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The forced breakup of liquid jets in ambient gas surroundings is studied systematically
through numerical simulations and theoretical analyses, with particular emphasis on
characterising the response modes of jet breakup across wide ranges of perturbation
frequency and amplitude. Simulations reveal that the breakup of liquid jet can be
effectively synchronised with external actuation within a frequency range encompassing
the natural breakup frequency, thereby enabling the generation of highly uniform droplets.
As the perturbation frequency exceeds an upper critical value, the external perturbation
cannot dominate the jet breakup, while below a lower critical frequency, the jet breaks
up with multiple droplets generated within one period. A high perturbation amplitude
can result in liquid accumulation, leading to the formation of a pancake-shaped jet
configuration. Through spectrum analyses, the development of jet interface perturbations
under different response modes is elucidated, revealing the competition between the
natural frequency and the external frequency. A linear instability analysis of a liquid jet is
performed, which successfully predicts the synchronised frequency range by comparing
the breakup time between the free liquid jet and the actuated jet, along with the variation
tendencies of jet breakup length with varying perturbation frequency, amplitude and
jet velocity. Quantitative numerical results demonstrate that in the case of multiple
droplet generation under low perturbation frequency, the rear droplet maintains a higher
velocity than its leading counterpart and the emergence of a high-pressure zone at the
leading edge of a droplet train facilitates the droplet coalescence. Furthermore, the study
introduces an innovative approach by superimposing periodic pulses onto the sinusoidal
perturbation waveform, enabling active modulation of multiple droplet merging dynamics.
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This fundamental study is intended to offer valuable guidance for the on-demand
generation of droplets in various industrial applications.

Key words: capillary flows, jets, drops

1. Introduction
The breakup of liquid jets into droplets widely occurs in natural phenomena and industrial
applications, such as water faucets and fountains (Eggers & Villermaux 2008), archerfish
predation (Gerullis & Schuster 2014), inkjet printing (Lohse 2022), and fuel atomisation
in machines (Ren et al. 2019). In these scenarios, the liquid phase is injected from a round
nozzle into a static air environment, forming a cylindrical jet and eventually disintegrating
into a chain of droplets due to interfacial instability. It should be emphasised that the
morphology of droplets is of vital importance to the efficiency of applications. For
example, in the case of tin droplets generated in extreme ultraviolet lithography, the size,
homogeneity and separation distance of droplets must be precisely controlled to ensure
the highly repeatable stimulation of tin droplets under strong laser pulses (Sun et al.
2024). For the fabrication of microcapsules in pharmacy, the droplet productivity and size
homogeneity are important for process optimisation and functional consistency (Gañán-
Calvo et al. 2013). Therefore, controlling the interface breakup of liquid jets is of great
significance, as it facilitates the active generation of droplets.

The investigation of liquid jet breakup dates back to Savart (1833), who conducted
an experimental study and found that the development of interface perturbations led to
the eventual disintegration of the liquid jet. The growth rate of perturbations could be
measured based on the temporal development of the perturbation wave crest through
stroboscopic photography (Donnelly & Glaberson 1966). Satellite droplets have also been
observed to accompany the main droplets, which were caused by the strong nonlinear
characteristics of the jet interface during breakup (Hoeve et al. 2010). The occurrence
of satellite droplets was found to be closely related to the liquid jet viscosity. As the jet
velocity increases, shear stress could play a more significant role, leading to a transition
from Rayleigh breakup (dominated by surface tension) to the first wind-induced regime,
the second wind-induced regime and finally to the atomisation regime (Lin & Reitz
1998; Zhan et al. 2020). At relatively low liquid velocity, the interface was observed
to break up right at the nozzle exit, corresponding to the dripping mode (Vihinen,
Honohan & Lin 1997; Clanet & Lasheras 1999). Numerical simulations have also been
conducted to reveal the dynamics of jet breakup, providing more quantitative details that
are difficult to measure in experiments (Subramani et al. 2006; Zhou, Yue & Fenga 2006;
Huang, Bao & Qian 2023). Linear instability analysis is a powerful tool for studying the
perturbation development of liquid jets from the theoretical perspective (Lin 2003). The
pioneering work of Plateau (1873) and Rayleigh (1878) indicated that the surface tension
force could lead to the axisymmetric instability of an inviscid jet. The liquid viscosity
was found to weaken jet instability and modulate the wavelength of the most unstable
perturbation (Tomotika 1935; Chandrasekhar 1961). The non-axisymmetric helical mode
of jet instability tends to occur with the addition of external fields, such as the external
driving gas stream (Si et al. 2009, 2010), the electric field (Loscertales et al. 2002; Li,
Yin & Yin 2009) and the circumferential angular velocity (Gallaire & Chomaz 2003;
Kubitschek & Weidman 2007; Xu et al. 2024). To date, several review articles have
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been published summarising the instability characteristics of liquid jets under various
conditions, both from physical and theoretical perspectives (Lin & Reitz 1998; Eggers &
Villermaux 2008; Montanero & Gañán-Calvo 2020).

Due to random perturbations on the jet interface, the breakup of liquid jets into droplets
always presents relatively poor repeatability. For example, the droplet size usually falls
within some ranges and the satellite droplets always form accompanying the main droplet.
Moreover, the generating frequency and average size of droplets are hard to be adjusted
actively. These shortcomings limit the efficiency of practical applications, highlighting
the need for on-demand control of jet breakup and droplet production. Currently, multiple
methods have been introduced to modulate the breakup of liquid jets, such as the addition
of laser illumination (either continuous laser (Liu et al. 2021) or periodic pulsed laser
(Zhao et al. 2021)), ultrasonic field (Kudryashova et al. 2023), thermal field (Basaran,
Gao & Bhat 2013; Kamis, Eral & Breugem 2021) and mechanical vibration (She et al.
2022; Luo et al. 2023). Among these methods, the mechanical vibration acts as the
simplest one and has been most widely used. The mechanical vibration is able to provide an
additional perturbation to the liquid jet, which competes with the jet intrinsic perturbation
and is able to modulate the jet breakup behaviour under certain conditions. Moallemi, Li &
Mehravaran (2016) have found in experiments that a train of droplets with uniform size can
be generated by applying mechanical vibration with a sinusoidal waveform, and the droplet
size and jet breakup length could be modulated within a certain range by changing the
vibrating frequency and amplitude, respectively. These findings have also been comfirmed
by their numerical simulations with adaptive mesh refinement. The frequency range for
regular jet breakup with uniform droplets was experimentally determined by Rohani,
Jabbari & Dunn-Rankin (2010), considering the variation of jet velocity. It should be noted
that, apart from free liquid jets in static ambient gas, the mechanical vibration can also
modulate the breakup of liquid jets in complex flow situations, such as liquid jets driven
by electric fields (Duan et al. 2013), coflowing gas flows (Xu et al. 2022) and immiscible
liquid streams (Zhu, Tang & Wang 2016; Yang et al. 2019). Liquid jets were also found to
generate periodic wrinkled structures instead of droplets under very low interfacial tension
between the jet and the surrounding liquid (Sauret, Spandagos & Shum 2012; Sauret &
Shum 2012).

For the liquid jet breakup in a static gas environment, it has been found that the
combination of multiple sinusoidal perturbations with different wavelengths can lead to
more complex behaviours of droplet generation and subsequent evolution. It was observed
by Orme & Muntz (1990) that the superposition of two sinusoidal perturbations could lead
to the initial jet breakup into droplets at distances commensurate with the faster frequency
of the disturbance, and droplets from two adjacent half-periods of the modulation cycle
would eventually merge to form one large drop as they travel downstream. The merging
process of multiple droplets was closely related to the relative amplitude between the two
disturbances (Rohani et al. 2010). Driessen et al. (2014) applied the superposition of two
perturbations with similar growth rates, where the wavelengths of the perturbations were
also close to the wavelength of the most unstable mode. It was found that the liquid jet
first degenerated into multiple droplets, which then merged to form final uniform droplets
with large separation distances. The period of the final uniform droplets corresponds to
the shortest common period of the two perturbations.

Despite the existing studies on the forced breakup of liquid jets, a systematic study of
the jet response characteristics over a wide range of perturbation frequencies, amplitudes
and jet velocities is still desired, and the transition criteria among different response
modes remain to be explored. Moreover, beyond the regular breakup region, the merging
dynamics of inhomogeneous droplets with different sizes and the methods for regulating
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Figure 1. Sketch of the axisymmetric computational domain for numerical simulations, where Ū1(t̄) represents
the oscillating inlet velocity of the liquid jet. The inset sketches the temporal evolution of inlet velocity, where
Ū1 is the jet average velocity, and A and f̄ represent the amplitude and frequency of perturbations, respectively.

droplet merging also motivate our interest. In this work, we focus on the forced breakup of
liquid jets in ambient gas surroundings through direct numerical simulations, in which
a velocity disturbance is applied at the jet inlet to modulate the breakup. Theoretical
analysis based on the linear instability model is also employed to quantitatively analyse
the numerical results. The paper is organised as follows. In § 2, we present our numerical
methods based on the diffuse interface method. Section 3 demonstrates the response
dynamics of the liquid jet with varying actuation frequency, amplitude and jet velocity. The
development of interface perturbations under different response modes is also analysed
in this section. The theoretical analysis is provided in § 4. Section 5 investigates the
droplet merging dynamics under the mode where multiple droplets are generated in one
period, and the manipulation strategy for this mode by adding a pulse to the sinusoidal
perturbation wave is studied in § 6. The main conclusions of this paper are presented
in § 7.

