et al. (2010), Pedrozo-Acuña et al. (2010),
Ruju, Lara & Losada (2012), Na, Chang & Lim (2020) and Xie & Lin (2022).

In the present theoretical study, the linearised shallow-water equation is used in
combination with the moving-breakpoint forcing model for the surf zone. It is necessary
to adopt the fully nonlinear shallow-water equation in the nearshore region near the
shoreline, where the self-interaction of the subharmonic may lead to energy dissipation in
the infragravity band by transferring energy back to the short-wave band (De Bakker et al.
2015, 2016) or even by breaking (Van Dongeren et al. 2007). Moreover, subharmonics may
also gain energy in the inner surf zone through bore merging by modulating the celerity
of individual bores (Bonneton & Dupuis 2001; Sénéchal et al. 2001; Tissier et al. 2015),
which is highly nonlinear.
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The present Green’s function-based solution has the potential advantage for practical
application in that the Green’s function for a certain area is only a function of the whole
topography within that area regardless of wave conditions. The local Green’s function
can be extracted from in situ datasets through data-driven deep learning (Gin et al. 2021;
Boullé, Earls & Townsend 2022) and then used for fast forecasts for any incident wave
conditions and group forcing. Furthermore, the forcing term (3.2) can be extended to
account for forcing factors other than radiation stress in governing equation (2.16) and
then substituted into (3.4).

The present 1-D solution can be extended to two-dimensional wave fields by
incorporating two-dimensional radiation stress and replacing the present Green’s function
for the 1-D shallow-water equation with the two-dimensional counterpart.

7. Conclusions

The unified solution for wave-group-induced subharmonics is derived based on Green’s
function, which allows for a new physical interpretation of the generation and formation
of the subharmonic. The group-forcing field is divided into successive time-dependent
pulses in space. The group-induced subharmonic is the superposition of all the free
subharmonics generated by each group-forcing pulse, which is bound to the wave group
through the group forcing related to wave radiation stress, so-called bound subharmonic
infragravity wave in previous studies. The present solution reduces to the existing solutions
for the off-resonance condition at intermediate water (Longuet-Higgins & Stewart 1962;
Zou 2011) and the near-resonance condition at shallow water and a plane beach (Van
Leeuwen 1992; Schäffer 1993; Janssen et al. 2003; Contardo et al. 2021; Liao et al.
2021). The underlying mechanism of the transition between bound and free subharmonics
is elucidated consistently from intermediate to shallow water.

The solution based on Green’s function indicates that, under the local forcing
of radiation stress gradient, two subharmonics keep radiating away from the source
location regardless of depth gradient considered in Contardo et al. (2021). As a
result, downwave- and upwave-propagating subharmonic components are generated at
the upwave and downwave side of any observation position. Thus, the group-induced
subharmonic is dependent on the entire topography surrounding the observation position.
The integrated historic topographic effect may not be significant for the off-resonance
condition at intermediate water due to destructive interference among subharmonic
components, but becomes significant for the downwave-propagating component for
the near-resonance condition at shallow water due to constructive interference among
subharmonic components.

For mildly sloping uneven bottoms, at leading order, each subharmonic is initially
ahead of wave groups by π/2. For full resonance condition in shallow water, the
phase difference of π/2 between downwave-propagating subharmonic and wave groups
remains invariant during propagation due to the same propagating speed; thereby
all the downwave-propagating subharmonics interfere with each other constructively.
Consequently, the superposed downwave-propagating subharmonic leads wave groups by
π/2, and its amplitude increases with travel distance of wave groups. Moreover, under
this condition, the bound subharmonic is theoretically indistinguishable from the free
subharmonic in the downwave-propagating subharmonic (3.30), which can be interpreted
as its release. However, the opposite is true for the upwave-propagating subharmonic since
resonance does not occur in the upwave direction.
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For bichromatic waves normally incident on a plane beach, the amplitude of
group-induced subharmonic in the moving-breakpoint region predicted by the Green’s
function-based solution is consistent with previous laboratory observations. For weakly
modulated waves, the solution indicates that the amplitude of the downwave-propagating
component increases and decreases in the outer and inner half of the moving-breakpoint
region. The solution is expected to be applicable to random waves in the surf zone, as long
as the spectral expression of the group forcing of breaking waves can be pre-described.
This calls for further studies of the temporal and spatial variation of radiation stress in the
surf zone.

