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Abstract
We study the 𝒟isc-structure space 𝑆𝒟isc

𝜕
(𝑀) of a compact smooth manifold M. Informally speaking, this space

measures the difference between M, together with its diffeomorphisms, and the diagram of ordered framed con-
figuration spaces of M with point-forgetting and point-splitting maps between them, together with its derived
automorphisms. As the main results, we show that in high dimensions, the 𝒟isc-structure space a) only depends on
the tangential 2-type of M, b) is an infinite loop space, and c) is nontrivial as long as M is spin. The proofs involve
intermediate results that may be of independent interest, including an enhancement of embedding calculus to the
level of bordism categories, results on the behaviour of derived mapping spaces between operads under rationali-
sation, and an answer to a question of Dwyer and Hess in that we show that the map BTop(𝑑) → BAut(𝐸𝑑) is an
equivalence if and only if d is at most 2.
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1. Introduction

The classification of closed smooth d-manifolds and families thereof – smooth fibre bundles – is one
of the guiding problems of geometric topology. From a homotopy-theoretic perspective, it is the study
of the ∞-groupoid1 ℳan(𝑑)� of smooth closed d-manifolds and spaces of diffeomorphisms between

1This work is written ∞-categorically, so we treat homotopy types and ∞-groupoids as indistinguishable. In this introduction,
readers unfamiliar with this principle may substitute topologically enriched categories or groupoids for ∞-categories or -groupoids;
the former being related to homotopy types by taking classifying spaces.
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them. A historically successful approach to relate – and partially reduce – the study of ℳan(𝑑)� in high
dimensions to more homotopy-theoretic and algebraic questions goes by comparison to the ∞-groupoid
𝒮� of spaces via the functor ℳan(𝑑)� → 𝒮� that assigns a manifold its homotopy type. For a given
homotopy type X, one studies the fibre

𝑆𝒮 (𝑋) � fib𝑋
(
ℳan(𝑑)� → 𝒮�) ,

which can be thought of as the space of manifold structures on X. The path components of this structure
space are equivalence classes of manifolds with a homotopy equivalence to X,

𝜋0 𝑆
𝒮 (𝑋) =

{
pairs (𝑀, 𝜑) of a closed smooth d-manifold M and

a homotopy equivalence 𝜑 : 𝑀 → 𝑋

}
(𝑀, 𝜑) ∼ (𝑀 ′, 𝜑′) ⇔ there exists a diffeomorphism
𝛼 : 𝑀 → 𝑀 ′ with [𝜑′ ◦𝛼] = [𝜑] ∈ 𝜋0 Map𝒮 (𝑀, 𝑋),

and the path component of 𝑆𝒮 (𝑋) corresponding to such a pair (𝑀, 𝜑) agrees with the identity com-
ponent of the fibre hAut(𝑀)/Diff (𝑀) of the map BDiff (𝑀) → BhAut(𝑀) induced by considering
diffeomorphisms as homotopy equivalences,

𝑆𝒮 (𝑋)(𝑀,𝜙) �
(
hAut(𝑀)/Diff (𝑀)

)
id.

Surgery theory and pseudoisotopy theory combine to provide an approximation to the structure space
𝑆𝒮 (𝑋) up to extensions in terms of three infinite loop spaces – one in the realm of each, algebraic
K-theory, algebraic L-theory and stable homotopy theory (see [WW01] for a survey). The unfortunate
defect of this approach is that it really is only an approximation, in the sense that it can only capture a
finite Postnikov truncation of 𝑆𝒮 (𝑋) depending on the dimension.

Motivated by Goodwillie–Weiss’ embedding calculus and factorisation homology, we pursue a
different approach to relate the study of ℳan(𝑑)� to more homotopy-theoretic and algebraic questions,
and we establish three fundamental properties of this alternative. Observing that the homotopy type of
a manifold M can be viewed as that of the space of ordered configurations of k points in M for 𝑘 = 1,
this approach is motivated by the idea to remember the homotopy types of the configuration spaces for
all values of k, together with the natural point-forgetting maps between them. It is, in fact, beneficial
to consider configuration spaces of thickened points which admit more natural maps between them, by
‘splitting points’. To make this precise, one considers the ∞-category 𝒟isc𝑑 of finite disjoint unions
of d-dimensional Euclidean spaces (i.e., 𝑇 × R𝑑 for finite sets T) and spaces of smooth embeddings
between them. A d-manifold M gives rise to a presheaf 𝐸𝑀 : 𝒟iscop

𝑑 → 𝒮 on 𝒟isc𝑑 with values in the
∞-category 𝒮 of spaces via

𝒟iscop
𝑑 
 𝑇 × R𝑑 𝐸𝑀

↦−−−→ Emb(𝑇 × R𝑑 , 𝑀) ∈ 𝒮. (1)

By taking derivatives at the centres, the space 𝐸𝑀 (𝑇 × R𝑑) is equivalent to the ordered configuration
space of 𝑘 = |𝑇 | points in M together with framings of the tangent space of M at each of these points,
and the homotopy type of the ordinary ordered configuration space of k points in M (in particular, that of
M itself for 𝑘 = 1) can be recovered as the quotient by the Diff(R𝑑)𝑇 � O(𝑑)𝑇 -action on 𝐸𝑀 (𝑇 × R𝑑)
obtained by functoriality. The assignment 𝑀 ↦→ 𝐸𝑀 as in (1) is natural in embeddings of M, so it, in
particular, defines a functor 𝐸 : ℳan(𝑑)� → PSh(𝒟isc𝑑)� to the ∞-groupoid of 𝒮-valued presheaves
on 𝒟isc𝑑 . The fibre of this functor at a presheaf 𝑋 : 𝒟iscop → 𝒮

𝑆𝒟isc (𝑋) � fib𝑋
(
ℳan(𝑑)�

𝐸
−→ PSh(𝒟isc𝑑)�

)
is the eponymous 𝒟isc-structure space of X. Analogous to the more traditional structure space 𝑆𝒮 (𝑋),
the 𝒟isc-structure space 𝑆𝒟isc (𝑋) can be thought as a space of manifold structures, this time on a
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presheaf as opposed to just a homotopy type. Similar to before, the path components 𝜋0 𝑆
𝒟isc(𝑋) are

represented by pairs of a manifold with an equivalence of its presheaf to X,

𝜋0 𝑆
𝒟isc (𝑋) =

{
pairs (𝑀, 𝜑) of a closed smooth d-manifold M and

an equivalence of presheaves 𝜑 : 𝐸𝑀 → 𝑋

}
(𝑀, 𝜑) ∼ (𝑀 ′, 𝜑′) ⇔ there exists a diffeomorphism

𝛼 : 𝑀 → 𝑀 ′ with [𝜑′ ◦ 𝐸𝛼] = [𝜑] ∈ 𝜋0 MapPSh(𝒟isc𝑑) (𝐸𝑀 , 𝑋),

and the path component of 𝑆𝒟isc (𝑋) corresponding to such a pair (𝑀, 𝜑) agrees with the identity
component of the fibre Aut(𝐸𝑀 )/Diff(𝑀) of the map BDiff (𝑀) → BAut(𝐸𝑀 ) induced by E,

𝑆𝒟isc (𝑋)(𝑀,𝜑) �
(
Aut(𝐸𝑀 )/Diff(𝑀)

)
id.

In particular, the space 𝑆𝒟isc (𝑋) is nonempty if and only if 𝑋 � 𝐸𝑀 for some closed smooth d-
manifold M. If so, then 𝑆𝒟isc(𝑋) � 𝑆𝒟isc(𝐸𝑀 ), so nothing is lost by assuming 𝑋 = 𝐸𝑀 , in which
case we abbreviate 𝑆𝒟isc(𝑀) � 𝑆𝒟isc (𝐸𝑀 ). These are the spaces we focus on in this work. Informally
speaking, they measure by how many manifolds the presheaf 𝑋 = 𝐸𝑀 is realised, and how much their
diffeomorphism groups differ from the automorphism group of X.

As the main results of this work, we establish three structural properties of 𝑆𝒟isc(𝑀) that one could
summarise by saying that for most choices of M,

A) 𝑆𝒟isc(𝑀) depends only little on the manifold M,
B) 𝑆𝒟isc(𝑀) is an infinite loop space, and
C) 𝑆𝒟isc(𝑀) is nontrivial.

We state these results in terms of a more general version 𝑆𝒟isc
𝜕

(𝑀) for manifolds that may have boundary,
which is crucial for our methods. We postpone its definition to Section 1.2.1 below.

A). Tangential 2-type invariance

To make the first property precise, recall that two manifolds M and N, possibly with boundary, have the
same tangential 2-type if there is a map 𝐵 → BO so that the maps 𝑀 → BO and 𝑁 → BO classifying
the stable tangent bundles of M and N admit lifts to maps 𝑀 → 𝐵 and 𝑁 → 𝐵 that are 2-connected.

Example. Choosing 𝐵 = BSpin × 𝐾 (𝜋, 1), one sees that two spin manifolds M and N have the same
tangential 2-type if and only if their fundamental groupoids are equivalent. In particular, all simply
connected spin manifolds have the same tangential 2-type.

Our first main result is that in high dimensions, the 𝒟isc-structure space 𝑆𝒟isc
𝜕

(𝑀) depends only on
the dimension d and the tangential 2-type of M.

Theorem A. For compact d-manifolds M and N with 𝑑 ≥ 5 that have the same tangential 2-type, there
exists an equivalence 𝑆𝒟isc

𝜕
(𝑀) � 𝑆𝒟isc

𝜕
(𝑁).

In particular, the 𝒟isc-structure space of a compact spin d-manifold M with 𝑑 ≥ 5 only depends on
the fundamental groupoid, so we in particular have 𝑆𝒟isc

𝜕
(𝑀) � 𝑆𝒟isc

𝜕
(𝐷𝑑) if M is simply connected.

Theorem A also implies that 𝑆𝒟isc
𝜕

(𝑀) for a compact d-manifold M does not depend on the smooth
structure of M, since homeomorphic manifolds have equivalent tangential 2-types (see Example 5.2).

Remark. One ingredient in the above mentioned approximation to the conventional structure space
𝑆𝒮
𝜕
(𝑀) has a similar invariance property (namely, the L-theory part depends only on the fundamental

groupoid), but the others depend more substantially on the homotopy type of M.
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Remark. Reformulated in terms of embedding calculus (see Section 1.1.1 for an outline of this relation),
Theorem A is an extension of a result of Knudsen–Kupers [KK24a, 6.23] which applies to certain path
components of 𝑆𝒟isc

𝜕
(𝑀) if M is 2-connected, of dimension 𝑑 ≥ 6, and 𝜕𝑀 = 𝑆𝑑−1.

B). Infinite loop space structure

As previously mentioned, the more traditional structure space 𝑆𝒮
𝜕
(𝑀) is an infinite loop space after a

certain truncation and up to extensions. The 𝒟isc-structure space 𝑆𝒟isc
𝜕

(𝑀) on the other hand is in high
dimensions an actual infinite loop space – no truncations or extensions are necessary. This is our second
main result.

Theorem B. For a compact manifold M of dimension 𝑑 ≥ 8, the space 𝑆𝒟isc
𝜕

(𝑀) admits the structure
of an infinite loop space.

Remark.

(i) The bound 𝑑 ≥ 8 in Theorem B is not optimal. It can, for example, be improved to 𝑑 ≥ 6 if M is
simply connected and spin (see Theorem 6.1). Further improvements are likely possible.

(ii) The 𝒟isc-structure space 𝑆𝒟isc
𝜕

(𝑀) extends to a space-valued functor on an ∞-category of compact
d-manifolds and embeddings between them (see Section 4.5.2), but our construction of the infinite
loop space structure on 𝑆𝒟isc

𝜕
(𝑀) has less functoriality (see Remark 6.8).

C). Nontriviality

At this point, a very optimistic reader may wonder whether the 𝒟isc-structure spaces 𝑆𝒟isc
𝜕

(𝑀) are just
contractible, which would in particular say that the diffeomorphism group Diff (𝑀) of a closed manifold
M is equivalent to the automorphism group Aut(𝐸𝑀 ) of the associated presheaf. As our third main
result, we show that this is never the case if one assumes the manifold to be spin and of dimension 𝑑 ≥ 5.

Theorem C. For a compact spin d-manifold 𝑀 ≠ ∅ with 𝑑 ≥ 5, the space 𝑆𝒟isc
𝜕

(𝑀) is not contractible.

Remark. There are partial results in low dimensions that complement Theorem C.

(i) For 𝑑 ≤ 2, Theorem A of [KK24b] implies 𝑆𝒟isc
𝜕

(𝑀) � ∗ (see Remark 1.1 (ii) loc.cit.).
(ii) For 𝑑 = 3, we give several examples for which 𝑆𝒟isc

𝜕
(𝑀) is nontrivial, including 𝑀 = 𝐷3 and

𝑀 = 𝑆3 (see Remark 8.16).
(iii) For 𝑑 = 4, Theorem B of [KK24a] implies that 𝜋0 𝑆

𝒟isc
𝜕

(𝑀) surjects onto the set of isotopy classes
of smooth structures on M as long as M is 1-connected and closed, so 𝑆𝒟isc

𝜕
(𝑀) is nontrivial for

all such M that admit more than one smooth structure.

This concludes the summary of our three main results. In the remainder of this introduction, we
briefly indicate how 𝑆𝒟isc

𝜕
(𝑀) relates to embedding calculus, the little d-discs operad and factorisation

homology, and then give a summary of the proofs of the main results, where we also make good for the
omitted definition of 𝑆𝒟isc

𝜕
(𝑀) for manifolds with boundary.

1.1. Relation to embedding calculus, the 𝑬𝒅-operad and factorisation homology

1.1.1. Embedding calculus
Goodwillie and Weiss’ embedding calculus [Wei99, GW99] is a device to study embeddings via their
restrictions to submanifolds of the source that are diffeomorphic to 𝑇 × R𝑑 for finite sets T. It has the
form of an approximation to the space of embeddings

Emb(𝑊,𝑊 ′) −→ 𝑇∞Emb(𝑊,𝑊 ′) (2)
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whose target is the limit of a tower of maps whose fibres admit a description in terms of the configurations
spaces and frame bundles of W and𝑊 ′. The main result in this context, due to Goodwillie–Klein [GK15],
says that (2) is an equivalence if the handle codimension (dimension of 𝑊 ′ minus handle dimension
of W) is at least three. In general, the map (2) can fail to be an equivalence, and in a sense, the 𝒟isc-
structure spaces may be seen as the ‘correction terms’ to (2) being an equivalence in codimension zero.
Let us make this more precise.

The relation of the map (2) to 𝒟isc-structure spaces is a reformulation of a result of Boavida de
Brito–Weiss [BdBW13], at least if M is closed (c.f. Remark 1.1). They show that (2) is equivalent to
the map Emb(𝑊,𝑊 ′) → MapPSh(𝒟isc𝑑) (𝐸𝑊 , 𝐸𝑊 ′ ) induced by the naturality of 𝐸𝑊 in embeddings,
which – for closed W and 𝑊 ′ and after discarding non-invertible components in source and target – is
the map on mapping spaces induced by the functor 𝐸 : ℳan(𝑑)� → PSh(𝒟isc𝑑)� used to define the
𝒟isc-structure space. Since the path space of a ∞-groupoid between two objects is naturally equivalent
to the space of morphisms between the respective objects, this shows that the loop space of 𝑆𝒟isc (𝑀) at
(𝑀, id𝐸𝑀 ) ∈ 𝜋0 𝑆

𝒟isc(𝑀) is equivalent to the fibre at id of (2) for 𝑊 = 𝑊 ′ = 𝑀 , so

Ω𝑆𝒟isc(𝑀) � hofibid(Emb(𝑀, 𝑀) → 𝑇∞Emb(𝑀, 𝑀)). (3)

Remark 1.1. A similar discussion applies if M has boundary, but this does not follow directly from
[BdBW13] since we deal with boundary conditions differently to loc.cit. (see Section 1.2.1).

Specialising Properties A–C to spin manifolds, they in particular imply the following:

Corollary D. For compact connected spin d-manifolds 𝑀 ≠ ∅ with 𝑑 ≥ 5, the fibre

hofibid
(
Diff𝜕 (𝑀) = Emb𝜕 (𝑀, 𝑀) → 𝑇∞Emb𝜕 (𝑀, 𝑀)

)
is nontrivial and depends only on the fundamental group of M. It is an infinite loop space for 𝑑 ≥ 8.

1.1.2. The operad 𝑬𝒅 of little d-discs
We continue by mentioning two connections between 𝑆𝒟isc

𝜕
(𝑀) and the operad 𝐸𝑑 of little d-discs. The

first is that 𝒟isc𝑑 agrees with the monoidal envelope (also known as the associated PROP) of the framed
𝐸𝑑-operad, so PSh(𝒟isc𝑑) can be identified with the ∞-category of right-modules over this operad,
and hence, the definition of 𝑆𝒟isc

𝜕
(𝑀) for closed manifolds can be rephrased in these terms. There is a

similar reformulation if M has boundary.
The second relation is less obvious and once more a result of work of Boavida de Brito and Weiss

[BdBW18]. To explain it, observe that the standard action of O(𝑑) on the disc 𝐷𝑑 induces an O(𝑑)-
action on the operad 𝐸𝑑 of little d-discs. This action extends to the topological group Top(𝑑) of
homeomorphisms of R𝑑 , so there is a map

BTop(𝑑) −→ BAut(𝐸𝑑) (4)

with Aut(𝐸𝑑) the automorphism group of the 𝐸𝑑-operad. Reformulated in our setting, their work (or
alternatively work of Ducoulombier–Turchin [DT22]) moreover implies that there is an equivalence

Ω𝑑+1(Aut(𝐸𝑑)/Top(𝑑)) � 𝑆𝒟isc
𝜕 (𝐷𝑑). (5)

In particular, Theorems B and C for 𝑀 = 𝐷𝑑 (or rather certain refinements of them) imply the following:

Corollary E. The map BTop(𝑑) → BAut(𝐸𝑑) is an equivalence if and only if 𝑑 ≤ 2. Moreover, its fibre
admits for 𝑑 ≥ 6 the structure of an infinite loop space after taking (𝑑 + 1)-fold loop spaces.

Remark 1.2. A couple of remarks on the equivalence (5) and Corollary E are in order.

(i) Dwyer and Hess asked whether the map (4) is an equivalence [Dwy14, 58 min]. The first part of
Corollary E gives an answer.
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(ii) The cases 𝑑 ≤ 2 of the first part of Corollary E are not due to us: Horel [Hor17] proved the case
𝑑 = 2. The case 𝑑 = 1 is folklore and can be proved via Horel’s approach.

(iii) The equivalence (5) can strictly speaking only be deduced from [BdBW18] or [DT22] after passing
to certain components (see Theorem 8.1), but a different proof that does not require this was given
as part of [KK24c] (see Remark 8.2).

1.1.3. Factorisation homology
The final relation of 𝑆𝒟isc

𝜕
(𝑀) we would like to mention is one to factorisation homology (or topological

chiral homology) [Sal01, Fra13, And10, AF15, Lur17]. In its simplest instance, this connection amounts
to the (quite tautological) observation that for a framed 𝐸𝑑-algebra A in a suitable ∞-category 𝒞, there
is a commutative diagram

ℳan(𝑑)� PSh(𝒟isc𝑑)

𝒞

𝐸

∫
(−)

𝐴

(−) ⊗𝒟isc𝑑 𝐴

of ∞-categories in which the diagonal arrow is given by factorisation homology with coefficients in A
and the vertical arrow by taking coends, using that A is in particular a functor 𝐴 : 𝒟isc𝑑 → 𝒞. In fact,
the functor E itself is an instance of factorisation homology – namely, with coefficients in the framed
𝐸𝑑-algebra 𝐸𝐷𝑑 ∈ PSh(𝒟isc𝑑) – so E may be viewed as the universal factorisation homology invariant
on ℳan(𝑑)�, and the study of 𝒟isc-structure spaces as closely related to the question to which extent
the theory of manifolds can be captured by factorisation homology.

1.2. Summary of proofs

We conclude with a summary of the proofs of Theorems A–C.

Some steps may be of independent interest. We highlight them with the Roman numerals (I)–(III).

1.2.1. The case with boundary
The more general 𝒟isc-structure spaces S𝒟isc

𝜕
(𝑀) for manifolds M with boundary play a central role in

the proofs of all main results of this work, even when specialised to closed manifolds, so we first make
good on omitting its definition earlier.

Fixing a closed (𝑑 − 1)-manifold Q, one replaces ℳan(𝑑)� with the ∞-groupoid ℳan(𝑑)�𝑄 of
compact d-manifolds with an identification of their boundary with Q, and spaces of diffeomorphisms
preserving these identifications. The definition (1) of the presheaf 𝐸𝑀 still makes sense if M has
boundary Q and thus yields a functor ℳan(𝑑)�𝑄 → PSh(𝒟isc𝑑)�, but if 𝑄 ≠ ∅, then the presheaf 𝐸𝑀

carries additional structure. Indeed, stacking cylinders induces an associative algebra structure on the
presheaf 𝐸𝑄×𝐼 ∈ PSh(𝒟isc𝑑) with respect to the symmetric monoidal structure on PSh(𝒟isc𝑑) given
by Day convolution, induced by taking disjoint unions in 𝒟isc𝑑 . Similarly, fixing a collar 𝑄 × 𝐼 ↩→ 𝑀
of the boundary of M, the presheaf 𝐸𝑀 becomes a right-𝐸𝑄×𝐼 -module. Made precise, this enhances the
functor 𝐸 : ℳan(𝑑)�𝑄 → PSh(𝒟isc𝑑)� to a functor

𝐸 : ℳan(𝑑)�𝑄 −→ ℳod(𝑑)�𝐸𝑄×𝐼
(6)

with target the ∞-groupoid ℳod(𝑑)�𝐸𝑄×𝐼
of right-𝐸𝑄×𝐼 -modules. The 𝒟isc-structure space of a right-

𝐸𝑄×𝐼 -module X is then defined as the fibre

𝑆𝒟isc
𝑄 (𝑋) � fib𝑋

(
ℳan(𝑑)�𝑄

𝐸
−→ ℳod(𝑑)�𝐸𝑄×𝐼

)
;
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that this recovers the previous definition in the case 𝑄 = ∅ follows by observing that 𝐸∅×𝐼 is the
monoidal unit. As in the closed case, we abbreviate 𝑆𝒟isc

𝜕
(𝑀) � 𝑆𝒟isc

𝑄 (𝐸𝑀 ) if the right-𝐸𝑄×𝐼 -module
𝑋 = 𝐸𝑀 is induced by a manifold M with identified boundary 𝜕𝑀 � 𝑄. This is the generalisation of
𝑆𝒟isc (𝑀) for manifolds with boundary in terms of which we stated Theorems A–C above.

1.2.2. Extension to the bordism category
For the proofs of these results, we need to generalise the functor (6) further. Given another closed
(𝑑 − 1)-manifold P, we write ℬord(𝑑)𝑃,𝑄 for the ∞-groupoid of compact bordisms 𝑊 : 𝑃 � 𝑄 and
spaces of diffeomorphisms preserving the identifications of the ends. For such a bordism, the associated
presheaf 𝐸𝑊 becomes a (𝐸𝑃×𝐼 , 𝐸𝑄×𝐼 )-bimodule in PSh(𝒟isc𝑑), and we have a functor

𝐸 : ℬord(𝑑)𝑃,𝑄 −→ ℳod(𝑑)�𝐸𝑃×𝐼 ,𝐸𝑄×𝐼
(7)

to the ∞-groupoidℳod(𝑑)�𝐸𝑃×𝐼 ,𝐸𝑄×𝐼
of (𝐸𝑃×𝐼 , 𝐸𝑄×𝐼 )-bimodules, generalising the case 𝑃 = ∅ discussed

in the previous subsection. Given another closed (𝑑 − 1)-manifold R, one can show that there is a
commutative square of ∞-groupoids

ℬord(𝑑)𝑃,𝑄 × ℬord(𝑑)𝑄,𝑅 ℬord(𝑑)𝑃,𝑅

ℳod(𝑑)�𝑃,𝑄 × ℳod(𝑑)�𝑄,𝑅 ℳod(𝑑)�𝑃,𝑅,

(−)∪𝑄 (−)

𝐸×𝐸 𝐸
(−) ⊗𝐸𝑄×𝐼

(−)

whose horizontal functors are induced by gluing bordisms and tensoring bimodules, respectively; this
is essentially an instance of what is known as ⊗-excision in the theory of factorisation homology. These
squares suggest that the functors (7) might, in fact, arise as the maps induced on mapping spaces by a
functor of ∞-categories

𝐸 : ℬord(𝑑) (∞,1) −→ ℳod(𝑑) (∞,1) (8)

from the d-dimensional bordism category to a Morita category whose objects are associative algebras
in PSh(𝒟isc𝑑) and whose morphisms are bimodules. This turns out to be the case, but to prove our
results, we need even more functoriality. For this, one notes that the presheaf 𝐸𝑀 of a manifold makes
equal sense if M is noncompact, so (8) ought to extend to a functor

𝐸 : ncℬord(𝑑) (∞,2) −→ ℳod(𝑑) (∞,2) (9)

of (∞, 2)-categories from a larger bordism category of possibly noncompact manifolds that has codimen-
sion 0 embeddings as 2-morphisms, not just diffeomorphisms, to a larger Morita category ℳod(𝑑) (∞,2)

that has morphisms of bimodules as 2-morphisms, not just invertible ones.
In Section 3, relying on work of Haugseng [Hau17], we carefully construct such a functor (9)

of (∞, 2)-categories and show that it can be enhanced to a functor of symmetric monoidal (∞, 2)-
categories. As part of Section 4, we show that for (possibly noncompact) bordisms 𝑊,𝑊 ′ : 𝑃 � 𝑄, one
can identify the map between mapping spaces of 2-morphisms induced by (9)

Mapncℬord(𝑑)𝑃,𝑄
(𝑊,𝑊 ′) Mapℳod(𝑑)𝑃,𝑄

(𝐸𝑊 , 𝐸𝑊 ′ )

Emb𝜕 (𝑊,𝑊 ′) 𝑇∞Emb𝜕 (𝐸𝑊 , 𝐸𝑊 ′ )

𝐸

� �

with Goodwillie–Weiss’ embedding calculus approximation, so one might view the functor (9) as an
enhancement of embedding calculus to the level of bordism categories. In particular,
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(I) the functor (9) of symmetric monoidal (∞, 2)-categories equips the limit of the embedding calculus
tower with homotopy coherent gluing, composition and disjoint union maps.

The functor (9) and its relation to embedding calculus forms the technical backbone of the proofs of
Theorems A–C in the later chapters, whose proof strategies we summarise now.

Remark 1.3. As part of [KK24c], the functor (9) was generalised in several directions.

1.2.3. Theorem A: tangential 2-type invariance
The functor (8) in particular extends the 𝒟isc-structure space of a manifold 𝑆𝒟isc

𝜕
(𝑀) to a space-valued

functor of ∞-categories

𝑆𝒟isc
𝜕 (−) : ℬord(𝑑) (∞,1)

∅/
−→ 𝒮 (10)

defined on the ∞-category of null bordisms (i.e., the undercategory of ∅ ∈ ℬord(𝑑) (∞,1) ). Relying on
the relation to embedding calculus via (9), a version of an isotopy extension theorem for embedding
calculus due to Knudsen–Kupers [KK24a], and Goodwillie–Klein’s above mentioned convergence
theorem, we show that the functor (10) sends a bordism 𝑊 : 𝑃 � 𝑄 to an equivalence if W can be built
from a collar on P by attaching handles of index ≥ 3. This leads to a proof of Theorem A, since it turns
out that the value of any functor of the form (10) with this property depends up to equivalence only on
the tangential 2-type. This is an instance of

(II) a general tangential k-type invariance result for the values of certain functors on the category
ℬord(𝑑) (∞,1)

∅/
of null bordisms.

The proof of (II) amounts to a sequence of surgery arguments that we became aware of through the
literature on the space of metrics of positive scalar curvature – in particular, [ERW22, EW24].

1.2.4. Theorem B: infinite loop space
To construct an infinite loop space structure on 𝑆𝒟isc

𝜕
(𝑀), we first use the tangential 2-type invariance

to show that it suffices to consider manifolds of the form 𝑀 = 𝑃 × 𝐷2𝑛 for P a closed manifold and
2𝑛 ≥ 4. From the definition

𝑆𝒟isc
𝜕 (𝑃 × 𝐷2𝑛) = fib𝐸𝑃×𝐷2𝑛

(
ℬord(𝑑)𝑃×𝑆2𝑛−1

𝐸
−→ ℳod(𝑑)�𝐸𝑃×𝑆2𝑛−1×𝐼

)
, (11)

it is clear that it suffices to prove that the right-hand map is a map of infinite loop spaces. After
restriction to certain path-components that does not affect the fibre, this is what we do. More precisely,
in the target, we restrict to modules equivalent to 𝐸𝑃×𝑊𝑔,1 for 𝑔 ≥ 0 where 𝑊𝑔,1 is short for the bordism
(𝑆𝑛 × 𝑆𝑛)♯𝑔\int(𝐷2𝑛) : ∅ � 𝑆2𝑛−1. In the source, we restrict to bordisms whose induced presheaf
is equivalent to 𝐸𝑃×𝑊𝑔,1 for 𝑔 ≥ 0 as a bimodule. We then use the full coherence provided by the
functor (8) to enhance the restricted map to one of algebras over a certain higher-dimensional version
𝒲 of Tillmann’s surface operad [Til00], constructed out of bordisms of the form �𝑘𝑆2𝑛−1 � �𝑙𝑆2𝑛−1

for 𝑘, 𝑙 ≥ 0 that are obtained from the manifolds 𝑊𝑔,1 by creating more boundary spheres. A variant
of this operad has already appeared in work of Basterra–Bobkova–Ponto–Tillmann–Yaekel [BBP+17]
on operads with homological stability. They proved that algebras over this operad are 𝐸1-spaces (via
a ‘pair-of-pants’ product) which group-complete to infinite loop spaces, the main ingredient being a
stable homological stability result of Galatius–Randal-Williams [GRW17]. Translated to our setting,
this implies that the fibre of the group completion of the restricted map is an infinite loop space. Using
tangential 2-type invariance once more, we then show that in this case, group completion commutes
with taking fibres. This only shows that 𝑆𝒟isc

𝜕
(𝑃×𝐷2𝑛) is an infinite loop space after group completion,

but we also show that this 𝐸1-space is already group-complete, using the s-cobordism theorem.
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1.2.5. Theorem C: nontriviality
To show that 𝑆𝒟isc

𝜕
(𝑀) is nontrivial for all compact spin manifolds M of dimension 𝑑 ≥ 5, we first

reduce to the case 𝑀 = 𝐷𝑑 using tangential 2-type invariance. The equivalence (5) then further reduces
this to showing that the fibre Aut(𝐸𝑑)/Top(𝑑) of (4) has a nontrivial homotopy group in sufficiently
high degree, which we do by showing that the individual homotopy groups of Aut(𝐸𝑑) and Top(𝑑)
are sufficiently different. While quite a bit is known about the homotopy groups of Top(𝑑), especially
rationally, so far, almost nothing is known about the homotopy groups of Aut(𝐸𝑑) besides for small values
of d. This is in stark contrast to the automorphism group Aut((𝐸𝑑)Q) of the rationalised 𝐸𝑑-operad,
whose homotopy groups have a complete description in terms of graph complexes à la Kontsevich due
to work of Fresse–Turchin–Willwacher [FTW17]. Thus, to learn something about the homotopy groups
of Aut(𝐸𝑑), one could try to study the comparison map Aut(𝐸𝑑) → Aut((𝐸𝑑)Q) on homotopy groups.
This is what we do. More generally,

(III) we study the effect on homotopy groups of the map Map(𝒪,𝒫) → Map(𝒪Q,𝒫Q) for operads 𝒪
and 𝒫, induced by rationalisation.

For this, we first use work of Göppl and Weiss [GW24] to decompose the mapping spaces as a limit
of a tower of mapping spaces between truncated operads and show that under mild assumptions, the
maps analogous to that in (III) between the stages of this tower are componentwise rationalisations.
Rationalisation does not commute with sequential limits in general, so this does not imply that the map
in (III) has the same property. However, we then show that this can only fail in an extreme way – namely,
when some of the homotopy groups of Map(𝒪,𝒫) are uncountable. We also explain similar results for
more general localisations and for more general towers of spaces.

Applied to 𝒪 = 𝒫 = 𝐸𝑑 , this shows that the homotopy groups of Aut(𝐸𝑑) either agree rationally
with those of Aut((𝐸𝑑)Q), as described in Fresse–Turchin–Willwacher’s work, or some of them are
uncountable. In either case, we can conclude that they are different from that of Top(𝑑): in the former
by comparing them with known partial computations of the rational homotopy groups of Top(𝑑), and
in the latter by using that Top(𝑑) has countable homotopy groups.

2. ∞-categorical preliminaries

Except for the final two sections (see Convention 7.1), we work in the setting of ∞-categories. This
section – which may be skipped on first reading and referred back to when necessary – serves
to establish some notation and to recall definitions and facts used in later sections, as well as to
prove a few technical results that we could not find in the literature. The topics are as follows:

2.1 Conventions.
2.2 The coherent nerve.
2.3 Cocartesian fibrations.
2.4 The categoriesΔ ,Gap, andFin∗.
2.5 Category and monoid objects.

2.6 Presheaves and the Yoneda embedding.
2.7 ∞-operads and generalised∞-operads.
2.8 Associative algebras and bimodules.
2.9 Haugseng’s Morita category.