2. Numerical methodology
The evolution of a liquid jet with a periodically modulated flow rate at the inlet is
considered in our study, as sketched in figure 1. The boundary conditions for the
calculation are also given in the figure. In the numerical simulations, a liquid jet (with
density ρ1, dynamic viscosity μ1, initial radius R, flow rate Q̄1(t̄) and inlet velocity Ū1(t̄),
where t̄ denotes time) flows from the left-side inlet into the static gas surroundings (with
density ρ2 and dynamic viscosity μ2). As the liquid jet evolves downstream, it eventually
breaks up into droplets due to the interfacial tension force. Our study mainly focuses on
the situation where a sinusoidal waveform is imposed on the inlet velocity of the jet, as
illustrated by the inset of figure 1. The detailed description of the inlet velocity is

Ū1(t̄)= Ū1
(
1 + A sin(2π f̄ t̄)

)
, (2.1)

where Ū1 is the average velocity of the jet, and f̄ and A represent the frequency and
amplitude of the perturbations, respectively.

In numerical simulations, the diffuse interface method is used to distinguish between the
liquid and gas phases. In this method, an interface with finite thickness is assumed. The
interface between the liquid and gas is represented by a volume fraction C , which varies
continuously from 1 to 0 across the interface. The finite thickness characteristic of the
liquid interface provides a smooth variation of stress, avoiding the stress singularity and
thus providing a more accurate calculation of the interfacial tension force compared with
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sharp interface methods, such as level-set or volume-of-fluid (Ding, Spelt & Shu 2007).
The interface evolution is governed by the Cahn–Hilliard equation (Jacqmin 1999):

∂C

∂t
+ ∇ · (uC)= 1

Pe
∇2ψ, (2.2)

where Pe is the Péclet number and the chemical potential ψ is defined as

ψ =C3 − 1.5C2 + 0.5C −Cn2∇2C, (2.3)

where the Cahn number Cn is a direct measurement of the thickness of the diffuse
interface. Generally, Cn ∼�x to better resolve the interface and ensure accurate surface
tension calculation (Ding et al. 2007), where �x is the mesh size. A larger value of Cn
results in a thicker diffuse interface but a more accurate calculation of surface tension
force, as more meshes are used to resolve the interface. Based on our previous numerical
experience (Mu et al. 2021, 2022, 2023), we set Cn = 0.5�x . The Péclet number Pe
represents the relative significance of convective fluxes compared with diffusive fluxes.
It has been suggested by Magaletti et al. (2013) that the diffuse interface can approach the
sharp interface limit as Cn vanishes, with Pe ∼Cn−1. Therefore, we choose Pe = 1/Cn
in our simulations.

The motion of the liquid jet and gas is governed by the dimensionless Navier–Stokes
equations:

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + 1
Re

∇ · [
μ

(∇u + ∇uT )] + fs
We
, (2.4)

∇ · u = 0, (2.5)

where fs = 6
√

2ψ∇C/Cn denotes the surface tension force, andρ =C + (1 −C)rρ and
μ=C + (1 −C)rμ are the dimensionless averaged density and viscosity, in which rρ =
ρ2/ρ1 and rμ =μ2/μ1 are the density and viscosity ratios between the gas phase and the
liquid phase, respectively. In the liquid phase (i.e. C = 1), ρ = 1 and μ= 1, while in the
gas phase (C = 0), ρ = rρ and μ= rμ. At the interface, the values of ρ and μ change
gradually with the variation of C . Taking the liquid jet as the characteristic phase, R as
the characteristic length and Ū1 as the characteristic velocity, the Reynolds and Weber
numbers in (2.4) can be defined as Re = ρ1Ū1R/μ1 and We = ρ1Ū 2

1 R/σ . As the variation
of Ū1 will change the values of Re and We simultaneously, we also define the Ohnesorge
number as Oh =μ1/

√
ρ1σ R for the convenience of analysis. The Oh can also be

written as Oh = √
We/Re. The characteristic time and frequency correspond to R/Ū1 and

Ū1/R, respectively. Therefore, the dimensionless form of the inlet velocity U1(t) can be
written as

U1(t)= 1 + A sin(2π f t), (2.6)

where t denotes the dimensionless time, and A and f represent the dimensionless
amplitude and frequency of perturbations, respectively.

The numerical simulations are conducted in axisymmetric cylindrical coordinates
(denoted by r−z−θ ) with a uniform Cartesian mesh, where r , z and θ denote the radial,
axial and azimuthal directions, respectively. Due to the axisymmetric geometry of a liquid
jet, the velocity component at θ -direction equals to zero invariably, and only the jet
evolutions in the r - and z-directions need to be calculated. The computational length in
the r -direction is set to 8R and in the z-direction, it varies from 100R to 300R, depending
on the perturbation amplitude and frequency, which significantly affect the jet breakup
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Figure 2. Validation of numerical simulations with experiments of Moallemi et al. (2016). (a) Experimental
and numerical interface profiles of an actuated water jet at fixed values of A = 1 × 10−4, f = 0.111,
Re = 367,Oh = 0.0105, rρ = 0.001 and rμ = 0.025, respectively, where different mesh sizes are considered.
(b) Comparison of jet breakup length L j (under fixed mesh size of �x = 0.05R) with varying perturbation
amplitude of A.

length. The interface is represented by the contour of C = 0.5. The mesh size used in the
calculation is �x = 0.05R, unless otherwise stated. Based on our previous study (Mu
et al. 2018), this mesh size is fine enough to resolve the liquid jet and droplets. The
boundary conditions for the flow velocities are as follows: v = 0, ∂u/∂r = 0 at the axial-
symmetric axis of r = 0, where u and v are the flow velocities in the z- and r -directions,
respectively; ∂u/∂z = 0 and ∂v/∂t + v · (∂v/∂z)= 0 at the right-side outlet; ∂v/∂r = 0
and ∂u/∂t + u · (∂u/∂r)= 0 at the upper-side outlet; u =U1(t) and v = 0 at the left-side
inlet, where the specific form of U1(t) is given by (2.6).

The comparison of liquid jet profiles between numerical simulations and experimental
results is given in figure 2(a). The experiments were conducted by Moallemi et al.
(2016), where a free water jet with a radius of R = 0.125 mm and a mean velocity of
Ū1 − 2.398 m s−1 was injected into a quiescent air environment. The imposed perturbation
frequency was 2609 Hz and the perturbation amplitude was 10−4Ū1. The liquid jet
breakup presented an axisymmetric manner in experiments, indicating the rationality
of axisymmetric numerical simulation. The dimensionless parameters in numerical
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simulations correspond to Re = 367, Oh = 0.0105, rρ = 0.001, rμ = 0.025, f = 0.111 and
A = 10−4. To present the mesh convergence of the calculation, different mesh sizes
(�x = 0.05R, 0.025R and 0.02R) are employed. Clearly, a reasonable agreement can
be obtained with respect to the jet length, and the position and shape of the generated
droplets. Moreover, as the mesh size is finer than 0.05R, there is little influence of mesh
size on jet breakup. In this work, to provide more quantitative validation, we further vary
the actuation amplitude A over a wide range and compare the dimensionless jet breakup
length (denoted as L j ) from our simulations with the experimental and numerical results
of Moallemi et al. (2016). The results are presented in figure 2(b). In our simulations, the
jet breakup length is obtained by tracking the temporal evolution of the jet tip position,
and the details will be provided in figure 4. It is notable that as the liquid jet breaks
up into droplets periodically, the jet breakup length remains almost constant under fixed
values of A and f , resulting in almostly negligible statistical error bars, as shown by
Moallemi et al. (2016). For the convenience of data comparison, the statistical error bars
are omitted in figure 2. Clearly, a good agreement can be reached between our simulations
and the results of Moallemi et al. (2016) as A varies. Based on the current values of
jet radius and velocity (non-dimensionalised by fixed Re = 367, Oh = 0.0105, rρ = 0.001
and rμ = 0.025, regarded as the reference state), this study would systematically evaluate
the influence of perturbation frequency f and amplitude A on the dynamics of liquid jet
breakup and droplet generation, as shown by §§ 3.1 and 3.2. The effect of velocity on jet
breakup would also be analysed since the variation of jet velocity could change the natural
breakup characteristics of the unactuated jet, thus modulating the competition mechanism
between the external actuation and the intrinsic perturbation. As the jet velocity changes
comparing with the reference state, the numerical calculation would modulate the
dimensionless jet velocity at fixed Re instead of varying Re under constant dimensionless
jet velocity of unity. The convenience of this approach will be elucidated in detail in § 3.3.