Supplementary material. The data and codes for generating the figures in the present paper are openly
available in Zenodo at http://doi.org/10.5281/zenodo.7813457.
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Appendix A. Error of the solution on slowly varying water depth

The error of the solution for the bound subharmonic ξ̂b = ξ̂+
b + ξ̂−

b using (3.39) is
analysed as follows. The solution (3.39) for ξ̂±

b satisfies the following equation:

1
h

d
d x

(
h

dξ̂±
b

d x

)
+ k2

f ξ̂
±
b = 1

2
f̂ − 1

2
f̂r − 0.25

hxx

h
ξ̂±

b + 0.0625
(

hx

h

)2

ξ̂±
b , (A1)

where f̂r is the forcing term of order O(β2) defined in (3.34). Using (A1), ξ̂b = ξ̂+
b + ξ̂−

b
satisfies

1
h

d
d x

(
h

dξ̂b

d x

)
+ k2

f ξ̂b = f̂ − f̂r − 0.25
hxx

h
ξ̂b + 0.0625

(
hx

h

)2

ξ̂b. (A2)

Let ξ̂r be the truncated error between ξ̂b and exact solution, i.e.
1
h

d
d x

[
h

d
d x

(ξ̂b + ξ̂ r)

]
+ k2

f (ξ̂b + ξ̂ r) = f̂ , (A3)

and subtracting (A2) from (A3) yields

1
h

d
d x

(
h

dξ̂ r

d x

)
+ k2

f ξ̂r = f̂r + 0.25
hxx

h
ξ̂b − 0.0625

(
hx

h

)2

ξ̂b. (A4)
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The order of the inhomogeneous term in (A4) is estimated using (3.28) and (3.34) to be

f̂ r + 0.25
hxx

h
ξ̂b − 0.0625

(
hx

h

)2

ξ̂b = μk2
gξ̂bO(β2) + 0.25k2

g ξ̂b
hxx

k2
gh

− 0.0625k2
g ξ̂bβ

2

= k2
gξ̂b (1 + μ) O(β2), (A5)

and therefore (A4) becomes

1
h

d
d x

(
h

dξ̂ r

d x

)
+ k2

f ξ̂r = k2
gξ̂b (1 + μ) O(β2). (A6)

Equation (A6) has the same form as the governing equation (2.16), and the solution (3.28)
indicates that ξ̂r in (A6) is of order

ξ̂r = k2
gξ̂b (1 + μ)

k2
gμ

O(β2) = ξ̂b

(
1
μ

+ 1
)

O(β2), (A7)

which is of second order in bottom slope O(β2) for off-resonant condition (βμ−1 = O(β))
in intermediated depth, and of first order in bottom slope O(β) for near-resonant condition
(βμ−1 = O(1)) in shallow water.

Appendix B. Theoretical calculation of complex amplitude of subharmonic

The amplitude and phase of the complex amplitude of subharmonics ξ̂(x) over a plane
sloping bottom are shown in figure 6, which is the sum of the group-induced subharmonic
ξ̂g(x) and the downwave-propagating free component due to scattering at the toe of the
slope ξ̂sc, i.e.

ξ̂(x) = ξ̂g(x) + ξ̂sc(x). (B1)

Let x = x0 denote the coordinate of the toe of the slope. The downwave-propagating
component due to toe scattering is calculated as

ξ̂sc(x) = ξ̂sc(x0)
ξ̂+

h (x)

ξ̂+
h (x0)

, (B2)

where the exact form of ξ̂+
h (x) varies for different theoretical solutions. The boundary

value ξ̂sc(x0) is given by equation (29) in Liao et al. (2021):