2.10 Span and cospan categories.

2.1. Conventions

Unless mentioned otherwise, we follow the conventions and notation of [Lur09a, Lur17]. In particular,

• An ∞-category is a quasi-category [Lur09a, 1.1.2.4]. The ∞-category of ∞-categories 𝒞at∞ is
the coherent nerve 𝒞at∞ � 𝑁coh (Cat∞) of the Kan-enriched category Cat∞ of small ∞-categories
[Lur09a, 3.0.0.1]. We consider 1-categories as ∞-categories via their nerve.

• A space is a Kan complex. If topological spaces appear, we implicitly replace them by their singular
simplicial sets. The category of simplicial sets is denoted S and the full subcategory of Kan-complexes
by Kan ⊂ S. Both are enriched over themselves. The ∞-category of spaces 𝒮 is the coherent nerve
𝒮 � 𝑁coh (Kan) [Lur09a, 1.2.16.1].
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We use the following notational conventions:

• The letters 𝒜, ℬ, 𝒞, . . . typically stand for ∞-categories, whereas the letters A, B, C, . . . usually
stand for S-enriched, Kan-enriched or 1-categories.

• Given an ∞-category 𝒞 and object c of 𝒞, 𝒞op
𝑐/

is short for (𝒞𝑐/)
op and similarly 𝒞

op
/𝑐

is short for
(𝒞/𝑐)

op. In other words, slices are taken before opposite categories.

2.2. The coherent nerve and the homotopy category

The coherent nerve 𝑁coh : sCat → S is a functor from the 1-category sCat of S-enriched categories to
the 1-category of simplicial sets [Lur09a, 1.1.5]. Some of its properties are as follows:

(i) It is the right-adjoint in a Quillen equivalence [Lur09a, 2.2.5.1], where sCat is equipped with the
Bergner model structure whose
(a) fibrant objects are Kan-enriched categories [Lur09a, A.3.2.24],
(b) weak equivalences are Dwyer–Kan equivalences, so simplicial functors that induce weak homo-

topy equivalences on each mapping space and are an equivalence (of 1-categories) on homotopy
categories [Lur09a, A.3.2.4],

(c) fibrations are simplicial functors that are Kan fibrations on each mapping space and isofibrations
on homotopy categories [Lur09a, A.3.2.24, A.3.2.25],

and S is equipped with the Joyal model structure of which we only need to know that its fibrant
objects are precisely ∞-categories [Lur09a, 2.4.6.1]. In particular, the coherent nerve of a Kan-
enriched category is an ∞-category.

(ii) Taking coherent nerves preserves objects and morphisms, in the sense that the 0- and 1-simplices
of 𝑁coh (C) are the sets of objects and morphisms of C [Lur09a, p. 23].

(iii) Taking coherent nerves preserves mapping spaces of Kan-enriched categories in that for a Kan-
enriched category C, we have MapC (𝑐, 𝑐′) � Map𝑁coh (C) (𝑐, 𝑐

′) [Lur09a, 2.2].
(iv) There is a natural equivalence 𝑁coh(Cop) � 𝑁coh(C)op. This is a consequence of the natural

isomorphisms ℭ([𝑛]op) � ℭ([𝑛])op, where ℭ(−) is the left adjoint to 𝑁coh (−).
(v) There is a canonical map 𝑁coh (Fun(C,D)) → Fun(𝑁coh (C), 𝑁coh (D)) obtained by appling 𝑁coh to

the evaluation Fun(C,D) × C → D, using that as a right adjoint, 𝑁coh (−) preserves products to get
𝑁coh(Fun(C,D)) × 𝑁coh (C) → 𝑁coh (D), and adjoining over 𝑁coh (C).

Restricting 𝑁coh to Cat ⊂ sCat gives a fully faithful functor of 1-categories from ordinary 1-categories
to ∞-categories. Applying 𝑁coh, we obtain a functor Cat → 𝒞at∞ of ∞-categories. This has a left-
adjoint ℎ : 𝒞at∞ → Cat that assigns an ∞-category its homotopy category. As described in [Lur09a,
1.2.3], ℎ𝒞 has the same objects as 𝒞, morphism sets given by the path components of the respective
mapping spaces in 𝒞, and composition is induced by the composition maps of mapping spaces. Some
of its further properties are as follows:

(i) The functor h preserves products.
(ii) The functor h preserves pullbacks if one of the maps is between 1-categories.

(iii) The functor h preserves cocartesian morphisms when the target is an 1-category.

These follow from the facts that taking mapping spaces in ∞-categories preserves pullbacks, and that
taking components preserves pullbacks in 𝒮 whose bottom right corner is discrete.

2.3. Cocartesian fibrations

Lurie’s straightening equivalence [Lur09a, 3.2]

Fun(𝒞,𝒞at∞) � Cocart(𝒞) (12)
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identifies the ∞-category Fun(𝒞,𝒞at∞) for an ∞-category 𝒞 with the ∞-category of cocartesian
fibrations, which is the sub ∞-category Cocart(𝒞) ⊂ (𝒞at∞)/𝒞 with objects cocartesian fibrations
with target 𝒞 and whose morphisms are maps of cocartesian fibrations, in the following sense:

Definition 2.1. Let 𝜑 : ℰ → ℬ be a functor between ∞-categories.

(i) A morphism 𝑓 : 𝑒 → 𝑒′ in ℰ is 𝜑-cocartesian if for every 𝑥 ∈ ℰ, the square

Mapℰ (𝑒′, 𝑥) Mapℰ (𝑒, 𝑥)

Mapℬ (𝜑(𝑒′), 𝜑(𝑥)) Mapℬ (𝜑(𝑒), 𝜑(𝑥))

𝑓 ∗

𝜑 𝜑

𝜑 ( 𝑓 )∗

is homotopy cartesian.
(ii) The functor 𝜑 is a cocartesian fibration if for every object 𝑒 ∈ ℰ and morphism 𝑓 : 𝜑(𝑒) → 𝑏,

there exists a cocartesian lift of f (i.e. a 𝜑-cocartesian morphism 𝑓 : 𝑒 → �̃� for some �̃� in ℰ such
that 𝜑( 𝑓 ) = 𝑓 ).

(iii) A map of cocartesian fibrations from 𝜑 : ℰ → ℬ to 𝜑′ : ℰ′ → ℬ is a functor ℰ → ℰ′ over ℬ
that sends 𝜑-cocartesian morphisms to 𝜑′-cocartesian morphisms.

Given a cocartesian fibration 𝜑 : ℰ → ℬ and an object 𝑏 ∈ ℬ, one writes ℰ𝑏 ∈ 𝒞at∞ for the fibre
of 𝜑 at b. Under the straightening equivalence (12), this corresponds to the value at b of the associated
functor ℬ → 𝒞at∞. Moreover, the value of this functor on a morphism 𝑏 → 𝑏′ in ℬ corresponds to a
functor ℰ𝑏 → ℰ′

𝑏 induced by choosing cocartesian lifts of 𝑏 → 𝑏′.

Remark 2.2. Definition 2.1 makes equal sense for a functor 𝜑 : E → B of Kan-enriched categories. In
view of the natural equivalence MapC (𝑐, 𝑐′) � Map𝑁coh (C) (𝑐, 𝑐

′), one sees that a morphism 𝑓 : 𝑒 → 𝑒′

in E is 𝜑-cocartesian if and only if is 𝑁coh (𝜑)-cocartesian.

Given a cocartesian fibration 𝜑 : ℰ → ℬ and an ∞-category 𝒞, the functor 𝜑∗ : Fun(𝒞,ℰ) →
Fun(𝒞,ℬ) is again a cocartesian fibration [Lur09a, 3.1.2.1]. In particular, given a functor 𝑓 : 𝒞 → ℰ

and a natural transformation 𝜂 : (𝜑 ◦ 𝑓 ) → ∗𝑏 to the constant functor ∗𝑏 : 𝒞 → ℬ with value 𝑏 ∈ 𝐵
(equivalently, an extension of (𝜑 ◦ 𝑓 ) to a functor 𝒞� → ℬ on the right-cone whose value at the
cone point is b), we can use that 𝜑∗ is a cocartesian fibration to obtain a cocartesian lift to a functor
𝑓! : 𝒞 → ℰ𝑏 into the fibre over b. The functor 𝑓! is called a cocartesian pushforward of f along 𝜂.

2.4. The categories Fin∗, 𝚫, and Gap

Recall the 1-category Fin∗ of pointed finite sets and pointed maps in between, with skeleton given by
〈𝑝〉 = {1, . . . , 𝑝, ∗} for 𝑝 ≥ 0. We write 〈𝑝〉 � 〈𝑝〉 \ {∗} for the interior of 〈𝑝〉. Three special types of
morphisms are relevant for us: a morphism 𝛼 : 〈𝑝〉 → 〈𝑞〉 is

(i) active if it satisfies 𝛼−1(∗) = {∗},
(ii) inert if 𝛼−1(𝑖) consists of a single element for all 𝑖 ∈ 〈𝑞〉,

(iii) Segal if it agrees with 𝜌𝑖 : 〈𝑝〉 → 〈1〉 for some 1 ≤ 𝑖 ≤ 𝑝 where 𝜌𝑖 (𝑖) = 1 and 𝜌( 𝑗) = ∗ otherwise.
Note this is equivalent to being inert with target 〈1〉.

A closely related 1-category is the simplex category Δ of nonempty finite totally ordered sets and
weakly order-preserving maps between them. We mostly work with its skeleton given by [𝑝] = (0 <
1 < . . . < 𝑝) for 𝑝 ≥ 0. The wide subcategory of injective maps is denoted Δ inj ⊂ Δ . Four special types
of morphisms are relevant for us: a morphism 𝛼 : [𝑝] → [𝑞] is

(i) active if it satisfies 𝛼(0) = 0 and 𝛼(𝑝) = 𝑞,
(ii) cellular if 𝛼(𝑖 + 1) ≤ 𝛼(𝑖) + 1 for all i,

(iii) inert if it is the inclusion of a subinterval, i.e. 𝛼(𝑖) = 𝛼(0) + 𝑖 for all i, and
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Figure 1. The isomorphism (13) between Δop (on the left) and Gap (on the right, but we omitted the
elements that map to L or R). The morphism indicated is not active, cellular, inert or Segal.

(iv) Segal if it agrees with 𝜌𝑖 : [1] → [𝑞] for some 1 ≤ 𝑖 ≤ 𝑞 where 𝜌𝑖 (0) = 𝑖 − 1 and 𝜌(1) = 𝑖. Note
this is equivalent to being inert with domain [1].

Occasionally, we work with a different model for Δop, given as follows. For 𝑝 ≥ 0, we write � 𝑝 � for
the totally ordered set (𝐿 < 1 < . . . < 𝑝 < 𝑅) and call L and R the left end and right end of � 𝑝 �,
respectively. The sets � 𝑝 � for 𝑝 ≥ 0 form the objects of the category Gap whose morphisms are weakly
order-preserving maps that are the identity on ends. There is an isomorphism

𝑐 : Δop �
−→ Gap (13)

that sends [𝑝] to � 𝑝 � and a morphism 𝛼 : [𝑝] → [𝑞] to the morphism 𝑐(𝛼) : �𝑞 � → � 𝑝 � given by

𝑖 ↦−→

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝐿 𝑖 ≤ 𝛼(0),
𝑗 ∃ 𝑗 : 𝑖 ∈ [𝛼( 𝑗 − 1) + 1, 𝛼( 𝑗)],

𝑅 𝑖 > 𝛼(𝑝).

This isomorphism maps Δop
inj ⊂ Δop isomorphically onto the wide subcategory Gapsur ⊂ Gap of

surjective maps. Introducing the notation � 𝑝 � � � 𝑝 �\{𝐿, 𝑅} for the interior of � 𝑝 �, a morphism
𝛼 : �𝑞 � → � 𝑝 �, when considered as a morphism 𝑐−1 (𝛼) : [𝑝] → [𝑞] in Δ , is

(i) active if 𝛼−1� 𝑝 � = �𝑞 � (we omit the parentheses in 𝛼−1(� 𝑝 �) for legibility),
(ii) cellular if the restriction 𝛼 : 𝛼−1� 𝑝 � → � 𝑝 � is injective,

(iii) inert if the restriction 𝛼 : 𝛼−1� 𝑝 � → � 𝑝 � is bijective,
(iv) Segal if it agrees with 𝜌′

𝑖 : �𝑞 � → �1� for some 1 ≤ 𝑖 ≤ 𝑞 where 𝜌′
𝑖 ( 𝑗) = 𝐿 if 𝑗 < 𝑖, 𝜌′

𝑖 ( 𝑗) = 1 if
𝑗 = 𝑖, and 𝜌′

𝑖 ( 𝑗) = 𝑅 if 𝑗 > 𝑖.

Remark 2.3.

(i) We think of 𝑖 ∈ � 𝑝 � as the ‘gap’ between 𝑖 − 1 and i in [𝑝], and observe that 𝛼 : [𝑝] → [𝑞] induces
a map the other way between these gaps; see Figure 1 for an example.

(ii) The functor 𝑐 : Δop → Gap is related to the functor Cut : Δop → 𝒜ssoc⊗ of [Lur17, 4.1.2.9]: the
pointed set Cut([𝑛]) � 〈𝑛〉 can be obtained from the set 𝑐([𝑛]) by identifying L and R.

The three 1-categories Fin∗, Δ and Gap are related by a sequence of functors

Δop −→ Gap −→ Fin∗, (14)

where the first arrow is the isomorphism (13), and the second arrow is obtained by identifying the left
and right ends L and R of objects in Gap and forgetting that morphisms are order-preserving.

2.5. Category and monoid objects

Fix an ∞-category 𝒞 with finite limits.
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2.5.1. Category objects and monoid objects
A category object in 𝒞 is a simplicial object 𝑋 ∈ Fun(Δop,𝒞) satisfying the Segal condition, i.e., the
map

𝑋[𝑝] −→ 𝑋[1] ×𝑋[0]
· · · ×𝑋[0]

𝑋[1] (15)

induced by the Segal maps 𝜌𝑖 : [1] → [𝑝] for 1 ≤ 𝑖 ≤ 𝑝 is an equivalence for all 𝑝 ≥ 0. We call 𝑋[1]

the underlying object of X. A monoid object is a category object X for which the map 𝑋[0] → ∗ to the
terminal object is an equivalence; equivalently, it is a simplicial object for which the analogues of the
maps (15) with pullbacks replaced by products are equivalences. We write

Cat(𝒞) ⊂ Fun(Δop,𝒞) and Mon(𝒞) ⊂ Fun(Δop,𝒞)

for the full subcategories of category objects and monoid objects. Replacing simplicial by semisimplicial
objects in this definition yields the categories

Catnu (𝒞) ⊂ Fun(Δop
inj,𝒞) and Monnu(𝒞) ⊂ Fun(Δop

inj,𝒞)

of non-unital category objects and non-unital monoid objects.

2.5.2. Commutative monoid objects
We may replace the role of the category Δop in the definition of a monoid object with Fin∗ to arrive at
the notion of a commutative monoid object: a functor 𝑋 ∈ Fun(Fin∗,𝒞) for which the maps 𝑋〈𝑝〉 →
𝑋〈1〉 × . . .× 𝑋〈1〉 induced by the Segal maps 𝜌𝑖 : 〈𝑝〉 → 〈1〉 for 1 ≤ 𝑖 ≤ 𝑝 are equivalences for all 𝑝 ≥ 0.
These span the full subcategory

CMon(𝒞) ⊂ Fun(Fin∗,𝒞)

of commutative monoid objects. Precomposition with the composition Δop → Fin∗ of (14) induces a
functor CMon(𝒞) → Mon(𝒞) that ‘forgets commutativity’.

Remark 2.4. There is a different perspective on commutative monoid objects in the form of an equiva-
lence of ∞-categories Mon∞(𝒞) � CMon(𝒞) where Mon∞(𝒞) is the limit in 𝒞at∞

Mon∞(𝒞) � lim
(
· · · → Mon(Mon(Mon(𝒞))) → Mon(Mon(𝒞)) → Mon(𝒞) → 𝒞

)
over the maps induced ev[1] : Mon(𝒞) → 𝒞 (combine [Hau18, Proposition 10.11] with [Lur17, 5.1.1.5,
2.4.2.5]). In particular, there is an equivalence CMon(Mon(𝒞)) � CMon(𝒞).

2.5.3. Monoidal categories and double categories
For 𝒞 = 𝒞at∞, (non-unital) monoid objects in 𝒞 are also called (non-unital) monoidal ∞-categories,
(non-unital) category objects in 𝒞 are called (non-unital) double ∞-categories, and (commutative)
monoid objects in 𝒞at∞ or Cat(𝒞at∞) are (symmetric) monoidal ∞- or double ∞-categories. Via the
straightening equivalence of Section 2.3, these can also be described as cocartesian fibrations ℳ → Δop

(or ℳ → Δop
inj in the non-unital case, or ℳ → Fin∗ in the commutative case) such that the functors

ℳ[𝑝] −→ ℳ[1] × . . . × ℳ[1] respectively ℳ[𝑝] −→ ℳ[1] ×ℳ[0]
. . . ×ℳ[0]

ℳ[1]

induced by the cocartesian lifts of the Segal maps 𝜌𝑖 are equivalences.

Example 2.5. For an ∞-category 𝒞 with finite products, taking products induces a symmetric monoidal
structure 𝒞× → Fin∗ on 𝒞, the cartesian structure [Lur17, 2.4.1]. Dually, if 𝒞 has finite coproducts, it
carries a cocartesian symmetric monoidal structure 𝒞� → Fin∗ [Lur17, 2.4.3].
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Remark 2.6. The definition of a monoidal ∞-category given in [Lur17, 4.1.1.10] is different from the
one given above, but the resulting ∞-categories turn out to be equivalent [Lur17, 4.1.3].

2.5.4. Mapping ∞-categories
Given a double ∞-category𝒞 ∈ Cat(𝒞at∞) and objects 𝐴, 𝐵 ∈ 𝒞[0] , we define the mapping ∞-category
from A to B to be the ∞-category given as the fibre in 𝒞at∞

𝒞𝐴,𝐵 � fib(𝐴,𝐵)

(
(𝑑0, 𝑑1) : 𝒞[1] → 𝒞[0] × 𝒞[0]

)
.

These mapping ∞-categories come with composition functors 𝒞𝐴,𝐵 ×𝒞𝐵,𝐶 → 𝒞𝐴,𝐶 defined by taking
vertical fibres in the commutative diagram in 𝒞at∞

𝒞[1] ×𝒞 [0] 𝒞[1] 𝒞[2] 𝒞[1]

𝒞[0] × 𝒞[0] × 𝒞[0] 𝒞[0] × 𝒞[0] × 𝒞[0] 𝒞[0] × 𝒞[0]

�

pr1,3

with top-left horizontal map induced by the Segal morphisms, top-right horizontal map by the unique
active morphism [2] → [1], and vertical map by the face maps.

2.5.5. Quasi-unital monoid and category objects
A non-unital category object 𝑋 ∈ Catnu(𝒞) is quasi-unital if it admits a quasi-unit, which is by definition
a morphism 𝑢 : 𝑋[0] → 𝑋[1] together with a commutative diagram in 𝒞

𝑋[0] 𝑋[1]

𝑋[0] × 𝑋[0]
diag

𝑢

(𝑑0 ,𝑑1)

such that the following two compositions are equivalent to the identity:

𝑋[1] � 𝑋[0] ×𝑋[0]
𝑋[1]

(𝑢,id)
−−−−→ 𝑋[1] ×𝑋[0]

𝑋[1] � 𝑋[2]
𝑑1

−→ 𝑋[1] ,

𝑋[1] � 𝑋[1] ×𝑋[0]
𝑋[0]

(id,𝑢)
−−−−→ 𝑋[1] ×𝑋[0]

𝑋[1] � 𝑋[2]
𝑑1

−→ 𝑋[1] .

(16)

Quasi-units are unique up to equivalence [Hau21, Remark 4.8]. A morphism 𝜙 : 𝑋 → 𝑌 of non-unital
category objects is quasi-unital if there exists a commutative diagram in 𝒞 of the form

𝑋[0] 𝑌[0]

𝑋[1] 𝑌[1]

𝑋[0] × 𝑋[0] 𝑌[0] × 𝑌[0]

diag

𝜙0

𝑢𝑋 𝑢𝑌

𝜙1
(𝑑0 ,𝑑1)

(𝑑0 ,𝑑1)

(𝜙0 ,𝜙0)

diag

(17)

such that the outer triangles are quasi-units for X and Y. As a result of the uniqueness of quasi-units,
the composition of two quasi-unital morphisms is quasi-unital. We write Catqu(𝒞) ⊂ Catnu(𝒞) for the
subcategory of quasi-unital category objects in 𝒞, generated by quasi-unital objects and morphisms.
Every category object is quasi-unital (𝑠0 : 𝑋[0] → 𝑋[1] is a quasi-unit), and by [Hau21, Theorem 4.14],
the forgetful functor Cat(𝒞) → Catnu (𝒞) induces an equivalence

Cat(𝒞)
�

−→ Catqu (𝒞). (18)
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Remark 2.7. Note that if X a quasi-unital category object in𝒞, Y a simplicial object in𝒞 (not necessarily
a category object), and 𝑓 : 𝑋 → 𝑌 a morphism of semisimplicial objects in 𝒞, then
(i) it makes sense to ask for f to be quasi-unital (replace 𝑢𝑌 in (17) by the 0th degeneracy map). This

property is preserved by postcomposition with maps of simplicial objects,
(ii) if 𝒞 = 𝒞at∞ and 𝑌 ′ ⊂ 𝑌 is a levelwise full subcategory that is a quasi-unital category object,

then a functor 𝑋 → 𝑌 ′ of non-unital category objects is quasi-unital if and only if the composition
𝑋 → 𝑌 ′ ⊂ 𝑌 is quasi-unital in the sense of (i).

2.5.6. Double ∞-, (∞, 2)- and (∞, 1)-categories
A double ∞-category has an underlying (∞, 2)-category (in fact, two, but we will not need this) which
in turn has an underlying ∞-category. More precisely, there are functors of ∞-categories

Cat(𝒞at∞)
(−) (∞,2)

−−−−−−→ 𝒞at(∞,2)
(−)�2
−−−−→ 𝒞at∞,

where 𝒞at(∞,2) is the ∞-category of (∞, 2)-categories. We denote the composition by

(−) (∞,1) : Cat(𝒞at∞) −→ 𝒞at∞,

These functors have the following properties:
(i) The functors (−) (∞,2) and (−)�2 preserve finite products and hence (symmetric) monoidal struc-

tures, and so does their composition (−) (∞,1) .
(ii) For 𝒞 ∈ Cat(𝒞at∞), the objects of 𝒞 (∞,2) can be identified with those of 𝒞. The analogous

property holds for the functor (−)�2 and thus also for their composition (−) (∞,1) .
(iii) For 𝒞 ∈ Cat(𝒞at∞), the mapping ∞-category 𝒞𝐴,𝐵 between two objects A and B in 𝒞 can be

identified with the corresponding mapping ∞-category in 𝒞 (∞,2) . The functor (−)�2 is on mapping
∞-categories given by taking cores (hence the notation), and thus, the same holds for (−) (∞,1) , so
we have 𝒞�

𝐴,𝐵 � Map𝒞 (∞,1) (𝐴, 𝐵) for objects A and B in 𝒞.
One way to implement these ∞-categories and functors between them is to use the equivalence
Cat∞ � 𝒞SS(𝒮) to Rezk’s complete Segal spaces (a certain full subcategory of Cat(𝒮) [Hau18,
Section 3]) and model 𝒞at(∞,2) as the ∞-category of 2-fold complete Segal spaces 𝒞SS2 (𝒮) in the
sense of Barwick (a certain full subcategory of Cat(Cat(𝒮)) [Hau18, Section 4]). In these mod-
els, the functor (−) (∞,2) : Cat(𝒞at∞) → 𝒞at(∞,2) is explained in [Hau17, Remark 3.15], and the
functor (−) (∞,1) : Cat(𝒞at∞) → 𝒞at∞ can be constructed via the inductive description as 2-fold
Segal spaces as 𝒞SS2(𝒮) = 𝒞SS𝒞SS(𝒮) (𝒞SS(𝒮)) [Hau18, Section 7] by defining (−)�2 as the
right-adjoint 𝒞SS𝒞SS(𝒮) (𝒞SS(𝒮)) → 𝒞SS𝒮 (𝒮) = 𝒞SS(𝒮) � 𝒞at∞ induced by the right-adjoint
ev[0] : 𝒞SS(𝒮) → 𝒮 to the inclusion 𝑐 : 𝒮 → 𝒞SS(𝒮) as constant simplicial spaces, using [Hau18,
Proposition 7.17].

It remains to justify properties (i)–(iii). That (i) holds for (−) (∞,2) is justified in [Hau17, Remark
3.15] and for (−)�2 , it holds since it is a right adjoint. For (ii) and (iii), one uses [Hau17, Lemma
5.50/5.51] and that ev[0] corresponds to taking cores under the equivalence 𝒞at∞ � 𝒞SS(𝒮).

2.6. Presheaves and the Yoneda embedding

Given an ∞-category 𝒞, we write PSh(𝒞) � Fun(𝒞op,𝒮) for the ∞-category of 𝒮-valued presheaves.
This admits all small limits and colimits [Lur09a, 5.1.2.4], and there is a natural fully faithful Yoneda
embedding 𝑦 : 𝒞 ↩−→ PSh(𝒞) [Lur09a, 5.1.3.1]. If 𝒞 is (symmetric) monoidal, then its opposite
𝒞op is (symmetric) monoidal [Lur17, 2.4.2.7], and PSh(𝒞) carries a (symmetric) monoidal structure
by Day convolution [Lur17, 2.2.6.17] which, firstly, preserves small colimits in each variable, and,
secondly, allows for an enhancement of the Yoneda embedding to a (symmetric) monoidal functor
[Lur17, 4.8.1.12, 4.8.1.13]. Explicitly, a formula for Day convolution is given by (𝐹 ⊗ 𝐺) (𝑐′′) =
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colim𝑐′′→𝑐⊗𝑐′ (𝐹 (𝑐)×𝐺 (𝑐′)) where the colimit is over the category of triples (𝑐, 𝑐′, 𝑢) with 𝑐, 𝑐′ ∈ 𝒞 and
𝑢 : 𝑐′′ → 𝑐⊗𝑐′ [Lur17, 2.2.6]. Moreover, from the construction, one sees that a lax (symmetric) monoidal
functor 𝒞 → 𝒟 (see Example 2.10) induces a lax (symmetric) monoidal functor PSh(𝒟) → PSh(𝒞)
by precomposition.

Remark 2.8. Given a Kan-enriched category C, there is a similar Yoneda embedding in Kan-
enriched categories 𝑦𝑠 : C → Fun(Cop,Kan). Taking coherent nerves and postcomposing with the map
𝑁coh (Fun(Cop,Kan)) → Fun(𝑁coh (C)op, 𝑁coh (Kan)) = PSh(𝑁coh (C)) of Section 2.2 (v) yields a func-
tor 𝑁coh(C) → PSh(𝑁coh (C)) which turns out to agree with y up to equivalence, by the construction of
y for 𝒞 = 𝑁coh (C) in [Lur09a, 5.1.3.1].

2.7. ∞-operads

Recall the following definition from [Lur17, 2.1.1.10].

Definition 2.9. An ∞-operad 𝒪 is a functor 𝑝 : 𝒪⊗ → Fin∗ with the following properties:

(i) 𝒪⊗ has cocartesian lifts for inert morphisms in Fin∗,
(ii) the map �(𝜌𝑖)! : 𝒪⊗

〈𝑛〉
→ �𝑛

𝑖=1𝒪
⊗
〈1〉

induced by the Segal morphisms is an equivalence,
(iii) given an object 𝑥 ∈ 𝒪⊗

〈𝑛〉
and cocartesian lifts 𝑥 → 𝑥𝑖 of the Segal morphisms 𝜌𝑖 : 〈𝑛〉 → 〈1〉, the

following commutative diagram in 𝒮 is cartesian:

Map𝒪⊗ (𝑦, 𝑥) �𝑛
𝑖=1Map𝒪⊗ (𝑦, 𝑥𝑖)

MapFin∗
(〈𝑚〉, 〈𝑛〉) �𝑛

𝑖=1MapFin∗
(〈𝑚〉, 〈1〉).

A map of ∞-operads is a functor over Fin∗ that preserves cocartesian lifts over inert morphisms.
Such a map 𝒪⊗ → 𝒫⊗ is also called an 𝒪-algebra in 𝒫, and we write

Alg𝒪 (𝒫) ⊂ FunFin∗ (𝒪
⊗,𝒫⊗)

for the full subcategory of such maps. Given an ∞-operad 𝒪, we call the objects of 𝒪⊗
〈1〉

the colours
of 𝒪. Given colours 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ �𝑛𝒪⊗

〈1〉
� 𝒪⊗

〈𝑛〉
and 𝑦 ∈ 𝒪⊗

〈1〉
, the space of multi-operations

is the subspace Mul𝒪 (𝑥; 𝑦) ⊂ Map𝒪⊗ (𝑥, 𝑦) covering the unique active morphism 〈𝑛〉 → 〈1〉 [Lur17,
2.1.1.16]. If 𝒪⊗ has a single colour 𝑥 ∈ 𝒪⊗

〈1〉
, we abbreviate 𝒪(𝑘) ≔ Mul𝒪 (𝑥, . . . , 𝑥; 𝑥) where x appears

in the domain k times. These spaces of multi-operations can be composed using operadic composition
maps, denoted ◦𝒪, that satisfy the axioms of a coloured operad in the classical sense up to coherent
homotopies [Lur17, 2.1.1.17]. In particular, the homotopy operad ℎ𝒪⊗ → Fin∗ (which is an operad as
a result of the properties of h discussed in Section 2.2 and satisfies Mulℎ𝒪 (𝑥, 𝑦) = 𝜋0 Mul𝒪 (𝑥, 𝑦)) gives
a coloured operad in the classical sense. By construction, there is a map of ∞-operads 𝒪⊗ → ℎ𝒪⊗.

Example 2.10. When viewed as a cocartesian fibration𝒞⊗ → Fin∗ (see Section 2.5.3), every symmetric
monoidal category 𝒞 is an ∞-operad. A map of ∞-operads between symmetric monoidal categories is
called a lax symmetric monoidal functor.

Example 2.11. Every coloured operad in the category of Kan-complexes in the classical sense gives rise
to an ∞-operad via the operadic nerve [Lur09a, 2.1.1.27]. For example, the associative ∞-operad 𝒜ssoc
[Lur17, 4.1.1.1, 4.1.1.3] is the operadic nerve of the ordinary operad with a single colour ∗, whose k-ary
multi-operations 𝒜ssoc(𝑘) = Mul𝒜ssoc(∗, . . . , ∗; ∗) is the set of linear orders of 𝑘 = {1, 2, . . . , 𝑘}, and
where operadic composition is concatenation of linear orders. An ∞-operad 𝒪 is equivalent to 𝒜ssoc
if and only if there is an isomorphism ℎ𝒪 � ℎ𝒜ssoc of operads in the 1-category of sets and all spaces
of operations in 𝒪 are homotopy discrete.
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2.7.1. Suboperads, endomorphism operads, and algebras over them
Let𝒪 be an ∞-operad and O0 ⊆ ℎ𝒪 be a suboperad of the ordinary operad ℎ𝒪 in sets. The corresponding
suboperad 𝒪 ×ℎ𝒪 O0 of 𝒪 is defined as the pullback 𝒪⊗ ×ℎ𝒪⊗ O⊗

0 → Fin∗ in the ∞-category 𝒪pd∞ of
∞-operads, which has limits by [Lur17, 2.1.4]. In particular, we may restrict 𝒪 to a fixed collection of
colours closed under equivalences to obtain a new ∞-operad. We call this a full suboperad.

Remark 2.12. The forgetful functor 𝒪pd∞ → (𝒞at∞)/Fin∗
creates limits by [AFT17, Lemma 1.13], so

the pullback 𝒪 ×ℎ𝒪 O0 can be computes in 𝒞at∞.

Example 2.13. For a symmetric ∞-monoidal category 𝒞 viewed as an ∞-operad, its homotopy operad
ℎ𝒞 is a symmetric monoidal 1-category in the classical sense. Given a sub symmetric monoidal category
of C0 ⊂ ℎ𝒞 in the 1-categorical sense, the associated sub ∞-operad 𝒞 ×ℎ𝒞 C0 is again a symmetric
∞-monoidal category. Informally, this is given by restricting the objects and the components of the
mapping spaces according to C0.

Fix 𝒞 a symmetric monoidal ∞-category 𝒞, viewed as an ∞-operad. The endomorphism operad of
an object x in 𝒞 is the full sub ∞-operad End𝒞 (𝑥) obtained by restricting to the colours equivalent to
x. Writing 1 for the unit in 𝒞, we can form the composition of maps of ∞-operads

End𝒞 (𝑥)⊗ ⊂
−→ 𝒞⊗ 𝑦

−→ PSh(𝒞)⊗ ev1
−→ 𝒮× (19)

to 𝒮 equipped with the cartesian symmetric monoidal structure (see Example 2.5). The first map is
induced by the inclusion, the second map the symmetric monoidal Yoneda embedding (see Section 2.6),
and the third map the evaluation at the unit which is a map of ∞-operads by naturality of the Day
convolution in lax symmetric monoidal functors (see Section 2.6). The composition (19) enhances the
mapping space Map𝒞 (1, 𝑥) to an End𝒞 (𝑥)-algebra in 𝒮.