3. Dynamics of forced jet breakup

3.1. Response modes and phase diagram
As the external perturbation is applied to the liquid jet, the jet breakup behaviour is
closely related to the perturbation amplitude A and frequency f . Figure 3(a) shows four
typical response modes of jet breakup as f and A vary, and the dynamic evolutions of
these modes are also given as supplementary movie 1 is available at https://doi.org/10.
1017/jfm.2025.10833. The phase diagram of different modes is further depicted in
figure 3(b). For the first response mode, the jet breaks up randomly and the size of
the droplets falls within a certain range. This mode is defined as the irregular breakup
mode (referred to as the I mode hereafter). It should be noted that for the free liquid jet
without external actuation, the jet breakup also exhibits the I mode due to the random
perturbations on the jet interface. The second type of response mode leads to droplets
generation with multiple sizes in a periodic manner, with the period for the droplet
series equal to 1/ f . This is referred to as the multiple breakup mode (M mode). In the
third response mode, the generation of droplets is fully synchronised with the external
perturbation, resulting in droplets of uniform size. This is defined as the synchronised
breakup mode (S mode). In the fourth response mode, significant radial broadening can
be observed on the jet interface, leading to a pancake-like interface profile. This mode
occurs under violent perturbation of the jet flow rate, where fluid bulks rapidly collide
in the axial direction, causing the liquid to flatten and extend along the radial direction.
According to the experimental study by Meier, Kliipper & Grabitz (1992), this mode is
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Figure 3. (a) Four typical response modes of jet breakup under external actuation. The letter symbols I, M, S
and K stand for the irregular breakup mode, the multiple breakup mode, the synchronised breakup mode and
the kinematic gathering mode, respectively. (b) Phase diagram of different response modes as the frequency
f and the amplitude A of perturbation vary. The dash-dotted and dashed lines correspond to the theoretical
predictions of the synchronised frequency range based on the fully viscous flow (FVF) model and the viscous
potential flow (VPF) model of the liquid jet.

defined as kinematic gathering (K mode). It is notable that the K mode typically exhibits
three-dimensional characteristics as the pancake structure evolves until breakup, which lies
beyond the scope of our axisymmetric simulation. Therefore, this study only demonstrates
the parameter space of the K mode without further analysis of its breakup dynamics.

Figure 3(b) shows the phase diagram of different response modes. Clearly, the K mode
mainly occurs when the perturbation amplitude A is relatively high (e.g. A ∼ O(1)).
Meanwhile, the jet breakup presents the I mode under very low A (e.g. A ∼ O(10−8)),
as the external perturbation is too weak to modulate the jet breakup. As the values of A
are in the range O(10−7−10−1), the response modes are closely related to the perturbation
frequency f . Specifically, there exists a frequency range where the S mode occurs. Below
this frequency range, the response mode shifts to the M mode; while beyond this range,
the jet breakup presents the I mode, indicating that the external perturbations with high
frequencies is unable to dominate the jet breakup. The S mode allows for the generation
of uniform droplets with adjustable size and productivity. It can also be observed that
as A increases, the frequency range of the S mode widens significantly. Figure 3(b) also
presents the theoretical predictions for the frequency range of the S mode as the amplitude
A changes. In theoretical analyses, both the fully viscous flow (FVF) model and the viscous
potential flow (VPF) model of the liquid jet have been used to study the temporal growth
rate of perturbation. The details will be provided in § 4.

3.2. Effects of frequency and amplitude
Figure 4(a) shows the interface profiles of the liquid jet as f changes under a fixed value
of A = 2 × 10−4. For the free liquid jet without external actuation (i.e. f = 0), the breakup
presents the I mode. Under low values of f (e.g. f = 0.03 and 0.04), the breakup of the
liquid jet presents the M mode, with multiple droplets generated in one period of 1/ f . It
should be noted that the multiple droplets of different sizes will eventually merge together
as they evolve downstream (see the case f = 0.04, for example). The droplet merging
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Figure 4. (a) Interface profiles of liquid jet as the perturbation frequency f changes under a fixed perturbation
amplitude A = 2 × 10−4. Temporal evolution of jet tip position at (b) f = 0, (c) f = 0.04, (d) f = 0.11 and
(e) f = 0.18. The pinch-off positions are also indicated.

dynamics, accompanied by the interaction between droplets and ambient gas in the M
mode, will be analysed in detail in § 5. As f continues to increase (e.g. f = 0.06, 0.11
and 0.15), the jet breakup presents the S mode, indicating that the size and generation
frequency of uniform droplets can be modulated by f . When f exceeds the critical
value (e.g. f = 0.18), the jet breakup reverts to the I mode. To illustrate the dynamic
characteristics of liquid jet breakup more clearly, figure 4(b–e) presents the temporal
evolution of the jet tip position (denoted by zti p, as sketched in figure 4a). As the interface
breaks up into droplets, the tip position undergoes a sudden jump and the new tip position
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(a) (b)

Figure 5. (a) Droplet diameters at different f under a constant amplitude A = 2 × 10−4, where the natural
breakup frequency is denoted by fn . (b) Breakup lengths of liquid jets as f changes at A = 2 × 10−4, with the
theoretical prediction of jet length also indicated by the dashed line.

indicates the jet breakup length. For the I mode at f = 0 and 0.18, as shown in figures 4(b)
and 4(e), the pinch-off positions of the interface are random and the jet breakup length
varies within a certain range. In the M mode at f = 0.04 (see figure 4c), multiple pinch-
off positions exist within one period of 1/ f . In the S mode at f = 0.11, as demonstrated
in figure 4(d), the pinch-off positions remain constant, indicating that the jet breakup is
periodic.

Figures 5(a) and 5(b) further present the variations of droplet diameters D and jet
breakup length L j under different values of f . As the surface wave prevents the droplets
from forming a standard spherical shape, the values of D are obtained by calculating the
volume of each droplet. The values of L j are obtained according to the zti p−t map, as
shown in figure 4(b–e). For the unactuated liquid jet ( f = 0), which presents the I mode,
both the droplet diameter and jet breakup length fall within a certain range, and their
average values are also given in the figures (see the symbol accompanied by the error
bar). By counting the number of generated droplets in a long time sequence, the average
breakup frequency (also referred to as the natural breakup frequency fn) can be obtained,
with a specific value of 0.107, as indicated in figure 5(a). Under relatively low frequency
where the jet breakup presents the M mode, the jet breakup behaviours circulate with
multiple droplets generated in one period; therefore, both the values of D and L j are
distributed at some discrete values. A continuous increase in f leads to the jet breakup in
the S mode, which results in unique values of droplet diameter and jet breakup length. It
should be noted that the natural frequency fn invariably falls within the frequency range of
the S mode. Since the generation of droplets is fully synchronised with external actuation,
the droplet size can be modulated by f , with the quantitative relationship D = (6/ f )1/3
according to the conservation of liquid flow rate. This relationship is confirmed by
the numerical results in figure 5(a). Moreover, the jet breakup length is also affected
significantly by f and the minimum length occurs at f = 0.11, which is very close to the
natural frequency of jet breakup. The physical reason lies in that the perturbation growth
rate of liquid jet reaches its maximum close to the natural breakup frequency, thus causing
the earliest breakup of liquid jet as the initial perturbation amplitude of the jet remains
unchanged. The theoretical prediction of jet length as f varies is also given in figure 5(b),
as shown by the dashed line. Details of the theoretical analysis will be given in § 4.4.
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Lj
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Figure 6. (a) Interface profiles of jet as A changes under a fixed frequency of f = 0.11. (b) Jet breakup length
L j with varying A under a constant f = 0.11.

We also investigate the influence of actuation amplitude A on the breakup of liquid jets.
It has been clearly observed in figure 3 that external actuation is too weak to dominate
the jet breakup under very low A, leading to the occurrence of the I mode; whereas,
under relatively large A, the external actuation is strong enough to cause the kinematic
gathering of the liquid jet, thus resulting in the K mode. As the values of A are in the
range O(10−7−10−1), the jet breakup can present either M, S or I modes, depending
on the value of actuation frequency f . In this section, we mainly focus on the variation
of actuation amplitude A at a fixed frequency f = 0.11, which is close to the natural
breakup frequency. Figure 6(a) shows the jet interface profiles under different values of
A. The jet presents I mode under A = 0 and 2 × 10−8, where the droplet size appears
to be non-uniform. At A = 2 × 10−6, 2 × 10−4, 2 × 10−2 and 2 × 10−1, the jet exhibits
the S mode, showing periodic behaviour with uniform droplets formed and a consistent
breakup length. Only the parameter spaces of the I and S modes are considered here,
as the K mode, which occurs under larger values of A, may present three-dimensional
jet breakup characteristics. It is also notable that due to the irregular breakup manner
of the I mode, the jet perturbation wavelength at a certain instant could differ from that of
the S mode. However, the statistical average value of the perturbation wavelength under
the I mode approximates the perturbation wavelength of the actuated jet with f = 0.11.
This point can be seen clearly in the statistical droplet size values given in figure 5(a),
where the average droplet size of an unactuated jet is approximately equal to that of the
actuated jet with f = 0.11. Figure 6(b) further provides the relationship between the jet
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breakup length L j and the actuation amplitude A. It is notable that the jet breakup length
falls within certain ranges with its average value in the I mode, whereas it remains constant
in the S mode. The jet breakup length appears to follow the relationship L j ∼ -ln A (see
the dashed line). The theoretical analysis will also be given in § 4.4.