ξ̂sc(x0) = ξ̂LHS62β

0.25β − 2ikf /kg
×
⎧⎨
⎩
⎛
⎝k2

f

k2
g

h∣∣∣Ŝ∣∣∣
d
∣∣∣Ŝ∣∣∣

dh
− 1 − h

μ

dμ

dh

⎞
⎠

+ kg

kf − kg

⎡
⎣k2

f

k2
g

⎛
⎝ 2h∣∣∣Ŝ∣∣∣

d
∣∣∣Ŝ∣∣∣

dh
+ h

kg

dkg

dh

⎞
⎠− 1 − 2h

μ

dμ

dh

⎤
⎦
⎫⎬
⎭ . (B3)
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To use the off-resonant solution of Zou (2011), ξ̂+
h (x) is given by (see

equations (3.9c)–(3.9d) therein)

ξ̂+
h (x) = h−0.25(x)

×
{

1 + h−0.5(x)
2ikf

∫ x

x0

h−0.25(x′)
d

d x

[
h(x′)

d
d x

h−0.25(x′)
]

d x′
}

exp
(

i
∫ x

x0

kf d x′
)

.

(B4)

Substituting the off-resonant solution of Zou (2011) (4.10) into ξ̂g(x) in (B1) yields

ξ̂(x) = − Ŝ
ρghμ

⎧⎨
⎩1 + iβ

μ

⎡
⎣
⎛
⎝ 2h∣∣∣Ŝ∣∣∣

d
∣∣∣Ŝ∣∣∣

dh
+ h

kg

dkg

dh

⎞
⎠ (1 − μ) − 1 − 2h

μ

dμ

dh

⎤
⎦
⎫⎬
⎭

+ ξ̂sc(x0)
ξ̂+

h (x)

ξ̂+
h (x0)

. (B5)

To use the near-resonant solution of Liao et al. (2021), ξ̂+
h (x) is given by (see

equation (13) therein)

ξ̂+
h (x) = [kg(x)h(x)]−0.5 exp

(
i
∫ x

x0

(
1 − μ

2

)
kg d x′

)
. (B6)

Substituting (4.12) and (B2)–(B6) into (B1) yields

ξ̂(x) = ξ̂+
h (x)

ξ̂+
h (x0)

[
ξ̂sc(x0) + ξ̂b(x0) +

∫ x

x0

f̂ M (y)
2ikg (y)

ξ̂+
h (x0)

ξ̂+
h (y)

dy

]
, (B7)

where ξ̂b(x0) is given by (4.10).
Comparison of (4.16) and (4.12) indicates that, to use the near-resonant solution of

Janssen et al. (2003), we simply replace f̂ M in the above equation with f̂ M + f̂ S, i.e.

ξ̂(x) = ξ̂+
h (x)

ξ̂+
h (x0)

[
ξ̂sc(x0) + ξ̂b(x0) +

∫ x

x0

f̂ M (y) + f̂ S (y)
2ikg (y)

ξ̂+
h (x0)

ξ̂+
h (y)

dy

]
. (B8)

To use the present solution, ξ̂+
h (x) is replaced by (3.35), i.e.

ξ̂+
h (x) = [h(x)]−0.25 exp

(
i
∫ x

x0

kf d x′
)

. (B9)

The present solution (3.16) is calculated by replacing a with x0, with ξ̂±
h given by

(3.35) and ξ̂±
f (x0) given by ξ̂±

b (x0) in (4.8). According to the analysis in § 4.3.1, the
present solution (3.39) is accurate to leading order for the near-resonance condition.
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Hence according to (3.32) and (3.36), the source field (3.7) to leading order is

σ̂ = f̂M
2ikf

. (B10)

Therefore, the expression of solution (3.16) for the calculation in figure 6 is given by

ξ̂(x) = ξ̂sc(x) + ξ̂+
b (x0)

ξ̂+
h (x)

ξ̂+
h (x0)

+ ξ̂−
b (x0)

ξ̂−
h (x)

ξ̂−
h (x0)

+
∫ x

x0

f̂M(y)
2ikf (y)

[
ξ̂+

h (x)

ξ̂+
h (y)

− ξ̂−
h (x)