2.7.2. Generalised ∞-operads
The condition (ii) in the definition of an ∞-operad𝒪 in particular implies that𝒪⊗

〈0〉
is trivial. Sometimes

it it useful to relax the notion of an ∞-operad to that of a generalised ∞-operad which need no longer
satisfy 𝒪⊗

〈0〉
� ∗. The precise definition of a generalised ∞-operad is not important for us, but it suffices

to know that it is a functor 𝒪⊗ → Fin∗ satisfying some weaker axioms than those for ∞-operads, but
that the existence of cocartesian lifts for inert morphisms is still required. Maps of generalised operads
𝒪 → 𝒫 are defined in the same way as for ∞-operads. Generalising the case of ∞-operads, we denote
the resulting subcategory by Alg𝒪 (𝒫) ⊂ FunFin∗ (𝒪

⊗,𝒫⊗) and still call its objects 𝒪-algebras in 𝒫.

2.7.3. (Generalised) nonsymmetric ∞-operads
Replacing the category Fin∗ by Δop defines nonsymmetric variants of all of the above definitions and
constructions (e.g. (generalised) nonsymmetric operads, maps between them, algebras in them, etc).
We use the same notation for the symmetric and nonsymmetric constructions (e.g., for (generalised)
nonsymmetric ∞-operads 𝒪 and 𝒫, we write Alg𝒪 (𝒫) ⊂ FunΔop (𝒪⊗,𝒫⊗) for the ∞-category of maps
of (generalised) nonsymmetric ∞-operads aka 𝒪-algebras in 𝒫).

Example 2.14. The following examples of generalised nonsymmetric ∞-operads will be important:

(i) Cocartesian fibrations obtained by unstraightening double ∞-categories.
(ii) The projection Δop

/[𝑝]
→ Δop for all 𝑝 ≥ 0; see [Hau17, Lemma 4.10].

(iii) The restriction Λop
/[𝑝]

→ Δop of the projection Δop
/[𝑝]

→ Δop to the full subcategory Λ/[𝑝] ⊂ Δ/[𝑝]

spanned by the cellular maps in Δ; see [Hau17, Lemma 4.14].

Examples of maps between generalised nonsymmetric ∞-operads that will be important are

(i) The map Δop
/[𝑝]

→ Δop
/[𝑞]

over Δop induced by a morphism [𝑝] → [𝑞] of Δ .
(ii) The inclusion Λop

/[𝑝]
→ Δop

[𝑝]
over Δop [Hau17, Lemma 4.14].
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2.8. Associative algebras and bimodules in the nonsymmetric setting

Given a monoidal ∞-category viewed as a cocartesian fibration 𝒞⊗ → Δop with underlying category
𝒞 � 𝒞⊗

[1]
, the ∞-categories Ass(𝒞) and BMod(𝒞) of associative algebras in 𝒞 and bimodules in 𝒞

are defined as

Ass(𝒞) � AlgΔop (𝒞⊗) and BMod(𝒞) � AlgΔop
/[1]

(𝒞⊗).

These are the ∞-categories of Δop- and Δop
/[1]

-algebras in 𝒞 as in Section 2.7.3. There is a functor

BMod(𝒞) −→ Ass(𝒞) × 𝒞 × Ass(𝒞) (20)

consisting of the projections to Ass(𝒞) induced by precomposition with the functorsΔ = Δ/[0] → Δ/[1]

induced by the 0th and 1st face map [0] → [1], and the functor to 𝒞⊗
[1]

= 𝒞 given by evaluation at
id[1] ∈ Δ/[1] . The fibre in 𝒞at∞

BMod𝐴,𝐵 (𝒞) � fib(𝐴,𝐵)

(
BMod(𝒞) → Ass(𝒞) × Ass(𝒞)

)
at (𝐴, 𝐵) for associative algebras 𝐴, 𝐵 ∈ Ass(𝒞) of the postcomposition BMod(𝒞) → Ass(𝒞)×Ass(𝒞)
of (20) with the projection is the ∞-category of (𝐴, 𝐵)-bimodules.

Remark 2.15. Associative algebras are closely related to monoid objects in the sense of Section 2.5: for
a category 𝒞 with finite products, equipped with the cartesian monoidal structure (see Example 2.5),
we have an equivalence of ∞-categories Ass(𝒞×) � Mon(𝒞) [Lur17, 2.4.2.5].

Remark 2.16. Lurie uses different models for the ∞-categories of associative algebras and bimodules
in a monoidal ∞-category 𝒞 (using the equivalent point of view on monoidal structures mentioned in
Remark 2.6), but these turn out to be equivalent to Ass(𝒞) and BMod(𝒞) as defined above. For Ass(𝒞),
this is proved as [Lur17, 4.1.3.19], and for BMod(𝒞), it follows from an extension of that argument, or
from Remark 2.18 below.

The following lemma on free (𝐴, 𝐵)-bimodules will be important later:

Lemma 2.17. For a monoidal ∞-category 𝒞 and associative algebras 𝐴, 𝐵 ∈ Ass(𝒞), the forgetful
functor 𝑈𝐴,𝐵 : BMod𝐴,𝐵 (𝒞) → 𝒞 given as the composition of the inclusion into BMod(𝒞) followed
by (20) and the projection to 𝒞 has the following properties:

(i) For a fixed ∞-category I such that 𝒞 admits all I-indexed colimits, the functor 𝑈𝐴,𝐵 preserves and
detects I-indexed colimits. The same holds for limits instead of colimits.

(ii) The functor 𝑈𝐴,𝐵 reflects equivalences.
(iii) The functor 𝑈𝐴,𝐵 has a left-adjoint 𝐹𝐴,𝐵 : 𝒞 → BMod𝐴,𝐵 (𝒞) whose unit 𝑀 → 𝑈𝐴,𝐵𝐹𝐴,𝐵 (𝑀)

for 𝑀 ∈ 𝒞 agrees with the map 𝑀 → 𝐴 ⊗ 𝑀 ⊗ 𝐵 given by tensoring with the units of A and B.
(iv) For a functor 𝜑 : 𝒞 → 𝒟 of monoidal ∞-categories and 𝑀 ∈ 𝒞, the canonical morphism

𝐹𝜑 (𝐴) ,𝜑 (𝐵) (𝜑(𝑀)) → 𝜑(𝐹𝐴,𝐵 (𝑀)) is an equivalence.

Proof. Using 2.16, the first part follows from [Lur17, 4.3.3.3, 4.3.3.9]. The remaining items follow from
[Hau17, Corollary 4.49]: The final part of this corollary in particular shows (ii) since right adjoints in
monadic adjunctions reflect equivalences [Lur17, 4.7.3.5] and the first part shows (iii). This leaves (iv).
As a result of (ii), it suffices to show that

𝑈𝜑 (𝐴) ,𝜑 (𝐵)𝐹𝜑 (𝐴) ,𝜑 (𝐵) (𝜑(𝑀)) −→ 𝑈𝜑 (𝐴) ,𝜑 (𝐵) (𝜑(𝐹𝐴,𝐵 (𝑀))) � 𝜑(𝑈𝐴,𝐵𝐹𝐴,𝐵 (𝑀))

is an equivalence. Using the second part of (iii) this follows from the monoidality of 𝜑. �
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2.9. Haugseng’s Morita category

In analogy with the classical Morita category of a ring, for a sufficiently nice monoidal ∞-category 𝒞,
one would expect a double ∞-category ALG(𝒞) – the Morita category of 𝒞 – whose ∞-category of
objects ALG(𝒞)[0] is the ∞-category of associative algebras Ass(𝒞), whose ∞-category of morphisms
ALG(𝒞)[1] is the category of bimodules BMod(𝒞), and whose composition is given by ‘tensoring
bimodules’. Haugseng constructed such a Morita category in [Hau17] (denoted ALG1 (𝒞) therein)
under mild assumptions on 𝒞. In what follows, we recall his construction and establish some properties
not explicitly stated.

2.9.1. The pre-Morita category
For a monoidal ∞-category 𝒞⊗ → Δop, the pre-Morita simplicial ∞-category of 𝒞 is the simplicial
∞-category ALG(𝒞) ∈ Fun(Δop,𝒞at∞) with

ALG(𝒞)[𝑝] � AlgΔop
/[𝑝]

(𝒞⊗) ⊂ FunΔop (Δop
/[𝑝]

,𝒞⊗).

The simplicial structure is given by precomposition with the functors Δ/[𝑝] → Δ/[𝑞] induced by post-
composition with morphisms [𝑝] → [𝑞] in Δ; this uses Example 2.14. By construction, ALG(−) is
natural in lax monoidal functors by postcomposition.

This definition extends the ∞-categories Ass(𝒞) = ALG(𝒞)[0] and BMod(𝒞) = ALG(𝒞)[1] to a
simplicial ∞-category ALG(𝒞), but the result is not yet a double ∞-category: an object in ALG(𝒞)[𝑝]

gives associative algebras 𝑀 (𝑖) for 0 ≤ 𝑖 ≤ 𝑝 and (𝑀 (𝑖), 𝑀 ( 𝑗))-bimodules 𝑀 (𝑖, 𝑗) for 0 ≤ 𝑖 < 𝑗 ≤ 𝑝,
and, informally speaking, we need to enforce that 𝑀 (𝑖, 𝑗) is equivalent to the iterated tensor product
𝑀 (𝑖, 𝑖 + 1) ⊗𝑀 (𝑖+1) 𝑀 (𝑖 + 1, 𝑖 + 2) ⊗𝑀 (𝑖+2) · · · ⊗𝑀 ( 𝑗−1) 𝑀 ( 𝑗 − 1, 𝑗).

2.9.2. Composite algebras and the Morita category
The condition on the 𝑀 (𝑖, 𝑗) just mentioned can be made precise through the notion of a composite
algebra from [Hau17, Section 4.2]. It requires an assumption on 𝒞 that Haugseng calls having good
relative tensor products [Hau17, Definition 4.18], which is in particular satisfied if the underlying
category 𝒞 admits all geometric realisations (colimits indexed over Δop) and if they are preserved by
tensoring (on either side) with fixed objects of 𝒞; this follows from [Hau17, Lemma 4.19]. If 𝒞 has
good relative tensor products, then the functor

𝜏∗
𝑝 : ALG(𝒞)[𝑝] = AlgΔop

/[𝑝]
(𝒞⊗) −→ AlgΛop

/[𝑝]
(𝒞⊗)

induced by the inclusion 𝜏𝑝 : Λop
/[𝑝]

↩→ Δop
/[𝑝]

(see Example 2.14) admits a fully faithful left adjoint

AlgΛop
/[𝑝]

(𝒞⊗)
𝜏𝑝,!
−→ AlgΔop

/[𝑝]
(𝒞⊗) = ALG(𝒞)𝑝

by [Hau17, Corollary 4.20], and 𝑀 ∈ ALG(𝒞)[𝑝] is called composite if M is in the essential image of
𝜏𝑝,!, or equivalently if the counit 𝜏𝑝,!𝜏∗

𝑝𝑀 → 𝑀 is an equivalence [Hau17, Definition 4.21]. By [Hau17,
Corollary 4.38], the simplicial structure on the pre-Morita category restricts to a simplicial structure on
the full subcategories ALG(𝒞)[𝑝] ⊂ ALG(𝒞)[𝑝] of composite objects, and by [Hau17, Theorem 4.39],
the result is a double ∞-category – the Morita double ∞-category of 𝒞

ALG(𝒞) ∈ Cat(𝒞at∞) ⊆ Fun(Δop,𝒞at∞).

Note that Λ/[𝑝] = Δ/[𝑝] for 𝑝 = 0, 1 so ALG(𝒞)[𝑝] ⊆ ALG(𝒞)[𝑝] is an equality for 𝑝 = 0, 1; that is,

ALG(𝒞)[0] = ALG(𝒞)[0] = Ass(𝒞) and ALG(𝒞)[1] = ALG(𝒞)[1] = BMod(𝒞). (21)
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In particular, the mapping ∞-categories between 𝐴, 𝐵 ∈ ALG(𝒞)[0] in the notation of Section 2.5.4 are
given as ALG(𝒞)𝐴,𝐵 = BMod𝐴,𝐵 (𝒞).

Remark 2.18. In [Lur17, 4.4.3.10, 4.4.3.11], Lurie describes a Morita double ∞-category BMod(𝒞)�

for monoidal ∞-categories𝒞 that admit geometric realisations which are compatible with tensoring with
a fixed object on either side (so they in particular admit good relative tensor products). One advantage
of Lurie’s model is that it is functorial in all lax monoidal functors, whereas Haugseng’s is a priori
only functorial in (strong) monoidal functors that are compatible with good relative tensor products
(see Section 2.9.4 below). However, it turns out that Haugseng’s Morita double ∞-category ALG(𝒞)
is equivalent to Lurie’s BMod(𝒞)�; see [Hau23, Corollary 5.14]. In particular, on 0- and 1-simplices,
this comparison shows that Lurie’s and Haugseng’s models for the category of associative algebras and
bimodules in a monoidal ∞-category 𝒞 are equivalent (cf. Remark 2.16), and on composition functors,
it shows that Lurie’s and Haugseng’s models for relative tensor products of bimodules are equivalent.

2.9.3. Composite algebras in terms of semisimplicial objects
We will now reformulate the condition on an object 𝑀 ∈ ALG(𝒞)[𝑝] to be composite in a form closer
to the informal description mentioned at the end of Section 2.9.1, resulting in a convenient criterion for
an object 𝑀 ∈ ALG(𝒞)[𝑝] to be composite. Before turning to the technical details, we describe this
criterion informally. As mentioned before, the object M gives associative algebras 𝑀 (𝑖) for 0 ≤ 𝑖 ≤ 𝑝
and (𝑀 (𝑖), 𝑀 ( 𝑗))-bimodules 𝑀 (𝑖, 𝑗) for 0 ≤ 𝑖 < 𝑗 ≤ 𝑝. For each such bimodule, there is an ‘iterated
bar-construction’ semisimplicial object 𝑀 (𝑖, 𝑗)• in 𝒞 augmented over 𝑀 (𝑖, 𝑗), with k-simplices

𝑀 (𝑖, 𝑗)[𝑘 ] � 𝑀 (𝑖, 𝑖 + 1) ⊗𝑀 (𝑖 + 1)⊗𝑘 ⊗ 𝑀 (𝑖 + 1, 𝑖 + 2) ⊗ 𝑀 (𝑖 + 2)⊗𝑘 ⊗ · · · ⊗ 𝑀 ( 𝑗 − 1)⊗𝑘 ⊗ 𝑀 ( 𝑗 − 1, 𝑗).

The criterion is then equivalent to requiring that the augmentation geometrically realises to an equiva-
lence for all 0 ≤ 𝑖 < 𝑗 ≤ 𝑝. In fact, for bookkeeping reasons, it is convenient to rephrase this criterion
slightly: For each 𝑞 ≥ 0 and each sequence 𝛼 = (0 ≤ 𝑖0 ≤ . . . ≤ 𝑖𝑞 ≤ 𝑝) of integers, we have an
augmented semisimplicial object over 𝑀 (𝑖0, 𝑖1) ⊗ 𝑀 (𝑖1, 𝑖2) ⊗ . . . ⊗ 𝑀 (𝑖𝑞−1, 𝑖𝑞) given by the diagonal
of the q-fold semisimplicial object 𝑀 (𝑖0, 𝑖1)• ⊗ 𝑀 (𝑖1, 𝑖2)• ⊗ . . . ⊗ 𝑀 (𝑖𝑞−1, 𝑖𝑞)•. The criterion is that its
augmentation has to realise to an equivalence (see Corollary 2.25).

To make this precise, we denote by Δact the wide subcategory of Δ given by the active maps and by
𝒞⊗,act the pullback of𝒞⊗ → Δop along the inclusionΔact,op → Δop. The unique active maps [1] → [𝑝]
define a natural transformation from the inclusion Δact,op → Δop to the constant functor at [1] ∈ Δop,
which we can precompose with the projection 𝒞⊗,act → Δact,op. Taking a cocartesian pushforward (see
Section 2.3) of the canonical map 𝒞⊗,act → 𝒞⊗ along this natural transformation gives a functor

(−)! : 𝒞⊗,act −→ 𝒞⊗
[1]

= 𝒞. (22)

Now write Δact
/[𝑝]

for the wide subcategory of Δ/[𝑝] of those morphisms that map to Δact under the
projection and Λact,op

/[𝑝]
⊂ Δact,op

/[𝑝]
for the full subcategory of cellular maps. For 𝑀 ∈ ALG(𝒞)[𝑝] ⊂

FunΔop (Δop
/[𝑝]

,𝒞⊗) and an object 𝛼 : [𝑞] → [𝑝] of Δact,op
/[𝑝]

, we consider the composition

((Λact,op
/[𝑝]

)/𝛼)
� can

−−→ (Δact,op
/[𝑝]

)/𝛼
pr
−→ Δact,op

/[𝑝]

𝑀
−−→ 𝒞act,⊗ (−)!

−−−→ 𝒞, (23)

where pr is the projection, (−)� is the right-cone (this freely adds a terminal object and can be modelled
by the join (−) ∗ Δ0), and can is the extension of the inclusion (Λact,op

/[𝑝]
)/𝛼 ⊂ (Δact,op

/[𝑝]
)/𝛼 to the cone

((Λact,op
/[𝑝]

)/𝛼)
� by sending the terminal object to id𝛼.

Lemma 2.19. For a monoidal ∞-category 𝒞 with good relative tensor products, an object 𝑀 ∈
ALG(𝒞)[𝑝] is composite if and only if the composition (23) is a colimit diagram for all 𝛼.
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Proof. By definition, M is composite if the counit 𝜏𝑝,!𝜏∗
𝑝𝑀 → 𝑀 is an equivalence. Using Proposition

4.16 and Corollary A.60 of [Hau17], this is equivalent to asking whether the identity 𝜏∗
𝑝𝑀 → 𝜏∗

𝑝𝑀
exhibits M as the operadic left Kan extension of 𝜏∗

𝑝𝑀 along 𝜏𝑝 in the sense of Definition A.56
loc.cit. By Lemma A.53 loc.cit., this is in turn equivalent to the condition that the functor ((Λact,op

/[𝑝]
) ×

Δ1) �(Λact,op
/[𝑝]

)×{0} (Δact,op
/[𝑝]

) × {0} → 𝒞 induced by the restriction of

(Δact,op
/[𝑝]

) × Δ1 pr1
−→ Δact,op

/[𝑝]

𝑀
−−→ 𝒞act,⊗ (−)!

−−−→ 𝒞

to Λact,op
/[𝑝]

× Δ1 is a left Kan extension in the sense of [Lur09a, 4.3.3.2]. As Λact,op
/[𝑝]

⊂ Δact,op
/[𝑝]

is a full
subcategory inclusion, we can use the simpler characterisation of left Kan extensions from [Lur09a,
4.3.2.2], which is exactly the condition of the statement. �

Unravelling the definitions, the category (Λact,op
/[𝑝]

)/𝛼 for 𝛼 : [𝑞] → [𝑝] is the 1-category whose
objects are factorisations of 𝛼 into an active map followed by a cellular map,

[𝑞] [𝑟] [𝑝] .
active

𝛼

cellular

Note that if 𝛼 is active, then so must be [𝑟] → [𝑝]. Given another such factorisation, with middle object
[𝑟 ′], a morphism from the factorisation involving [𝑟] to that involving [𝑟 ′] is an active map [𝑟 ′] → [𝑟]
that makes everything commute:

[𝑟]

[𝑞] [𝑝]

[𝑟 ′]

cellular

active

active

active cellular

Colimits over this category – as appearing in Lemma 2.19 – can be rephrased in terms of semisimplicial
objects that are easier to handle. Making this precise involves the following construction:

Construction 2.20. Let 𝛼 : [𝑞] → [𝑝] be an object of Δop
/[𝑝]

considered as a sequence (𝑖0 ≤ . . . ≤

𝑖𝑞) ⊆ [𝑝]. Let 𝐽 ⊆ [𝑞 − 1] be the set of indices j for which 𝑖 𝑗 < 𝑖 𝑗+1 and set 𝑘𝛼 �
∑

𝑗∈𝐽 (𝑖 𝑗+1 − 𝑖 𝑗 − 1).
Enumerating the indices in the interval [𝑖0, 𝑖𝑞] that do not lie in (𝑖0, . . . , 𝑖𝑞) in order as 𝑚1, . . . , 𝑚𝑘𝛼 ,
there is a functor

𝜌𝛼 : (Δop)𝑘𝛼 −→ (Λact,op
/[𝑝]

)/𝛼

given as follows: writing 𝑘 �𝑎
𝛼 � 𝑞 +

∑𝑘𝛼
𝑖=1(𝑎𝑖 + 1), it sends an object ([𝑎1], . . . , [𝑎𝑞]) ∈ (Δop)𝑘𝛼 to

[𝑞] [𝑘 �𝑎
𝛼] [𝑝] ,

𝛼 �𝑎
0

𝛼

𝛼 �𝑎
1

where 𝛼 �𝑎
1 is given by the weakly increasing sequence that contains (𝑖0 ≤ . . . ≤ 𝑖𝑞) as well as each 𝑚 𝑗

repeated 𝑎 𝑗 + 1 times. The map 𝛼 �𝑎
0 is the unique injective map such that 𝛼 �𝑎

1 ◦ 𝛼 �𝑎
0 = 𝛼.

Example 2.21. If 𝛼 : [2] → [𝑝] is given by the sequence (𝑖 ≤ 𝑖 + 2 ≤ 𝑖 + 4), then 𝑘𝛼 = 2, the map 𝛼 �𝑎
1 is

given by the sequence (𝑖 ≤ 𝑖 + 1 ≤ . . . ≤ 𝑖 + 1 ≤ 𝑖 + 2 ≤ 𝑖 + 3 ≤ . . . ≤ 𝑖 + 3 ≤ 𝑖 + 4) where 𝑖 + 1 appears
𝑎1 +1 times and 𝑖 +3 appears 𝑎2 +1 times, and the map 𝛼 �𝑎

0 is given by the inclusion of (𝑖 ≤ 𝑖 +2 ≤ 𝑖 +4)
into this sequence.

For later reference, we spell out how 𝜌𝛼 translates under the isomorphism Δ � Gap.
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Construction 2.22. Let 𝛼 : � 𝑝 � → �𝑞 � be an object of Gap� 𝑝 �/ considered as a sequence (𝑖1 ≤ . . . ≤

𝑖𝑝) with 𝑖 𝑗 ∈ �𝑞 �. The quantity 𝑘𝛼 is then given by 𝑘𝛼 � #{ 𝑗 ∈ � ˚𝑝−1� | 𝑖 𝑗 ∈ �𝑞 � and 𝑖 𝑗 = 𝑖 𝑗+1}. We
enumerate this set in order by 𝑛1 < . . . < 𝑛𝑘𝛼 . The functor 𝜌𝛼 takes the form

𝜌𝛼 : Gap𝑘𝛼 −→ (Gapact,op
� 𝑝 �/

)/𝛼

and can be described as follows: abbreviating 𝑘 �𝑎
𝛼 � 𝑞 +

∑𝑘𝛼
𝑖=1(𝑎𝑖 + 1) as in the Δop-case, for an object

� �𝑎 � = (�𝑎1 �, . . . , �𝑎𝑞 �) ∈ Gap𝑘𝛼 , it sends � �𝑎 � to the factorisation

� 𝑝 � � 𝑘 �𝑎
𝛼 � �𝑞 �,

𝛼 �𝑎
1

𝛼

𝛼 �𝑎
0

where 𝛼 �𝑎
1 : � 𝑝 � → � 𝑘 �𝑎

𝛼 � is given by the sequence obtained from the sequence (𝑖1 ≤ . . . ≤ 𝑖𝑝) by
inserting a gap of length 𝑎𝑖 between 𝑖𝑛 𝑗 and 𝑖𝑛 𝑗+1 for 𝑗 = 1, . . . , 𝑘𝛼, and 𝛼 �𝑎

0 : � 𝑘 �𝑎
𝛼 � → �𝑞 � is the unique

surjective map such that 𝛼 �𝑎
0 ◦ 𝛼 �𝑎

1 = 𝛼.

The following lemma is a generalisation of [Hau17, Lemma 4.17].

Lemma 2.23. The functor 𝜌𝛼 from Construction 2.20 is cofinal.

Proof. By [Lur09a, Theorem 4.1.3.1], it suffices to prove that ((Δop)𝑘𝛼 )𝑋/ has an initial object for all
objects X of (Λact,op

/[𝑝]
)/𝛼, i.e., for all factorisations X

[𝑞]
𝛽

−→ [𝑟]
𝛼′

−→ [𝑝]

of 𝛼 into an active 𝛽 followed by a cellular 𝛼′. The category ((Δop)𝑘𝛼 )𝑋/ then has objects given by
active maps 𝛿 : [𝑘 �𝑎

𝛼] → [𝑟] such that in

[𝑞]
𝛼 �𝑎

0
−−→ [𝑘 �𝑎

𝛼]
𝛿
−→ [𝑟]

𝛼′

−−→ [𝑝], (24)

the full composition agrees with 𝛼, the composition of the first two arrows with 𝛽, and the composition
of the final two arrows with 𝛼 �𝑎

1 . The morphisms are induced by those of (Δop)𝑘𝛼 via [𝑘 �𝑎
𝛼]. We now

describe an object of this category: define the number 𝑏 𝑗 by letting 𝑏 𝑗 + 1 be the number of times 𝑚 𝑗 in
Construction 2.20 appears in 𝛼′ (𝑏 𝑗 ≥ 1 since 𝛼′ is cellular and 𝛽 is active). Then there is a unique map
[𝑘

�𝑏
𝛼] → [𝑟] that fits in a factorisation as above, and this map is active because [𝑞] → [𝑟] is active. For

another factorisation (24), one checks there is unique morphism ([𝑎1], . . . , [𝑎𝑘𝛼 ]) → ([𝑏1], . . . , [𝑏𝑘𝛼 ])
in Δ 𝑘𝛼 that induces a morphism of factorisations, so the factorisation we described provides an initial
object in ((Δop)𝑘𝛼 )𝑋/ as wished. �

Example 2.24. In the case of Example 2.21 and X given by [2] → [6] → [𝑝] with [6] → [𝑝] given
by (𝑖 ≤ 𝑖 ≤ 𝑖 + 1 ≤ 𝑖 + 1 ≤ 𝑖 + 2 ≤ 𝑖 + 3 ≤ 𝑖 + 4) (which determines the active morphism [2] → [6]
uniquely), the initial object in ((Δop)𝑘𝛼 )𝑋/ is given as follows: we get 𝑘𝛼 = 2, ([𝑏1], [𝑏2]) = ([1], [0]),
𝑘

�𝑏
𝛼 = 5, and 𝛿 : [5] → [6] is (0 ≤ 2 ≤ 3 ≤ 4 ≤ 5 ≤ 6). To see it is initial, note that equivalently it is

terminal among pairs ([𝑎1], [𝑎2]) with factorisations [2] → [𝑘 �𝑎
𝛼] → [6] → [𝑝], which is true since

𝛿 : [5] → [6] is bijective onto those elements in [6] which do not get mapped to the image of 𝛼.

We now consider the composition

(Δop
inj)
� (Δop)� ((Δop)𝑘𝛼 )� ((Λact,op

/[𝑝]
)/𝛼)

� (Δact,op
/[𝑝]

)/𝛼 Δact,op
/[𝑝]

,
inc

𝜂𝛼

diag 𝜌𝛼 can pr
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which we abbreviate as 𝜂𝛼; similar for Gap instead of Δop. Unravelling the definitions, one checks
that 𝜂𝛼 maps an object [𝑎] ∈ Δop

inj to 𝛼 �𝑎
1 : [𝑘 �𝑎

𝛼] → [𝑝] with �𝑎 = (𝑎, . . . , 𝑎) and the cone point to
𝛼 : [𝑞] → [𝑝]. The unique map from [𝑎] to the cone point is mapped to 𝛼 �𝑎

0 : [𝑞] → [𝑘 �𝑎
𝛼]. Since the

inclusion Δop
inj ⊂ Δop is cofinal [Lur09a, 4.1.1.8], the category Δop is sifted, and hence, the diagonal

Δop → (Δop)2 is cofinal [Lur09a, 5.5.8.1, 5.5.8.4], the functor 𝜌𝛼 is cofinal by the previous lemma, and
cofinal functors are closed under composition [Lur09a, 4.1.1.3 (2)], the composition Δop

inj → (Λact,op
/[𝑝]

)/𝛼
is cofinal. As colimits in ∞-categories are unaffected by precomposition with cofinal functors [Lur09a,
4.1.1.8], we can simplify the condition in Lemma 2.19 further to:

Corollary 2.25. For a monoidal ∞-category 𝒞 with good relative tensor products, an object 𝑀 ∈
ALG(𝒞)[𝑝] is composite if and only if for all 𝛼 ∈ Δop

/[𝑝]
, the following is a colimit diagram:

(Δop
inj)
� 𝜂𝛼

−−→ Δact,op
/[𝑝]

𝑀
−−→ 𝒞⊗,act (−)!

−−−→ 𝒞.

Example 2.26. We spell out two exemplary cases of Corollary 2.25 and relate them to the infor-
mal description of Corollary 2.25 from the beginning of this subsection, involving the augmented
semisimplicial objects 𝑀 (𝑖, 𝑗)•. First, for 𝛼 = (0 ≤ 2) : [1] → [2], we have 𝑘𝛼 = 1, and the functor
(Δop

inj)
� → Δact,op

/[2]
sends [𝑎] to the sequence (0 ≤ 1 ≤ . . . ≤ 1 ≤ 2) where 1 appears 𝑎 + 1 times, and

it sends the cone point to (0 ≤ 2). Applying M and (−)!, we obtain the augmented semisimplicial ob-
ject corresponding to 𝑀 (0, 2)•. For 𝛼 : [𝑞] → [𝑝] given by a sequence (𝑖0 ≤ · · · ≤ 𝑖𝑞) ⊆ [𝑝] so that
𝑖 𝑗+1 = 𝑖 𝑗 +1, we have 𝑘𝛼 = 0, so the composition in the statement is a constant augmented semisimplicial
object; this fits with the informal description since 𝑀 (𝑖, 𝑗)• is constant if 𝑗 = 𝑖 + 1.

2.9.4. Functoriality and monoidality
Postcomposition induces a functor

ALG(−) : Mon(𝒞at∞) −→ Fun(Δop,𝒞at∞), (25)

which is on p-simplices given by AlgΔop
/[𝑝]

(−). The latter preserves limits [Hau17, p. 1701], so (25)
does as well and in particular induces a functor between commutative monoid objects

ALG(−) : CMon(Mon(𝒞at∞)) −→ CMon(Fun(Δop,𝒞at∞)).

The situation for ALG(−) is only slightly more complicated. Let Mon(𝒞at∞)grtp ⊂ Mon(𝒞at∞) the
(non-full) subcategory of monoidal categories that admit good relative tensor products and functors
that are compatible with them. The latter is made precise in [Hau17, Definition 4.18], but all we need is
that (i) monoidal categories admit good relative tensor products if their underlying categories admit all
geometric realisations and these are compatible with tensoring with a fixed object on either side, and that
(ii) functors of monoidal categories that preserve geometric realisations are compatible with good relative
tensor products. Then ALG(−) gives rise to a functor ALG(−) : Mon(𝒞at∞)grtp −→ Cat(𝒞at∞) (see
[Hau17, Corollary 5.41]). By [Hau17, Lemma 5.38 (iii)], the category Mon(𝒞at∞)grtp admits products,
and these are preserved by the forgetful functor Mon(𝒞at∞)grtp → Mon(𝒞at∞). Moreover, ALG(−)
is product-preserving: we may test this on p-simplices for 𝑝 ≥ 0, and since it has values in double ∞-
categories, it suffices to check this for 𝑝 = 0, 1 where it follows from (21) and the corresponding fact
for ALG(−). ALG(−) thus induces a functor on commutative monoid objects:

ALG(−) : CMon(Mon(𝒞at∞)grtp) −→ CMon(Cat(𝒞at∞)).

2.10. Span and cospan categories

We summarise the construction of a double ∞-category of cospans from [Hau18, Section 5].
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2.10.1. Categories of (co)spans
For an ∞-category 𝒞, the pre-span simplicial ∞-category of 𝒞 is

SPAN
+
(𝒞) ≔ Fun(Σ•,𝒞) ∈ Fun(Δop,𝒞at∞),

where Σ• : Δ → Cat is defined as follows: on objects, it sends [𝑛] ∈ Δ the poset Σ𝑛 of pairs (𝑖, 𝑗)
with 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛, and (𝑖, 𝑗) � (𝑖′, 𝑗 ′) if and only if 𝑖 ≤ 𝑖′ and 𝑗 ′ ≤ 𝑗 , and on morphisms sends
𝜙 : [𝑛] → [𝑚] to the functor Σ𝑛 → Σ𝑚 given by (𝑖, 𝑗) ↦→ (𝜙(𝑖), 𝜙( 𝑗)).

If 𝒞 has finite limits, then the span double ∞-category of 𝒞

SPAN+(𝒞) ∈ Cat(𝒞at∞) (26)

is the levelwise full subcategory SPAN+(𝒞) ⊂ SPAN
+
(𝒞) of cartesian functors, where (Σ𝑝 → 𝒞) ∈

SPAN
+
(𝒞)[𝑝] is cartesian if the natural map from it to the right Kan extension of its restriction to the

full subcategory Λ𝑝 ⊂ Σ𝑝 on (𝑖, 𝑗) with 𝑗 − 𝑖 ≤ 1 is an equivalence. By [Hau18, Proposition 5.14],
SPAN+(𝒞) is indeed a double ∞-category. We have SPAN+(𝒞)[0] = 𝒞, and arguing as in [Hau18,
Proposition 8.3], one sees that the mapping ∞-categories are SPAN+(𝒞)𝐴,𝐵 � 𝒞/𝐴×𝐵.