3.3. Effect of jet velocity
Since the variation of jet velocity can affect the natural breakup characteristics of
the liquid jet, it is intended to further influence the response behaviours of the jet
to external perturbations. Under the non-dimensional parametric system described in
§ 2, the jet velocity can be regulated through changing the value of Re at constant
values of Oh, rρ and rμ, and this approach has been used by Moallemi et al. (2016).
However, this commonly used approach of velocity variation would introduce significant
complications for the subsequent quantitative analysis. Specifically, manipulating the jet
velocity through the variation of Re would modify both the characteristic velocity (Ū1)
and the corresponding characteristic frequency (Ū1/R). According to the definition of
Re, the characteristic frequency can be expressed as μ1Re/ρ1R2. As the characteristic
frequency changes with varying jet velocity, a rescale process must be further introduced
when analysing the quantitative data related to frequency (e.g. natural breakup frequency,
synchronised frequency range), making the theoretical analysis excessively cumbersome.
To overcome this limitation, in the current study, the jet velocity is regulated by adjusting
the dimensionless mean velocity at the jet inlet while keeping the value of Re constant
at the reference state. For example, the dimensionless velocity at the jet inlet was set as
U1(t)= 1 + A sin(2π f t) (see (2.6)) in previous sections, whereas in this section, we set
the jet velocity as

U1(t)= V [1 + A sin(2π f t)], (3.1)

where V represents the dimensionless mean velocity of the jet, and the product of V
and A denotes the magnitude of the perturbed velocity. When the jet average velocity
equals to unity (i.e. V = 1), (3.1) recovers to (2.6). In this approach, through varying
the dimensionless inlet velocity V without changing the value of Re (= 367), the jet
velocity can be adjusted under constant characteristic velocity and frequency, facilitating
the further quantitative analyses.

Figure 7(a) shows the interface profiles of liquid jets under different values of V ,
where the perturbation amplitude and frequency are fixed at A = 2 × 10−4 and f = 0.11,
respectively. The axial coordinates are also given in each graph, presenting the overall
increasing tendency of jet breakup length with the continuous increase of V . It can be
observed that when V = 1, 1.5 and 2, the jet presents the S mode, where the jet interface
breaks up periodically and the droplets with uniform size and separating distance are
generated. The size and separating distance of the uniform droplets increase obviously
with the increase of V . As V gradually decreases (e.g. V = 0.5), the liquid jet breakup
shifts to the I mode, producing droplets with non-uniform size. The result indicates that
the external perturbation is unable to modulate the jet breakup with relatively low velocity.
While at relatively high jet velocity (e.g. V = 2.5), the jet breakup is found to shift to the
M mode, where two droplets are generated in a period of 1/ f . The variation of jet length
under different values of V is given in figure 7(b), where the jet breakup length locates
with some ranges under the I mode, remains constant under the S mode, and distributes at
discrete points under the M mode. The theoretical prediction is also given by the dashed
line (described in detail in § 4.4).

To present the jet breakup characteristics in a wide range of jet velocities, figure 7(c)
displays the natural breakup frequency fn and the frequency range of the S mode (with
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Figure 7. (a) Interface profiles of liquid jets as the dimensionless average velocity V in (3.1) changes under
fixed frequency of f = 0.11 and amplitude of A = 2 × 10−4. (b) Breakup lengths of liquid jets as A changes
at A = 2 × 10−4 and f = 0.11, with the theoretical prediction also indicated by the dashed line. (c) Frequency
range of the S mode under different values of V , where fn , fl and fu denote the natural breakup frequency, the
lower critical frequency and the upper critical frequency of the S mode region, respectively. The symbols and
the lines denote the numerical results and the theoretical predictions, respectively.

upper and lower critical frequencies denoted by fu and fl , respectively) under different
jet velocities V . The symbols represent the numerical results and the lines represent
theoretical predictions. It is notable that the statistic error bars for fn , fu and fl in
numerical simulations are also given accompanying the average value. The theoretical
analysis will be provided later in (4.3) through the linear instability analysis. Clearly, with
the increase of jet velocity, both the natural breakup frequency fn , and the upper and lower
critical frequencies ( fu and fl ) of the S mode increase monotonously. The synchronised
frequency range is also found to widen notably.

3.4. Development of interface perturbation
The spatial development of interface perturbation is studied quantitatively in this
section, as the generation of droplets is directly related to the development of interface
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perturbation. Without loss of generality, we only consider the liquid jets with fixed axial
velocity of unity (2.6) but varying perturbation frequency f and amplitude A. It should be
noted that, to resolve the interface perturbation more precisely (especially at the upstream
position of the jet, where the amplitude of interface perturbation appears to be very small),
a much finer mesh size of �x = 0.02 is used in the calculation. Figure 8 shows the jet
interface profiles accompanied by the spectrums of interface perturbation waves under
different response modes. The spectrums of perturbation wavelength are obtained through
a statistical approach which is proposed by Zhao, Sprittles & Lockerby (2019), and this
method has been successfully employed in evaluating the dominant instability modes of
liquid films (Zhao et al. 2023, 2024). For the liquid jets considered in this study, a discrete
Fourier transform is applied to the interface position r(z, t) at different time instants to
obtain the power spectral density of the perturbations R(λ, t),which is expressed as

R(λ, t)=
N−1∑
n=0

r(xn, t) e
−i 2π

Nλn, (3.2)

where {r(xn)}n=N
n=0 is the numerical array of the interface profiles. Since R(λ, t) is a

complex number, its square root (modulus) can be further evaluated. In this way, the
ensemble average value of its square root (denoted by Rrms) can be obtained. It is notable
that for each case, at least two hundred interface profiles at different time instants t are
applied for the spectrum analysis. The peak of the spectrum corresponds to the dominant
wavelength of interface perturbation.

For the free liquid jet without actuation, as shown in figure 8(a), the interface
perturbation develops from a very small initial value, which is almost invisible when
z � 120. As the jet evolves downstream, the interface perturbation grows rapidly,
eventually leading to the breakup of the liquid jet. Through spectrum analysis of the jet
interface over a time sequence, it is observed that the peak of the spectrum occurs at
the wavelength of λ= 8.93, which is very close to the wavelength of natural jet breakup
(denoted by λn , calculated through 1/ fn = 9.35, see figure 5a) obtained by counting the
number of droplets in numerical simulations. Moreover, the spectrum of perturbation lies
within a certain range, indicating that the jet breaks up randomly into droplets of non-
uniform size (i.e. I mode). For the I mode which occurs under a very small amplitude
A, the interface evolution and perturbation spectrum are similar to the situation of the
free liquid jet. It should be noted that as the actuated liquid jet evolves axially with an
average velocity of unity, a specific external perturbation with frequency f corresponds
to a certain wavelength of 1/ f . For the S mode of jet breakup (see figure 8b, where
f = 0.15 and A = 2 × 10−3), the interface perturbation grows from a relatively small
value, with its wavelength almost invariably equal to that of the external actuation 1/ f ,
leading to the generation of droplets with uniform size. In this situation, the spectrum
of the interface perturbation is rather narrow and the peak value is almost equal to the
corresponding wavelength of the actuation frequency (i.e. 1/ f ), indicating that external
actuation leads to the synchronised breakup of the liquid jet. Figure 8(c) shows the I
mode as f exceeds the critical frequency of the S mode ( f = 0.18 and A = 2 × 10−2),
where the interface evolution and perturbation spectrum present different characteristics.
Specifically, the initial perturbation wavelength on the jet interface is almost equal to
1/ f , with its amplitude decreasing as the jet evolves downstream. Near the breakup
region, a random perturbation wave with a wavelength approaching 1/ fn can be observed,
resulting in the breakup of the liquid jet. Therefore, two peaks can be observed in the
spectrum: one corresponding to the wavelength of actuation frequency (1/ f ) and the
other to the wavelength of natural frequency (1/ fn). As the perturbation spectrum near
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Figure 8. Interface profile (left column) and wavelength spectrum (right column) for (a) free liquid jet without
actuation, (b) S mode under A = 2 × 10−3, f = 0.15, (c) I mode under A = 2 × 10−2, f = 0.18 and (d) M
mode under A = 2 × 10−3, f = 0.04.
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Figure 9. Theoretical model of a free liquid jet injecting into static gas surroundings in cylindrical
coordinates of (z, r).

the natural frequency lies within a certain range, the droplets formed after the jet breakup
show a non-uniform size distribution. For the M mode, which occurs when f is lower
than the frequency range of the S mode, as shown in figure 8(d) (where f = 0.04 and
A = 2 × 10−3), the initial perturbation wavelength on the jet interface is almost equal to
1/ f . However, the perturbation wave develops into two derivative waves with shorter
wavelengths downstream and, eventually, the jet breaks up into two droplets in one
period of 1/ f . Therefore, three peaks can be observed in the perturbation spectrum. The
peak with the largest wavelength approaches the actuation wavelength of 1/ f and the
other two peaks correspond to the perturbation waves that result in the generation of
multiple droplets. The wavelengths of these two derivative waves lie on both sides of the
natural wavelength 1/ fn , which is caused by the synergetic influence of both the applied
perturbation wave and the random perturbation of the liquid jet under the M mode.

4. Theoretical analysis

4.1. Linear instability analysis
To analyse the mechanisms of jet breakup under external actuation, we perform a linear
instability analysis that considers the temporal development of jet perturbations. As shown
in figure 9, a liquid jet with axial velocity Ū1 emerging into static gas surroundings
is considered as the physical model. Similar to the numerical simulations, the dynamic
viscosity and density are defined as μi and ρi , where i = 1, 2 represents the liquid jet
and the surrounding gas, respectively, and the surface tension is denoted by σ . The
axisymmetric cylindrical coordinate system (z, r) is used to describe the physical model,
where z and r represent the axial and radial directions, respectively. The characteristic
scales in the theoretical analysis are consistent with the numerical simulation (i.e. the
jet radius R and average velocity Ū1 are chosen as the characteristic length and velocity,
respectively). In this way, the Reynolds number Re, the Ohnesorge number Oh, the density
ratio rρ and the viscosity ratio rμ all maintain the same values as in the numerical
simulation, with Re = 367, Oh = 0.0105, rρ = 0.001 and rμ = 0.025, respectively. Similar
to the numerical simulation, when the variation of jet velocity is considered in theoretical
analysis, the dimensinless jet velocity is adjusted without changing the value of Re.