ξ̂−
h (y)

]
dy,

(B11)

where
ξ̂(x) = ξ̂sc(x) + ξ̂+

g (x) + ξ̂−
g (x) , (B12)

with ξ̂+
g (x) and ξ̂−

g (x) being

ξ̂+
g (x) = ξ̂+

b (x0)
ξ̂+

h (x)

ξ̂+
h (x0)

+
∫ x

x0

f̂ M (y)
2ikf (y)

ξ̂+
h (x)

ξ̂+
h (y)

dy,

ξ̂−
g (x) = ξ̂−

b (x0)
ξ̂−

h (x)

ξ̂−
h (x0)

−
∫ x

x0

f̂ M (y)
2ikf (y)

ξ̂−
h (x)

ξ̂−
h (y)

dy.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(B13)

Combined with the moving-breakpoint forcing model, the present solution is applied
to test A-4 in the experiment of Van Noorloos (2003). Region B [xa, xc] is first
identified as shown in figure 11. Then, according to (5.5), the amplitudes of bichromatic
waves, A1(xa) and A1(xc), are estimated as γ h/[2

√
2(1 − δ)] and γ h/[2

√
2(1 + δ)]

assuming A1(x) varies linearly from A1(x0) = 0.06 m to A1(xa) and A1(xc). For test
B-5, the wave parameters are [ f1, f2] = [0.6470, 0.5005] Hz, [A1, A2] = [0.06, 0.036] m,
[xa, xc] = [5, 10.5] m, δ = 0.6 and γ = 0.68. Then ξ̂+

g (x) and ξ̂−
g (x) in region B are

calculated using (B13) but now the forcing term f̂M in [xa, xc] is determined using (5.7) as

f̂M(x) = − 1
ρgh

d2Ŝ
(B)

d x2 . (B14)

Note that ξ̂−
g (x) in the region shoreward of xa is set to zero because the present

model assumes zero groupiness and hence zero group forcing in this region; therefore
theoretically no upwave-propagating component of group-induced subharmonic exists.

Appendix C. Generation and formation of group-induced subharmonic

Unlike previous studies, the present unified solution of group-induced subharmonic for all
water depths is constructed based on Green’s function. Accordingly, the group-forcing
field is divided into successive pulses distributed in space, and the group-induced
subharmonic is the superposition of all the free subharmonics generated by each pulse
in both directions. As a result, the group-induced subharmonic is modulated by and bound
to the group-forcing field and, therefore, the wave group. To understand the evolution
of the subharmonic from intermediate to shallow water, the emission, propagation and
interference of the free subharmonics induced by group forcing are examined in this
appendix.
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Figure 11. Left axis: the root-mean-square (RMS) wave height of primary waves of test A-4 in the experiment
of Van Noorloos (2003); right axis: bottom elevation of the physical model. Parameters fi and Ai (i = 1, 2)
are the frequency and amplitude of the two components of bichromatic waves tested. Rate δ = A2/A1 is
the modulation rate and γ = significant breaking height/depth is the breaker index. The seaward boundary
of moving-breakpoint region xc is where primary wave height starts to decay, and the shoreward boundary
location xa is 26.7 m from wave paddles where the smallest waves break (cf. § 5.1.1 in Van Noorloos 2003).

C.1. Emission of free subharmonics due to group forcing
The nonlinear short-wave group forcing of the subharmonic is represented by the radiation
stress gradients ∂2S̃/∂x2 in the governing equation (2.14). For stationary bichromatic
waves, at any given position, ∂2S̃/∂x2 oscillates with the period of the wave group,
and so does the induced free subharmonic. The emission of the free subharmonic is
described by its initial complex amplitude generated per unit distance, which constitutes
the source field of group-induced subharmonic, σ̂ . For linear problems, the source field
of the group-induced subharmonic is given by σ̂ (y) = f̂ (y)G(y, y), where G(y, y) (3.10) is
the local response of surface elevation to periodic forcing with unit complex amplitude and
f̂ (y) (3.2) is the external group-forcing field with complex amplitude. Since f̂ is modulated
by wave groups, so are the initial amplitude and phase of the emitted free subharmonics.