Dually, one defines the cospan double ∞-category of 𝒞 and its pre-version as

COSPAN
+
(𝒞op) � SPAN

+
(𝒞op)op and COSPAN+(𝒞) � SPAN+(𝒞op)op,

where the outer (−)op denotes taking levelwise opposites, and the second definition requires 𝒞 to have
finite colimits. The mapping ∞-categories are then given by COSPAN+(𝒞)𝐴,𝐵 � 𝒞𝐴�𝐵/.

2.10.2. Relation to Morita categories
Cospan categories and Morita categories are not unrelated: if 𝒞 has finite colimits, then it has good
relative tensor products as in Section 2.9.2 when equipped with the cocartesian symmetric monoidal
structure 𝒞� [HMS20, Remark 2.5.14]. By Corollaries 2.6.8 and 2.6.10 loc.cit., there is an equivalence
of double ∞-categories

COSPAN+(𝒞) � ALG(𝒞�). (27)

Moreover, functors that preserve finite colimits are compatible with good relative tensor products, so
COSPAN+(𝒞) inherits the functoriality and monoidality properties from ALG(𝒞�) as discussed in
Section 2.9.4 for monoidal categories with finite colimits and functors that preserve those (there is also
an a priori description, but we will not need it). Tracing through the proof, one sees that under the
equivalence (27), an object 𝑀 ∈ ALG(𝒞)[𝑝] is sent to the sequence of cospans

𝑀 (0, 1) · · · 𝑀 (𝑝−1, 𝑝)
𝑀 (0) 𝑀 (1) 𝑀 (𝑝−1) 𝑀 (𝑝),

where the map 𝑀 (𝑖) → 𝑀 (𝑖, 𝑖+1) is given by 𝑀 (𝑖)
inc
−−→ 𝑀 (𝑖) �𝑀 (𝑖, 𝑖+1) act

−−→ 𝑀 (𝑖, 𝑖+1), and similarly
for 𝑀 (𝑖 + 1) → 𝑀 (𝑖, 𝑖 + 1). Here we used the notation from Section 2.9.1.

3. From the bordism to the Morita category

As part of the introduction, we announced in Section 1.2.2 the construction of a functor

𝐸 : ncℬord(𝑑) −→ ℳod(𝑑) (28)
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of symmetric monoidal (∞, 2)-categories where the domain is an (∞, 2)-category of possibly non-
compact (𝑑−1)-dimensional manifolds with bordisms as 1-morphisms and embeddings as 2-morphisms,
and the target is a Morita (∞, 2)-category of the symmetric monoidal ∞-category of presheaves on an
∞-category of disjoint unions of d-dimensional open discs with embeddings as morphisms and disjoint
union as monoidal structure. What we will actually do is to construct (28) as a functor between symmetric
monoidal double ∞-categories, which is more general by the discussion in Section 2.5.6.

For most of the arguments in the proofs of Theorems A–C, the precise construction of (28) does
not play a role. We summarise the key features in Section 4, so readers who mainly care about
Theorems A–C may skip this technical section on a first reading.

The steps we take in this section to construct the functor (28) are as follows:

Step ① Construct a non-unital double ∞-category ncℬord(𝑑)nu ∈ Catnu(𝒞at∞) of possibly non-
compact (𝑑 − 1)-manifolds with embeddings and bordisms between them.

Step ② Construct a monoidal ∞-category ℳan𝑑 ∈ Mon(𝒞at∞) of possibly non-compact d-manifolds
and embeddings between them, monoidal via disjoint union.

Step ③ Construct a morphism 𝐸geo : ncℬord(𝑑)nu → ALG(ℳan𝑑) of semisimplicial ∞-categories to
the pre-Morita category of ℳan𝑑 from Section 2.9, viewed as a semisimplicial object.

Step ④ Show that the composition

𝐸 : ncℬord(𝑑)nu → ALG(ℳan𝑑) → ALG(PSh(ℳan𝑑)) → ALG(PSh(𝒟isc𝑑))

lands in the Morita category ℳod(𝑑) ≔ ALG(PSh(𝒟isc𝑑)) ⊂ ALG(PSh(𝒟isc𝑑)). The
second map is induced by the Yoneda embedding and the third map by the full subcategory
𝒟isc𝑑 ⊂ ℳan𝑑 on manifolds diffeomorphic to 𝑇 × R𝑑 for finite sets T.

Step ⑤ Argue that ncℬord(𝑑)nu can be enhanced to a (unital) double ∞-category ncℬord(𝑑) ∈
Cat(𝒞at∞), and that 𝐸 can be enhanced to a functor of double ∞-categories as in (28).

Step ⑥ Argue that the resulting functor 𝐸 : ncℬord(𝑑) → ℳod(𝑑) can be enhanced to a functor of
symmetric monoidal double ∞-categories.

We will conclude the section with some enhancements of the bordism category ncℬord(𝑑):

Step ⑦ Construct variantsℬord(𝑑), ncℬord(𝑑)𝜕 and ncℬord𝜃 (𝑑) of ncℬord(𝑑) by restricting to com-
pact manifolds and diffeomorphisms instead of embeddings, allowing manifolds with boundary,
and adding tangential structures.

Step ⑧ Construct for a closed p-manifold P a map of symmetric monoidal double ∞-categories 𝑃 ×
(−) : ncℬord(𝑑) → ncℬord(𝑑 + 𝑝) induced by taking cartesian product with P, and extend
this construction to the variants from Step ⑦.

Remark 3.1. Some remarks on the construction of the functor (28):

(i) One may ask whether this construction can be ‘fully extended’; that is, whether one can upgrade
ncℬord(𝑑) to a symmetric monoidal (𝑑 + 1)-fold ∞-category and the functor E to a map of such
objects with target the symmetric monoidal (𝑑 + 1)-fold Morita ∞-category of PSh(𝒟isc𝑑) from
[Hau17, Section 5], which would in particular give a functor of symmetric monoidal (∞, 𝑑 + 1)-
categories. There are no conceptual issues in doing so, but it would involve additional bookkeeping
and make our construction less transparent. Since we do not need it to prove the main results, we
did not include it.

(ii) We construct (28) as a functor of symmetric monoidal double ∞-categories, but all later arguments
only use the underlying functor of symmetric monoidal (∞, 2)-categories.

(iii) There are at least three constructions of a Morita (∞, 2)-category of a sufficiently nice monoidal
∞-category 𝒞 that for 𝒞 = PSh(𝒟isc𝑑) might serve as potential targets for (28):
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(a) Lurie’s model BMod(𝒞) from [Lur17, 4.4.3.11],
(b) Haugseng’s model ALG1(𝒞) from [Hau17, Section 4], denoted ALG(𝒞) in Section 2.9,
(c) Scheimbauer’s model Alg1 (𝒞) from [Sch14, Section 3].

Haugseng’s and Lurie’s model are known to be equivalent (see Remark 2.18). For our purposes,
Haugseng’s model turned out to be the most convenient choice.

(iv) For some of our later arguments, it is crucial that E is defined on the bordism category ncℬord(𝑑)
that involves noncompact manifolds; the restriction to the typically considered subcategory
ℬord(𝑑) that only involves compact manifolds is not sufficient. If one is mainly interested in
a functor from the compact variant ℬord(𝑑) to a Morita category of PSh(𝒟isc𝑑), then there are
other potential routes to a construction (e.g., by modifying a construction of Scheimbauer [Sch14]
or relying on the cobordism hypothesis [Lur09b]).

Throughout the following subsections corresponding to the steps above, we generically refer to
Section 2 for a recollection of the ∞-categorical concepts and facts involved.

Step ①. The bordism category via manifolds with walls

We will construct the non-unital double ∞-category ncℬord(𝑑)nu ∈ Catnu(𝒞at∞) as the levelwise
coherent nerve of a semisimplicial object in Kan-enriched categories

ncBord(𝑑)nu ∈ Fun(Δop
inj, sCat). (29)

Convention 3.2. Throughout this section, we fix a constant 0 < 𝜖 < 1
2 . We write tr𝜆 : R → R for the

translation by 𝜆 ∈ R. For a subset 𝑊 ⊂ R × R∞, we write

𝑊 |𝐴 � 𝑊 ∩ (𝐴 × R∞) ⊂ R × R∞

for subsets 𝐴 ⊂ R. If 𝐴 = {𝑎} is a singleton, we abbreviate 𝑊 |𝑎 � 𝑊 |{𝑎}.

We first set up some language. A [𝑝]-walled d-manifold for [𝑝] ∈ Δ is a pair (𝑊, 𝜇) of a d-
dimensional smooth submanifold𝑊 ⊂ R×R∞ without boundary and an order-preserving map 𝜇 : [𝑝] →
R such that the following is satisfied

(i) 𝜇(𝑖) + 𝜖 < 𝜇(𝑖 + 1) − 𝜖 for all i,
(ii) the projection pr : 𝑊 → R to the first coordinate is transverse to 𝜇 : [𝑝] → R,

(iii) 𝑊 |[𝜇 (𝑖)−𝜖 ,𝜇 (𝑖)+𝜖 ] = tr𝜇 (𝑖) [−𝜖, +𝜖] ×𝑊 |𝜇 (𝑖) for all i;

see Figure 2 for an example. The space

Emb
(
(𝑊, 𝜇), (𝑊 ′, 𝜇′)

)
⊂ Emb

(
𝑊 |[𝜇 (0)−𝜖 ,𝜇 (𝑝)+𝜖 ] ,𝑊

′ |[𝜇′ (0)−𝜖 ,𝜇′ (𝑝)+𝜖 ])

)
of embeddings between [𝑝]-walled d-manifolds (𝑊, 𝜇) and (𝑊, 𝜇′) is the subspace of those embeddings
𝜑 that satisfy the following properties for all i:

(i) they satisfy the equality 𝜑−1(𝑊 ′ |[𝜇′ (𝑖)+𝜖 ,𝜇′ (𝑖+1)−𝜖 ] ) = 𝑊 |[𝜇 (𝑖)+𝜖 ,𝜇 (𝑖+1)−𝜖 ] as well as the equality
𝜑−1(𝑊 ′ |[𝜇′ (𝑖)−𝜖 ,𝜇′ (𝑖)+𝜖 ] ) = 𝑊 |[𝜇 (𝑖)−𝜖 ,𝜇 (𝑖)+𝜖 ] , and

(ii) they restrict on 𝑊 |[𝜇 (𝑖)−𝜖 ,𝜇 (𝑖)+𝜖 ] to an embedding of the form

(tr𝜇′ (𝑖)−𝜇 (𝑖) × 𝜑𝑖) : tr𝜇 (𝑖) [−𝜖, +𝜖] ×𝑊 |𝜇 (𝑖) ↩−→ tr𝜇′ (𝑖) [−𝜖, +𝜖] ×𝑊 ′ |𝜇′ (𝑖)

for some embedding 𝜑𝑖 ∈ Emb(𝑊 |𝜇 (𝑖) ,𝑊
′ |𝜇′ (𝑖) ).

Using this terminology, ncBord(𝑑)nu is defined as the semisimplicial Kan-enriched category whose
Kan-enriched category ncBord(𝑑)nu

[𝑝]
of p-simplices has possibly non-compact [𝑝]-walled d-manifolds
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Figure 2. A [3]-walled 1-manifold. The vertical projection is 𝜇 and the intervals in R are the [𝜇(𝑖) −
𝜖, 𝜇(𝑖) + 𝜖]’s, which are disjoint in accordance with (i). The dashed lines indicate the hyperplanes
{𝜇(𝑖)} × R∞. Note that W is transverse to these and a product near them, as imposed in (ii) and (iii).

(𝑊, 𝜇) as its objects, spaces of embeddings between [𝑝]-walled d-manifolds as morphisms, and compo-
sition given by composition of embeddings. The semisimplicial structure is given by ‘forgetting walls’
(i.e., by precomposition of 𝜇 : [𝑝] → R with morphisms in Δ inj).

The non-unital double ∞-category

ncℬord(𝑑)nu ∈ Cat(𝒞at∞) ⊂ Fun(Δop
inj,𝒞at∞)

is now defined as the levelwise coherent nerve of ncBord(𝑑)nu (i.e., we have (ncℬord(𝑑)nu)[𝑝] �
𝑁coh ((ncBord(𝑑)nu)[𝑝] )). This implicitly claims that the semisimplicial object ncℬord(𝑑)nu ∈
Fun(Δop

inj,𝒞at∞) is indeed a double ∞-category (i.e., that it satisfies the Segal condition).

Lemma 3.3. ncℬord(𝑑)nu is a non-unital double ∞-category.

Proof. This is straightforward, so we will only sketch the proof. One first observes that the Segal maps
ncBord(𝑑)nu

[𝑝]
→ ncBord(𝑑)nu

[1]
×ncBord(𝑑)nu

[0]
. . . ×ncBord(𝑑)nu

[0]
ncBord(𝑑)nu

[1]
before taking coherent nerves

are Dwyer–Kan equivalences, so weak equivalences in the Bergner model structure from Section 2.2
(i). Since the ncBord(𝑑)nu

[𝑝]
are Kan-enriched, they are fibrant in this model structure. Next, one shows

that source and target maps ncBord(𝑑)nu
[1]

→ ncBord(𝑑)nu
[0]

are Kan fibrations on morphism spaces and
isofibrations on homotopy categories, so they are fibrations in the model structure and the pullbacks
appearing in the above maps are homotopy pullbacks. Using that the coherent nerve is the right Quillen
functor in the Quillen equivalence between the Joyal and the Bergner model structure (see Section 2.2 (i))
and therefore preserves homotopy pullbacks and weak equivalences between fibrant objects, it follows
that the Segal maps ncℬord(𝑑)nu

[𝑝]
→ ncℬord(𝑑)nu

[1]
×ncℬord(𝑑)nu

[0]
. . .×ncℬord(𝑑)nu

[0]
ncℬord(𝑑)nu

[1]
in Cat∞

are equivalences. �

Step ②. The monoidal category of manifolds and embeddings

We construct the monoidal ∞-category of (possibly noncompact) d-manifolds and embeddings between
them as a cocartesian fibration ℳan⊗

𝑑 → Δop � Gap obtained as the coherent nerve of a functor

Man⊗
𝑑 −→ Gap (30)

of Kan-enriched categories. Objects of Man⊗
𝑑 are pairs (� 𝑝 �,𝑊) of � 𝑝 � ∈ Gap and a smooth submanifold

𝑊 ⊂ � 𝑝 � × R × R∞ without boundary; the distinguished R-coordinate is not necessary but comes in
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handy later. To define the space of morphisms, given 𝐴 ⊂ � 𝑝 �, we write

𝑊 |𝐴 � 𝑊 ∩ (𝐴 × R × R∞)

to distinguish it from the notation 𝑊 |𝐴 for 𝐴 ⊂ R from Convention 3.2. Using this, we set

MapMan⊗
𝑑

(
(� 𝑝 �,𝑊), (� 𝑝′ �,𝑊 ′)

)
�

⊔
𝜑∈MapGap (� 𝑝 �,� 𝑝′ �) Emb

(
𝑊 |𝜑

−1� �̊�′ �,𝑊 ′)𝜑 , (31)

where the subscript (−)𝜑 indicates that we restrict to embeddings that cover 𝜑 (i.e., that make

𝜑−1� 𝑝′ � × R × R∞ ⊃ 𝑊 |𝜑
−1� �̊�′ � 𝑊 ′ ⊂ � 𝑝′ � × R × R∞

𝜑−1� 𝑝′ � � 𝑝′ �

pr1 pr1

𝜑

commute). The composition in Man⊗
𝑑 is induced by the composition in Gap and composition of embed-

dings. The functor (30) sends (� 𝑝 �,𝑊) to � 𝑝 �. Taking coherent nerves defines ℳan⊗
𝑑 → Gap � Δop,

which one easily checks to be a monoidal ∞-category using the description in terms of cocartesian
fibrations from Section 2.5.3.

Remark 3.4. By construction, the underlying category ℳan𝑑 of the monoidal ∞-category ℳan⊗
𝑑 →

Δop (the fibre over [1] ∈ Δop) agrees with the coherent nerve of the Kan-enriched category whose
objects are smooth submanifolds 𝑊 ⊂ R∞ without boundary and spaces of embeddings between them.
Informally speaking, the monoidal structure is given by taking disjoint unions. Note that this monoidal
structure is not cocartesian, since typically Emb(𝑀 � 𝑁,𝑊) � Emb(𝑀,𝑊) × Emb(𝑁,𝑊).

Step ②.1. Cocartesian pushforward along active maps
For later reference, we spell out a model of the cocartesian pushforward

(−)! : ℳan⊗,act
𝑑 −→ (ℳan⊗

𝑑 )[1] ≕ ℳan𝑑

from Section 2.9.3 in the case 𝒞⊗ = ℳan⊗
𝑑 . It is the coherent nerve of a simplicially enriched functor

Man⊗,act
𝑑 −→ (Man⊗

𝑑 )[1] ≕ Man𝑑 , (32)

defined on the pullback of Man⊗
𝑑 along the inclusion Gapact → Gap of the wide subcategory of active

maps as in Section 2.4. The functor (32) is given by taking ‘taking disjoint unions’, using that the
restriction to active maps in Man⊗,act

𝑑 means precisely that the embeddings appearing in (31) are defined
on the whole manifold W, not just on a subset depending on the maps 𝜑. As a point-set implementation,
one can model this ‘disjoint unions’-functor induced by viewing a submanifold 𝑊 ⊂ � 𝑝 � × R × R∞ as
a submanifold of R × R × R∞ using the inclusion � 𝑝 � = {1, . . . , 𝑝} ⊂ R and sending a submanifold
𝑊 ⊂ � 𝑝 � × R × R∞ ⊂ R × R × R∞ to its image under the diffeomorphism

𝑠 : R × R × R∞ flip×idR∞

−−−−−−−→ R × R × R∞ idR×shift
−−−−−−→ R × R∞ (33)

with flip(𝑥, 𝑧) ≔ (𝑧, 𝑥) and shift(𝑧, (𝑧1, 𝑧2, . . .)) ≔ (𝑧, 𝑧1, 𝑧2, . . .). Said differently, the functor (32) is a
composition of functors of Kan-enriched categories

Man⊗,act
𝑑 −→ Man⊗

𝑑 −→ (Man⊗
𝑑 )[1] ,

where Man⊗
𝑑 has submanifolds 𝑊 ⊂ R × R × R∞ without boundary as objects and all embeddings

between them as morphisms. The second functor sends W to 𝑠(𝑊) on objects and is on morphisms
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induced by conjugating embeddings 𝑊 ↩→ 𝑊 ′ with the diffeomorphisms 𝑊 � 𝑠(𝑊) and 𝑊 ′ � 𝑠(𝑊 ′)
induced by s. The first functor sends an object (� 𝑝 �,𝑊) to 𝑊 ⊂ � 𝑝 � × R × R∞ ⊂ R × R × R∞ and is
on morphism spaces (31) induced by the inclusion Emb(𝑊,𝑊 ′)𝜑 ⊂ Emb(𝑊,𝑊 ′) of components.

Step ③. From nc𝓑ord(𝒅)nu to the pre-Morita category of manifolds

The construction of the morphism 𝐸geo : ncℬord(𝑑)nu → ALG(ℳan𝑑) goes via the following substeps:

(a) Set up preparatory language.
(b) Replace the undercategories Gap�• �/ → Gap by a simplicial thickening Gap

�• �/
→ Gap.

(c) Construct a functor of semisimplicial objects in Kan-enriched categories

ncBord(𝑑)nu
[•] −→ FunGap (Gap

�• �/
,Man⊗

𝑑 ). (34)

(d) Argue that the resulting functor of semisimplicial ∞-categories

ncℬord(𝑑)nu −→ FunGap (Gap�• �/,ℳan⊗
𝑑 ) (35)

lands in the levelwise full subcategory ALG(ℳan𝑑) ⊂ FunGap (Gap�• �/,ℳan⊗
𝑑 ).

Substep (a) I: walls and chambers
For a [𝑝]-walled d-manifold (𝑊, 𝜇) as in Step ①, we define

wall(𝑊, 𝜇) ⊂ [𝑝] × R∞, ch(𝑊, 𝜇) ⊂ � 𝑝 � × R × R∞, and tch(𝑊, 𝜇) ⊂ � 𝑝 � × R × R∞,

the submanifolds of walls, chambers and thickened chambers of (𝑊, 𝜇), as

wall(𝑊, 𝜇) �
⋃

𝑖∈[𝑝]

(
{𝑖} ×𝑊 |𝜇 (𝑖)

)
,

ch(𝑊, 𝜇) ≔
⋃

𝑖∈� �̊� �

(
{𝑖} ×𝑊 |[𝜇 (𝑖−1)+𝜖 ,𝜇 (𝑖)−𝜖 ]

)
,

tch(𝑊, 𝜇) �
⋃

𝑖∈� �̊� �

(
{𝑖} ×𝑊 |

(𝜇 (𝑖−1)+ 𝜖
2 ,𝜇 (𝑖)−

𝜖
2 )

)
.

There is an inclusion ch(𝑊, 𝜇) ⊂ tch(𝑊, 𝜇) whose complement of the interior we abbreviate as

coll(𝑊, 𝜇) � tch(𝑊, 𝜇)\int(ch(𝑊, 𝜇)) ⊂ � 𝑝 � × R × R∞.

We call this the collars of (𝑊, 𝜇). Informally, 𝜇 prescribes hyperplanes {𝜇(𝑖)} × R∞ intersecting W in
the walls, the (thickened) chambers are (thickened) regions between the walls, and the collars are collar
neighbourhoods in the thickened chambers; see Figure 3 for an example.

Given in addition a morphism 𝛼 ∈ MapGap (� 𝑝 �, �𝑞 �), we define the submanifold

lab𝛼 (𝑊, 𝜇) ⊂ �𝑞 � × R × R∞

of pieces labelled by 𝛼 as the union lab𝛼 (𝑊, 𝜇) �
⋃

𝑖∈� �̊� �{𝑖} ×𝑊 |(𝜇 (𝑡𝛼
𝑖−1)−𝜖 ,𝜇 (𝑡𝛼𝑖 )+𝜖 ) , where we set

𝑡𝛼𝑖 � 𝑐−1 (𝛼) (𝑖) using the isomorphism (13) and thinking of �𝑞 � = {1 < . . . < 𝑞} as a subset of
[𝑞] = {0 < . . . < 𝑞}. Informally, lab𝛼 (𝑊, 𝜇) is the set �𝑞 � labelled by chambers and thickened walls
of W as prescribed by 𝛼; see Figure 4 for an example.

Constructing the functor (34) will require us to describe embeddings out of lab𝛼 (𝑊, 𝜇), for which it
is helpful to decompose this manifold into two parts as follows: the map (𝛼× idR×R∞) : � 𝑝 �×R×R∞ →
�𝑞 � × R × R∞ restricts to an embedding

tch(𝑊, 𝜇) |𝛼
−1� �̊� � ↩−→ lab𝛼 (𝑊, 𝜇) (36)
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Figure 3. A [1]-walled 1-manifold. Its walls wall(𝑊, 𝜇) are the 0-manifold indicated by the squares, its
chambers ch(𝑊, 𝜇) are the thick region, its collars coll(𝑊, 𝜇) are the dotted regions, and its thickened
chambers tch(𝑊, 𝜇) are the union of the chambers and the collars.

Figure 4. Given the [3]-walled 1-manifold (𝑊, 𝜇) of Figure 2 and the indicated morphism 𝛼 : �3� →
�5�, this shows the resulting lab𝛼 (𝑊, 𝜇). The following informal description may help: 𝛼 tells which
‘parts’ of �3� to put in which ‘box’ of �5�, and if a box is not hit by 𝛼, it contains a ‘connecting part’.
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Figure 5. The submanifold wlab𝛼 (𝑊, 𝜇) for lab𝛼 (𝑊, 𝜇) as in Figure 4.

using which we define a submanifold

wlab𝛼 (𝑊, 𝜇) � lab𝛼 (𝑊, 𝜇)\int(ch(𝑊) |𝛼
−1� �̊� �) ⊂ �𝑞 � × R × R∞,

of thickened walls labelled by 𝛼; see Figure 5 for an example. We have a preferred decomposition

lab𝛼 (𝑊, 𝜇) � ch(𝑊) |𝛼
−1� �̊� � ∪𝜕 wlab𝛼 (𝑊, 𝜇), (37)

where the gluing uses the identification 𝜕 (ch(𝑊, 𝜇) |𝛼
−1� �̊� �) � 𝜕 (wlab𝛼 (𝑊, 𝜇)) induced by the restric-

tion of (36) to the boundary 𝜕 (ch(𝑊, 𝜇) |𝛼
−1� �̊� �). The restriction

𝑐𝛼(𝑊 ,𝜇) : coll(𝑊, 𝜇) |𝛼
−1� �̊� � ↩−→ wlab𝛼 (𝑊, 𝜇) (38)

of (36) to coll(𝑊, 𝜇) |𝛼
−1� �̊� � provides a collar of this boundary.

Substep (a) II: wlab𝜶 (−) as a pullback
Unwrapping the definitions, one sees that wlab𝛼 (𝑊, 𝜇) ⊂ �𝑞 � × R × R∞ is a disjoint union of products
of 𝑊 |𝜇 (𝑖) for some i with a (open, half-open or closed) interval of length 2 · 𝜖 . More precisely, for
𝑖 ∈ �𝑞 �, the components wlab𝛼 (𝑊, 𝜇) | {𝑖 } of wlab𝛼 (𝑊, 𝜇) lying over i are tr𝜇 (𝑡𝛼𝑖 ) (−𝜖, +𝜖) ×𝑊 |𝜇 (𝑡𝛼𝑖 ) for
𝑖 ∉ im(𝛼), and they are(

tr𝜇 (𝑡𝛼
𝑖−1)

(−𝜖, +𝜖] ×𝑊 |𝜇 (𝑡𝛼
𝑖−1)

)
∪
( ⋃

𝑡𝛼
𝑖−1< 𝑗<𝑡

𝛼
𝑖
(tr𝜇 ( 𝑗) [−𝜖, 𝜖] ×𝑊 |𝜇 ( 𝑗) )

)
∪
(
tr𝜇 (𝑡𝛼𝑖 ) [−𝜖, +𝜖) ×𝑊 |𝜇 (𝑡𝛼𝑖 )

)
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Figure 6. The pullback decomposition (39) for one of the part of wlab𝛼 (𝑊, 𝜇) from Figure 5. Note that
wall(𝑊, 𝜇) and [3] are larger than pictured; we only included the parts relevant for this pullback.

for 𝑖 ∈ im(𝛼). From this description, we see in particular that there are preferred maps

wlab𝛼 (𝑊, 𝜇) → [𝑝], wlab𝛼 (𝑊, 𝜇) → wall(𝑊, 𝜇), and wlab𝛼 (𝑊, 𝜇) → wlab𝛼 (R, 𝜇),

where we view (R, 𝜇) as a [𝑝]-walled 1-manifold. Indeed, the first map is given by sending the
components of wlab𝛼 (𝑊, 𝜇) whose first factor is an interval around 𝜇(𝑡𝛼𝑖 ) ∈ R to 𝑡𝛼𝑖 ∈ [𝑝], the second
map is induced by the first map and the projection to R∞, and the final map is given by the projection
to �𝑞 � × R. In particular, this exhibits wlab𝛼 (𝑊, 𝜇) as the pullback

wlab𝛼 (𝑊, 𝜇) = wlab𝛼 (R, 𝜇) ×[𝑝] wall(𝑊, 𝜇), (39)

which will be useful to construct embeddings out of wlab𝛼 (𝑊, 𝜇); see Figure 6 for an example.
It will also be useful to observe that wlab𝛼 (R, 𝜇) is related to wlab𝛼 (R, 𝜇′) for possibly different

𝜇′ : [𝑝] → R by a preferred diffeomorphism

wlab𝛼 (R, 𝜇) � wlab𝛼 (R, 𝜇′), (40)

uniquely characterised by requiring it to (i) preserve the order induced by the lexicographical order on
�𝑞 � × R and (ii) agree with translation on each component. For convenience, we fix a particular choice
of 𝜇 – namely, the inclusion [𝑝] = {0, 1, . . . , 𝑝} ⊂ R in which case we omit 𝜇 from the notation, so for
instance, we abbreviate wlab𝛼 (R) = wlab𝛼 (R, inc).

Substep (b): Thickening
As a next step, we replace the undercategory functor

Gap�• �/ : Gapop −→ sCat/Gap (41)

by a simplicial thickening after precomposition with the inclusion Gapop
sur → Gapop of (the opposite of)

the wide subcategory of surjective morphisms. By ‘simplicial thickening’, we mean a functor whose
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values need no longer be discrete categories and which comes with a natural transformation to Gap�• �/

that is a levelwise Dwyer–Kan equivalence.
We first define a Kan-enriched category Gap

� 𝑝 �/
that is Dwyer–Kan equivalent to Gap� 𝑝 �/. Its

objects are the same as those of Gap� 𝑝 �/ – that is, morphisms 𝛼 : � 𝑝 � → �𝑞 � in Gap. The space of
morphisms from the object 𝛼 : � 𝑝 � → �𝑞 � to the object 𝛼′ : � 𝑝 � → �𝑞′ � is

MapGap
� 𝑝 �/

(𝛼, 𝛼′) �
⊔

𝛾∈MapGap� 𝑝 �/
(𝛼,𝛼′) Emb

(
wlab𝛼 (R) |𝛾

−1�𝑞′ �,wlab𝛼′ (R)
)
𝛾 ,

where the subscript 𝛾 indicates that we restrict to embeddings 𝛾 that

(i) make the diagrams

wlab𝛼 (R) |𝛾
−1�𝑞′ � wlab𝛼′ (R)

𝛾−1�𝑞′ � �𝑞′ �

𝛾

𝛾

wlab𝛼 (R) |𝛾
−1�𝑞′ � wlab𝛼′ (R)

coll(R) |𝛼
′−1� �̊� �

𝛾

𝑐𝛼
′

R
𝑐𝛼R

commute (i.e., they cover 𝛾 and preserve the collars (38)), and
(ii) are order-preserving with respect to lexicographical order on �𝑞 � × R and �𝑞′ � × R.

The composition in Gap
� 𝑝 �/

is induced by the composition in Gap� 𝑝 �/, forgetting components, and
composition of embeddings. By construction, there is a forgetful functor Gap

� 𝑝 �/
→ Gap� 𝑝 �/ which

is a Dwyer–Kan equivalence as a result of the contractibility of the space of monotonous embeddings
between connected intervals. Postcomposing this functor with the projection Gap� 𝑝 �/ → Gap and
varying p, we obtain a functor

Gap
�• �/

: Gapop
sur −→ sCat/Gap

with a natural transformation to (41) that consists of the Dwyer–Kan equivalences just discussed.

Substep (c): 𝑬geo on the level of Kan-enriched categories
We now turn towards the construction of a functor of semisimplicial Kan-enriched categories

𝐸
geo
[•]

: ncBord(𝑑)nu
[•] −→ FunGap

(
Gap

�• �/
,Man⊗

𝑑

)
. (42)

The value of 𝐸geo
[𝑝]

at (𝑊, 𝜇) ∈ (ncBord(𝑑)nu)[𝑝] is the functor

𝐸
geo
[𝑝]

(𝑊, 𝜇) : Gap
� 𝑝 �/

−→ Man⊗
𝑑 (43)

over Gap defined as follows: on objects, it maps (𝛼 : � 𝑝 � → �𝑞 �) to (�𝑞 �, lab𝛼 (𝑊, 𝜇)). On a morphism
given by a pair (𝛾, 𝛾) of a morphism 𝛾 : �𝑞 � → �𝑞′ � under � 𝑝 � in Gap and an embedding 𝛾 ∈

Emb(wlab𝛼 (R) |𝛾
−1�𝑞′ �,wlab𝛼′ (R))𝛾 , it is given by the embedding

𝐸
geo
[𝑝]

(𝑊, 𝜇) (𝛾) : lab𝛼 (𝑊, 𝜇) |𝛾
−1�𝑞′ � ↩−→ lab𝛼′ (𝑊, 𝜇)
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over 𝛾 constructed via the following recipe: using the decomposition (37) and 𝛼−1(𝛾−1�𝑞′ �) = 𝛼′−1�𝑞′ �,
the embedding 𝐸

geo
[𝑝]

(𝑊, 𝜇) (𝛾) is of the form

ch(𝑊, 𝜇) |𝛼
′−1�𝑞′ � ∪𝜕 wlab𝛼 (𝑊, 𝜇) |𝛾

−1�𝑞′ � ↩−→ ch(𝑊, 𝜇) |𝛼
′−1�𝑞′ � ∪𝜕 wlab𝛼′ (𝑊, 𝜇).

On ch(𝑊, 𝜇) |𝛼
′−1�𝑞′ �, we declare it to be the identity, and on the complement, we use the pullback

description (39) and the translations (40) to define it via the commutative diagram

wlab𝛼 (𝑊, 𝜇) |𝛾
−1�𝑞′ � wlab𝛼′ (𝑊, 𝜇)

wlab𝛼 (R, 𝜇) |𝛾
−1�𝑞′ � ×[𝑝] wall(𝑊, 𝜇) wlab𝛼′ (R, 𝜇) ×[𝑝] wall(𝑊, 𝜇)

wlab𝛼 (R) |𝛾
−1�𝑞′ � ×[𝑝] wall(𝑊, 𝜇) wlab𝛼′ (R) ×[𝑝] wall(𝑊, 𝜇).

