CO ISOTOPE LINE SHAPES IN DARK CLOUDS

P.C. Myers,^{*} R.B. Buxton,^{*} and P.T.P. Ho⁺ ^{*}M.I.T. Department of Physics ⁺Five College Radio Observatory

The ratio of ground-state densities $R_0 \equiv N(^{13}CO)/N(C^{18}O)$ has been used to infer physical and chemical conditions in giant molecular clouds (Wannier et al. 1976) and dark clouds (Mahoney et al. 1976; Langer et al. 1979). In dark clouds R_0 is found to vary from values near the terrestrial ratio $[^{13}C][^{16}O]/[^{12}C][^{18}O] \sim 5$ at positions of high extinction to values ~ 20 at positions of low extinction. In this paper we present highresolution J = 1 \rightarrow 0 spectra of CO, ^{13}CO , and $C^{18}O$ at positions of high extinction in TMC-2, L134, and L134N. The $C^{18}O$ lines have non-Gaussian wings and are \sim half as wide as the ^{13}CO lines. We find that R_0 must vary across the line, from a minimum of $R_0 \sim 4$ at the peak of the $C^{18}O$ line to a maximum of $R_0 \sim 10$ in the wings, unless the ^{13}CO line has peak opacity $\gtrsim 5$. The variation of R_0 with position and with velocity is consistent with models of clouds which have a dense core with low velocity-dispersion and low fractionation, and a rarefied envelope with high velocity-dispersion and high fractionation.

The observations were made with the NRAO 36-foot telescope[†] on Kitt Peak, Arizona. Five minute total-power on-off switching was used. The angular and spectral resolutions were 1.1' and 30 kHz (0.08 km s⁻¹). The antenna temperatures T_A^* were corrected for atmospheric absorption by chopper-wheel calibration. The observed positions [α (1950); δ (1950)] were TMC-2, [04^h29^m43^s; 24°18'54"]; L134, [15^h50^m59^s; -04°26'58"]; L134N, [15^h51^m28^s; -02°45'00"].

The C¹⁸O lines are extremely similar, being strong ($T_A^* \sim 2$ K) and narrow (Δv (FWHM) ~ 0.6 km s⁻¹) with distinct "wings". The ¹³CO lines have FWHM wider than the C¹⁸O lines by a factor ~ 2 . Figure 1 shows CO spectra in TMC-2.

We assume plane-parallel radiative transfer, and that the CO line is optically thick and thermalized. We find that R_{O} is unlikely to be independent of velocity. Only channels in the $C^{18}O$ line core are consistent with R_{O} = 5, while R_{O} , if \geq 10, can be constant with respect to line velocity only if the ^{13}CO line has a peak opacity \sim 5 and T_{ex} \sim 8 K, which condition requires densities n \lesssim $10^{3} \rm cm^{-3}$ (Kwok 1978). For TMC-2, CS observations indicate n \sim 6 x $10^{4} \rm cm^{-3}$ (Linke and Goldsmith 1979). Thus (1) R_{O} cannot be constant with velocity if terrestrial; and (2) R_{O} can be constant if \geq 10, but only for a highly saturated, subthermal ^{13}CO line at a relatively low density.

[†]The National Radio Astronomy Observatory is operated by Associated Universities, Inc., under contract with NSF.

421

B. H. Andrew (ed.), Interstellar Molecules, 421–422. Copyright © 1980 by the IAU.

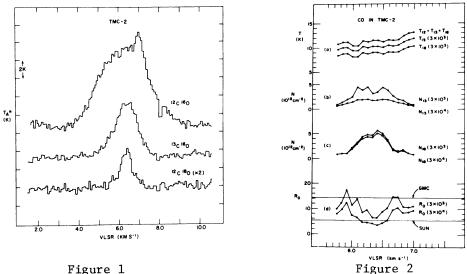


Figure 1

For higher densities 3×10^3 cm⁻³ $\leq n \leq 3 \times 10^4$ cm⁻³ we use the model of Kwok (1978) to predict T_{ex} for each line. We then compute $N(1^{3}CO)$ and $N(C^{18}O)$ for each channel where the $C^{18}O$ line has signal-tonoise ratio \geq 4, and calculate the corresponding R₀. The results are shown in Figure 2.

The variation of $R_{_{O}}$ from ${\scriptstyle {\rm v}4}$ to ${\scriptstyle {\rm v}10}$ is seen in all three clouds. Random errors are too small to obscure the trend. Systematic errors of 15% in each spectrum would change the absolute values of R_0 , but the relative variation of R would be unchanged. The variation of R_0 with velocity may be consistent with the decrease of R_{O} with extinction found by Langer et al. (1979), if the line core is formed in a dense interior region with low fractionation and if the line wings are formed in a rarefied envelope with high fractionation. If so, then cloud cores have low Δv while cloud envelopes have high Δv , as suggested by the correlation between Δv and spatial extent in the ρ Oph cloud (Myers et al. 1978).

This work was supported by the NSF.

REFERENCES

Kwok, S.: 1978, Astrophys. J. 225, 107. Langer, W.D.: 1976, Astrophys. J. 210, 328. Langer, W.D., Goldsmith, P.F., Carlson, E., and Wilson, R.W.: 1979, preprint. Linke, R.A., and Goldsmith, P.F.: 1979, preprint. Mahoney, M.J., McCutcheon, W.H., and Shuter, W.L.H.: 1976, Astron. J. 81, 508. Myers, P.C., Ho, P.T.P., Schneps, M.H., Chin, G., Pankonin, V., and Winnberg, A.: 1978, Astrophys. J. 220, 864. Wannier, P.G., Penzias, A.A., Linke, R.A., and Wilson, R.W.: 1976, Astrophys. J. 204, 26.

422