For wave groups over continuous 1-D topography with mild sloping bottom, at leading
order of bottom slope, the group forcing f̂ is in phase with radiation stress ( f̂M in (3.34))
and the local response of surface elevation is G(y, y) = 1/(2ikf ) (3.36), indicating that
the source field is π/2 ahead of the wave groups. This phase relationship is physically
understandable since, as indicated by the momentum equation (2.13), the force directly
exerted onto the water body is the radiation stress gradient, which is π/2 ahead of wave
groups. At leading order, the magnitude of the source field is proportional to |σ̂ | ∝
k2

g|Ŝ|h−0.5 (3.38), which increases with decreasing depth as |σ̂ | ∝ h−2 for a conservative
shoaling process in shallow water.

C.2. Propagation of emitted subharmonics
For wave groups over continuous 1-D topography, under periodic group forcing, two
subharmonics radiate away from the source location freely. Over a mild sloping
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bottom, neglecting reflection and dissipation, the amplitude transformation of the
free subharmonic from its source point y to an observation point x is described by
Green’s law, i.e. amplitude ∝ h−0.25. Considering the phase change from y to x, the
transfer function of complex amplitude of the free subharmonic, σ̂ (y) dy, is given by
[h(x)/h(y)]−0.25 exp(i| ∫ x

y kf d x′|). As shown in § 4, this simple transfer function reduces
the present solution to existing solutions for both off-resonance condition (βμ−1 = O(β))
in intermediate depth and near-resonance condition (βμ−1 = O(1)) in shallow water.

C.3. Interference of subharmonics
The linear superposition of all the emitted free subharmonics from each source location y
yields the group-induced subharmonic at an observation point x, with complex amplitude
ξ̂g(x). Taking the wave group direction as the downwave direction, ξ̂g = ξ̂+

g + ξ̂−
g ,

where ξ̂+
g and ξ̂−

g are the complex amplitudes of downwave- and upwave-propagating
components, respectively. At leading order, the phase of the integrand in the solution
for ξ̂±

g (3.39) varies with y as
∫ y

(kg ± kf ) d x′. This means that, at any observation point
x, the phase of each downwave-propagating subharmonic varies slowly with its source
location y as

∫ y
(kg − kf ) d x′, while that of the upwave-propagating subharmonic varies

much faster as
∫ y

(kg + kf ) d x′. The phase dependence of collocated free subharmonics on
their source locations determines the maximum length of the source region from which the
emitted subharmonics have phases close to each other so that they interfere with each other
constructively. The longer this region is, the larger the superposed subharmonic amplitude
becomes. The maximum lengths of source region are of order π/(kg − kf ) and π/(kg + kf )
for the downwave- and upwave-propagating subharmonics, respectively. Consequently,
the superposed amplitude of the downwave-propagating subharmonic |ξ̂+

g | is about (kg +
kf )/(kg − kf ) times |ξ̂−

g |, assuming that the source field is of the same order of magnitude
in the entire domain. This underlying mechanism explains the stronger resonance of
downwave-propagating subharmonics than upwave-propagating subharmonics.

In shallow water, near resonance occurs, i.e. kg ≈ kf , and the downwave-propagating
free subharmonics travel at the same speed as the source field; hence the initial
phase difference of π/2 between each emitted downwave-propagating component
and wave groups remains the same during propagation and so does the superposed
downwave-propagating subharmonic. Moreover, all downwave-propagating subharmonics
are in phase with each other and they interfere with each other constructively
(figure 5). Consequently, as elucidated by (3.42), the superposed amplitude of
downwave-propagating free subharmonics increases linearly with the travel distance of
wave groups. In practice, however, the rate of increase with travel distance is reduced by the
dissipating group forcing due to bottom friction, nonlinear energy transfer to subharmonics
or depth-induced wave breaking.