𝐸
geo
[𝑝]

(𝑊 ,𝜇) (𝛾)

� �

(𝛾,id)

This finishes the construction of the functor 𝐸
geo
[𝑝]

(𝑊, 𝜇) : Gap
� 𝑝 �/

→ Man⊗
𝑑 . Note that it commutes

with the functors to Gap by construction.
Having defined 𝐸

geo
[𝑝]

on objects, defining it on morphisms amounts to specifying maps

Emb
(
(𝑊, 𝜇), (𝑊 ′, 𝜇′)

)
NatGap (𝐸

geo
[𝑝]

(𝑊, 𝜇), 𝐸
geo
[𝑝]

(𝑊 ′, 𝜇′)) ⊂
⊔

𝑞,𝛼∈MapGap (� 𝑝 �,�𝑞 �) Emb
(
lab𝛼 (𝑊, 𝜇), lab𝛼 (𝑊 ′, 𝜇′)

)
,

where NatGap (−,−) is the hom-functor in the Kan-enriched category FunGap
(
Gap

� 𝑝 �/
,Man⊗

𝑑

)
(i.e., the

space of natural transformations covering the identity on Gap). These maps are induced by the evident
naturality of the lab𝛼 (−)-construction in embeddings of [𝑝]-walled d-manifolds.

To finish the construction of (42), we have to argue that the 𝐸
geo
[𝑝]

’s assemble to a morphism of
semisimplicial objects in Kan-enriched categories as in (42). But this is merely a case of going through
the definitions; ultimately, it amounts to the identity lab𝛽◦𝑐 (𝛿) (𝑊, 𝜇) = lab𝛽 (𝑊, 𝜇 ◦ 𝛿).

Substep (d): 𝑬geo on the level of ∞-categories
Taking coherent nerves, we obtain

𝒢ap
� 𝑝 �/

� 𝑁coh(Gap
�• �/

) ∈ Fun(Δop
inj,𝒞at∞),

which comes with an equivalence to Gap�• �/ � Δop
/[•]

induced by the equivalence Gap
�• �/

� Gap�• �/

from Substep (b). From 𝐸
geo
[•]

, we obtain a morphism of semisimplicial objects in 𝒞at∞

ncℬord(𝑑)nu −→ FunGap (𝒢ap
�• �/

,ℳan⊗
𝑑 ) � FunΔop (Δop

/[•]
,ℳan⊗

𝑑 ) (44)

given by postcomposing the coherent nerve applied to (42) with the canonical map

𝑁coh
(
FunGap (Gap

�• �/
,Man⊗

𝑑 )
)
−→ FunGap (𝒢ap

�• �/
,ℳan⊗

𝑑 ) � FunΔop (Δop
/[•]

,ℳan⊗
𝑑 ),

from Property (v) of Section 2.2.

Lemma 3.5. The image of the functor (44) lies in the levelwise full subcategory ALG(ℳan𝑑) ⊂
FunΔop (Δop

/[•]
,ℳan⊗

𝑑 ) from Section 2.9.1.
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Proof. In view of Remark 2.2, it suffices to show that for a [𝑝]-walled manifold (𝑊, 𝜇), and objects
𝛼 : � 𝑝 � → �𝑞 � and 𝛼′ : � 𝑝 � → �𝑞′ �, the functor 𝐸

geo
[𝑝]

(𝑊, 𝜇) : Gap
� 𝑝 �/

→ Man⊗
𝑑 of Kan-enriched

categories sends embeddings 𝛾 ∈ MapGap
� 𝑝 �/

(𝛼, 𝛼′) whose underlying map 𝛾 : �𝑞 � → �𝑞′ � is inert
to cocartesian morphisms in Man⊗

𝑑 with respect to the projection Man⊗
𝑑 → Gap. In other words, for

objects (𝑍, �𝑞′′ �) ∈ Man⊗
𝑑 , we need to check that the square of Kan-complexes

MapMan⊗
𝑑

(
(�𝑞′ �, lab𝛼′ (𝑊, 𝜇)), (�𝑞′′ �, 𝑍)

)
MapMan⊗

𝑑

(
(�𝑞 �, lab𝛼 (𝑊, 𝜇)), (�𝑞′′ �, 𝑍)

)
⊔

𝜑∈MapGap (�𝑞′ �,�𝑞′′ �)
Emb

(
lab𝛼′ (𝑊, 𝜇) |𝜑

−1� �̊�′′ �, 𝑍)𝜑
⊔

𝜓∈MapGap (�𝑞 �,�𝑞′′ �)
Emb

(
lab𝛼 (𝑊, 𝜇) |𝜓

−1� �̊�′′ �, 𝑍)𝜓

MapGap (�𝑞
′ �, �𝑞′′ �) MapGap (�𝑞 �, �𝑞′′ �)

𝐸
geo
[𝑝]

(𝑊 ,𝜇) (𝛾)∗

𝛾∗

is homotopy cartesian. Taking vertical homotopy fibres, it suffices to show that the maps

𝐸
geo
𝑝 (𝑊, 𝜇) (𝛾)∗ : Emb

(
lab𝛼′ (𝑊, 𝜇) |𝜑

−1� �̊�′′ �, 𝑍)𝜑 −→ Emb
(
lab𝛼 (𝑊, 𝜇) | (𝜑◦𝛾)−1� �̊�′′ �, 𝑍)𝜑◦𝛾

are weak equivalences. Since 𝛾 is inert, the restricted map 𝛾−1�𝑞′ � → �𝑞′ � is bijective, so it suffices to
show that the embedding𝐸geo

[𝑝]
(𝑊, 𝜇) (𝛾)∗ : lab𝛼 (𝑊, 𝜇) |𝛾

−1� �̊�′ � ↩→ lab𝛼′ (𝑊, 𝜇) is an isotopy equivalence
over 𝛾. To see this, note that since 𝛾−1�𝑞′ � → �𝑞′ � is bijective, the embedding 𝛾 : wlab𝛼 (R) |𝛾

−1� �̊�′ � ↩→

wlab𝛼′ (R) is an isotopy equivalence over 𝛾 and under coll(R) |𝛼
′−1� �̊�′ �, from which it follows that

𝐸
geo
[𝑝]

(𝑊, 𝜇) (𝛾) is an isotopy equivalence over 𝛾 as claimed. �

By the previous lemma, (44) restricts to a morphism 𝐸geo : ncℬord(𝑑)nu → ALG(ℳan𝑑) of
semisimplicial ∞-categories. This completes Step ③.

Step ④. Composite algebras

We now consider the composition

𝐸 : ncℬord(𝑑)nu 𝐸geo

−−−→ ALG(ℳan𝑑)
𝑦∗

−→ ALG(PSh(ℳan𝑑))
𝜄∗

−→ ALG(PSh(𝒟isc𝑑)). (45)

Here, 𝐸geo is the functor from the previous step, 𝑦∗ is induced by the (monoidal) Yoneda embedding
𝑦 : ℳan𝑑 → PSh(ℳan𝑑) (see Section 2.6), and 𝜄∗ is the functor induced by the lax monoidal functor
PSh(ℳan𝑑) → PSh(𝒟isc𝑑) which is itself induced by the inclusion 𝜄 : 𝒟isc𝑑 ↩→ ℳan𝑑 of the full
subcategory spanned by manifolds diffeomorphic to 𝑇 × R𝑑 for finite sets T with monoidal structure
inherited from ℳan. By the properties of presheaf categories discussed in Section 2.6, the monoidal
category PSh(𝒟isc𝑑) has good relative tensor products in the sense of Section 2.9.2, so it makes sense
to ask whether (45) lands in the levelwise full subcategory ALG(PSh(𝒟isc𝑑)) ⊂ ALG(PSh(𝒟isc𝑑))
of Section 2.9.2. This section serves to prove this:

Proposition 3.6. The functor 𝐸 from (45) factors through ALG(PSh(𝒟isc𝑑)) ⊂ ALG(PSh(𝒟isc𝑑)).

We will first explain how Proposition 3.6 follows from a seemingly different result and then prove
that other result. The argument involves a simplicial thickening

Gap�sur
�

−→ Gap�sur

https://doi.org/10.1017/fmp.2024.25 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2024.25


36 M. Krannich and A. Kupers

of the right-cone Gap�sur of the category Gapsur (the category obtained by freely adding a terminal object
∞ ∈ Gap�sur) in terms of the manifolds

�𝑎 �∗ � 𝐿 × [−𝜖, 𝜖) ∪ � �̊� � × (−𝜖, 𝜖) ∪ 𝑅 × (−𝜖, 𝜖] ⊂ �𝑎 � × R and �∞�∗ � [−𝜖, 𝜖] ⊂ R,

where 𝑎 ≥ 0. The objects of Gap�sur are the same as those of Gap�sur. The space of morphisms �𝑎 � → �𝑏 �

between objects of Gapsur ⊂ Gap�sur is defined as

MapGap�sur
(�𝑎 �, �𝑏 �) �

⊔
𝛾∈MapGapsur (�𝑎 �,�𝑏 �) Emb

(
�𝑎 �∗, �𝑏 �∗

)
𝛾 ,

where the subscript (−)𝛾 indicates we restrict to embeddings 𝛾 that cover 𝛾, are the identity on
𝐿 × [−𝜖,− 𝜖

2 ) ∪ 𝑅 × ( 𝜖2 , 𝜖] and preserve the lexicographic order inherited from �𝑎 � × R and �𝑏 � × R.
Finally, the space of morphisms �𝑎 � → �∞� is defined as

MapGap�sur
(�𝑎 �, �∞�) ≔ Emb

(
�𝑎 �∗, �∞�∗

)
∞,

where the subscript (−)∞ indicates that we restrict to embeddings 𝛾 that agree on 𝐿×[−𝜖,− 𝜖
2 )∪𝑅×( 𝜖2 , 𝜖]

with the projection to the second coordinate and preserve the lexicographical order inherited from �𝑎 �×R
and R. The space of morphisms �∞� → �∞� is the space of self-embeddings of �∞�∗ = [−𝜖, 𝜖] that
agree with the identity on the complement of [− 𝜖

2 ,
𝜖
2 ]. This category admits an evident functor to Gap�sur

which is an equivalence as a result of the contractibility of the space of order-preserving embeddings
between intervals.

Convention. In what follows, we occasionally omit the choices of embeddings of manifolds into
Euclidean spaces for brevity. For instance, we treat Man𝑑 = (Man⊗

𝑑 )[1] from Section Step ② as the
Kan-enriched category of abstract smooth d-manifolds and codimension 0 embeddings.

Given a (possibly noncompact) d-manifold without boundary V equipped with k disjoint codimension
1 submanifolds 𝑉𝑖 ⊂ 𝑉 that are topologically closed in V as a subspace, equipped with disjoint bicollars
[−𝜖, 𝜖] ×𝑉𝑖 ⊂ 𝑉 , we construct a simplicially enriched functor

𝑉�−� : Gap�sur −→ Man𝑑 ,

which on objects, sends �∞� to 𝑉�∞� � 𝑉 and �𝑎 � ∈ Gapsur to

𝑉�𝑎 � � 𝑉∗ �
( ⊔𝑘

𝑖=1� �̊� � × (−𝜖, 𝜖) ×𝑉𝑖
)
,

where 𝑉∗ is the manifold obtained from V by cutting out ∪𝑘
𝑖=1 [−

𝜖
2 ,

𝜖
2 ] × 𝑉𝑖 and extending the resulting

collars [−𝜖,− 𝜖
2 )×𝑉𝑖�( 𝜖2 , 𝜖]×𝑉𝑖 to collars [−𝜖, 𝜖)×𝑉𝑖�(−𝜖, 𝜖]×𝑉𝑖 . Given a morphism 𝛾 : �𝑎 � → �𝑏 �,

there is an embedding 𝑉�𝑎 � ↩→ 𝑉�𝑏 � that is the identity of 𝑉∗ outside the extended collars and agrees
on the remaining part with 𝛾 × id𝑉𝑖 . Finally, for �𝑎 � → �∞� or �∞� → �∞�, one defines embeddings
𝑉�𝑎 � ↩→ 𝑉�∞� or 𝑉�∞� ↩→ 𝑉�∞� in the same manner.

Writing Gapsur ⊂ Gap�sur for the full subcategory covering the inclusion Gapsur ⊂ Gap�sur, Proposi-
tion 3.6 will be a consequence of the following proposition involving homotopy colimits in the Kan–
Quillen model structure on S.

Proposition 3.7. For a manifold D diffeomorphic to 𝑇 × R𝑑 for a finite set T, the map

hocolimGapsur Emb(𝐷,𝑉�−�) −→ hocolimGap�sur
Emb(𝐷,𝑉�−�) � Emb(𝐷,𝑉�∞�)

induced by the inclusion Gapsur ⊂ Gap�sur is an equivalence.

We postpone the proof to the next subsection and first explain how it implies Proposition 3.6.
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Proof of Proposition 3.6. Consulting the definition of the Morita category, we have to show that the
image of any object (𝑊, 𝜇) ∈ ncℬord(𝑑)nu

[𝑝]
in ALG(PSh(𝒟isc𝑑))[𝑝] is composite in the sense of

Section 2.9.2. By Corollary 2.25, this is equivalent to proving that for each 𝛼 ∈ Δop
/[𝑝]

,

(Δop
inj)
� 𝜂𝛼

−−→ Δact,op
/[𝑝]

𝐸
geo
[𝑝]

(𝑊 ,𝜇)

−−−−−−−−−→ ℳan⊗,act
𝑑

(−)!
−−−→ ℳan𝑑 (46)

becomes a colimit diagram when postcomposed with (𝜄∗ ◦ 𝑦) : ℳan𝑑 → PSh(𝒟isc𝑑). We first make
the composition (46) more explicit. Recall from Step ③ (c) that

𝐸
geo
[𝑝]

(𝑊, 𝜇) ∈ ALG(ℳan𝑑)[𝑝] ⊂ FunΔop (Δop
/[𝑝]

,ℳan⊗
𝑑 )

was obtained from a functor between simplicially enriched categories

𝐸
geo
[𝑝]

(𝑊, 𝜇) : Gap
� 𝑝 �/

−→ Man⊗
𝑑 (47)

by taking coherent nerves and using the equivalence Gap
� 𝑝 �/

� Gap� 𝑝 �/ � Δop
/[𝑝]

from Step ③ (b).
We now give a similar description of the composition (46) as a simplicially enriched functor using a
simplicial functor to the full subcategory Gapact

� 𝑝 �/
⊂ Gap

� 𝑝 �/
covering Gapact

� 𝑝 �/
⊂ Gap� 𝑝 �/

𝜂𝛼 : Gap�sur −→ Gapact
� 𝑝 �/

to the pullback Gapact
� 𝑝 �/

of Gap
� 𝑝 �/

along Gapact
� 𝑝 �/

⊂ Gap� 𝑝 �/. The functor 𝜂𝛼 will make

Gap�sur Gapact
� 𝑝 �/

Gap�sur Gapact
� 𝑝 �/

�

𝜂𝛼

�

𝜂𝛼

commutative where 𝜂𝛼 is the functor from Section 2.9.3. The construction involves the notation of
Construction 2.22 (𝑘𝛼, 𝛼 �𝑎

1 , 𝑛𝑖 , etc.) and the discussion preceding Corollary 2.25. On objects, 𝜂𝛼

is determined by 𝜂𝛼. On morphisms, it sends 𝛾 : �𝑎 �∗ ↩→ �𝑏 �∗ to the right-hand embedding in a
commutative square of embeddings (here �𝑎 = (𝑎, . . . , 𝑎) and �𝑏 = (𝑏, . . . , 𝑏))

�𝑘𝛼�𝑎 � × R �𝑘𝛼�𝑎 �∗ wlab𝛼 �𝑎
1
(R) � 𝑘 �𝑎

𝛼 � × R

�𝑘𝛼�𝑏 � × R �𝑘𝛼�𝑏 �∗ wlab
𝛼

�𝑏
1
(R) � 𝑘

�𝑏
𝛼 � × R.

⊃

�𝑘𝛼 𝛾

⊂

⊃ ⊂

The ith component of the upper horizontal map is the embedding

�𝑎 � × R ⊃ �𝑎 �∗ ↩−→ wlab𝛼 �𝑎
1
(R) ⊂ � 𝑘 �𝑎

𝛼 � × R

that is the unique inclusion of components that preserves the lexicographic order inherited from �𝑎 �×R
and � 𝑘 �𝑎

𝛼 � × R and covers the map �𝑎 � → � 𝑘 �𝑎
𝛼 � given by the sequence 𝛼 �𝑎

1 (𝑛𝑖) < 𝛼 �𝑎
1 (𝑛𝑖) + 1 < . . . <

𝛼 �𝑎
1 (𝑛𝑖) + 𝑎 < 𝛼 �𝑎

1 (𝑛𝑖 + 1) (note that this is not a morphism in Gap as it does not preserve the endpoints).
The bottom horizontal embedding is defined in the same way, and the right-hand embedding is defined
to agree with 𝛾 on the components hit by the horizontal embedding and on the complement as the unique
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inclusion of components that covers the map 𝜂𝛼 (𝛾) : � 𝑘 �𝑎
𝛼 � → � 𝑘

�𝑏
𝛼 � and preserves the lexicographic

order. Similarly, 𝜂𝛼 sends a morphism in Gap�sur given by an embedding 𝛾 : �𝑎 �∗ ↩→ �∞�∗ to the
right-hand embedding in the square

�𝑘𝛼�𝑎 � × R �𝑘𝛼�𝑎 �∗ wlab𝛼 �𝑎
1
(R) � 𝑘 �𝑎

𝛼 � × R

�𝑘𝛼�∞�∗ wlab𝛼 (R) �𝑞 � × R,

⊃

�𝑘𝛼 𝛾

⊂

⊂

where the top horizontal embedding is the same as before, and the bottom embedding includes the ith
copy of �∞�∗ = [−𝜖, 𝜖] as the unique [−𝜖, 𝜖]-component in wlab𝛼 (R) that maps to 𝛼(𝑛𝑖) ∈ �𝑞 � under
the projection (using the notation from Construction 2.22) and to 𝑛𝑖 ∈ � ˚𝑝 − 1� = {1, . . . , 𝑝 − 1} ⊂ [𝑝]
under the map wlab𝛼 (R) → [𝑝] from Step ③ (a) II. The right vertical embedding is defined via the left
vertical one on the components hit by the horizontal map and as the unique inclusion of components
that cover the map 𝛾 �𝑎 : � 𝑘 �𝑎

𝛼 � → �𝑞 � and preserve the lexicographic order on � 𝑘 �𝑎
𝛼 � × R and �𝑞 � × R.

By construction, the composition (46) is equivalent to the coherent nerve of the composition

Gap�sur
𝜂𝛼

−→ Gapact
� 𝑝 �/

𝐸
geo
𝑝 (𝑊 ,𝜇)

−−−−−−−−−→ Man⊗,act
𝑑

(−)!
−→ Man𝑑 , (48)

where (−)! is the simplicial ‘disjoint unions’-functor of (32). Tracing through the definitions, one checks
that this functor agrees up to equivalence with the functor 𝑉�−� for the manifold 𝑉 = lab𝛼 (𝑊, 𝜇)!
with the 𝑘𝛼 different bicollared submanifolds [−𝜖, 𝜖] × 𝑊𝜇 ( 𝑗) � 𝑊[𝜇 ( 𝑗)−𝜖 ,𝜇 ( 𝑗)+𝜖 ] ⊂ lab𝛼 (𝑊, 𝜇)! for
𝑗 ∈ � ˚𝑝 − 1� with 𝛼( 𝑗) ∈ �𝑞 � and 𝛼( 𝑗) = 𝛼( 𝑗 + 1). Using that a diagram 𝐴 : 𝐾� → 𝒞 is a colimit
diagram if and only if the natural map colim𝐾 𝐴 → colim𝐾�𝐴 is an equivalence, this implies that it
suffices to show that the colimit

colim𝑁coh (Gap�sur)

(
𝑁coh (Gap�sur))

𝑁coh (𝑉 �− �)
−−−−−−−−−−→ 𝑁coh(Man𝑑)

𝑦
−→ PSh(ℳan𝑑)

𝜄∗

−→ PSh(𝒟isc𝑑)
)

is unaffected by precomposing the diagram with the functor 𝑁coh (Gapsur) → 𝑁coh (Gap�sur) induced
by inclusion. Using that (i) equivalences in functor categories are detected objectwise, (ii) colimits in
functor categories commute with evaluation at a fixed object 𝐷 ∈ 𝒟isc𝑑 [Lur09a, 5.1.2.3], and (iii) the
compatibility of the simplicial and ∞-categorical Yoneda embedding (see Remark 2.8), we see that it is
enough to show that the colimit

colim𝑁coh (Gap�sur)

(
𝑁coh (Gap�sur)

𝑁coh (ev𝐷◦𝑦𝑠◦𝑉 �− �)
−−−−−−−−−−−−−−−−→ 𝑁coh (Kan)

)
is unaffected by precomposing the diagram with 𝑁coh (Gapsur) → 𝑁coh (Gap�sur) for each object
𝐷 ∈ 𝒟isc𝑑 where 𝑦𝑠 : Man𝑑 → Fun(Man𝑑 ,Kan) is the simplicial Yoneda embedding of the Kan-
enriched category Man𝑑 . Using that model category-theoretic homotopy colimits are compatible with
∞-categorical colimits [Lur09a, 4.2.4.1], the claim reduces to showing that the natural map between
homotopy colimits in the Kan–Quillen model structure

hocolimGapsur

(
Gapsur

ev𝐷◦𝑦𝑠◦𝑉 �− �
−−−−−−−−−−−→ S

)
−→ hocolimGap�sur

(
Gap�sur

ev𝐷◦𝑦𝑠◦𝑉 �− �
−−−−−−−−−−−→ S

)
is an equivalence. This is Proposition 3.7. �

Proof of Proposition 3.7. This proof will eventually rely on a microfibration argument, which is why we
phrase the argument in the category of topological spaces Top as opposed to simplicial sets S. Relying
on the usual Quillen equivalence between the category of simplicial sets S and that of topological spaces
Top, the claim has an evident reformulation in terms of homotopy colimits of Top-enriched Top-valued
functors, and it is this reformulation that we shall prove.
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To begin with, we note that it suffices to show the claim for 𝐷 = 𝑛 × R𝑑 for 𝑛 ≥ 0. Next, we simplify
the functor Emb(𝑛 × R𝑑 ,−) : Man𝑑 → Top in terms of the functor 𝐶fr

𝑛 : Man𝑑 → Top given by taking
framed configurations (i.e., the pullback of functors

𝐶fr
𝑛 (−) Map(𝑛, Fr(−))

Emb(𝑛,−) Map(𝑛,−)
⊂

whose right vertical map is induced by the projection Fr(𝑊) → 𝑊 of the frame bundle of manifolds
𝑊 ∈ Man𝑑). Taking derivatives at the centres 𝑛 × {0} ⊂ 𝑛 × R𝑑 gives a natural transformation
Emb(𝑛 × R,−) → 𝐶fr

𝑛 (−) which is a componentwise weak equivalence, so we conclude that in order to
prove Proposition 3.7, it suffices to show that the map

hocolimGapsur

(
𝐶fr
𝑛 (𝑉�−�)

)
−→ hocolimGap�sur

(
𝐶fr
𝑛 (𝑉�−�)

)
is a weak equivalence. This is a map between homotopy colimits in spaces, which we model
by a bar construction. In general, given a Top-enriched category C and Top-enriched functors
𝐹 : C → Top and 𝐺 : Cop → Top, the bar-construction 𝐵•(𝐹,C, 𝐺) : Δop → Top is the simplicial space
[𝑟] ↦−→

⊔
(𝑐0 ,...,𝑐𝑟 ) 𝐹 (𝑐0) × C(𝑐0, 𝑐1) × · · · × C(𝑐𝑟−1, 𝑐𝑟 ) × 𝐺 (𝑐𝑟 ) where (𝑐0, . . . , 𝑐𝑟 ) runs through or-

dered sequences of (𝑟 + 1) objects in C. If G has weakly contractible values, the thick geometric re-
alisation 𝐵(𝐹,C, 𝐺) � ‖𝐵•(𝐹,C, 𝐺)‖ is a model for hocolimC𝐹 (see, for example, [Rie14, Corollary
9.2.7]; since we take thick geometric realisations, we do not need to worry about cofibrancy issues).
Choosing C = Gap�sur and 𝐺 = MapGap�sur

(−, �∞�), it therefore suffices to show that

𝐵•

(
𝐶fr
𝑛 (𝑉�−�),Gapsur,MapGap�sur

(−, �∞�)
)
−→ 𝐵•

(
𝐶fr
𝑛 (𝑉�−�),Gap�sur,MapGap�sur

(−, �∞�)
)

(49)

induced by Gapsur ⊂ Gap�sur is a weak equivalence on thick realisations. There is an augmentation

𝐵•

(
𝐶fr
𝑛 (𝑉�−�),Gap�sur,MapGap�sur

(−, �∞�)
)
−→ 𝐶fr

𝑛 (𝑉) (50)

induced by composition of embeddings and evaluation of 𝐶fr
𝑛 (−). This admits an extra degeneracy, so

it induces an equivalence on (thick) realisation (see, for example, [Rie14, Example 4.5.7]). This leaves
us with showing that the composition of (49) and (50)

𝐵•

(
𝐶fr
𝑛 (𝑉�−�),Gapsur,MapGap�sur

(−, �∞�)
)
−→ 𝐶fr

𝑛 (𝑉) (51)

is an equivalence on thick realisations. To prove this, we consider a semisimplicial space wall• whose
space of p-simplices is the space of order-preserving functions 𝜏 : [𝑝] → (−𝜖, 𝜖) with simplicial
structure by precomposition, and we define an augmented semisimplicial space

MapGap�sur
(�𝑎 �, �∞�)� −→ MapGap�sur

(�𝑎 �, �∞�) (52)

for 𝑎 ≥ 0 whose space of p-simplices

MapGap�sur
(�𝑎 �, �∞�)𝑝 ⊂ MapGap�sur

(�𝑎 �, �∞�) × wall𝑝 (53)
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Figure 7. An example of an element of wall𝑉2 . We suppressed the framings at the points in the configu-
ration indicated by the black points.

is the subspace of pairs of a function 𝜏 : [𝑝] → (𝜖, 𝜖) and an embedding �𝑎 �∗ ↩→ �∞�∗ that is disjoint
from the image of 𝜏. Varying a, this defines a functor (Gapsur)

op ×Δop
inj −→ Top that is compatible with

(52), so we obtain an augmentation of semisimplicial spaces

𝐵
(
𝐶fr
𝑛 (𝑉�−�),Gapsur,MapGap�sur

(−, �∞�)�
)
−→ 𝐵

(
𝐶fr
𝑛 ,Gapsur,MapGap�sur

(−, �∞�)
)
, (54)

where we have geometrically realised the semisimplicial direction of the bar-construction. In Lemma 3.8
below, we will show that (52) realises to a weak equivalence. Together with the fact that, up to weak
equivalence, it does not matter in which direction one realises a bisemisimplicial space first (so we may
realise the �-direction before the bar-direction) and that the geometric realisation of a levelwise weak
equivalence is a weak equivalence, this implies that the map in (54) realises to a weak equivalence.
It thus remains to show that the augmented semisimplicial space

𝐵
(
𝐶fr
𝑛 (𝑉�−�),Gapsur,MapGap�sur

(−, �∞�)�
)
−→ 𝐶fr

𝑛 (𝑉)

obtained by combining (54) and (51) realises to a weak equivalence. To prove this remaining claim,
we consider the sub-simplicial space wall𝑉� ⊂ wall� ×𝐶fr

𝑛 (𝑉) consisting of pairs of an order-preserving
function 𝜏 : [𝑝] → (−𝜖, 𝜖) and a framed configurations �𝑥 ∈ 𝐶𝑛 (𝑉) that is disjoint from the submanifolds
{𝜏( 𝑗)} × 𝑉𝑖 ⊂ 𝑉 for all 𝑗 = 0, . . . , 𝑝 and 𝑖 = 1, . . . , 𝑘 (here, we used the collars [−𝜖, 𝜖] × 𝑉𝑖 ⊂ 𝑉 ; see
Figure 7 for an example). The projection to wall𝑝 in (53) and the augmentation to 𝐶fr

𝑛 (𝑉) assemble to a
semisimplicial map over 𝐶fr

𝑛 (𝑉)

𝐵
(
𝐶fr
𝑛 (𝑉�−�),Gapsur,MapGap�sur

(−, �∞�)�
)
−→ wall𝑉� , (55)

which we show to be a levelwise weak equivalence in Lemma 3.8 3.8 (levelwise with respect to
the �-direction, in which we did not realise yet). This leaves us with showing that the augmentation
wall𝑉� → 𝐶fr

𝑛 (𝑉) realises to a weak equivalence. This is Lemma 3.8 3.8.
�

We now supply the postponed ingredients to the proof of Proposition 3.7. This finishes the proof of
that proposition and thus also that of Proposition 3.6.

Lemma 3.8.

(i) The thick realisation of the map (52) is a weak equivalence.
(ii) The map (55) is a levelwise weak equivalence.

(iii) The augmentation 𝜀 : wall𝑉� → 𝐶fr
𝑛 (𝑉) realises to a weak equivalence.
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Proof. We begin with a general observation. Let X be a nonempty totally ordered topological poset
(by which we mean topological space X with a total order on its underlying set). If the function
max(𝑥0,−) : 𝑋 → 𝑋 is continuous for some 𝑥0 ∈ 𝑋 , then the nerve of X is weakly contractible, since
the sequence of inequalities 𝑥 ≤ max(𝑥0, 𝑥) ≥ 𝑥0 induces a zig-zag of natural transformations from the
identity on X to the constant functor with values 𝑥0, so we obtain a homotopy between the identity map
of the nerve of X and the constant map.

Replacing the (half-)open intervals in the definition of �𝑎 �∗ with closed intervals, we get a weakly
equivalent semisimplicial space. Doing so, it follows from a version of the parametrised isotopy extension
theorem on restricting embeddings to compact submanifolds (c.f. [Pal60]) that the augmentation (52)
is a levelwise fibration. Hence, to prove 3.8, it suffices to show that the semisimplicial space given by
the fibres over an embedding 𝑒 : �𝑎 �∗ ↩→ �∞�∗ = [−𝜖, 𝜖] realises to a weakly contractible space. This
agrees with the nerve of the nonempty totally ordered poset of real numbers 𝑡 ∈ (−𝜖, 𝜖) disjoint from
the image of e, so the claim follows from the observation.

To show part 3.8, we choose for all 𝑝 ≥ 0 an order-preserving function 𝜏 : [𝑝] → (𝜖, 𝜖) and an
embedding 𝑒 ∈ MapGap�sur

(� 𝑝 �, �∞�) such that 𝜏 hits every component of the complement of e. This
induces an equivalence

(𝑒 ◦ (−), 𝜏) : MapGapsur
(−, � 𝑝 �)

�
−→ MapGap�sur

(−, �∞�)𝑝 ,

which in turn induces the left vertical equivalence in the commutative diagram

𝐵
(
𝐶fr
𝑛 (𝑉�−�),Gapsur,MapGapsur

(−, � 𝑝 �)
)

𝐶fr
𝑛 (𝑉� 𝑝 �)

𝐵
(
𝐶fr
𝑛 (𝑉�−�),Gapsur,MapGap�sur

(−, �∞�)𝑝
)

wall𝑉𝑝

�

�

whose top horizontal map is induced by composition and evaluation. The latter is a weak equivalence
for the same reason as (50). The right vertical map is induced by the function 𝜏 : [𝑝] → (−𝜖, 𝜖) and the
embedding e, and is easily seen to be an equivalence as well: use that it lands in the deformation retract
of wall𝑉𝑝 ⊂ wall𝑝 × 𝐶fr

𝑛 (𝑉) given by those pairs whose first coordinate agrees with 𝜏 (i.e., the space of
framed configurations in the complement 𝑉\ ∪ 𝑗 ,𝑖 𝜏( 𝑗) ×𝑉𝑖) and that the vertical map is induced by the
embedding 𝑉� 𝑝 � ↩→ 𝑉\ ∪ 𝑗 ,𝑖 𝜏( 𝑗) ×𝑉𝑖 obtained from e which is an isotopy equivalence, so induces an
equivalence on framed configuration spaces. It follows that the bottom horizontal map is an equivalence.

To show that ‖𝜀‖ is a weak equivalence, note that its fibre at a framed configuration �𝑥 ∈ 𝐶fr
𝑛 (𝑋) is the

realisation of the nerve of the nonempty totally ordered topological poset of real numbers 𝑡 ∈ (𝜖, 𝜖) such
that {𝑡}×𝑉𝑖 ⊂ 𝑉 is disjoint from �𝑥 for all 𝑖 = 1, . . . 𝑘 , so it is weakly contractible by the above observation.
We now show that ‖𝜀‖ is a microfibration, which will finish the proof because any microfibration with
weakly contractible fibres is a weak equivalence by [Wei05, Lemma 2]. The remaining task is thus to
show that given commutative solid arrows as in

𝐷𝑖 × {0} ‖wall𝑉� ‖ ‖wall•‖ × 𝐶fr
𝑛 (𝑉)

𝐷𝑖 × [0, 𝛿] 𝐷𝑖 × [0, 1] 𝐶fr
𝑛 (𝑉),

𝑓

‖𝜀 ‖

⊂

𝜓

⊂
𝜓

there is an 0 < 𝛿 ≤ 1 for which a dashed lift as indicated exists. For this, we note that the necessary
data to lift a framed configuration �𝑥 ∈ 𝐶fr

𝑛 (𝑉) to ‖wall𝑉� ‖ ⊂ ‖wall�‖ ×𝐶fr
𝑛 (𝑉) is a point 𝑧 ∈ int(Δ 𝑝) for

some number 𝑝 ≥ 0, a function 𝜏 : [𝑝] → (−𝜖, 𝜖) such that �𝑥 is disjoint from {𝜏(𝑖)} × 𝑉 𝑗 ⊂ 𝑉 for all
i and j. For any �𝑥 ′ close enough to �𝑥, the same data works, so for each 𝑥 ∈ 𝐷𝑖 , we get lifts 𝜓(𝑥, 𝑡) for
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𝑡 ∈ [0, 𝛿𝑥] for some 0 < 𝛿𝑥 ≤ 1, uses that the subspaces 𝑉𝑖 ⊂ 𝑉 are closed. By compactness, we can
find a uniform choice of 𝛿𝑥 for 𝑥 ∈ 𝐷𝑖 . This gives the lift. �

Step ⑤. Unitality

The goal of this step is to prove the following proposition, which uses the terminology of Section 2.5.5
and its variation from Remark 2.7 (i).