The motions of the liquid jet and the ambient gas are governed by the dimensionless
Navier–Stokes equations,

∇ · ui = 0, (4.1)
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ρi

(
∂ui

∂t
+ ui · ∇ui

)
= −∇pi + 1

Rei
∇2ui , (4.2)

where ui , ρi and pi represent the velocity, density and pressure, respectively, where
the subscripts i = 1 and 2 refer to the liquid jet and the surrounding gas. The Reynolds
numbers are defined as Re1 = Re and Re2 = Re · rρ/rμ. It is notable that in the numerical
simulations, the surface tension force is treated as a body force within the Navier–
Stokes equation (see (2.4)). In contrast, in the linear instability analysis, the influence
of surface tension is incorporated through the boundary condition at the interface. The
theoretical model is solved using the normal mode method, where the flow velocity,
pressure and interface position in the Navier–Stokes equations are decomposed into
basic quantities and small axisymmetric perturbations with the Fourier form ∼ ei(kz−ωt),
where k is the dimensionless wavenumber, which is inversely proportional to the
perturbation wavelength λ. The dimensionless complex frequency ω=ωr + iωi consists
of ωi , representing the growth rate of perturbations, and −ωr , representing the angular
frequency of perturbations. Perturbations with ωi > 0 are temporally unstable, while
those with ωi � 0 are invariably stable. The quantitative relationship between the angular
frequency −ωr and the perturbation frequency f corresponds to −ωr = 2π f . In this study,
the angular frequency −ωr will be used to predict the natural and critical frequencies
of liquid jet breakup (see (4.2) and (4.3), respectively), and the growth rate ωi will be
used to analyse the jet breakup length, as shown in (4.4). The governing equations and
boundary conditions for the perturbations are similar to those of Si et al. (2009), and
the Chebyshev spectral collocation method is employed to solve the eigenvalue problem
numerically. Details are provided in Appendix A.

In our study, we also apply the viscous potential flow (VPF) theory (Joseph, Wang
& Funada 2007) to analyse the growth of perturbations. Compared with the theoretical
analysis in Appendix A (referred to as fully viscous flow, FVF), the VPF theory ignores
the viscous effects inside the liquid jet and the surrounding gas, and only accounts for the
fluid viscosities in the dynamic boundary conditions at the interface. This approach allows
for the derivation of an explicit analytical dispersion relation for perturbation growth, with
the specific form (Funada, Joseph & Yamashita 2004)[

I0(k)

I1(k)
+ rρ

K0(k)

K1(k)

]
ω2 + 2

[
−k

I0(k)

I1(k)
+ i

k2

Re

(
I0(k)

I1(k)
− 1

k
+ rμ

(
K0(k)

K1(k)
+ 1

k

))]
ω

+
[
k2 I0(k)

I1(k)
− i

2k3

Re

(
I0(k)

I1(k)
− 1

k

)
− 1

We
k(k2 − 1)

]
= 0, (4.3)

where I0 and I1 are the zero-order and first-order Bessel functions, and K0 and K1 are the
zero-order and first-order modified Bessel functions, respectively. It has been shown that
both FVF and VPF theories converge to the inviscid case when the Reynolds number is
sufficiently high (e.g. Re ∼ O(103) or higher). Moreover, the VPF theory retains most of
the characteristics predicted by FVF theory for Reynolds numbers ranging from O(101)
to O(102) (Funada, Joseph & Daniel 2002; Joseph et al. 2007), suggesting that the VPF
theory is well suited for the conditions in this study, where Re = 367.

4.2. Prediction of the natural frequency
Figure 10 shows the perturbation growth rate ωi and the angular frequency −ωr of the
liquid jet as wavenumber k varies, where both the FVF model and the VPF model are
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Figure 10. Perturbation growth rate ωi and angular frequency −ωr versus wavenumber k under Re = 367,
We = 14.9, rρ = 0.001 and rμ = 0.02, where the fully viscous flow (FVF) model under varying axial jet
velocities of V = 0.5, 1, 2 and the viscous potential flow (VPF) model under constant axial jet velocity of unity
are considered. The angular frequency (−ωrn) corresponding to the wavenumber of maximum growth rate
(denoted by km ) indicates the theoretical prediction of natural breakup frequency fn , where fn = −ωrn/(2π).

considered at fixed values of Re = 367,Oh = 0.0105, rρ = 0.001 and rμ = 0.02. For the
FVF model, the curves under different values of jet mean velocity V (=0.5, 1 and 2)
are also given for comparison. For each curve, it is clear that there exists a cutoff
wavenumber beyond which the perturbation growth rate becomes negative, indicating a
smallest wavelength of jet instability. Comparing the curves of the FVF model and the VPF
model with axial velocity of unity (i.e. V = 1), it is observed that the growth rate of the
VPF model remains slightly higher than that of the FVF model, suggesting that the VPF
model predicts a more unstable liquid jet. This difference occurs because the VPF model
ignores viscosities in the fluid bulk and therefore overestimates the growth rate. A smaller
value of Re could lead to a greater discrepancy between the two models (Funada et al.
2002). Comparing the curves with different V under the FVF model, it is found that the
variation of V only changes the growth rate ωi slightly (see the inset), but mainly affects
the perturbation angular frequency −ωr . Specifically, the angular frequency is found to be
equal to the product of the wavenumber and the axial jet velocity invariably, indicating
that the perturbation propagates with a dimensionless phase velocity of −ωr/k = V .
Therefore, if one stands on the axial local framework along with the liquid jet, the interface
disturbance only grows temporally and does not propagate upstream or downstream of the
jet, similar to the standard temporal instability analysis of liquid jets (Lin 2003; Eggers &
Villermaux 2008).

According to the linear instability analysis (see figure 10), the wavenumber (km)
corresponding to the maximal value of the growth rate curve (ωi,max) grows fastest
among all the perturbation waves, dominating the breakup of the liquid jet. The angular
frequency corresponding to the wavenumber km is denoted by −ωrn, with the quantitative
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relationship −ωrn = km · V . Therefore, the natural breakup frequency fn of the liquid
jet can be represented as fn = km · V/(2π). For the liquid jet with mean velocity of
unity, the FVF model and VPF model give the theoretical results of km = 0.69 and
0.7, corresponding to the theoretical values of fn = 0.109 and 0.111, respectively. The
theoretical predictions obtained by both models agree well with the numerical results
shown in figures 5 and 8(a). As the liquid jet velocity gradually changes, the natural
breakup frequency can also be easily predicted according to the value of km . The
theoretical results under different values of jet velocity have been given in figure 7(c),
which present a good agreement with the numerical results.

4.3. Prediction of the synchronised breakup region
Apart from the natural breakup frequency, the frequency range of the synchronised
breakup region (i.e. S mode) under different perturbation amplitudes A can also been
given theoretically through comparing the breakup time between an unactuated jet and the
forced liquid jet. For a liquid jet with a dimensionless radius of unity, the perturbation on
the interface develops with a dimensionless growth rate ωi and an initial magnitude η0.
Under the framework of linear instability, they follow the relationship

η0eωi tb = 1, (4.4)

where tb is the dimensionless jet breakup time, which can be expressed as

tb = 1
ωi

ln
1
η0
. (4.5)

Previous research by Moallemi et al. (2016) has indicated the relationship between
the initial surface perturbation η0 and the velocity perturbation A through an energy
conservation analysis, with the form (see (14) of Moallemi et al. (2016))

3
2
A = η0 + (η0 − A)

1
We j

, (4.6)

where We j (= We · V 2) denotes the equivalent Weber number of the jet. The equation can
be rewritten as

η0 = 1.5We j + 1
We j + 1

· A. (4.7)

Therefore, the relationship between tb and A can be expressed as

tb = 1
ωi

ln
[

We j + 1
(1.5We j + 1) · A

]
. (4.8)

As the perturbation growth rate ωi has been provided in figure 10, the jet breakup time tb
for different values of k can be determined. Figure 11 shows the tb−k curves accompanying
with the angular frequency −ωr for the FVF and VPF models under constant jet velocity
of V = 1 (corresponding to We j = We = 14.9), considering the variations of actuation
amplitude A from 2 × 10−8 to 2 × 10−3. For these cases, the angular frequency −ωr
remains equal to that of the wavenumber k invariably. It should be noted that for the
free jet without external actuation (A = 0), the initial perturbation amplitude η0 is too
small to be detected, making it impossible to calculate the jet breakup time directly
using (4.5). Nevertheless, the dimensionless breakup time of the free liquid jet can be
obtained from the jet breakup length using the estimation tb = L j/V . In the numerical
simulations, the average value of L j is 183 (see figure 6b), indicating a theoretical value
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Figure 11. Jet breakup time tb and angular frequency −ωr versus wavenumber k under different perturbation
amplitude A, where the dimensionless jet velocity equals to unity. The solid lines and the dashed lines represent
the growth rate curves obtained by the FVF model and VPF model, respectively, while the dash-dot-dotted
transverse line in the tb−k map represents the breakup time of a free liquid jet without external perturbation.
The frequencies −ωru and −ωrl indicate the theoretical prediction of upper and lower frequencies of the S
mode ( fu and fl ), where fu = −ωru/(2π) and fl = −ωrl/(2π), respectively.