Appendix D. Influence of entire topography on group-induced subharmonic

The group-induced subharmonic at any observation position includes components
generated in regions on the upwave and downwave sides, meaning that the group-induced
subharmonic is dependent on the whole profile of the topography. To elucidate how the
local group-induced subharmonic is influenced by the topography, a conceptual model is
proposed and analysed below.
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a b x

a b x

|ξ̂+
g, II (b)|

|ξ̂+
g, I (b)|

|ξ̂+
g, II (b) ξ̂+

h, II (x)/ξ̂+
h, II (b)|

|ξ̂+
g, II (x)| = |ξ̂+

g, II (b)ξ̂+
h, II (x)/ξ̂+

h, II (b) + ∫x
b σ̂i (y)ξ̂+

h, i (x)/ξ̂+
h, i (y) dy|

|ξ̂+
g, I (x)| = |ξ̂+

g, I (b)ξ̂+
h, I (x)/ξ̂+

h, I (b) + ∫x
b σ̂i (y)ξ̂+

h, i (x)/ξ̂+
h, i (y) dy|

|∫x
b σ̂i (y)ξ̂+

h, i (x)/ξ̂+
h, i (y) dy||ξ̂+

g, I (b)ξ̂+
h, I (x)/ξ̂+

h, I (b)|

Incoming waves

hI (x)
hII (x)

(a)

(b)

Figure 12. A conceptual model of a fixed wave train propagating from a to x over two different topographies.
(a) Topographies hI(x) and hII(x), which are different in a < x < b only. (b) Spatial evolution of the amplitude
of downwave-propagating group-induced subharmonic |ξ̂+

g,i(x)|, i = I, II (solid lines). Here ξ̂+
g,i(x) in x � b

includes two components: one is generated in x � b (dotted line), which is the same for hI(x) and hII(x), and
the other is generated in a < x < b (dashed lines).

Consider a fixed wave train travelling across topographies, hI(x) and hII(x), with hI(a) =
hII(a) at the boundary x = a (figure 12a). The topography is assumed to be smooth enough
so that the scattering effect due to discontinuity in bottom slope or bottom curvature is
negligible (Zou 2011). Let hI(x) and hII(x) be different in a < x < b only, i.e.⎡

⎢⎢⎢⎢⎢⎣

hI(x)

d
d x

hI(x)

d2

d x2 hI(x)

⎤
⎥⎥⎥⎥⎥⎦ �≡

⎡
⎢⎢⎢⎢⎢⎣

hII(x)

d
d x

hII(x)

d2

d x2 hII(x)

⎤
⎥⎥⎥⎥⎥⎦ , for a < x < b,

⎡
⎢⎢⎢⎢⎢⎣

hI(x)

d
d x

hI(x)

d2

d x2 hI(x)

⎤
⎥⎥⎥⎥⎥⎦ ≡

⎡
⎢⎢⎢⎢⎢⎣

hII(x)

d
d x

hII(x)

d2

d x2 hII(x)

⎤
⎥⎥⎥⎥⎥⎦ , for x ≥ b.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(D1)

The downwave-propagating group-induced subharmonic ξ̂+
g (x) can be derived from

(3.12a):

ξ̂+
g,i (x) =

∫ x

a
σ̂ i (y)

ξ̂+
h,i (x)

ξ̂+
h,i (y)

dy, i = I, II, (D2)
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which, in x � b, can be decomposed into

ξ̂+
g,i (x) = ξ̂+

g,i (b)
ξ̂+

h,i (x)

ξ̂+
h,i (b)

+
∫ x

b
σ̂ i (y)

ξ̂+
h,i (x)

ξ̂+
h,i (y)

dy, i = I, II. (D3)

Equation (D3) shows that ξ̂+
g (x) in x � b includes two components: the first term on

the right-hand side corresponds to a free mode component generated in a < x < b; the
second term is the component generated in the region between b and x. The influence of
topography in a < x < b on the group-induced subharmonic in x ≥ b is therefore twofold.