Proposition 3.9. The non-unital bordism category ncℬord(𝑑)nu ∈ Catnu(𝒞at∞) is quasi-unital and the
following morphism of semisimplicial objects in 𝒞at∞ is quasi-unital

𝐸geo : ncℬord(𝑑)nu −→ FunΔop (Δop
/[•]

,ℳan⊗
𝑑 ).

By the equivalence (18), the non-unital double ∞-category ncℬord(𝑑)nu thus extends to a (unital)
double ∞-category ncℬord(𝑑) ∈ Cat(𝒞at∞). The second part of the proposition together with Re-
mark 2.7 (ii) and Lemma 3.5 implies that the composition (45) is quasi-unital in the sense of Remark 2.7
(i), so using the second part of this remark once more, together with Proposition 3.6, we conclude
that the functor of double ∞-categories ncℬord(𝑑)nu → ALG(PSh(𝒟isc𝑑)) is quasi-unital and thus
extends by the equivalence (18) essentially uniquely to a functor of double ∞-categories

𝐸 : ncℬord(𝑑) −→ ALG(PSh(𝒟isc𝑑)).

Proof of Proposition 3.9. This is tedious but straightforward, so do not spell out all details. Recalling that
ncℬord(𝑑)nu is the levelwise coherent nerve of a semisimplicial Kan-enriched category ncBord(𝑑)nu, the
quasi-unit is given by the coherent nerve of the simplicial functor 𝑢 : ncBord(𝑑)nu

[0]
→ ncBord(𝑑)nu)[1]

which sends a [0]-walled d-manifold (𝑊, 𝜇) to (R×𝑊 |𝜇 (0) , 𝜇
′) with 𝜇′(0) = 𝜇(0) and 𝜇′(1) = 𝜇(0)+1.

On morphisms, it is induced by sending 𝜑 : 𝑊 |[𝜇 (0)−𝜖 ,𝜇 (0)+𝜖 ] → 𝑊 ′ |[𝜇′ (0)−𝜖 ,𝜇′ (0)+𝜖 ] to idR × 𝜑0.
To prove that the functor 𝐸geo : ncℬord(𝑑)nu → FunΔop (Δop

/[•] ,ℳan⊗
𝑑 ) is quasi-unital, recall that

it was constructed as the coherent nerve of the zig-zag

ncBord(𝑑)nu
[•]

𝐸
geo
[•]

−−−→ FunGap (Gap
�• �/

,Man⊗
𝑑 )

�
←− FunGap (Gap�• �/,Man⊗

𝑑 ) � FunΔop (Δop
/[•]

,Man⊗
𝑑 )

of semisimplicial objects in Kan-enriched categories. We first construct the top horizontal functor in a
commutative diagram of Kan-enriched categories

Gap
�1 �/

Gap
�0 �/

Gap�1 �/ Gap�0 �/,

� �

𝜄∗

(56)

where 𝜄 : �0� → �1� is the unique morphism. On objects, the top arrow agrees with the bottom one. On
morphisms, the top arrow is given by sending an embedding 𝛾 : wlab𝛼 (R) |𝛾

−1�𝑞′ � ↩→ wlab𝛼′ (R) to the
unique dashed embedding that makes the diagram

𝛾−1�𝑞′ � × R wlab𝛼 (R) |𝛾
−1�𝑞′ � wlab𝛼◦ 𝜄 (R) |𝛾

−1�𝑞′ � 𝛾−1�𝑞′ � × (−𝜖, 𝜖)

�𝑞′ � × R wlab𝛼′ (R) wlab𝛼′◦ 𝜄 (R) �𝑞′ � × (−𝜖, 𝜖)

⊃

⊃
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commute where the bottom surjection is the identity if 𝛼′(1) ∈ {𝐿, 𝑅} and otherwise the union of the
identity over �𝑞′ �\𝛼′(1) with the map

wlab𝛼′ (R) |𝛼
′ (1) = (−𝜖, 𝜖] � [1 − 𝜖, 1 + 𝜖)

tr−𝜖 �tr−(1−𝜖 )
−−−−−−−−−−→ (−2𝜖, 2𝜖)

1/4
−−→ (−𝜖, 𝜖) = wlab𝛼′◦ 𝜄 (R) |𝛼

′ (1)

over 𝛼′(1); the top arrow is defined in the same way by replacing 𝛼′ by 𝛼. Applying FunGap (−,Man⊗
𝑑 )

to (56) results in a commutative diagram of Kan-enriched categories

FunGap (Gap
�0 �/

,Man⊗
𝑑 ) FunGap(Gap

�1 �/
,Man⊗

𝑑 )

FunGap (Gap�0 �/,Man⊗
𝑑 ) FunGap(Gap�1 �/,Man⊗

𝑑 ),

� �

so 𝑁coh (−) applied to the top arrow models the 0th degeneracy map of FunΔop (Δop
/[•]

,ℳan�
𝑑). Using this

model for the degeneracy and the above quasi-unit for ncℬord(𝑑)nu = 𝑁coh (ncBord(𝑑)nu), it is tedious
but straightforward to check that 𝑁coh (𝐸

geo
• ), and thus, 𝐸geo is quasi-unital. �

Step ⑥. Symmetric monoidal structure

In this step, we promote the functor of double ∞-categories 𝐸 : ncℬord(𝑑) → ALG(PSh(𝒟isc𝑑)) to
a functor of symmetric monoidal double ∞-categories (modelled as commutative monoid objects in
Cat(𝒞at∞); see Section 2.5.3). This is not difficult and essentially amounts to adding an index by a finite
pointed set 〈𝑠〉 ∈ Fin∗ to the previous steps. To avoid being too repetitive, we will not spell out all details.
Convention. Given a space X, a map 𝜆 : 𝑋 → 〈𝑠〉 to 〈𝑠〉, and a subset 𝐴 ⊂ 〈𝑠〉, we denote the
preimage of A by 𝐴|𝑋 � 𝜆−1(𝐴) in order to distinguish it from the notation 𝑋 |𝐴 and 𝑋 |𝐴 introduced in
Convention 3.2 and Step ②.

Step ①’: the bordism category
We start by extending ncℬord(𝑑) ∈ Cat(𝒞at∞) to a symmetric monoidal non-unital double
∞-category ncℬord(𝑑)nu ∈ CMon(Catnu (𝒞at∞)) as follows: first, we extend the semisimplicial
object ncBord(𝑑)nu ∈ Fun(Δop

inj, sCat) in Kan-enriched categories to an object ncBord(𝑑)nu ∈

Fun(Fin∗, Fun(Δop
inj, sCat)) = Fun(Fin∗ × Δop

inj, sCat); evaluation at 〈1〉 ∈ Fin∗ recovers the previous
construction. The value of ncBord(𝑑)nu at ([𝑝], 〈𝑠〉) for 〈𝑠〉 ∈ Fin∗ is the Kan-enriched category
ncBord(𝑑)nu

[𝑝], 〈𝑠〉 whose objects are [𝑝]-walled d-manifolds (𝑊, 𝜇) together with a map 𝜆 : 𝑊 → 〈𝑠〉,
which we think of as a way to decompose W into disjoint summands indexed by 〈𝑠〉. Morphisms from
(𝑊, 𝜇, 𝜆) to (𝑊 ′, 𝜇′, 𝜆′) are embeddings of [𝑝]-walled manifolds that are additionally assumed to com-
mute with the maps to 〈𝑠〉. The functoriality of ncBord(𝑑)nu

[𝑝], 〈𝑠〉 in p is defined as for ncBord(𝑑)nu
[𝑝] ,

and that in 〈𝑠〉 is for 𝜑 ∈ Fin∗(〈𝑠〉, 〈𝑠
′〉) on objects given by (𝑊, 𝜇, 𝜆) ↦→ (𝜑

−1 〈𝑠〉 |𝑊, 𝜇, 𝜑 ◦ 𝜆) and on
morphisms by restricting embeddings. A mild extension of the proof of Lemma 3.3 then shows that
taking coherent nerves yields a commutative monoid object in double ∞-categories, as wished.

Step ②’: the manifold category
Next, we extend the monoidal ∞-category ℳan𝑑 (thought of as a cocartesian fibration ℳan⊗

𝑑 → Gap)
to an symmetric monoidal ∞-category. It will be convenient to view it as a commutative monoid object in
monoidal ∞-categories ℳan𝑑 ∈ CMon(Mon(𝒞at∞)) ⊂ Fun(Fin∗, Fun(Gap,𝒞at∞)). To this end, we
extend the construction of the functor Man⊗

𝑑 → Gap of Kan-enriched categories to yield Kan-enriched
functors Man𝑑�, 〈𝑠〉 → Gap, one for each pointed set 〈𝑠〉 ∈ Fin∗. Objects of Man⊗, 〈𝑠〉

𝑑 are now triples
(𝑊, � 𝑝 �, 𝜆) of � 𝑝 � ∈ Gap, a smooth submanifold 𝑊 ⊂ � 𝑝 � × R × R∞ and a map 𝜆 : 𝑊 → 〈𝑠〉. The
space of morphisms is defined as before, with the additional requirement that the embeddings have
to commute with the reference maps to 〈𝑠〉. Given a map 𝜑 : 〈𝑠〉 → 〈𝑠′〉 in Fin∗, there is a functor
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Man𝑑�, 〈𝑠〉 → Man𝑑�, 〈𝑠′ 〉 over Gap which on objects is given by (𝑊, � 𝑝 �, 𝜆) ↦→ (𝜑
−1 〈𝑠′ 〉 |𝑊, � 𝑝 �, 𝜑 ◦ 𝜆)

and on morphisms is induced by restriction. This yields a functor from Fin∗ to cocartesian fibrations
over Gap. Using straightening and taking coherent nerves then gives the desired commutative monoid
object in monoidal ∞-categories.

Step ③’: from the bordism category to the pre-Morita category of manifolds
By the discussion in Section 2.9.4, taking pre-Morita categories of ℳan𝑑 ∈ CMon(Mon(𝒞at∞))
yields a commutative monoid object ALG(ℳan𝑑) ∈ CMon(Fun(Δop,𝒞at∞)), and our next task is
to upgrade the morphism 𝐸geo : ncℬord(𝑑)nu → ALG(ℳan𝑑) in Fun(Δop

inj,𝒞at∞) from Step ③ to
a morphism in CMon(Fun(Δop

inj,𝒞at∞)). To do this, we first define for each 〈𝑠〉 ∈ Fin∗ a variant
𝐸

geo
[•], 〈𝑠〉

: (ncBord(𝑑)nu)[•], 〈𝑠〉 → FunGap (Gap
�• �/

,Man⊗, 〈𝑠〉
𝑑 ) in Fun(Δop

inj, sCat) of (42). For this, note
that in the notation of Substep (a) I, projection on R × R∞ gives a map lab𝛼 (𝑊, 𝜇) → 𝑊 for any [𝑝]-
walled manifold, so if W comes with a map to 〈𝑠〉, then so does lab𝛼 (𝑊, 𝜇). Based on this observation,
the construction of 𝐸

geo
[•]

from (42) directly generalises to a functor 𝐸
geo
[•], 〈𝑠〉

as desired by incorporat-
ing the maps to 〈𝑠〉. Varying s, the maps 𝐸

geo
[•], 〈𝑠〉

define a morphism in Fun(Fin∗, Fun(Δop
inj, sCat)).

Taking coherent nerves gives desired extension of 𝐸geo to a morphism in the full subcategory
CMon(Fun(Δop

inj,𝒞at∞)) ⊂ Fun(Fin∗, Fun(Δop
inj,𝒞at∞)),

𝐸geo : ncℬord(𝑑)nu −→ ALG(ℳan𝑑). (57)

Step ④’: composite algebras
We claim that the two functors

ℳan𝑑 −→ PSh(ℳan𝑑) −→ PSh(𝒟isc𝑑) (58)

extend to morphisms in CMon(𝒞at∞) � CMon(Mon(𝒞at∞)) (see Remark 2.4). For the first map, we
discussed this in Section 2.6. A restriction map on presheaves such as the second map in (58) is only
lax symmetric monoidal in general, but turns out to be actually monoidal in our case:

Lemma 3.10. The lax symmetric monoidal functor PSh(ℳan𝑑) → PSh(𝒟isc𝑑) induced by restriction
along the inclusion 𝜄∗ : 𝒟isc𝑑 ↩→ ℳan𝑑 is strong monoidal.

Proof. By the formula for Day convolution, it suffices to verify that for finite sets S, the inclusion
(𝒟isc𝑑 × 𝒟isc𝑑)op

𝑆×R𝑑/ ⊂ (ℳan𝑑 × ℳan𝑑)op
𝑆×R𝑑/ is cofinal (recall the convention to take slices before

opposition). By [Lur09a, 4.1.3.1], it suffices to prove that ((𝒟isc𝑑 × 𝒟isc𝑑)op
𝑆×R𝑑/)/𝑢 has a terminal

object for all triples (𝑀, 𝑀 ′, 𝑢) of 𝑀, 𝑀 ′ ∈ ℳan𝑑 and 𝑢 : 𝑆 × R𝑑 ↩→ 𝑀 � 𝑀 ′. Such a terminal object
is given by the factorisation 𝑆 × R𝑑 = 𝑇 × R𝑑 � 𝑇 ′ × R𝑑 𝑢

−→ 𝑀 where the decomposition 𝑆 = 𝑇 � 𝑇 ′ is
so that 𝑇 × R𝑑 = 𝑢−1(𝑀) and 𝑇 ′ × R𝑑 = 𝑢−1(𝑀 ′). �

After applying ALG(−) to (58), this gives a composition of morphisms in CMon(Fun(Δop
inj,𝒞at∞))

(see Section 2.9.4) which we may precompose with (57) to arrive at an enhancement of (45) to

𝐸 : ncℬord(𝑑)nu 𝐸geo

−→ ALG(ℳan𝑑)
𝑦∗

−→ ALG(PSh(ℳan𝑑))
𝜄∗

−→ ALG(PSh(𝒟isc𝑑)) (59)

in CMon(Fun(Δop
inj,𝒞at∞)) ⊂ Fun(Fin∗ × Δop

inj,𝒞at∞)). To show that this composition lands in the
levelwise full subcategory ALG(PSh(𝒟isc𝑑)) ⊂ ALG(PSh(𝒟isc𝑑)) (which lies in the full subcategory
CMon(Cat(𝒞at∞)) ⊂ CMon(Fun(Δop

inj,𝒞at∞)); see Section 2.9.4), by the Segal property it suffices to
show this after evaluation at 〈1〉 ∈ Fin∗ where it agrees with the previously variant without symmetric
monoidal structures for which we have already checked this property in Step ④, so we obtain a
map ncℬord(𝑑)nu → ALG(PSh(𝒟isc𝑑)) in CMon(Catnu(𝒞at∞)). Finally, a minor extension of the
arguments of Step ⑤ to incorporate indexing maps to finite sets enhances this to a functor of symmetric
monoidal double ∞-categories 𝐸 : ncℬord(𝑑) → ALG(PSh(𝒟isc𝑑)).
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Step ⑦. Variants

We now define several variants of ncℬord(𝑑), related by a diagram

ℬord(𝑑) ℬord(𝑑)𝜕 ℬord(𝑑 − 1)

ncℬord(𝑑) ncℬord(𝑑)𝜕 ncℬord(𝑑 − 1)

(60)

of symmetric monoidal double ∞-categories. Informally speaking, ℬord(𝑑) is obtained from
ncℬord(𝑑) by restricting to compact bordisms between closed manifolds and diffeomorphisms be-
tween them; the versions with a (−)𝜕-subscript allow manifolds to have boundary, all vertical maps and
the left horizontal maps are induced by inclusion, and the right horizontal maps are induced by taking
boundaries.

Step ⑦.1. Compact variant
To define the compact variantℬord(𝑑), we say that a [𝑝]-walled d-manifold (𝑊, 𝜇) is of of compact type
if the subspace 𝑊 |[𝜇 (0)−𝜖 ,𝜇 (𝑝)+𝜖 ] ⊆ 𝑊 is compact. Restricting to [𝑝]-walled d-manifolds of compact
type in the construction of ncℬord(𝑑) and to spaces of diffeomorphisms instead of embeddings defines
the symmetric monoidal double ∞-category ℬord(𝑑). By construction, it comes with a levelwise
subcategory inclusion into ncℬord(𝑑). This is the leftmost vertical map in (60).

Step ⑦.2. Variants with boundary
To define the variant ncℬord(𝑑)𝜕 of ncℬord(𝑑) involving manifolds with boundary, we replace [𝑝]-
walled d-manifolds (𝑊, 𝜇), where 𝑊 ⊂ R × R∞ is required to have no boundary, by [𝑝]-walled
d-manifolds with boundary: these are pairs (𝑊, 𝜇) of a smooth submanifold 𝑊 ⊂ R × [0,∞) × R∞,
possibly with boundary, together with an order-perserving function 𝜇 : [𝑝] → R such that

(i) (𝑊, 𝜇) satisfies the conditions in the definition of [𝑝]-walled d-manifolds (see Step ①),
(ii) 𝜕𝑊 = 𝑊 ∩ (R × {0} × R∞) such that 𝑊 ∩ (R × [0, 𝜖] × R∞) = 𝜕𝑊 × [0, 𝜖] under the appropriate

identifications.

The space Emb((𝑊, 𝜇), (𝑊 ′, 𝜇′)) of embeddings of [𝑝]-walled d-manifolds with boundary is defined
in the same way as in the case without boundary, except that we demand in addition that the embedding
𝜑 : 𝑊 |[𝜇 (0)−𝜖 ,𝜇 (𝑝)+𝜖 ] ↩→ 𝑊 ′|[𝜇′ (0)−𝜖 ,𝜇′ (𝑝)+𝜖 ] also satisfies

(i) 𝜑−1(R × [0, 𝜖] × R∞) = (𝑊 |[𝜇 (0)−𝜖 ,𝜇 (𝑝)+𝜖 ] ) ∩ (R × [0, 𝜖] × R∞),
(ii) under the appropriate identifications, 𝜑 restricts to an embedding of the form

(𝜕𝜙 × id[0, 𝜖 ] ) : 𝜕𝑊 |[𝜇 (0)−𝜖 ,𝜇 (𝑝)+𝜖 ] × [0, 𝜖] ↩−→ 𝜕𝑊 ′|[𝜇′ (0)−𝜖 ,𝜇′ (𝑝)+𝜖 ] × [0, 𝜖]

for some embedding 𝜕𝜑 : 𝜕𝑊 |[𝜇 (0)−𝜖 ,𝜇 (𝑝)+𝜖 ] ↩→ 𝜕𝑊 ′|[𝜇 (0)−𝜖 ,𝜇 (𝑝)+𝜖 ] .

Replacing the [𝑝]-walled d-manifolds in the construction of ncℬord(𝑑) by [𝑝]-walled d-manifolds
with boundaries in the sense just described gives rise to a symmetric monoidal double ∞-category
ncℬord(𝑑)𝜕 which receives a levelwise full subcategory inclusion from ncℬord(𝑑), induced by the
inclusion R× R∞ � R× {1} × R∞ ⊂ R× [0,∞) × R∞. This inclusion restricts to a functor ℬord(𝑑) →
ℬord(𝑑)𝜕 where ℬord(𝑑)𝜕 is the symmetric monoidal double ∞-category given as the levelwise
subcategory of ncℬord(𝑑)𝜕 obtained by restricting to [𝑝]-walled d-manifolds with boundary of compact
type, defined by the same condition as for the variant without boundary, and to diffeomorphisms between
them instead of embeddings. This explains (60), except for the horizontal functor of the right square
which is induced by sending a [𝑝]-walled d-manifold with boundary 𝑊 ⊂ R × [0,∞) × R∞ to its
boundary 𝜕𝑊 = 𝑊 ∩ (R × {0} × R∞), with the same walls, and restricting embeddings to the boundary.

https://doi.org/10.1017/fmp.2024.25 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2024.25


46 M. Krannich and A. Kupers

Step ⑦.3. Tangential structures without boundary
Associating to a smooth manifold M its frame bundle Fr(𝑀) with its canonical right GL𝑑 (R)-action
induces a functor of Kan-enriched categories

(Man⊗
𝑑 )[1] −→ Fun(GLop

𝑑 ,S)◦, (61)

where Man⊗
𝑑 is the symmetric monoidal ∞-category from Step ② and Step ⑥, and GL𝑑 is the (singular

simplicial set of) the topological group GL𝑑 (R) viewed as a Kan-enriched groupoid with one object.
The superscript (−)◦ indicates that we pass to the full subcategory on the fibrant-cofibrant objects in the
projective model structure on Fun(GLop

𝑑 ,S), as in [Lur17, A.3.3.2]. Let us explain why functor Fr(−)
takes values in this subcategory. First, Fr(𝑀) is fibrant: in the projective model structure, an object is
fibrant if its underlying simplicial set is a Kan complex, and this is the case for Fr(𝑀) as a singular
simplicial set of a topological space. Second, Fr(𝑀) is cofibrant: because the map Fun(GLop

𝑑 ,S) → S
that forgets the action is the right adjoint in a Quillen adjunction, each map GL𝑑 (R) ×𝑆 → GL𝑑 (R) ×𝑆′

with canonical right GL𝑑 (R)-action and 𝑆 → 𝑆′ a monomorphism is a cofibration, and Fr(𝑀) – being
locally trivial – is isomorphic to a (possibly transfinite) composition of pushouts against such maps.

Applying coherent nerves to the map (61) and viewing GL𝑑 as an ∞-category via the coherent nerve
gives a functor of ∞-categories

(ℳan⊗
𝑑 )[1] � 𝑁coh ((Man⊗

𝑑 )[1] ) −→ 𝑁coh (Fun(GLop
𝑑 ,S)◦) � Fun(𝑁coh (GLop

𝑑 ),𝒮) = PSh(GL𝑑),

where the second equivalence is an instance of [Lur09a, 4.2.4.4]. Since the unit ∅ ∈ (ℳan⊗
𝑑 )[1] is initial

and so ℳan�
𝑑 is unital as an ∞-operad [Lur17, 2.3.1.1], this functor extends uniquely to a lax symmetric

monoidal functor Fr(−) : ℳan⊗ → PSh(GL𝑑)
�, where PSh(GL𝑑) carries the cocartesian symmetric

monoidal structure [Lur17, 2.4.3.9]. Note that Fr(𝑀) � Fr(𝑁) → Fr(𝑀 � 𝑁) is an equivalence for
manifolds M and N, so this is actually (strong) symmetric monoidal.

By an easier version of the argument in Step ④, the composition

ncℬord(𝑑)
𝐸geo

−→ ALG(ℳan𝑑)
ALG(Fr(−))
−−−−−−−−−→ ALG(PSh(GL𝑑))

lands in the Morita double ∞-category ALG(PSh(GL𝑑)) ⊂ ALG(PSh(GL𝑑)), which is equivalent to
COSPAN+(PSh(GL𝑑)) (see Section 2.10.2). We thus arrive at a functor of symmetric monoidal double
∞-categories Fr(−) : ncℬord(𝑑) → COSPAN+(PSh(GL𝑑)). Informally, this is given by sending a
bordism 𝑊 : 𝑃 � 𝑄 to the cospan Fr(𝑐(𝑃)) → Fr(𝑊) ← Fr(𝑐(𝑄)), where 𝑐(𝑃), 𝑐(𝑄) ⊂ 𝑊 are collar
neighbourhoods of the boundary components.

Definition 3.11. Given a tangential structure 𝜃 ∈ PSh(GL𝑑), we define ncℬord𝜃 (𝑑) and ℬord𝜃 (𝑑) by
the following pullbacks in symmetric monoidal double ∞-categories:

ℬord𝜃 (𝑑) ncℬord𝜃 (𝑑) COSPAN+(PSh(GL𝑑)/𝜃 )

ℬord(𝑑) ncℬord(𝑑) COSPAN+(PSh(GL𝑑));
Fr(−)

here, the rightmost vertical map is induced by the forgetful functor PSh(GL𝑑)/𝜃 → PSh(GL𝑑) which
preserves colimits [Lur17, 1.2.13.8] and thus induces a functor on cospan categories.

Varying 𝜃 induces functors ncℬord(−) (𝑑),ℬord(−) (𝑑) : PSh(GL𝑑) → CMon(Cat(𝒞at∞)). In par-
ticular, for a map 𝜃 → 𝜃 ′ in PSh(GL𝑑), we have functors

ℬord𝜃 (𝑑) −→ ℬord𝜃
′

(𝑑) and ncℬord𝜃 (𝑑) −→ ncℬord𝜃
′

(𝑑). (62)
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Step ⑦.4. Tangential structures with boundary
To define the version ncℬord(𝑑)𝜕 that includes tangential structure, one uses a variant

𝐸geo : ncℬord(𝑑)𝜕 −→ ALG(ℳan𝜕𝑑) (63)

of the map 𝐸geo : ncℬord(𝑑) → ALG(ℳan𝑑) between commutative monoid objects in simplicial ∞-
categories. The symmetric monoidal ∞-category ℳan𝜕𝑑 is defined in the same way as ℳan𝑑 except that
we use submanifolds𝑊 ⊂ � 𝑝 �×R× [0,∞)×R∞ that may have boundary, but have to satisfy the evident
analogue of (ii) in the definition of a [𝑝]-walled d-manifold with boundary. With this modification, the
construction in Step ③ and its extensions in Step ⑤ and Step ⑥ extend almost verbatim to give the map
(63) in CMon(Fun(Δop,𝒞at∞)).

Assigning to a manifold 𝑊 ∈ (ℳan𝜕,⊗𝑑 )[1] the map Fr(𝜕𝑊 × [0, 𝜖]) → Fr(𝑊) induced by the
inclusion, induces an extension of the functor (ℳan�

𝑑)[1] → PSh(GL𝑑) to a functor of ∞-categories

(ℳan𝜕,⊗𝑑 )[1] −→ Fun([1] × 𝑁coh (GLop
𝑑 ),𝒮) ≕ PSh([1] × GL𝑑)

which, by the same argument as in the case without boundary, extends to a symmetric monoidal functor
Fr(−) : ℳan𝜕,⊗𝑑 → PSh([1] × GL𝑑)

�, where the target is equipped with the cocartesian symmetric
monoidal structure. This functor allows us to extend Definition 3.11 to define symmetric monoidal
double ∞-categories

ncℬord𝜃 (𝑑)𝜕 and ncℬord𝜃 (𝑑)𝜕

for any tangential structure 𝜃 with boundary by which mean a map 𝜃 = (𝜃𝜕→𝜃◦) ∈ PSh([1] × GL𝑑).

Step ⑦.5. Taking boundaries with tangential structures
Next, we extend the ‘taking-boundaries functors’ ncℬord(𝑑)𝜕 → ncℬord(𝑑 − 1) and ℬord(𝑑)𝜕 →
ℬord(𝑑 − 1) from (60) to include tangential structures. This involves the commutative diagram

(ℳan𝜕,⊗𝑑 )[1] PSh([1] × GL𝑑) PSh([1] × GL𝑑)

(ℳan⊗
𝑑−1)[1] PSh(GL𝑑−1) PSh(GL𝑑)

res
ind𝑑𝑑−1

(64)

of ∞-categories where the leftmost vertical map is induced by sending a submanifold 𝑊 ⊂ � 𝑝 � × R ×
[0,∞) × R∞ to its boundary (i.e., the intersection with � 𝑝 � × R × {0} × R∞). The arrow labelled res is
induced by precomposition with the inclusion {1} × GL𝑑 ⊂ [1] × GL𝑑 , and the arrow labelled ind𝑑𝑑−1 is
the left adjoint to the functor res𝑑𝑑−1 : PSh(GL𝑑) → PSh(GL𝑑−1) induced by precomposition with the
inclusion GL𝑑−1 (R) ⊂ GL𝑑 (R) using the first (𝑑−1)-coordinates. One way to provide the commutativity
of (64) is to recognise this diagram as the coherent nerve of a diagram of Kan-enriched categories (using
[Lur09a, 5.2.4.6] for ind𝑑𝑑−1) and then use the fact that the extension ind𝑑𝑑−1 (Fr(𝜕𝑊)) → Fr(𝜕𝑊×[0, 𝜖])
of the GL𝑑−1(R)-equivariant map Fr(𝜕𝑊) → Fr(𝜕𝑊 × [0, 𝜖]) induced by the inclusion 𝜕𝑊 × {0} ⊂
𝜕𝑊 × [0, 𝜖] and the canonical non-zero vector field on [0, 𝜖] is a natural equivalence of GL𝑑 (R)-spaces.

Equipping all categories of presheaves with the cocartesian symmetric monoidal structure and
using the universality property as in Step ⑦.3, we can extend (64) to a commutative diagram of
symmetric monoidal ∞-categories. Applying ALG(−), using the 𝐸geo-functors, and the equivalence
ALG(𝒞) � COSPAN+(𝒞) for cocartesian 𝒞, this leads to a commutative diagram of symmetric
monoidal double ∞-categories
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ℬord(𝑑)𝜕 ncℬord(𝑑)𝜕 COSPAN+(PSh([1] × GL𝑑)) COSPAN+(PSh([1] × GL𝑑))

ℬord(𝑑 − 1)𝜕 ncℬord(𝑑 − 1) COSPAN+(PSh(GL𝑑−1)) COSPAN+(PSh(GL𝑑))

(res)∗
(ind𝑑𝑑−1)∗

For a tangential structure with boundary 𝜃 = (𝜃𝜕→𝜃◦) ∈ PSh([1] × GL𝑑), this induces extensions

ℬord𝜃 (𝑑)𝜕 −→ ℬordres𝑑
𝑑−1 (𝜃𝜕) (𝑑 − 1) and ncℬord𝜃 (𝑑)𝜕 −→ ncℬordres𝑑

𝑑−1 (𝜃𝜕) (𝑑 − 1)

of the ‘taking boundaries’ functors from (60).

Example 3.12. The tangential structure with boundary encoding framings is fr ≔ (id : GL𝑑 (R) →
GL𝑑 (R)), so the above in particular gives a functor of symmetric monoidal double ∞-categories
ℬordfr (𝑑)𝜕 → ℬord1−fr (𝑑 − 1)𝜕 from the compact framed d-dimensional bordism category with
boundary to the d-dimensional bordism category with boundary, and the tangential structure 1−fr ≔
res𝑑𝑑−1 (GL𝑑 (R)) encodes framings of the once-stablised tangent bundle.

Step ⑧. Product functors

Given a smooth p-manifold P, possibly with boundary, we now explain the construction of a ‘taking
products’ functor of symmetric monoidal double ∞-categories

(𝑃 × −) : ncℬord(𝑑)𝜕 −→ ncℬord(𝑑 + 𝑝)𝜕, (65)

which restricts to product functors of the form

ncℬord(𝑑) → ncℬord(𝑑 + 𝑝), ℬord(𝑑)𝜕 → ℬord(𝑑 + 𝑝)𝜕, and ℬord(𝑑) → ℬord(𝑑 + 𝑝)

if P has no boundary, is compact or is closed, respectively. This will involve smoothing corners.
We fix an embedding 𝑃 ⊂ [0,∞) × R𝑁 for some 𝑁 ≥ 0 which satisfies the condition (ii) in the

definition of a [𝑝]-walled d-manifolds with boundary (ignoring the first R-factor). Furthermore, we fix
once and for all a homeomorphism 𝜓 : [0,∞) × [0,∞) → [0,∞) × R such that

(i) 𝜓 agrees with the identity on [0,∞) × {0} and with the clockwise rotation by 𝜋/2 on {0} × [0,∞).
In particular, it fixes the origin.

(ii) 𝜓 is a diffeomorphism away from the origin.
(iii) 𝜓−1([0, 𝜖] × R) ⊂

(
[0, 𝜖] × [0,∞) ∪ [0,∞) × [0, 𝜖]

)
,

(iv) 𝜓([0, 𝛿] × [0,∞) ∪ [0,∞) × [0, 𝛿]) ⊂ [0, 𝜖] × R for some fixed 0 < 𝛿 ≤ 𝜖
(v) 𝜓 fixes the point (1, 1).

Using 𝜓 and its properties (i)–(iii), given a [𝑝]-walled d-manifold with boundary (𝑊, 𝜇), we obtain a
[𝑝]-walled (𝑑 + 𝑝)-manifold with boundary (Ψ(𝑃 ×𝑊), 𝜇) with Ψ(𝑃 ×𝑊) the image of 𝑃 ×𝑊 under

[0,∞) × R𝑁 × R × [0,∞) × R∞ swap
−−−→ R × [0,∞) × [0,∞) × R𝑁 × R∞

idR×𝜓×idR𝑁 ×R∞

−−−−−−−−−−−−−→ R × [0,∞) × R × R𝑁 × R∞
idR×[0,∞)×shift
−−−−−−−−−−−→ R × [0,∞) × R∞,

where the first map swaps the right [0,∞) × R𝑁 -factor with the middle R × [0,∞)-factor. For instance,
condition (iii) is used to ensure the condition Ψ(𝑃 ×𝑊) ∩ (R × [0, 𝜖] × R∞) = 𝜕 (Ψ(𝑃 ×𝑊)) × [0, 𝜖]
in the definition of a [𝑝]-walled manifold with boundary. Note that Ψ(𝑃 ×𝑊) comes with a preferred
homeomorphism 𝑃×𝑊 � Ψ(𝑃×𝑊) which is a diffeomorphism away from 𝜕𝑃× 𝜕𝑊 as a consequence
of condition (ii). Taking products with P and conjugating with 𝜓 induces a map

Emb
(
(𝑊, 𝜇), (𝑊 ′, 𝜇′)

)
−→ Emb

(
(Ψ(𝑃 ×𝑊), 𝜇), (Ψ(𝑃 ×𝑊 ′), 𝜇′)

)
,
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which is well-defined due to the collaring condition (ii) on embeddings between [𝑝]-walled d-manifolds
with boundaries. Going through the construction of ncℬord(𝑑)𝜕, one checks that the assignment
(𝑊, 𝜇) ↦→ (Ψ(𝑃 × 𝑊), 𝜇) together with the maps between embedding spaces just discussed leads to
functors as desired.