of tb = 183 for an unactuated liquid jet, as shown by the dash-dot-dotted transverse line
in figure 11. By comparing the tb−k curves for external actuation under different A
with the breakup time of the unactuated jet, the wavenumber region where actuation
affects the jet breakup can be identified. It is observed that the values of tb are invariably
larger than 183 when A = 2 × 10−8, indicating that such a small actuation amplitude has
little effect on modulating jet breakup. This result is consistent with the mode diagram
in figure 3(b), where jet breakup remains in the I mode under A = 2 × 10−8. As the
perturbation amplitude A gradually increases, the wavenumber region where tb < 183
corresponds to the perturbation waves that cause the actuated jet to break up earlier than
the unactuated jet. Thus, within this wavenumber region, jet breakup can be synchronised
with the actuation, resulting in droplet generation under the S mode. By comparing the
curves under different amplitude A, we can determine the wavenumber region for the S
mode. The corresponding angular frequency region can be further obtained through the
−ωr versus k curve, as sketched in figure 11, where −ωru and −ωrl denote the upper and
the lower angular frequencies of the S mode, respectively. The corresponding frequency
of fu and fl can be calculated by fu = −ωru/(2π) and fl = −ωrl/(2π), respectively.
In the phase diagram of jet response modes (see figure 3b), the predicted synchronised
frequency range under different perturbation amplitude A has been given by the lines.
Overall, both the FVF model and the VPF model can give a relatively accurate prediction
of the synchronised frequency region, with the FVF model appearing to be closer to the
numerical results. However, comparing with the FVF model where the growth rate curve
is solved through spectral method, the VPF model provides the specific expression for
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Figure 12. Jet breakup time tb and frequency −ωr versus wavenumber k obtained by FVF model, where the
jet velocity V varies under constant amplitude A = 2 × 10−4. The dash-dot-dotted transverse lines in the tb−k
map represent the breakup time of unactuated liquid jets with different V , and the upper and lower frequencies
of the S mode are indicated by −ωru and −ωrl, with fu = −ωru/(2π) and fl = −ωrl/(2π), respectively.

perturbation growth rate and wavelength, as shown by (4.3). The analytical equation allows
us to derive the growth rate curve directly, which would facilitate the further calculations of
the synchronised frequency range. The simplified form of the VPF model holds important
practical significance in engineering applications.

It should be noted that the lower boundary of the synchronised frequency region
predicted by theoretical analysis shows a significant deviation from the numerical results
at relatively high values of A (e.g. A� 2 × 10−3), as shown in figure 3(b). A qualitative
explanation is provided here. On one hand, the growth rate of perturbation is relatively
small under low actuation frequencies, making jet breakup more susceptible to random
perturbations. As a result, a narrower synchronised frequency range is obtained in
numerical simulations compared with theoretical predictions. On the other hand, as A
increases, the jet breakup length decreases, causing the nonlinear stage of perturbation
development to play a more significant role in the overall breakup process. Since our
theoretical analysis focuses only on the linear instability of jet breakup, greater deviations
between theoretical analysis and numerical simulations are expected at relatively high
values of A.

The frequency range of the S mode as the jet velocity changes can also been predicted by
comparing the breakup time of the unactuated jet and the forced liquid jet. For simplicity,
we consider the liquid jet with varying mean velocity V , but constant actuation amplitude
of A = 2 × 10−4, and the results are shown in figure 12. It is notable that the variation of
V results in the change of We j (e.g. We j = 3.7, 14.9 and 59.5 under V = 0.5, 1 and 2,
respectively). As the growth rate of perturbation with different V only changes slightly
(see figure 10), the difference of the breakup time tb under different wavenumber k is
mainly caused by the variation of We j , as shown clearly by (4.8). Similar to the situation
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considered in figure 11, the breakup time for the unactuated jet under different velocity V
can be obtained through dividing the average jet breakup length L j by V , and the results
are given by the transverse lines in the tb−k map of figure 12. Comparing the results
among V = 0.5, 1 and 2, it is observed that the variation of jet velocity only affects the
breakup time slightly. The reason can be explained as follows: since the jet propagates
with relatively small Oh (=0.0105), the liquid viscosity only plays a tiny role, and the
breakup time is decided by the capillary time scale (∼√

ρ1R3/σ ). Therefore, the breakup
time remains constant theoretically as R does not change. According to figure 12, the
corresponding critical wavenumbers and angular frequencies of the synchronised breakup
region for each value of V can be obtained by the junctions of curves. Through the
relationships fu = −ωru/(2π) and fl = −ωrl/(2π), the upper and lower frequencies of the
S mode as the jet velocity V changes can be further predicted. The theoretical predictions
have been given by the lines in figure 7(c), showing a good agreement with the numerical
results.

4.4. Prediction of jet breakup length
The jet breakup length L j can be calculated by multiplying the jet velocity (non-
dimensionalised as V ) and the breakup time tb, i.e.

L j = V

ωi
ln

1
η0

= V

ωi
ln

[
We j + 1

(1.5We j + 1) · A
]
. (4.9)

As We j = We · V 2, (4.9) indicates that the jet breakup length is inversely proportional
to the growth rate of perturbation and in positive correlation with the jet velocity V .
Once the jet velocity remains constant (i.e. fixed V and We j ), the jet breakup length
follows the relationship of L j ∼ −lnA at fixed f as the growth rate ωi is decided by f .
Here, we further provide a quantitative comparison between the theoretical predictions
and the numerical results as f , A and V change individually. Since the FVF model
is more reasonable to the real flow situation and offers a more accurate prediction of
perturbation development compared with the VPF model, only the results of the FVF
model are used here. As f changes under constant A (see figure 5b, where A = 2 × 10−4),
the corresponding perturbation growth rate ωi can be obtained for different values of
angular frequency −ωr and wavenumber k according to the growth rate curve in figure 10.
Therefore, the theoretical predictions of L j as f varies (ωi changes under constant V = 1
and We j = 14.9) can be given by the dashed lines in figure 5(b). It is clear that the
theoretical results agree well with the numerical simulations near the natural frequency,
but diverge significantly as f deviates from the natural frequency. The reason lies in that as
f diverges from the natural frequency, the perturbation growth rate decreases significantly;
thus, the random initial perturbations of the liquid jet have a more pronounced effect on
the jet breakup, causing the breakup length to approach that of the free liquid jet, as shown
in figure 5(b).

The jet breakup length as A changes under fixed f = 0.11 is also given in figure 6(b).
For the theoretical analysis, a fixed f = 0.11 corresponds to −ωr = k = 0.69, leading to
a growth rate of ωi = 0.089, based on the FVF curve in figure 10. Thus, the jet breakup
length can be obtained theoretically as A varies from 2 × 10−8 to 2 × 10−2 under constant
V = 1 and We j = 14.9, as shown by the dashed line in figure 6(b). Similarly, the jet
breakup length under varying values of velocity V can also be calculated under fixed
values of f and A, and the theoretical results have been given in figure 7(b). It is clear
that the theoretical predictions agree well with the numerical results under the S mode
(V = 1, 1.5 and 2), but a certain degree of deviation can be observed under the M mode
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(V = 2.5 and 3), which is similar to the results in figure 5(b). Moreover, as the external
actuation fails to modulate the jet breakup under the I mode where V = 0.5, the numerical
jet breakup length is obviously larger than the theoretical prediction.

4.5. Further discussions
As the linear instability analysis is able to predict the breakup characteristics (i.e. natural
frequency, synchronised frequency region and jet length) of the actuated jet, a further
discussion is carried out in this section, aiming to summarise the connection between the
theoretical analyses and the numerical simulations, which would also provide guidance
for practical applications. In applications, as the medium and velocity of the liquid jet are
decided, the key dimensionless parameters (i.e. Re, Oh, density ratio rρ and viscosity
ratio rμ) can be calculated precisely. Based on these dimensionless parameters, the
linear instability analysis can be carried out, which provides the growth rate/frequency-
wavenumber (ωi/ωr−k) curves of perturbation, where the wavenumber k is directly
related to the actuating frequency of f . Consequently, the natural frequency of jet breakup
can be determined from the peak of this curve, as shown in figure 10. The obtained
natural frequency provides guidance for us in applying external disturbances close to
this frequency, ensuring the production of uniform droplets in applications. At a given
actuating frequency, the jet breakup length can also be further controlled by adjusting
the perturbation amplitude, with the corresponding relationship between dimensionless
parameters given by (4.9). Additionally, the ωi−k curve enables the derivation of the
jet breakup time curve (tb−k) under different actuating amplitudes and jet velocities. By
comparing the tb−k curve with the jet’s free breakup time (which is equal to the division
of jet length by velocity), we can determine the synchronised frequency range for different
perturbation amplitudes and jet velocities (as shown by figures 11 and 12). This analysis
provides guidance for selecting appropriate frequency ranges in practical applications to
achieve uniform droplet generation.