Firstly, topographies hI(x) and hII(x) in a < x < b will lead to different emission
and propagation processes of downwave-propagating free subharmonics induced by
group forcing. Consequently, the interference pattern of these subharmonics at b is
different, resulting in different subharmonics entering x ≥ b, as shown in figure 12(b)
by the different boundary values of ξ̂+

g,I(b) and ξ̂+
g,II(b) for ξ̂+

g,I(x) and ξ̂+
g,II(x) in x ≥ b,

respectively. Similarly, changing the topography on the downwave side of x can also alter
the upwave-propagating component.

Secondly, the second term on the right-hand side of (D3) is also affected by the
topography in a < x < b. On the one hand, the condition (D1) ensures that in x ≥ b the
homogeneous solution ξ̂+

h,I can only differ from ξ̂+
h,II by a constant coefficient, which has

no effect on G(y, y) according to (3.10). On the other hand, according to (3.32), the forcing
field can be expressed as

f̂i (x) = Ŝ (a)

ρg

⎡
⎢⎣k2

g,i

hi

⎛
⎝− 1

k2
g

∣∣∣Ŝ∣∣∣
d2
∣∣∣Ŝ∣∣∣

d x2 − 2i

kg

∣∣∣Ŝ∣∣∣
d
∣∣∣Ŝ∣∣∣

d x
− i

k2
g

dkg

d x
+ 1

⎞
⎠

i

∣∣∣∣∣ Ŝi (x)

Ŝ (a)

∣∣∣∣∣
⎤
⎥⎦

× exp
(

i
∫ x

a
kg,i dy

)
, i = I, II. (D4)

Assuming conservation of energy flux of the primary wave, according to (2.11), |Ŝ| is
only a function of water depth; hence, by (D4), f̂i excluding the phase factor of wave groups
is a function of water depth, bottom slope and bottom curvature, which are the same for
hI(x) and hII(x) in x ≥ b. The only difference between f̂I and f̂II in x ≥ b lies in the phase
factor and is given by

f̂I (x) = exp
(

i
∫ b

a
(kg,I − kg,II) dy

)
f̂II (x) . (D5)

This phase difference in forcing term is also the only difference between the second
term of the right-hand side of ξ̂+

g,I(x) and ξ̂+
g,II(x) in (D3) for x ≥ b, i.e.

∫ x

b
σ̂ I (y)

ξ̂+
h,I (x)

ξ̂+
h,I (y)

dy = exp
(

i
∫ b

a
(kg,I − kg,II) dy

)∫ x

b
σ̂ II (y)

ξ̂+
h,II (x)

ξ̂+
h,II (y)

dy. (D6)

This is because, according to (3.7) and (3.10), the forcing term f̂i is related to the source
field σ̂i through a function determined by homogeneous solutions ξ̂±

h,i which are the same

967 A37-38

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

47
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.475


Analytical solution for group-induced infragravity waves

in x ≥ b for the two topographies considered. Therefore, if the condition∫ b

a
(kg,I − kg,II) dy = 2Nπ, N ∈ Z (D7)

is not satisfied, (D5) and (D6) show that changing the topography in a < x < b shifts the
phase of the downwave subharmonics generated in the subsequent region x ≥ b through
shifting the phase of the forcing field.

The non-local influence of surrounding topography at intermediate depth is trivial due
to destructive interference of the emitted free subharmonics and the source amplitude
determined by radiation stress gradient decreases with water depth as mentioned in
Appendix C. In shallow water, the non-local influence becomes non-trivial mainly due
to the constructive interference in the full-resonance condition, but also the source
amplitude is amplified at shallow water. For instance, Li et al. (2020) reported that,
when wave groups first propagate across a shoal bathymetry, with the plateau in shallow
water, and then transmit into the flat bottom zone connected to it, the transmitted
subharmonic is composed of a bound subharmonic and a free subharmonic that is far more
energetic than the bound subharmonic. The conceptual model discussed above based on
figure 12 suggests that this is because the shallow-water region over the shoal bathymetry
functions as a resonator for the downwave-propagating component that amplifies its
amplitude by triggering and maintaining the constructive interference process of emitted
free subharmonics. On the transmission side of the shoal, where the bottom is flat,
this component keeps propagating as a free mode, coexisting with the inherent bound
subharmonic described by the LHS62 solution.