These product functors can be extended to include tangential structures. To this end, one notes that
there is a functor of symmetric monoidal categories (𝑃 × −) : ℳan𝜕𝑑 → ℳan𝜕𝑝+𝑑 defined as for (65).
On underlying ∞-categories, this participates in a diagram of ∞-categories

(ℳan𝜕,⊗𝑑 )[1] PSh([1] × GL𝑑)

PSh([1] × GL𝑝 × GL𝑑)

(ℳan𝜕,⊗𝑝+𝑑)[1] PSh([1] × GL𝑝+𝑑)

(𝑃×−)

ind𝑝+𝑑
𝑝,𝑑

(66)

where the upper right vertical arrow is the functor that sends a map 𝑋 → 𝑌 of GL𝑑 (R)-spaces to

(Fr(𝑃) × 𝑋) ∪Fr(𝜕𝑃×[0, 𝜖 ])×𝑋 (Fr(𝜕𝑃 × [0, 𝜖]) × 𝑌 ) → Fr(𝑃) × 𝑌

viewed as a map of (GL𝑝 (R) × GL𝑑 (R))-spaces, and the functor ind𝑝+𝑑
𝑝,𝑑 is the left adjoint to the

restriction along the inclusion GL𝑝 (R) ×GL𝑑 (R) ⊂ GL𝑝+𝑑 (R). (66) can be extended to a commutative
square of ∞-categories in a way similar to what we did for (64): recognise it as the coherent nerve of a
diagram of Kan-enriched categories and then use that the two compositions are related by a zig-zag of
natural equivalences. In this case, the zig-zag is provided by the commutative diagram

res𝑝+𝑑
𝑝,𝑑 Fr(𝜕Ψ(𝑃 ×𝑊) × [0, 𝜖]) res𝑝+𝑑

𝑝,𝑑 Fr(Ψ(𝑃 ×𝑊))

(Fr(int(𝑃)) × Fr(𝑐(𝑊)))) ∪Fr(𝑐 (𝑃))×Fr(𝑐 (𝑊 )) (Fr(𝑐(𝑃)) × Fr(int(𝑊)) Fr(int(𝑃)) × Fr(int(𝑊))

(Fr(𝑃) × Fr(𝜕𝑊 × [0, 𝜖])) ∪Fr(𝜕𝑃×[0, 𝜖 ]))×Fr(𝑊×[0, 𝜖 ]) Fr(𝜕𝑃 × [0, 𝜖]) × Fr(𝑊) Fr(𝑃) × Fr(𝑊)

of (GL𝑝 (R) ×GL𝑑 (R))-spaces which is natural in W and consists of vertical equivalences when taking
adjoints with respect to the (ind𝑝+𝑑

𝑝,𝑑 , res𝑝+𝑑
𝑝,𝑑 )-adjunction. Here, 𝑐(𝑃) ≔ 𝜕𝑃 × (0, 𝛿) ⊂ int(𝑃) and

𝑐(𝑊) ≔ 𝜕𝑊 × (0, 𝛿) ⊂ int(𝑃), the lower vertical arrows are induced by the inclusions int(𝑃) ⊂ 𝑃 and
int(𝑊) ⊂ 𝑊 , and the upper vertical arrows by the preferred embedding int(𝑃) × int(𝑊) ↩→ Ψ(𝑃 ×𝑊)
induced by 𝜓; this uses property (iv) of 𝜓. Similarly to the final paragraph of Step ⑦.5, (66) yields a
commutative diagram of symmetric monoidal double ∞-categories

ncℬord(𝑑)𝜕 COSPAN+(PSh([1] × GL𝑑))

ncℬord(𝑝 + 𝑑)𝜕 COSPAN+(PSh([1] × GL𝑝+𝑑)).

𝑃×(−) (67)

Now given a tangential structure with boundary 𝜆 = (𝜆𝜕 → 𝜆◦) ∈ PSh([1] ×GL𝑝), and a 𝜆-structure on
P in the form of a map ℓ𝑃 : (Fr(𝑃), Fr(𝜕𝑃 × [0, 𝜖])) → (𝜆◦, 𝜆𝜕) in PSh([1] × GL𝑝), then (67) induces
a functor of symmetric monoidal double ∞-categories

((𝑃, ℓ𝑃) × (−)) : ncℬord𝜃 (𝑑)𝜕 −→ ncℬordglue(𝜃,𝜆) (𝑝 + 𝑑)𝜕,
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where glue(𝜃, 𝜆) ≔ ind𝑝+𝑑
𝑝,𝑑

(
𝜆◦ × 𝜃𝜕 ∪𝜆𝜕×𝜃𝜕 𝜆

𝜕 × 𝜃◦ → 𝜆◦ × 𝜃◦
)
∈ PSh([1] × GL𝑝+𝑑).This also extends

the variants of the product functors mentioned below (65), where property (v) of 𝜓 is used for the
variants without boundary.

Example 3.13. In the case of framings fr𝑝 = 𝜆 = (id : GL𝑝 (R) → GL𝑝 (R)) and fr𝑑 = 𝜃 =
(id : GL𝑑 (R) → GL𝑑 (R)), we have glue(fr𝑝 , fr𝑑) � fr𝑑+𝑝 , so omitting the subscripts, we have
a product functor of symmetric monoidal double ∞-categories ((𝑃, ℓ𝑃) × (−)) : ncℬordfr (𝑑)𝜕 →
ncℬordfr (𝑝 + 𝑑)𝜕 for framed p-manifolds P, and similarly for the compact variants.

4. Properties of E, embedding calculus and 𝓓isc-structure spaces

The main outcome of the previous section is the construction of a functor

𝐸 : ncℬord(𝑑) −→ ℳod(𝑑) � ALG(PSh(𝒟isc𝑑))

of symmetric monoidal double ∞-categories, in the sense of Section 2.5.3, from a bordism category of
(possible noncompact) (𝑑−1)-manifolds to a Morita category on the category PSh(𝒟isc𝑑) of presheaves
on a category 𝒟isc𝑑 of finite disjoint unions of d-dimensional Euclidean spaces and codimension
0 embeddings between them. We also constructed variants ℬord(𝑑), ℬord(𝑑)𝜕 and ncℬord(𝑑)𝜕

of ncℬord(𝑑), related by a diagram of symmetric monoidal double ∞-categories (60), as well as
enhancements with tangential structures of all of these bordism categories.

This section has several purposes: first, in Section 4.1, we give more practical descriptions of these
double ∞-categories by describing their objects and mapping ∞-categories in a model-independent and
more intuitive manner, and we explain the functor E in these terms. For most of the arguments in the
later sections, this discussion is sufficient, and there is no need to know the specifics of the construction
in Section 3. Second, we establish three properties of the functor E:

• a descent property in Section 4.2,
• a close relationship to Goodwillie–Weiss’ embedding calculus in Section 4.3, and
• an isotopy extension property in Section 4.4.

Finally, in Section 4.5, we give the precise definition of the 𝒟isc-structure spaces.

4.1. Mapping ∞-categories

Recall from Section 2.5.4 that a double ∞-category 𝒞 has mapping ∞-categories 𝒞𝐴,𝐵 for objects
𝐴, 𝐵 ∈ 𝒞[0] , and these feature in composition functors 𝒞𝐴,𝐵 × 𝒞𝐵,𝐶 → 𝒞𝐴,𝐶 . We now spell these out
for some of the double ∞-categories of the previous section.

4.1.1. nc𝓑ord(𝒅)
In short: objects of ncℬord(𝑑) are (possibly noncompact) (𝑑 − 1)-manifolds P without boundary,
and given two such manifolds P and Q, the objects of the mapping ∞-category ncℬord(𝑑)𝑃,𝑄 are
bordisms𝑊 : 𝑃 � 𝑄 and the mapping spaces in ncℬord(𝑑)𝑃,𝑄 are given by embedding spaces relative
to the boundary. The composition in these mapping ∞-categories is by composing embeddings, the
composition functor ncℬord(𝑑)𝑃,𝑄 × ncℬord(𝑑)𝑄,𝑅 → ncℬord(𝑑)𝑃,𝑅 by gluing bordisms, and the
symmetric monoidal structure by disjoint union.

More precisely, given a (𝑑 − 1)-manifold P, we may use the weak Whitney embedding theorem to
choose an embedding 𝑃 ⊂ R∞ and can thus view P as a [0]-walled manifold (R × 𝑃, 𝜇) in the sense
of Step ① of Section 3 (and hence as an object in ncℬord(𝑑)[0]) by setting 𝜇(0) = 0. Moreover, it is
easy to see that each object in ncℬord(𝑑)[0] is equivalent to one of this form, so we will no longer
distinguish between abstract (𝑑 − 1)-manifolds and objects in ncℬord(𝑑)[0] . Similarly, given a bordism
𝑊 ≔ 𝑃 � 𝑄 between (𝑑 − 1)-manifolds, we may embed it suitably collared in [0, 1] × R∞ so that
((∞, 0] × 𝑃 ∪𝑊 ∪ [1,∞) ×𝑄, 𝜇) with 𝜇(𝑖) = 𝑖 for 𝑖 = 0, 1 is a [1]-walled manifold and thus an object
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in the mapping ∞-category ncℬord(𝑑)𝑃,𝑄. Again, any object is equivalent to one of this form, so we
will also no longer distinguish between abstract bordisms 𝑃 � 𝑄 and objects in ncℬord(𝑑)𝑃,𝑄. The
identification of the mapping spaces in ncℬord(𝑑)𝑃,𝑄 is justified by the following:

Lemma 4.1. Given possibly noncompact bordisms 𝑊,𝑊 ′ : 𝑃 � 𝑄 between (𝑑 − 1)-manifolds 𝑃,𝑄
without boundary, there is a natural equivalence Mapncℬord(𝑑)𝑃,𝑄

(𝑊,𝑊 ′) � Emb𝜕 (𝑊,𝑊 ′) in 𝒮.

Proof. Using that mapping spaces in a pullback of ∞-categories are pullbacks of the mapping
spaces, and that coherent nerves of Kan-enriched categories preserve mapping spaces, we see
Mapncℬord(𝑑)𝑃,𝑄

(𝑊,𝑊 ′) is the fibre (i.e., pullback along the indicated inclusion of a point) in 𝒮

Mapncℬord(𝑑)𝑃,𝑄
(𝑊,𝑊 ′) = fibid

(
Emb(𝑊,𝑊 ′)𝑤

res
−→ Emb(𝑃, 𝑃) × Emb(𝑄,𝑄)

)
,

where the subscript (−)𝑤 indicates that we restrict to the subspace of embeddings e that in some fixed
collars, 𝑃 × [0, 1] ↩→ 𝑊 and 𝑄 × [−1, 0] ↩→ 𝑊 have the form id × 𝑒𝑃 and id × 𝑒𝑄 for self-embeddings
𝑒𝑃 and 𝑒𝑄 of P and Q, respectively. The map res is induced by restriction to 𝑒𝑃 and 𝑒𝑄. It is not hard to
see that this is a Kan fibration, so the fibre in 𝒮 agrees with the point-set fibre over (id, id). The latter is
Emb𝜕 (𝑊,𝑊 ′), so we obtain an equivalence as claimed. �

4.1.2. 𝓑ord(𝒅)
Under the identification of the objects in ncℬord(𝑑)[0] as (𝑑−1)-manifolds P without boundary, those in
the subcategory ℬord(𝑑)[0] correspond to (𝑑−1)-manifolds P without boundary that are also compact.
Similarly, the objects in the mapping ∞-categories of the levelwise subcategory ℬord(𝑑) ⊂ ncℬord(𝑑)
correspond to compact bordisms between closed manifolds. The morphism spaces in the mapping ∞-
categories are given by spaces of diffeomorphisms fixing the boundary. Hence, unlike for ncℬord(𝑑),
all mapping ∞-categories of ℬord(𝑑) are ∞-groupoids and can be regarded as spaces. Thus, by the
discussion of Section 2.5.6, not much is lost by applying (−) (∞,1) and considering the symmetric
monoidal ∞-category ℬord(𝑑) (∞,1) with objects closed (𝑑 − 1)-manifolds and mapping spaces

ℬord(𝑑)𝑃,𝑄 � Mapℬord(∞,1) (𝑑) (𝑃,𝑄) �
⊔

[𝑊 ] BDiff𝜕 (𝑊),

where [𝑊] ranges over compact bordisms 𝑊 : 𝑃 � 𝑄 up to diffeomorphism relative to the ends.
Composition is by gluing bordisms and the symmetric monoidal structure by disjoint union.

4.1.3. nc𝓑ord𝜽 (𝒅)
In short: given a tangential structure 𝜃 in the form of a GL𝑑 (R)-space 𝜃, the objects of ncℬord𝜃 (𝑑)
are (possibly noncompact) (𝑑 − 1)-manifolds P with a 𝜃-structure on their once-stabilised tangent
bundle (i.e., a GL𝑑 (R)-equivariant map 𝜃𝑃 : Fr(𝐼 × 𝑁) → 𝜃 where Fr(−) denotes the frame bundle
and 𝐼 = [0, 1]). The objects of the mapping category ncℬord𝜃 (𝑑)(𝑃,𝜃𝑃) , (𝑄,𝜃𝑄) are bordisms with 𝜃-
structures and the morphisms are 𝜃-embeddings, fixed on the boundary. The composition and monoidal
structure is as in ncℬord(𝑑), but with the addition of 𝜃-structures.

To justify this, recall from Section Step ⑦.3 that the noncompact bordism category with 𝜃-structures
is defined as the pullback of symmetric monoidal double ∞-categories

ncℬord𝜃 (𝑑) = ncℬord(𝑑) ×COSPAN+ (PSh(GL𝑑)) COSPAN+(PSh(GL𝑑)/𝜃 ),

so the claimed description of the objects follows by using that forgetting symmetric monoidal structures
preserves pullbacks and that pullbacks of double ∞-categories are computed levelwise. This also shows
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that the mapping ∞-categories are given by pullbacks of ∞-categories

ncℬord𝜃 (𝑑)(𝑃,𝜃𝑃) , (𝑄,𝜃𝑄) COSPAN+(PSh(GL𝑑)/𝜃 )𝜃𝑃 , 𝜃𝑄

ncℬord(𝑑)𝑃,𝑄 COSPAN+(PSh(GL𝑑))Fr(𝐼×𝑃) ,Fr(𝐼×𝑄) ,

which justifies the description of the objects in ncℬord𝜃 (𝑑)(𝑃,𝜃𝑃) , (𝑄,𝜃𝑄) when combined with the
equivalence COSPAN+(𝒞)𝐴,𝐵 � 𝒞𝐴�𝐵/ mentioned in Section 2.10. Combining this discussion with
the fact that mapping spaces in a pullback of ∞-categories agree with the pullback of the mapping
spaces, we arrive at the following precise version of the description of the mapping spaces in the
mapping ∞-category ncℬord𝜃 (𝑑)(𝑃,𝜃𝑃) , (𝑄,𝜃𝑄) .

Lemma 4.2. Given (𝑑 − 1)-manifolds (𝑃, 𝜃𝑃), (𝑄, 𝜃𝑄) without boundary together with 𝜃-structures on
their once-stabilised tangent bundle, and 𝜃-bordisms (𝑊, 𝜃𝑊 ), (𝑊 ′, 𝜃𝑊 ′ ) : (𝑃, 𝜃𝑃) � (𝑄, 𝜃𝑄), there
is a natural pullback diagram in 𝒮.

Mapncℬord𝜃 (𝑑)(𝑃,𝜃𝑃 ) , (𝑄,𝜃𝑄 )
( (𝑊, 𝜃𝑊 ), (𝑊 ′, 𝜃𝑊 ′ )) Map(PSh(GL𝑑)/𝜃 )𝜃𝑃�𝜃𝑄/

(𝜃𝑊 , 𝜃𝑊 ′ )

Emb𝜕 (𝑊,𝑊 ′) MapPSh(GL𝑑)Fr(𝐼×𝑃)�Fr(𝐼×𝑄)/
(Fr(𝑊), Fr(𝑊 ′))).

4.1.4. 𝓑ord𝜽 (𝒅)
The previous discussion of ncℬord𝜃 (𝑑) applies also to the levelwise subcategory ℬord𝜃 (𝑑) when
restricting to compact manifolds throughout. By a minor enhancement of the argument in Section 4.1.2,
the mapping ∞-categories ℬord𝜃 (𝑑) are ∞-groupoids, so as for ℬord(𝑑), not much is lost by applying
(−) (∞,1) and considering the symmetric monoidal ∞-category ℬord𝜃 (𝑑) (∞,1) with closed (𝑑 − 1)-
manifolds with 𝜃-structure on their once-stabilised tangent bundle as objects and as mapping spaces

ℬord𝜃 (𝑑)(𝑃,𝜃𝑃) , (𝑄,𝜃𝑄) � Mapℬord𝜃 (𝑑) (∞,1) ( (𝑃, 𝜃𝑃), (𝑄, 𝜃𝑄)) �
⊔

[𝑊 ] BDiff 𝜃
𝜕 (𝑊, 𝜃𝑃 � 𝜃𝑄), (68)

where [𝑊] ranges over compact bordisms 𝑊 : 𝑃 � 𝑄 up to diffeomorphism relative to the ends and
BDiff 𝜃

𝜕 (𝑊, 𝜃𝑃 � 𝜃𝑄) is the quotient MapPSh(GL𝑑)Fr(𝐼×𝑃)�Fr(𝐼�𝑄)/
(Fr(𝑊), 𝜃)/Diff𝜕 (𝑊) where the action is

induced by precomposition (by standard bundle theory, this agrees with other definitions of BDiff 𝜃
𝜕 (−)

in the literature such as that in [GRW14, Definition 1.5]). Composition is given by gluing 𝜃-bordisms
and the symmetric monoidal structure by disjoint union.

4.1.5. Variants with boundary
The discussion for the variants ncℬord(𝑑)𝜕 and ℬord(𝑑)𝜕 with boundary and their enhancements with
tangential structures ncℬord𝜃 (𝑑)𝜕 and ℬord𝜃 (𝑑)𝜕 is the same as that for the version without boundary,
except that we allow the (𝑑 − 1)-manifolds that appear as objects to have boundary and the bordisms
𝑊 : 𝑃 � 𝑄 to be bordisms of manifolds with boundary. The bordisms thus come with a decomposition
𝜕𝑊 = 𝜕0𝑊 ∪ 𝜕ℎ𝑊 ∪ 𝜕1𝑊 into codimension 0 submanifolds where the ends 𝜕𝑖𝑊s are disjoint and
come with identifications 𝑃 � 𝜕0𝑊 and 𝑄 � 𝜕1𝑊 , and the horizontal boundary 𝜕ℎ𝑊 meets the ends
in a corner. Embeddings between such manifolds are required to preserve this decomposition, map the
interior to the interior, and be the identity near the ends, but they are allowed to move the horizontal
boundary. The discussion for the variants ncℬord𝜃 (𝑑)𝜕 and ℬord𝜃 (𝑑)𝜕 with tangential structures is
similar; on the ends, the tangential structures are fixed, but not on the horizontal boundary.
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4.1.6. 𝓓isc𝒅 and 𝓜od(𝒅)
The objects of the symmetric monoidal ∞-category 𝒟isc𝑑 can be identified with d-manifolds without
boundary that are diffeomorphic to a finite disjoint union of R𝑑’s. The mapping spaces are given by
codimension 0 embeddings and the symmetric monoidal structure by disjoint union. Day convolution
equips the ∞-category PSh(𝒟isc𝑑) of𝒮-valued presheaves with a symmetric monoidal structure, and the
objects of ℳod(𝑑) = ALG(PSh(𝒟isc𝑑)) are associative algebras in PSh(𝒟isc𝑑) (see Section 2.9). The
mapping ∞-category between two associative algebras 𝐴, 𝐵 ∈ ℳod(𝑑) is the ∞-category ℳod(𝑑)𝐴,𝐵
of (𝐴, 𝐵)-bimodules and bimodule maps between these (see Section 2.8 where this category is denoted
BMod𝐴,𝐵 (PSh(𝒟isc𝑑))). The composition functors ℳod(𝑑)𝐴,𝐵 × ℳod(𝑑)𝐵,𝐶 → ℳod(𝑑)𝐴,𝐶 are
given taking tensor products over B, which we denote by (−) ∪𝐵 (−) to emphasise the similarity with
the bordism category. The symmetric monoidal structure is given by external tensor product.

4.1.7. The functor E
In terms of the identifications of the objects and mapping categories of source and target explained in
Sections 4.1.1 and 4.1.6, the functor 𝐸 : ncℬord(𝑑) → ℳod(𝑑) of symmetric monoidal double ∞-
categories is on objects given by sending a (𝑑 − 1)-manifold P to the presheaf 𝐸𝑃×𝐼 = Emb(−, 𝑃 × 𝐼)
where 𝐼 = [0, 1] is equipped with the algebra structure induced by ‘stacking’. On mapping ∞-categories,
it is given by the functor ncℬord(𝑑)𝑃,𝑄 → ℳod(𝑑)𝐸𝑃×𝐼 ,𝐸𝑄×𝐼 which sends a bordism 𝑊 : 𝑀 � 𝑁
to the presheaf 𝐸𝑊 = Emb(−,𝑊) with its (𝐸𝑃×𝐼 , 𝐸𝑄×𝐼 )-bimodule structure by ‘stacking’, using fixed
collars 𝑃 × 𝐼 ↩→ 𝑊 and 𝑄 × 𝐼 ↩→ 𝑊 of both ends, where the convention is that the canonical vector
field on 𝑃 × 𝐼 is inwards pointing and that of 𝑄 × 𝐼 is outwards pointing. On morphisms, it sends an
embedding𝑊 ↩→ 𝑊 ′ that is fixed on the boundary to the map 𝐸𝑊 → 𝐸𝑊 ′ induced by postcomposition.
That E is a functor of double ∞-categories in particular says that, given bordisms 𝑊 : 𝑃 � 𝑄 and
𝑊 ′ : 𝑄 � 𝑅, we have a preferred equivalence 𝐸𝑊∪𝑄𝑊 ′ � 𝐸𝑊 ∪𝐸𝑄×𝐼 𝐸𝑊 ′ of (𝐸𝑃×𝐼 , 𝐸𝑅×𝐼 )-bimodules.

We will often restrict the functor E to the levelwise subcategory ℬord(𝑑) of ncℬord(𝑑) and pass
to underlying symmetric monoidal ∞-categories (i.e., apply the functor (−) (∞,1) from Section 2.5.6,
which has little effect on ℬord(𝑑); see Section 4.1.2) to obtain a functor of symmetric monoidal ∞-
categories 𝐸 : ℬord(𝑑) (∞,1) → ℳod(𝑑) (∞,1) . Recall from Section 2.5.6 that the mapping spaces of
ℳod(𝑑) (∞,1) are given as Mapℳod(𝑑) (∞,1) (𝐴, 𝐵) � ℳod(𝑑)�𝐴,𝐵.

4.2. Descent with respect to Weiss ∞-covers

We now prove a descent property for the mapping spaces inℳod(𝑑)𝐸𝑃×𝐼 ,𝐸𝑄×𝐼 for (possibly noncompact)
(𝑑 − 1)-manifolds P and Q without boundary. To state it, given a bordism 𝑊 : 𝑃 � 𝑄, we write 𝒪(𝑊)
for the poset of open subsets of W containing a neighbourhood of the boundary, ordered by inclusion.
A subposet 𝒰 ⊂ 𝒪(𝑀) is a Weiss ∞-cover of M if any finite subset of M is contained in some 𝑂 ∈ 𝒰.
Such a cover is complete if it contains a Weiss ∞-cover for

⋂
𝑂∈𝒰′ 𝑂 for any finite subset 𝒰′ ⊂ 𝒰. A

functor 𝐹 : 𝒪(𝑊)op → 𝒞 to an ∞-category 𝒞 satisfies descent for Weiss ∞-covers if for every nonempty
𝑂 ∈ 𝒪(𝑊) and every complete Weiss ∞-cover 𝒰 ⊂ 𝒪(𝑂), the diagram 𝐹 (𝑂) → {𝐹 (𝑈)}𝑈 ∈𝒰 is a limit.

Proposition 4.3. For a nonempty bordism 𝑊 ∈ ncℬord(𝑑)𝑃,𝑄 and a bimodule 𝑋 ∈ ℳod(𝑑)𝐸𝑃×𝐼 ,𝐸𝑄×𝐼 ,
the functor Mapℳod(𝑑)𝐸𝑃×𝐼 ,𝐸𝑄×𝐼

(𝐸 (−) , 𝑋) : 𝒪(𝑊)op → 𝒮 satisfies descent for Weiss ∞-covers.

Proof. It suffices to show that for a given complete Weiss ∞-cover 𝒰 ⊂ 𝒪(𝑂) of nonempty open
subset 𝑂 ∈ 𝒪(𝑊), the diagram {𝐸𝑈 }𝑈 ∈𝒰 → 𝐸𝑂 is a colimit diagram in ℳod(𝑑)𝐸𝑃×𝐼 ,𝐸𝑄×𝐼 =
BMod𝐸𝑃×𝐼 ,𝐸𝑄×𝐼 (PSh(𝒟isc𝑑)). Since 𝒰 is cofiltered, its nerve is weakly contractible, so by Lemma 2.17
(i), it suffices to show that the diagram is a colimit diagram after applying the forgetful functor
to PSh(𝒟isc𝑑). The result is is the diagram {Emb(−,𝑈)}𝑈 ∈𝒰 → Emb(−, 𝑂) in PSh(𝒟isc𝑑), so
as colimits in functor categories are computed objectwise [Lur09a, 5.1.2.3], it suffices to show that
{Emb(𝑇 × R𝑑 ,𝑈)}𝑈 ∈𝒰 → Emb(𝑇 × R𝑑 , 𝑂) is a colimit diagram in 𝒮 for all finite sets T, or equiva-
lently, that it is a homotopy colimit diagram in the Kan–Quillen model structure on simplicial sets. This
holds by a well-known argument; see the proof of [KK24a, Lemma 6.4]. �
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Remark 4.4. The assumption that W is nonempty is necessary: for 𝑊 = ∅, the empty cover 𝒰 = ∅ is a
cover of W, but 𝐸𝑊 is not the colimit of the empty diagram as 𝐸𝑊 (∅) � ∗.

4.3. Relationship to embedding calculus

Using Proposition 4.3, we now relate the functor ncℬord𝑃,𝑄 → ℳod(𝑑)𝑃×𝐼 ,𝑄×𝐼 induced by E on
mapping ∞-categories to the map Emb𝜕 (𝑊,𝑊 ′) → 𝑇∞Emb𝜕 (𝑊,𝑊 ′) provided by embedding calculus
as introduced in [Wei99, Wei11].
Theorem 4.5. Given bordisms 𝑊,𝑊 ′ ∈ ncℬord(𝑑)𝑃,𝑄, the map

Mapncℬord(𝑑)𝑃,𝑄
(𝑊,𝑊 ′) −→ Mapℳod(𝑑)𝐸𝑃×𝐼 ,𝐸𝑄×𝐼

(𝐸𝑊 , 𝐸𝑊 ′ ) (69)

agrees up to equivalence with the map Emb𝜕 (𝑊,𝑊 ′) → 𝑇∞Emb𝜕 (𝑊,𝑊 ′) from [Wei99].
Proof. We consider the poset 𝒰 of open subsets 𝑈 ⊂ 𝑊 that are unions 𝑈 = 𝑐(𝑃) ∪ 𝐷 ∪ 𝑐(𝑄) of three
disjoint open subsets of W where 𝑐(𝑃) and 𝑐(𝑄) are open collars of the boundary components P and Q
and D is diffeomorphic to 𝑇 × R𝑑 for some finite set T, ordered by inclusion. Considering 𝑈 ∈ 𝒰 as an
object in ncℬord(𝑑)𝑃,𝑄, we obtain a commutative square in 𝒮

Mapncℬord(𝑑)𝑃,𝑄
(𝑊,𝑊 ′) Mapℳod(𝑑)𝐸𝑃×𝐼 ,𝐸𝑄×𝐼

(𝐸𝑊 , 𝐸𝑊 ′ ))

lim𝑈 ∈𝒰

(
Mapncℬord(𝑑)𝑃,𝑄

(𝑈,𝑊 ′)
)

lim𝑈 ∈𝒰

(
Mapℳod(𝑑)𝐸𝑃×𝐼 ,𝐸𝑄×𝐼

(𝐸𝑈 , 𝐸𝑊 ′ )
)
,

1 3
2

whose vertical arrows are induced by restriction. By Lemma 4.1, the map 1 agrees with the restriction
map Emb𝜕 (𝑊,𝑊 ′) → lim𝑈 ∈𝒰 Emb𝜕 (𝑈,𝑊 ′) which in turn agrees with the map Emb𝜕 (𝑊,𝑊 ′) →
𝑇∞Emb𝜕 (𝑊,𝑊 ′) by the discussion in [Wei99, Sections 5, 10], so the claim follows once we show that
2 and 3 are equivalences. As 𝒰 ⊂ 𝒪(𝑊) is a complete Weiss ∞-cover, the map 3 is an equivalence by

Proposition 4.3. To prove that the map 2 is an equivalence, we show that for all 𝑈 ∈ 𝒰, the individual
maps

𝐸 : Emb𝜕 (𝑈,𝑊 ′) � Mapncℬord(𝑑)𝑃,𝑄
(𝑈,𝑊 ′) −→ Mapℳod(𝑑)𝐸𝑃×𝐼 ,𝐸𝑄×𝐼

(𝐸𝑈 , 𝐸𝑊 ′ ) (70)

before taking limits are equivalences. To give a convincing proof of this, we rely on the specific
construction of E from Section 3 and refer to that section for the notation. Recall that the functor E arose
from restricting the codomain of the composition of simplicial objects in ∞-categories

ncℬord(𝑑)
𝐸geo

−→ ALG(ℳan𝑑)
( 𝜄∗◦𝑦)∗
−−−−−→ ALG(PSh(𝒟isc𝑑)), (71)

where (𝜄∗ ◦ 𝑦) : ℳan𝑑 → PSh(𝒟isc𝑑) is the Yoneda embedding followed by restriction along the
inclusion 𝜄 : 𝒟isc𝑑 ↩→ ℳan𝑑 . This factorisation induces a commutative diagram

ncℬord(𝑑)𝑃,𝑄 BMod𝐸geo (𝑃) ,𝐸geo (𝑄) (ℳan𝑑) ℳod(𝑑)𝐸𝑃×𝐼 ,𝐸𝑄×𝐼

ncℬord(𝑑)[1] ℳan𝑑 PSh(𝒟isc𝑑),

inc

𝐸geo

𝑈𝐸geo (𝑃) ,𝐸geo (𝑄)

( 𝜄∗◦𝑦)∗

𝑈𝐸𝑃,𝐸𝑄

𝜄∗◦𝑦

where the top composition is obtained from (71) by evaluation at [1] and taking fibres of the face
maps (𝑑0, 𝑑1), the middle and rightmost vertical map are the forgetful maps from Lemma 2.17 and
the bottom left horizontal map is the coherent nerve of the functor ncBord(𝑑)[1] → Man𝑑 of Kan-
enriched categories that sends a [1]-walled manifold (𝑊, 𝜇) to 𝑊 |(𝜇 (0)−𝜖 ,𝜇 (1)+𝜖 ) . In particular, for
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𝑈 = 𝑐(𝑃) ∪ 𝐷 ∪ 𝑐(𝑄) ∈ 𝒰 considered as an object in ncℬord(𝑑)𝑃,𝑄, the inclusion 𝐷 ⊂ 𝑈 viewed as
a morphism in ℳan𝑑 gives a morphism 𝐷 → 𝑈𝐸geo (𝑃) ,𝐸geo (𝑄) (𝐸

geo(𝑈)) in ℳan𝑑 , so by adjunction,
a morphism 𝐹𝐸geo (𝑃) ,𝐸geo (𝑄) (𝐷) → 𝐸geo (𝑈) in BMod𝐸geo (𝑃) ,𝐸geo (𝑄) (ℳan𝑑) which we claim to be an
equivalence. By Lemma 2.17 (ii), it suffices to show that the image

𝑈𝐸geo (𝑃) ,𝐸geo (𝑄) (𝐹𝐸geo (𝑃) ,𝐸geo (𝑄) (𝐷)) −→ 𝑈𝐸geo (𝑃) ,𝐸geo (𝑄) (𝐸
geo(𝑈)) = 𝑈 = 𝑐(𝑃) ∪ 𝐷 ∪ 𝑐(𝑄)

under 𝑈𝐸geo (𝑀 ) ,𝐸geo (𝑁 ) is an equivalence. This is a consequence of the second part of Lemma 2.17 (iii).
Applying (𝜄∗ ◦ 𝑦) and using Lemma 2.17 (iv), it follows that the natural map 𝐹𝐸𝑃×𝐼 ,𝐸𝑄×𝐼 (𝐸𝐷) → 𝐸𝑈 in
ℳod(𝑑)𝐸𝑃×𝐼 ,𝐸𝑄×𝐼 is an equivalence. As 𝐹𝐸𝑃×𝐼 ,𝐸𝑄×𝐼 is left-adjoint to the forgetful functor 𝑈𝐸𝑃×𝐼 ,𝐸𝑄×𝐼 ,
the map (70) thus has the form

Emb𝜕 (𝑐(𝑀) ∪ 𝐷 ∪ 𝑐(𝑁),𝑊 ′) = Emb𝜕 (𝑈,𝑊 ′) −→ MapPSh(𝒟isc𝑑) (𝐸𝐷 , 𝐸𝑊 ′ )

and is given by the restriction map Emb𝜕 (𝑐(𝑀) ∪ 𝐷 ∪ 𝑐(𝑁),𝑊 ′) → Emb𝜕 (𝐷,𝑊 ′) followed by the
map induced by the Yoneda embedding. The former is an equivalence by the contractibility of the space
of collars, and the latter is an equivalence by the Yoneda lemma since D lies in the full subcategory
𝒟isc𝑑 ⊂ ℳan𝑑 , so the composition is an equivalence. �

Remark 4.6. The first part of the previous proof in particular shows that for bordisms 𝑊 ∈ ncℬord𝑃,𝑄
that are diffeomorphic, relative to the ends, to [0, 1) ×𝑃�𝑇 ×R𝑑 � (−1, 0] ×𝑄 for some finite set T, the
map (69) is an equivalence for all bordisms 𝑊 ′ ∈ ncℬord𝑃,𝑄. In particular, for 𝑇 = ∅, we see from the
contractibility of the space of collars that both the source and target of this map are both contractible.