5. Droplets merging dynamics under M mode
As multiple droplets generated within one period would eventually merge together under
the M mode (see figure 4a for example), this section analyses the dynamics of droplets
merging in detail. Figure 13(a) shows a typical case where two droplets are generated in
one period at f = 0.04 and A = 2 × 10−3. The droplets are labelled as ‘D1’ and ‘D2’
based on their sequence of generation, while the merged droplet downstream is labelled as
‘D3’. The temporal evolutions of the mass centre (denoted by zc) and the average velocity
(denoted by Vc) of droplets are shown in figures 13(b) and 13(c), respectively. For the
convenience of analysis, the zero time instant is set at the moment when the second droplet
(i.e. ‘D2’) is generated. It is observed that ‘D2’ gradually approaches and eventually
merges with ’D1’, as shown at times t1, t2 and t3 in figures 13(a) and 13(b). The average
velocity of ‘D2’ remains larger than ‘D1’ invariably and the vibrating of droplets caused
by surface tension can lead to the pulsation of jet average velocity, as shown in figure 13(c).
It is also notable that the average velocities of droplets all remain slightly smaller than the
initial jet velocity at the inlet (i.e. 1), which is caused by the non-negligible resistance of
the static air surroundings.

For the situation where more than two droplets are generated within one period, the
dynamics of droplet merging becomes more complex. Figure 14(a) shows a typical case
where three droplets are generated in one period under f = 0.03 and A = 2 × 10−3, where
the three droplets are labelled as ‘D1’, ‘D2’ and ‘D3’ according to their sequence of
generation. The droplet formed by the merging of ‘D1’ and ‘D2’ is labelled as ‘D4’, and
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Figure 13. (a) Interface profile of droplets in the M mode with f = 0.04 and A = 2 × 10−3, where the two
droplets generated within one period are labelled as D1 and D2, and the merged droplet is labelled as D3.
(b) Temporal evolutions of the droplet centre of mass zc. (c) Temporal evolutions of the droplet average
velocity Vc.
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Figure 14. (a) Interface profile of droplets in the M mode with f = 0.03 and A = 2 × 10−3, where the three
droplets generated within one period are labelled as D1, D2 and D3, and the merged droplets are labelled as
D4 and D5. (b) Temporal evolutions of the droplet centre of mass zc. (b) Temporal evolutions of the droplet
average velocity Vc.
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Figure 15. Pressure field and streamlines around the droplets under constant A = 2 × 10−3 with (a) f = 0.04
and (b) f = 0.03.

the droplet formed by the merging of ‘D4’ and ‘D3’ is labelled as ‘D5’. The temporal
evolutions of the mass centre (denoted by zc) and the average velocity (denoted by Vc) of
droplets are shown in figures 14(b) and 14(c), respectively. The zero time instant is set at the
moment when the last droplet in the period (i.e. ‘D3’) is generated. Combining the results
from figures 14(a), 14(b) and 14(c), it is evident that the velocity of ‘D2’ consistently
remains higher than that of ‘D1’, leading to the merging of the droplets and the formation
of ‘D4’ around the instant of t2. Similarly, the velocity of ‘D3’ remains higher than that of
‘D4’, resulting in the merging of the droplets and the final formation of ‘D5’. Similar to
the situation shown in figure 13, the average velocities of all droplets remain slightly lower
than the initial jet velocity due to air resistance.

The flow fields around the droplets are also analysed to reveal the mechanism of droplet
merging. Figure 15(a) shows the pressure field around the droplets under f = 0.04 and
A = 2 × 10−3. It is observed that during the downstream propagation of droplets, a high
pressure zone occurs near the front edge of droplet ‘D1’, causing the deceleration of ‘D1’.
The droplet ‘D2’ with a higher initial velocity gradually approaches ‘D1’, leading to their
eventual merging. As for the velocity field close to the droplets, the streamlines are also
plotted in figure 15(a). For the convenience of analysis, a translation of coordinates is
implemented, where the velocity along the flow direction is subtracted by the average
velocity of the liquid jet at the inlet. Therefore, the problem can be shifted to the
aerodynamic deformation of liquid droplets in an incoming air flow (from right to left
in figure 15a) with dimensionless velocity of unity. At the leeward of the droplet, a
recirculation flow region forms due to flow separation. The low-pressure zone in the
recirculation region, combined with the high-pressure zone at the droplet’s front edge,
results in the deceleration of droplet. It should be noted that although the streamlines
appear to penetrate the droplet interface due to the unsteady flow characteristics, it does
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Figure 16. Sketch of the velocity perturbation at the jet inlet, where a pulse with amplitude Ap is applied on
the sinusoidal perturbation wave (with frequency f and amplitude A) every n periods, resulting in an additional
perturbation wave with a frequency f p = f/n.

not indicate the fluids exchange between the liquid and the gas phases. This is because that
the streamlines only depict the directional field of velocity at a frozen instant, without
representing the temporal evolution process of fluid elements. Figure 15(b) shows the
pressure field accompanying the streamlines (after the same coordinate translation as
figure 15a) under f = 0.03 and A = 2 × 10−3, in which three droplets (denoted as ‘D1’,
‘D2’ and ‘D3’) are generated sequentially within one period. Similarly, a high-pressure
zone forms near the front edge of the droplet train, causing the droplets to decelerate
as they move downstream. The recirculation flow also occurs at the leeward side of the
droplets due to flow separation.

6. Manipulation of droplets merging under M mode
As the M mode results in the coalescence of multiple droplets generated within one period,
the manipulation of the droplet merging process is further analysed in this section. The
controllable merging of droplets is of practical significance in applications such as the
formation of tin droplets with large separation distances in extreme ultraviolet lithography.
The large separation distance eliminates the interference between neighbouring droplets
during the droplet breakup under strong laser exposure. In this study, we aim to control the
dynamics of the M mode by adding a strong pulse (with amplitude Ap) to the sinusoidal
perturbation wave (with dimensionless frequency f and amplitude A) every n (= 2, 3,
4, . . .) periods, as sketched in figure 16. This additional pulse introduces an equivalent
frequency of f p (= f/n). The strategy is designed to first generate a train of uniform
droplets via the sinusoidal perturbation wave, then merge n droplets into one through the
addition of the pulse. The merging process is expected to be controlled by the relative
amplitude Ap/A between the additional pulse and the sinusoidal wave.

It should be noted that this strategy to manipulate the dynamics of the M mode is closely
related to the growth rates of perturbations corresponding to the specific frequencies
of f and f p, respectively. Since the amplitude of the pulse is definitely larger than the
sinusoidal perturbation wave, the perturbation growth rate of the pulse frequency should
be chosen smaller than that of the sinusoidal wave frequency to ensure the feasibility
of this manipulating strategy. Otherwise, the jet breakup is intended to be fully decided
by the pulse frequency as the perturbation with pulse frequency f p would grow faster
than that with frequency f . To demonstrate the failure of this manipulating strategy,
figure 17(a) considers the situation of varying n (i.e. f p) under constant values of
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Figure 17. (a) Interface profiles of liquid jets as n = 2, 4 and 6 under constant f = 0.16, A = 2 × 10−3

and Ap = 2A, corresponding to f p = 0.08, 0.04 and 0.027, respectively. In these cases, the growth rate of
perturbation with f p remains larger than that with f . (b) Interface profiles of liquid jets under pure sinusoidal
perturbation with A = 4 × 10−3 and varying f .

f = 0.16, A = 2 × 10−3 and Ap = 2A. For each case, the growth rate of the pulse remains
significantly larger than that of the sinusoidal perturbation. For example, the pulses with
frequency f p = f/2, f/4 and f/6 correspond to the dimensionless growth rate of 0.077,
0.044 and 0.03, respectively, according to the FVF model curve in figure 10, which are
much larger than the growth rate of the sinusoidal wave (approaching zero at f = 0.16).
It is observed that the jet breaks into uniform droplets for n = 2 with an equivalent
frequency of f p = 0.08, and into two and three droplets with equivalent frequencies of f p
for n = 4 and 6, respectively, indicating the failure of this manipulation strategy. In these
situations, the jet dynamics is similar to the response to a pure sinusoidal perturbation with
frequency of f p and amplitude Ap. For example, under the pure sinusoidal perturbation
with amplitude A = 4 × 10−3 (see figure 17b), the jet breakup exhibits the S mode with
uniform droplets generated at f = 0.08, while the jet breakup presents the M mode with
two and three droplets generated in one period at f = 0.04 and 0.027, respectively. The
numerical results are in accordance with the hypothesis discussed previously, as the jet
breakup is dominated by the frequency f p.

When the growth rate of the pulse is smaller than that of the sinusoidal perturbation
wave, the jet breakup dynamics is found to be more complex as both the sinusoidal
perturbation and the additional pulse can significantly influence the breakup, depending
on the relative amplitude between the pulse and the sinusoidal perturbation. Figure 18(a)
shows a group of cases as Ap/A changes under constant f = 0.12, A = 2 × 10−3 and
n = 4, corresponding to a constant f p = 0.03. According to the growth rate curve (FVF
model) of figure 10, the growth rate of the sinusoidal wave with f = 0.12 is equal to
0.085, and that of the pulse with f p = 0.03 is equal to 0.034. It is observed that the
value of Ap/A significantly affects the jet breakup dynamics. Under relatively low Ap/A

1023 A18-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
77

2 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10772


K. Mu and others

Ap/A = 4

Ap/A = 8

1/fpAp/A = 2

Ap/A = 15

Ap/A = 10 1/fp

A = 0.03

1/fpA = 0.02

(a)

(b)

Figure 18. (a) Interface profiles of liquid jets as Ap varies under constant f = 0.12, A = 2 × 10−3 and n = 4,
corresponding to f p = 0.03. In these cases, the growth rate of perturbation with f p is lower than that with f .
(b) Interface profiles of liquid jets under pure sinusoidal perturbation with f = 0.03 and varying A.