It is also noteworthy that, although the group-induced subharmonic at any observation
position x is essentially dependent on the entire topography on both sides of x, for practical
computation, the topography and boundary value on either side are sufficient. For example,
given the topography and boundary value on the upwave side of x, the solution (3.16) can
be used. The effect of the topography on the downwave side of x is already included
in the boundary value ξ̂−

f (a) and the effect of group forcing on the upwave-propagating
components is manifested by deducting the contribution of sources along the integral path
from the overall effect of all sources.

List of symbols and abbreviations

a, b boundary coordinates of an arbitrary 1-D domain a < x < b
A1, A2 amplitudes of two components of bichromatic waves
A modulated complex amplitude of bichromatic waves
β relative bottom slope at the wave group scale, β = hx/(kgh)

c short-wave phase speed
cg short-wave group speed
δ modulation rate of bichromatic waves, δ = A2/A1
δDirac(x − y) Dirac Delta function
E short-wave energy
Ẽ oscillatory component of wave energy of bichromatic wave group
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f̂ forcing term of the governing equation (2.16)
f̂M main part of f̂ at leading order of bottom slope
f̂S secondary part of f̂ at first order of bottom slope, f̂S = f̂MO(β)

f̂r residual part of f̂ due to higher-order effects of bottom slope, f̂r = f̂MO(β2)

f̂L linearised forcing term f̂ to leading order of bottom slope, f̂L = f̂M + f̂S
G(x, y) Green’s function
g gravitational acceleration
γ breaking index
h water depth
hx bottom slope
hxx bottom curvature
η short-wave surface elevation
k central wavenumber of bichromatic waves
kg wavenumber of bichromatic wave group, kg = ωg/cg
kf wavenumber of free mode of group-induced subharmonic, kf = ωg/

√
gh

M̃ subharmonic mass flux
μ degree of departure from resonance, μ = 1 − k2

f /k2
g

ρ water density
S short-wave radiation stress
S̃ component of S oscillating with wave group period
Ŝ single-side complex amplitude of S̃
Ŝ(B) Ŝ in the moving-breakpoint region (region B in figure 8)
S̄(I), S̄(II) steady component of S for breaking and non-breaking waves (regions I and II in

figure 8)
σ̂ source field of subharmonic due to group forcing
σ̂r residual source field after subtracting the LHS62 bound subharmonic from

group-induced subharmonic solution
σ̂ (B) σ̂ in the moving-breakpoint region
σ̂CLHRDS21 residual source field σ̂r proposed by CLHRDS21
τ group phase when wave breaking in the moving-breakpoint region ceases
ω central radian frequency of bichromatic waves
ωg radian frequency of bichromatic wave group
xa, xm, xc coordinates of the shoreward boundary, the middle point and the seaward boundary

of the moving-breakpoint region
y label of the spatial coordinate of the group-forcing field
ξ̃ subharmonic surface elevation
ξ̂ single-side complex amplitude of ξ̃

ξ̂g ξ̂ of group-induced subharmonic
ξ̂f ξ̂ of ambient free subharmonic
ξ̂b bound subharmonic in ξ̂g

ξ̂+, ξ̂+
g , ξ̂+

f , ξ̂+
b , G+ downwave-propagating components of ξ̂ , ξ̂g, ξ̂f , ξ̂b, G (travel in the direction of

wave groups)
ξ̂−, ξ̂−

g , ξ̂−
f , ξ̂−

b , G− upwave-propagating components of ξ̂ , ξ̂g, ξ̂f , ξ̂b, G
ξ̂+

h , ξ̂−
h two linearly independent homogeneous solutions of governing equation (2.16) that

describe the downwave- and upwave- propagating free subharmonics, respectively
ξ̂r truncated error of solution (3.39)
ξ̂+
(B) ξ̂+

g forced within the moving-breakpoint region
LHS62 Longuet-Higgins & Stewart (1962) solution for the bound subharmonic of

group-induced subharmonic on flat bottom
CLHRDS21 Contardo et al. (2021) solution for group-induced subharmonic.
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