(e.g. Ap/A = 2), droplet generation is governed by the sinusoidal perturbation wave,
as the formation of droplets is synchronised with f . In this situation, the jet interface
profile still resembles that of the S mode, where the disturbance with wavelength 1/ f
propagates and amplifies downstream. However, the presence of the pulse with f p results
in a certain degree of a droplet merging as the droplet train evolves downstream. Since
the pulse amplitude is relatively low, the final merging of four droplets into one takes
a long distance, which is not depicted in the figure. With the increase of Ap/A (e.g.
Ap/A = 4 and 8), faster merging of the four droplets within one pulse period is observed,
as the pulse plays a more prominent role, demonstrating the feasibility of modulating the
merging dynamics of the droplet series. In these cases, the jet interface morphology is
supposed to present a distinct superposition of two wavelengths (i.e. 1/ f and 1/ f p), thus
causing the jet first break into uniform droplets with wavelength 1/ f and then coalesce to
one large droplet with equivalent wavelength of 1/ f p. However, with a further increase in
Ap/A (e.g. Ap/A = 10 and 15), the dynamics of jet breakup becomes different. In these
cases, the jet breakup presents the M mode with three droplets generated in one peroid of
1/ f p. The results indicate that the jet breakup is totally dominated by the pulse frequency,
as the single sinusoidal perturbation with f = 0.03 and the same amplitude of the pulse
(i.e. A = 0.02 and 0.03) could lead to the M mode with three droplets in one period. The
corresponding results are also shown in figure 18(b). In this situation, the wavelength of
1/ f p is supposed to dominate the perturbation of the jet surface over that of 1/ f . Overall,
we can conclude that the manipulation of the pulse is only effective within a certain range
of Ap/A. A pulse with a very large amplitude results in the domination of the pulse, while
a pulse under the critical amplitude can affect the merging distance of the uniform droplets
generated by the sinusoidal perturbation.

The number of merged droplets can also be adjusted by changing the value of n, which
alters the equivalent pulse frequency f p. For example, with a constant value of f = 0.12,
six droplets can be merged together when n = 6, corresponding to f p = 0.02; five droplets
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Figure 19. Jet response dynamics with the variations of f p (realized by changing the value of n) and Ap/A,
where the filled circles denote the controllable region where n droplets merge to one periodically, the hollow
diamonds denote the pulse-dominated region.

can be merged together when n = 5, which corresponds to f p = 0.024; and so on. It is
found that the critical pulse amplitude for the controllable merging of droplets depends on
the value of f p, as shown in figure 19. Generally, a lower f p (larger n) leads to a larger
critical pulse amplitude for the controllable region. This can be explained by comparing
the perturbation growth rates of the sinusoidal wave and the pulse under different values
of f p. As shown in figure 10 (see the FVF model curve), the growth rate of the sinusoidal
wave at f = 0.12 equals to 0.085, and the growth rates of the pulse with n = 2, 3, 4, 5 and
6 (corresponding to f p = 0.06, 0.04, 0.03, 0.024, 0.02) equal to 0.063, 0.044, 0.034, 0.026
and 0.022, respectively. Since the growth rate decreases monotonously with the decrease
of f p, a larger pulse amplitude is needed to result in the domination of pulse frequency.

7. Conclusions
The forced breakup of liquid jets in static gas surroundings is studied through direct
numerical simulations, where the Navier–Stokes equations are solved in combination with
a diffuse interface method. A sinusoidal perturbation of jet velocity is applied at the inlet,
and the effects of perturbation frequency and amplitude on the evolution of the liquid
jet are investigated. Four typical jet breakup response modes are observed, which are the
irregular breakup mode, the multiple breakup mode, the synchronised breakup mode and
the kinematic gathering mode. A phase diagram of modes transition is provided, showing
how they vary with the changes in perturbation frequency and amplitude. Specifically, in
the synchronised breakup mode, the breakup of the liquid jet produces a train of droplets
with uniform size and separation distance, and the droplet size can be adjusted by varying
the frequency. The natural frequency of jet breakup is located within the frequency range
of the synchronised breakup region. The jet breakup length reaches its minimum when
the external frequency approaches the natural frequency, and increasing the actuation
amplitude decreases the jet breakup length monotonically. The liquid jet velocity is found
to modulate the jet breakup length and also increase the natural breakup frequency, and
the upper and lower critical frequencies of the synchronised region. A spectral analysis of
interface perturbation development is conducted, revealing the characteristics of different
jet breakup response modes. The linear instability analysis based on the fully viscous
model and the viscous potential flow model is also performed, providing theoretical
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predictions of the natural frequency and the frequency range where uniform droplets
can be produced. By combining the linear instability analysis with scaling analysis,
the variation tendencies of jet breakup length as a function of perturbation frequency,
amplitude and jet velocity can be predicted. The merging dynamics of droplets under the
multiple breakup mode is also analysed, showing that for the multiple droplets generated
in one period, the upstream droplet has a larger velocity compared with the downstream
droplet, which results in the the merging of droplets. The high pressure zone forms at the
front of droplet train due to air resistance, which results in the deceleration of droplets.
Furthermore, by adding a pulse to the sinusoidal perturbation waveform, the merging
dynamics of multiple droplets can be modulated actively by adjusting the equivalent
frequency and amplitude of the pulse. In the future work, a combination of a series
of frequencies can also be applied to the jet, which is expected to bring in richer jet
breakup dynamics due to the competition of perturbation waves with different frequencies
and growth rates. In summary, this numerical investigation can provide guidance for the
experimental study of the modulation of liquid jet breakup, which is expected to contribute
to the on-demand generation of droplets in practical applications.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2025.10833.
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Appendix A. Equations for full viscous flow model
For the full viscous flow model applied in the linear instability analysis, the normal mode
method is used, in which all the variables such as velocity ui (r, t), pressure pi (r, t) and
interface position r j (r, t) in (4.2) are split into a basic quantity and a perturbation part:

ui = U i + ũi , pi = Pi + p̃i , r j = 1 + η̃, (A1)

in which the perturbation components (ũi , p̃i , η̃) are expressed in Fourier form as ei(kz−ωt)
in cylindrical coordinates (r, z), with the form:

ũi = (ûi (r), v̂i (r))ei(kz−ωt), p̃i = p̂i (r)ei(kz−ωt), η̃= ηei(kz−ωt), (A2)

where ûi (r) and v̂i (r) are the amplitudes of velocity perturbations in the z and r directions,
respectively. Here, p̂i (r) is the amplitude of pressure perturbation and η is the perturbation
amplitude on the jet interface. Additionally, k is the dimensionless wavenumber, which is
the reciprocal of the axial perturbation wavelength λ, ω=ωr + iωi is the dimensionless
complex frequency, where ωi represents the growth rate of perturbations.

The perturbations of all quantities are assumed to be very small, which allows us to
expand the Navier–Stokes equations and only keep the first-order perturbation terms.
Therefore, substituting these perturbations into the governing equations and neglecting
the high-order terms, we can get the linearised governing equations:

dv̂i
dr

+ v̂i

r
+ ikûi = 0, (A3)

1
Rei

[
d2v̂i

dr2 + 1
r

dv̂i
dr

−
(
k2 + 1

r2 + ikReiUi

)
v̂i

]
−

(
1
rρ

)δi2 d p̂i
dr

+ iωv̂i = 0, (A4)
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1
Rei

[
d2ûi
dr2 + 1

r

dûi
dr

− (k2 + ikReiUi )ûi

]
− dUi

dr
v̂i −

(
1
rρ

)δi2
ik p̂i + iωûi = 0. (A5)

The velocity and the pressure at the symmetry axis must satisfy the consistency
conditions:

v̂1 = dû1

dr
= d p̂1

dr
= 0. (A6)

At the interface r j = 1 + ηei(kz−ωt), the continuity of velocity, the kinematic boundary
condition, and the force balance on the tangential and normal directions should be
satisfied, i.e.:

v̂1 = v̂2, û1 + dU1

dr
η= û2 + dU2

dr
η, (A7)

−iωη= v̂ j − ikU1η, (A8)

p̂2 − 2rμ
Re

dv̂2

dr
− p̂1 − 2

Re
dv̂1

dr
= 1

We
(1 − k2)η, (A9)

ikv̂1 + dû1

dr
+ d2U1

dr2 η= N

(
ikv̂2 + dû2

dr
+ d2U2

dr2 η

)
. (A10)

The boundary conditions at infinity (r → ∞) are

v̂2 = dû2

dr
= d p̂2

dr
= 0. (A11)

In the calculation, this condition can be satisfied by employing a finite and sufficiently
large distance of the gas phase.

The governing equations and the boundary conditions form an eigenvalue problem,
which is solved using the Chebyshev spectral collocation method. A MATLAB code was
developed for this purpose and more details on the calculation process can be found from
Si et al. (2009).
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