Combining Theorem 4.5 with the convergence of embedding calculus in handle codimension ≥ 3
due to Goodwillie, Klein and Weiss (see [GW99, Fact 5.1] and [GK15]), we conclude the following:

Corollary 4.7. Fix bordisms 𝑊,𝑊 ′ ∈ ncℬord(𝑑)𝑃,𝑄. If W can be obtained from a closed collar of
𝑃 �𝑄 � 𝜕𝑊 by attaching handles of index ≤ 𝑑 − 3, then the map

Emb𝜕 (𝑊,𝑊 ′) � Mapncℬord(𝑑)𝑃,𝑄
(𝑊,𝑊 ′) −→ Mapℳod(𝑑)𝐸𝑃×𝐼 ,𝐸𝑄×𝐼

(𝐸𝑊 , 𝐸𝑊 ′ ) � 𝑇∞Emb𝜕 (𝑊,𝑊 ′)

induced by E is an equivalence.

4.3.1. Comparison with the model of Boavida de Brito–Weiss
Theorem 4.5 shows that the map (69) is a model for embedding calculus, so agrees up to weak
equivalence with any other model. Among the previously established models, that of Boavida de
Brito–Weiss [BdBW13] is closest to ours. Like ours, their model enhances the embedding calculus
approximation Emb𝜕 (𝑊,𝑊 ′) → 𝑇∞Emb𝜕 (𝑊,𝑊 ′) to a functor on ncℬord(𝑑)𝑃,𝑄. This section serves
to extend Theorem 4.5 to a comparison of the functors as opposed to just the individual maps on
mapping spaces. This will in particular show that the monoid structures on 𝑇∞Emb𝜕 (𝑊,𝑊) induced by
composition in our and their model agree, which we will use in Section 8.1.

For this, we write (𝒟isc𝑑)𝑃,𝑄 ⊂ ncℬord(𝑑)𝑃,𝑄 for the full subcategory of those bordisms that
are diffeomorphic relative to the boundary to 𝑃 × [0, 1) � 𝑇 × R𝑑 � (−1, 0] × 𝑄 for some finite set T.
When translated from Kan-enriched categories to ∞-categories, Boavida de Brito–Weiss’s model for the
embedding calculus approximation Emb𝜕 (𝑊,𝑊 ′) → 𝑇∞Emb𝜕 (𝑊,𝑊 ′) is the map on mapping spaces
between W and 𝑊 ′ induced by the composition

ncℬord(𝑑)𝑃,𝑄
𝑦

−→ PSh(ncℬord(𝑑)𝑃,𝑄)
𝜄∗

−→ PSh((𝒟isc𝑑)𝑃,𝑄)

of the Yoneda embedding with the inclusion 𝜄 : (𝒟isc𝑑)𝑃,𝑄 ↩→ ncℬord(𝑑)𝑃,𝑄 (cf. Section 9 loc.cit.).
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Proposition 4.8. There is an equivalence of ∞-categories

𝜑 : ℳod(𝑑)𝐸𝑃×𝐼 ,𝐸𝑄×𝐼

�
−→ PSh((𝒟isc𝑑)𝑃,𝑄)

which fits into a commutative diagram of ∞-categories

ncℬord(𝑑)𝑃,𝑄

ℳod(𝑑)𝐸𝑃×𝐼 ,𝐸𝑄×𝐼 PSh((𝒟isc𝑑)𝑃,𝑄)

𝐸 𝜄∗◦𝑦

𝜑
�

.

Proof. The functor 𝜑 is defined as the composition

ℳod(𝑑)𝐸𝑃×𝐼 ,𝐸𝑄×𝐼

𝑦
−→ PSh(ℳod(𝑑)𝐸𝑃×𝐼 ,𝐸𝑄×𝐼 )

𝐸∗

−→ PSh(ncℬord(𝑑)𝑃,𝑄)
𝜄∗

−→ PSh((𝒟isc𝑑)𝑃,𝑄).

With this choice, the canonical natural transformation 𝑦 → 𝐸∗ ◦ 𝑦 ◦ 𝐸 induces a natural transformation
from the right-hand diagonal functor (𝜄∗ ◦ 𝑦) in the claimed triangle to (𝜑 ◦ 𝐸), and we will first show
that this is an equivalence to obtain commutativity of the triangle. On a bordism 𝑊 ∈ ncℬord(𝑑)𝑃,𝑄,
this natural transformation is the map in PSh((𝒟isc𝑑)𝑃,𝑄) induced by E

Emb𝜕 (−,𝑊) � Mapncℬord(𝑑)𝑃,𝑄
(−,𝑊) −→ Mapℳod(𝑑)𝐸𝑃×𝐼 ,𝐸𝑄×𝐼

(𝐸 (−) , 𝐸𝑊 ),

which is an equivalence by Remark 4.6. Note that this in particular shows that 𝐸 ◦ 𝜄 is fully faithful.
It remains to show that 𝜑 is an equivalence. We will use that for 𝑈 ∈ (𝒟isc𝑑)𝑃,𝑄, we have

𝐸𝑈 � 𝐹𝐸𝑃×𝐼 ,𝐸𝑄×𝐼 (𝐸𝑇𝑈×R𝑑 ) ∈ ℳod(𝑑)𝐸𝑃×𝐼 as a result of the final part of the proof of Theo-
rem 4.5; here, 𝑇𝑈 is the finite set such that 𝑈 � 𝑃 × [0, 1) � 𝑇𝑈 × R𝑑 � (−1, 0] × 𝑄. This
property in particular implies that 𝜑 is conservative, using that 𝑈𝐸𝑃×𝐼 ,𝐸𝑄×𝐼 is conservative by
Lemma 2.17 (ii), and that a map of presheaves is an equivalence if it is one objectwise. To show
that 𝜑 is an equivalence, it thus suffices to prove that it has a fully faithful left adjoint. This left
adjoint is given by the colimit preserving extension 𝐸 ◦ 𝜄 : PSh(𝒟isc𝑑)𝑃,𝑄) → ℳod(𝑑)𝐸𝑃×𝐼 ,𝐸𝑄×𝐼

along the Yoneda embedding of the fully faithful functor 𝐸 ◦ 𝜄, using that ℳod(𝑑)𝐸𝑃×𝐼 ,𝐸𝑄×𝐼 �
BMod𝐸𝑃×𝐼 ,𝐸𝑄×𝐼 (PSh(𝒟isc𝑑)) has colimits as a result of Lemma 2.17. By [Lur09a, 5.1.6.10],
this left adjoint 𝐸 ◦ 𝜄 is fully faithful if 𝐸𝑈 ∈ ℳod(𝑑)𝐸𝑃×𝐼 ,𝐸𝑄×𝐼 is completely compact
for all 𝑈 ∈ (𝒟isc𝑑)𝑃,𝑄, i.e. if Mapℳod(𝑑)𝐸𝑃×𝐼 ,𝐸𝑄×𝐼

(𝐸𝑈 ,−) : ℳod(𝑑)𝐸𝑃×𝐼 ,𝐸𝑄×𝐼 → 𝒮 preserves
small colimits. Since 𝐸𝑈 � 𝐹𝐸𝑃×𝐼 ,𝐸𝑄×𝐼 (𝐸𝑇𝑈×R𝑑 ), this condition is by adjunction equivalent to
MapPSh(𝒟isc𝑑) (𝐸𝑇𝑈×R𝑑 ,𝑈𝐸𝑃×𝐼 ,𝐸𝑄×𝐼 (−)) preserving small colimits which indeed holds, by the Yoneda
lemma and the fact that 𝑈𝐸𝑃×𝐼 ,𝐸𝑄×𝐼 preserves colimits by Lemma 2.17 (i). �

Remark 4.9. Considering bordisms 𝑊 : 𝑃 � 𝑄 as bordisms ∅ � 𝑃 � 𝑄 or 𝑃 � 𝑄 � ∅
leads to equivalences between ncℬord(𝑑)𝑃,𝑄, ncℬord(𝑑)∅,𝑃�𝑄, and ncℬord(𝑑)𝑃�𝑄,∅, and simi-
larly for (𝒟isc𝑑)𝑃�𝑄 – compatible with the functor (𝜄∗ ◦ 𝑦). It thus follows from Proposition 4.8 that
𝐸 : ncℬord(𝑑)𝑃,𝑄 → ℳod(𝑑)𝐸𝑃×𝐼 ,𝐸𝑄×𝐼 agrees up to equivalences with the analogous functors involv-
ing ℳod(𝑑)𝐸∅ ,𝐸𝑃×𝐼�𝑄×𝐼 or ℳod(𝑑)𝐸𝑃×𝐼�𝑄×𝐼 ,𝐸∅

. That the latter two categories are equivalent can also
be deduced from Remark 2.16 and [Lur17, 4.6.3.11] (no (−)rev appears since we implicitly used the
anti-homomorphism of 𝐸𝑃×𝐼 or 𝐸𝑄×𝐼 by reflection in I).

4.4. Isotopy extension for E

A key input in the proof of Theorem A in Section 5.3 will be a version of the isotopy extension
theorem for the mapping spaces in ℳod(𝑑)𝑃,𝑄. In view of Theorem 4.5, this amounts to an isotopy
extension theorem for embedding calculus. Such a theorem has been proved by Knudsen–Kupers
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[KK24a, Theorem 6.1], but instead of reducing the version we need from theirs, it is more convenient
to give a direct proof based on their strategy.

The setting is as follows. We fix two compact bordisms 𝑊 : 𝑃 � 𝑄, 𝑊 ′ : 𝑅 � 𝑆, two possibly
noncompact bordisms 𝑀, 𝑁 : 𝑄 � 𝑅, and an open collar neighbourhood 𝑐(𝑀) ⊂ 𝑀 viewed as a
bordism 𝑄 � 𝑅. Writing c for the inclusion 𝑐(𝑀) ⊂ 𝑀 viewed as a morphism in ncℬord(𝑑)𝑄,𝑅, we
have a commutative diagram

Mapncℬord(𝑑)𝑄,𝑅

(
𝑀, 𝑁

)
Mapncℬord(𝑑)𝑃,𝑆

(
𝑊 ∪𝑄 𝑀 ∪𝑅 𝑊 ′,𝑊 ∪𝑄 𝑁 ∪𝑅 𝑊 ′

)
Mapncℬord(𝑑)𝑄,𝑅

(
𝑐(𝑀), 𝑁

)
Mapncℬord(𝑑)𝑃,𝑆

(
𝑊 ∪𝑄 𝑐(𝑀) ∪𝑅 𝑊 ′,𝑊 ∪𝑄 𝑁 ∪𝑅 𝑊 ′

)
∗

(−)◦𝑐

𝑊∪𝑄 (−)∪𝑅𝑊
′

1 (−)◦(𝑊∪𝑄𝑐∪𝑅𝑊
′)

� 𝑊∪𝑄 (−)∪𝑅𝑊
′

which maps via the functor 𝐸 : ncℬord(𝑑) → ℳod(𝑑) to the corresponding square for ℳod(𝑑)

Mapℳod(𝑑)𝐸𝑄×𝐼 ,𝐸𝑅×𝐼

(
𝐸𝑀 , 𝐸𝑁

)
Mapℳod(𝑑)𝐸𝑃×𝐼 ,𝐸𝑆×𝐼

(
𝐸𝑊∪𝑄𝑀∪𝑅𝑊 ′ , 𝐸𝑊∪𝑄𝑁∪𝑅𝑊 ′

)

Mapℳod(𝑑)𝐸𝑄×𝐼 ,𝐸𝑅×𝐼

(
𝐸𝑐 (𝑀 ) , 𝐸𝑁

)
Mapℳod(𝑑)𝐸𝑃×𝐼 ,𝐸𝑆×𝐼

(
𝐸𝑊∪𝑄𝑐 (𝑀 )∪𝑅𝑊 ′ , 𝐸𝑊∪𝑄𝑁∪𝑅𝑊 ′

)
.

∗

(−)◦𝐸𝑐 2

𝐸𝑊 ∪𝐸𝑄×𝐼
(−)∪𝐸𝑅×𝐼 𝐸𝑊 ′

(−)◦𝐸𝑊∪𝑄𝑐∪𝑅𝑊
′

� 𝐸𝑊 ∪𝐸𝑄×𝐼
(−)∪𝐸𝑅×𝐼 𝐸𝑊 ′

Note that the bottom left corners in both squares are contractible by Remark 4.6. Moreover, in view of
Lemma 4.1, the square 1 has up to equivalence the form

Emb𝜕
(
𝑀, 𝑁

)
Emb𝜕

(
𝑊 ∪𝑄 𝑀 ∪𝑅 𝑊 ′,𝑊 ∪𝑄 𝑁 ∪𝑅 𝑊 ′

)
Emb𝜕

(
𝑐(𝑀), 𝑁

)
Emb𝜕

(
𝑊 ∪𝑄 𝑐(𝑀) ∪𝑅 𝑊 ′,𝑊 ∪𝑄 𝑁 ∪𝑅 𝑊 ′

)
.

∗

(−)◦𝑐

𝑊∪𝑄 (−)∪𝑅𝑊
′

(−)◦(𝑊∪𝑄𝑐∪𝑅𝑊
′)

� 𝑊∪𝑄 (−)∪𝑅𝑊
′

As the restriction map Emb𝜕 (𝑊∪𝑄 𝑐(𝑀) ∪𝑅𝑊
′,𝑊∪𝑄 𝑁∪𝑅𝑊

′) → Emb𝑃�𝑆 (𝑊�𝑊 ′,𝑊∪𝑄 𝑁∪𝑅𝑊
′)

is an equivalence and 𝑊 �𝑊 ′ is compact, it follows from the parametrised isotopy extension theorem
that this square is cartesian, so the same holds for the square 1 .

The isotopy extension result we will prove says that the same holds for 2 under a certain condition
on the convergence of embedding calculus – namely, that the map from the bottom right of 1 to the
bottom right corner of 2 is an equivalence if M is replaced by 𝐶𝑘 � 𝑐(𝑀) � 𝑘 × R𝑑 ∈ ncℬord(𝑑)𝑄,𝑅

for 𝑘 = {1, 2, . . . , 𝑘} and all 𝑘 ≥ 0. We denote by 2 � the square obtained from 2 by replacing the
categories ℳod(𝑑)𝐸𝑄×𝐼 ,𝐸𝑅×𝐼 and ℳod(𝑑)𝐸𝑃×𝐼 ,𝐸𝑆×𝐼 in the top row by their cores.

Theorem 4.10. If the map induced by E

Mapncℬord(𝑑)𝑃,𝑆

(
𝑊 ∪𝑄 𝐶𝑘 ∪𝑅 𝑊 ′,𝑊 ∪𝑄 𝑁 ∪𝑅 𝑊 ′)

→ Mapℳod(𝑑)𝐸𝑃×𝐼 ,𝐸𝑆×𝐼

(
𝐸𝑊∪𝑄𝐶𝑘∪𝑅𝑊 ′ , 𝐸𝑊∪𝑄𝑁∪𝑅𝑊 ′

)
is an equivalence for all 𝑘 ≥ 0, then the square 2 is cartesian. If this assumption in addition holds for
M in place of N, then the square 2 � is also cartesian.

Proof. We first show the claim for 2 . We write 𝒰 for the poset of open subsets of M that are unions
𝑈 = 𝐷 ∪ 𝑐′(𝑀) such that 𝑐(𝑀) ⊂ 𝑀 is an open collar of the boundary that contains the chosen collar
𝑐(𝑀) ⊂ 𝑀 and 𝐷 ⊂ 𝑀 is diffeomorphic to 𝑇 × R𝑑 for some finite set T. Considering U as an object in
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ncℬord(𝑑)𝑄,𝑅, we have a functor 𝒰 → ncℬord(𝑑)𝑄,𝑅. Since the square 2 is natural in M, it maps to
the limit of the same squares for M replaced by 𝑈 ∈ 𝒰

lim
𝑈 ∈𝒰

Mapℳod(𝑑)𝐸𝑄×𝐼 ,𝑅×𝐼

(
𝐸𝑈 , 𝐸𝑁

)
lim
𝑈 ∈𝒰

Mapℳod(𝑑)𝐸𝑃×𝐼 ,𝑆×𝐼

(
𝐸𝑊∪𝑄𝑈∪𝑅𝑊 ′ , 𝐸𝑊∪𝑄𝑁∪𝑅𝑊 ′

)
lim
𝑈 ∈𝒰

Mapℳod(𝑑)𝐸𝑄×𝐼 ,𝑅×𝐼

(
𝐸𝑐 (𝑀 ) , 𝐸𝑁

)
lim
𝑈 ∈𝒰

Mapℳod(𝑑)𝐸𝑃×𝐼 ,𝑆×𝐼

(
𝐸𝑊∪𝑄𝑐 (𝑀 )∪𝑅𝑊 ′ , 𝐸𝑊∪𝑄𝑁∪𝑅𝑊 ′

)
.

We claim that it suffices to show this square of limits is cartesian. To justify this, we show that the maps
from 2 to the square of limits are all equivalences. For the maps between the bottom left corners and
between the bottom right corners, this follows from the fact that the diagram is constant and the category
𝒰 is weakly contractible since it is cofiltered. For the top-right corner and top-left corner, it follows
from Proposition 4.3 since the posets 𝒰 and {𝑊 ∪𝑄 𝑈 ∪𝑅 𝑊 ′ |𝑈 ∈ 𝒰} are complete Weiss ∞-covers
of M and 𝑊 ∪𝑄 𝑀 ∪𝑅 𝑊 ′.

To show that the previous square of limits is cartesian, note that it receives a map from the analogous
square using ncℬord(𝑑) instead of ℳod(𝑑), and this map of squares consists of equivalences: for the
top right and bottom right corner, it holds by assumption, and for the top left and bottom left corner, it
holds by Remark 4.6. The square using ncℬord(𝑑) is a limit of squares of the form 1 , with M replaced
by 𝑈 ∈ 𝒰, so it is cartesian since we have already explained that 1 is cartesian and limits of cartesian
squares remain cartesian.

To show the claim for 2 �, we first assume 𝑀 = 𝑁 , in which case, the claim follows from the
following fact: given a monoid A in 𝒮 acting on a space X and 𝑥 ∈ 𝑋 , consider the fibre sequence

hofib𝑥 (𝐴
(−) ·𝑥
−→ 𝑋) −→ 𝐴

(−) ·𝑥
−→ 𝑋

whose fibre inherits the structure of a monoid in 𝒮 from that of A and the A-action on X. Then one
checks that the sequence obtained by passing to group-like components in fibre and total space remains
a fibre sequence.

To deduce the general case of 2 � from that of 2 , it suffices to prove that if 𝜑 : 𝐸𝑀 → 𝐸𝑁 has the
property that 𝜑′ � id𝐸𝑊 ∪𝐸𝑄×𝐼 𝜑∪𝐸𝑅×𝐼 id𝐸𝑊 ′ is an equivalence, then 𝜑 is also an equivalence. To prove
this, we pick an inverse 𝜓 ′ : 𝐸𝑊∪𝑄𝑁∪𝑅𝑊 ′ → 𝐸𝑊∪𝑄𝑀∪𝑅𝑊 ′ to 𝜑′ and claim that the image of 𝜓 ′ under
the right-vertical map in the square 2 with the role of M and N reversed lies in the component of the
bottom horizontal map. To see this, we extend this square to the bottom by

Mapℳod(𝑑)𝐸𝑄×𝐼 ,𝐸𝑅×𝐼

(
𝐸𝑐 (𝑀 ) , 𝐸𝑁

)
Mapℳod(𝑑)𝐸𝑃×𝐼 ,𝐸𝑆×𝐼

(
𝐸𝑊∪𝑄𝑐 (𝑀 )∪𝑅𝑊 ′ , 𝐸𝑊∪𝑄𝑁∪𝑅𝑊 ′

)

Mapℳod(𝑑)𝐸𝑄×𝐼 ,𝐸𝑅×𝐼

(
𝐸𝑐 (𝑀 ) , 𝐸𝑀

)
Mapℳod(𝑑)𝐸𝑃×𝐼 ,𝐸𝑆×𝐼

(
𝐸𝑊∪𝑄𝑐 (𝑀 )∪𝑅𝑊 ′ , 𝐸𝑊∪𝑄𝑀∪𝑅𝑊 ′

)
,

𝜑◦(−)� 𝜑′◦−�

where the left vertical map is an equivalence as both source and target are contractible, and the right
vertical map is an equivalence because 𝜑′ is one by assumption. To see whether the image of 𝜓 ′ in the
upper right corner is in the component hit by the upper horizontal map, it thus suffices to show that the
image of 𝜓 ′ in the bottom horizontal corner is in the component hit by the bottom horizontal map. But
this follows from the relation [𝜑′ ◦𝜓 ′] = [id] in the set of components, which holds by the choice of 𝜓 ′.
Using that the square 2 with the role of M and N reverse is a pullback (this is where we use the additional
hypothesis for M), we conclude that there exists 𝜓 : 𝐸𝑁 → 𝐸𝑀 such that [𝜓 ′] = [𝑊 ∪𝑄 𝜓 ∪𝑅 𝑊 ′]. To
finish the proof, it suffices to show that 𝜑 ◦ 𝜓 and 𝜓 ◦ 𝜑 are both equivalences, since then 𝜑 has to be an
equivalence. But this follows from the case 𝑀 = 𝑁 treated above, using that both compositions become
equivalences after applying 𝑊 ∪𝑄 (−) ∪𝑅 𝑊 ′ since this even holds for 𝜓 and 𝜑 individually. �
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Remark 4.11. The proof of Theorem 4.10 in particular shows that if the assumption in the statement
holds for M and N, then the following map detects equivalences:

Mapℳod(𝑑)𝐸𝑄×𝐼 ,𝐸𝑅×𝐼

(
𝐸𝑀 , 𝐸𝑁

) 𝐸𝑊 ∪𝐸𝑄×𝐼
(−)∪𝐸𝑅×𝐼 𝐸𝑊 ′

−−−−−−−−−−−−−−−−−−−−−−→ Mapℳod(𝑑)𝐸𝑃×𝐼 ,𝐸𝑆×𝐼

(
𝐸𝑊∪𝑄𝑀∪𝑅𝑊 ′ , 𝐸𝑊∪𝑄𝑁∪𝑅𝑊 ′

)
.

4.5. 𝓓isc-structure spaces

We conclude this section with the definition of the 𝒟isc-structure spaces and a discussion some of their
functoriality. Given objects 𝑃 ∈ ℬord(𝑑) and 𝐴 ∈ ℳod(𝑑) (i.e., a closed (𝑑 − 1)-manifold P and
an associative algebra A in PSh(𝒟isc𝑑)), we abbreviate the ∞-category of nullbordisms of P and the
analogue for right A-modules by

ℬord(𝑑)𝑃 � ℬord(𝑑)∅,𝑃 and ℳod(𝑑)𝐴 �ℳod(𝑑)𝐸∅ ,𝐴. (72)

Remark 4.12. Note that 𝐸∅ is the monoidal unit in PSh(𝒟isc𝑑), so ℳod(𝑑)𝐸∅ ,𝐴 may be viewed as an
∞-category of right-A-modules. Using Remark 2.16 and [Lur17, 4.3.2.8], one sees that this agrees with
Lurie’s model of the ∞-category of right-A-modules, but we will not use this.

4.5.1. 𝓓isc-structure spaces of modules
For 𝐴 = 𝐸𝑃×𝐼 for a closed (𝑑−1)-manifold P, the functor E induces a functorℬord(𝑑)𝑃 → ℳod(𝑑)𝑃×𝐼 .
As the source is an ∞-groupoid by the discussion Section 4.1.2, it lands in the core ℳod(𝑑)�𝑃×𝐼 ⊂
ℳod(𝑑)𝑃×𝐼 . The 𝒟isc-structure spaces are the fibres of this functor of ∞-groupoids:

Definition 4.13. The 𝒟isc-structure space of a right-𝐸𝑃×𝐼 -module 𝑋 ∈ ℳod(𝑑)𝐸𝑃×𝐼 is the fibre

𝑆𝒟isc
𝑃 (𝑋) � fib𝑋 (ℬord(𝑑)𝑃 → ℳod(𝑑)�𝐸𝑃×𝐼

) ∈ 𝒮.

From the description of the object and mapping spaces of ℬord(𝑑) and ℳod(𝑑) in Section 2.5.4,
we see that the path components of 𝑆𝒟isc

𝑃 (𝑋) are given by

𝜋0 𝑆
𝒟isc
𝑃 (𝑋) =

{
pairs (𝑀, 𝜑) of a compact smooth 𝑑-manifold 𝑀 with identified boundary 𝜕𝑀 � 𝑃

and an equivalence of right 𝐸𝑃×𝐼 -modules 𝜑 : 𝐸𝑀 → 𝑋

}
(𝑀, 𝜑) ∼ (𝑀 ′, 𝜑′) ⇔ there exists a diffeomorphism 𝛼 : 𝑀 → 𝑀 ′

relative to 𝑃 with [𝜑′ ◦ 𝐸𝛼] = [𝜑] ∈ 𝜋0 Mapℳod(𝑑)�𝐸𝑃×𝐼
(𝐸𝑀 , 𝑋)

and that the component of a pair (𝑀, 𝜑) agrees with the identity component

𝑆𝒟isc
𝑃 (𝑋)(𝑀,𝜑) �

(
Autℳod(𝑑)𝑃×𝐼 (𝐸𝑀 )/Diff𝜕 (𝑀)

)
id

of the fibre Autℳod(𝑑)𝑃 (𝐸𝑀 )/Diff𝜕 (𝑀) of the map BDiff𝜕 (𝑀) → BAutℳod(𝑑)𝑃 (𝐸𝑀 ) induced by E.
This can also be rephrased in the form of an equivalence

𝑆𝒟isc
𝑃 (𝑋) �

⊔
[𝑀 ] Autℳod(𝑑)𝑃×𝐼 (𝐸𝑀 )/Diff𝜕 (𝑀), (73)

where [𝑀] runs through diffeomorphism classes of compact manifolds M with identified boundary
𝜕𝑀 � 𝑃 for which there exists an equivalence 𝐸𝑀 → 𝑋 of right 𝐸𝑃×𝐼 -modules.

4.5.2. 𝓓isc-structure spaces of manifolds
Given a compact d-manifold W with identified boundary 𝜕𝑊 � 𝑃, considered as an object inℬord(𝑑)𝑃 ,
we abbreviate

𝑆𝒟isc
𝜕 (𝑊) � 𝑆𝒟isc

𝑃 (𝐸𝑊 ).
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This is natural in 𝑊 ∈ ℬord(𝑑) (∞,1)
∅/

in that it gives a functor 𝑆𝒟isc
𝜕

(−) : ℬord(𝑑) (∞,1)
∅/

→ 𝒮 from the
∞-category of nullbordisms to the ∞-category of spaces. In particular, for bordisms 𝑊 : ∅ � 𝑃 and
𝑊 ′ ∈ ℬord(𝑑)𝑃,𝑄, we have a gluing map (− ∪𝑃 𝑊) : 𝑆𝒟isc

𝜕
(𝑊) → 𝑆𝒟isc

𝜕
(𝑊 ∪𝑃 𝑊 ′).

5. Theorem A: 2-type invariance

The goal of this section is to prove Theorem A, which says that the 𝒟isc-structure space of a compact
d-manifold depends for 𝑑 ≥ 5 only on the tangential 2-type, a notion that we recall in Section 5.1. As
outlined in Section 1.2.3, this will be an application of a general tangential k-type invariance result,
proved in Section 5.2, about the values of certain functors on a category of compact null bordisms. That
𝑆𝒟isc
𝜕

(−) satisfies its hypotheses is verified in Section 5.3.

Convention.

(i) In contrast to the previous sections, all manifolds – which were already assumed to be smooth – are
now also assumed to be compact. Nonempty boundaries are allowed.

(ii) In this section, we adopt the point of view on 𝜃-structures in terms of bundle maps (always required
to be fibrewise injective), which is different but by basic bundle theory equivalent to that in terms
of GL𝑑 (R)-spaces from Section 4.1.3. For the convenience of the reader, we recall the necessary
definitions from scratch in Section 5.1.2.

5.1. Tangential k-types

We start with some manifold-theoretic preliminaries.

5.1.1. 𝜽-manifolds and tangential k-types
Given a map 𝜃 : 𝐵 → BO, a 𝜃-manifold M is a manifold with a 𝜃-structure on its stable tangent bundle,
by which we mean in this section a stable bundle map ℓ𝑀 : 𝜏𝑠𝑀 → 𝜃∗𝛾 from the stable tangent bundle
of M to the pullback of the universal stable vector bundle 𝛾 over BO along 𝜃. A tangential structure is
k-connected if the underlying map ℓ̄𝑀 : 𝑀 → 𝐵 is k-connected in the usual sense.

Given a codimension 0 embedding 𝑒 : 𝑀 ↩→ 𝑁 and a 𝜃-structure ℓ𝑁 on N, we obtain a 𝜃-structure
𝑒∗ℓ𝑁 on M by precomposition with the stable derivative of e. Two 𝜃-manifolds M and N are 𝜃-
diffeomorphic if there exists a diffeomorphism 𝜙 : 𝑀 → 𝑁 of the underlying manifolds such that 𝜙∗ℓ𝑁
and ℓ𝑀 are homotopic as bundle maps. A codimension 0 embedding 𝑒 : 𝑀 ↩→ 𝑁 is an equivalence
on tangential k-types if N admits a k-connected 𝜃-structure ℓ𝑁 for some 𝜃 such that 𝑒∗ℓ𝑁 is again k-
connected. Two manifolds M and N have the same tangential k-type if there is a 𝜃 : 𝐵 → BO such that
M and N admit k-connected 𝜃-structures ℓ𝑀 and ℓ𝑁 (for the same 𝜃).

Example 5.1. Any codimension 0 embedding 𝑀 ↩→ 𝑁 that is k-connected is an equivalence on
tangential k-types. This is clear from the definition as long as N admits a k-connected 𝜃-structure with
respect to some 𝜃, and there is indeed always such a choice: pick a Moore-Postnikov factorisation
𝑁 → 𝐵 → BO of a classifying map for the stable tangent bundle of N into a k-connected map followed
by a k-coconnected map 𝜃 : 𝐵 → BO.

Example 5.2. The case of most interest to us is 𝑘 = 2, where there is a simple recipe to decide whether
two d-manifolds 𝑀0 and 𝑀1 have the same tangential k-types. If the 𝑀𝑖 are disconnected, then they
have the same tangential 2-type if and only if there exists a bijection between their components such that
the corresponding components have the same tangential 2-type. For connected manifolds 𝑀0 and 𝑀1,
one can decide whether they have the same tangential 2-type as follows (cf. [Kre99, p. 712–713]; Kreck
deals with normal k-types as opposed to tangential k-types and has a different indexing convention, but
neither of this makes a difference):

(i) The functionals 𝑤2 (𝑀𝑖) : 𝜋2 (𝑀𝑖) → Z/2 for 𝑖 = 0, 1 induced by the second Stiefel–Whitney
classes need to be both trivial or nontrivial.
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(ii) If they are both nontrivial, then 𝑀0 and 𝑀1 have the same tangential 2-type if and only if there
exists an abstract isomorphism 𝜑 : 𝜋1 (𝑀0) → 𝜋1 (𝑀1) such that 𝜑∗𝑤1 (𝑀1) = 𝑤1 (𝑀0), where
𝑤1 (𝑀𝑖) ∈ H1(𝑀𝑖; Z/2) � H1(𝐾 (𝜋1𝑀𝑖 , 1); Z/2) is the first Stiefel–Whitney class.

(iii) If they are both trivial, then there are unique classes 𝑤2 (𝑀𝑖) ∈ H2 (𝐾 (𝜋1(𝑀𝑖), 1); Z/2) that pull
back to the second Stiefel–Whitney classes along the canonical maps 𝑀𝑖 → 𝐾 (𝜋1 (𝑀𝑖), 1). Then
𝑀0 and 𝑀1 have the same tangential 2-type if and only if there exists an abstract isomorphism
𝜑 : 𝜋1 (𝑀0) → 𝜋1 (𝑀1) with 𝜑∗𝑤 𝑗 (𝑀1) = 𝑤 𝑗 (𝑀0) for 𝑗 = 1, 2.

In particular, if 𝑀0 and 𝑀1 are spin, 𝑤𝑖 (𝑀) and 𝑤𝑖 (𝑁) vanish for 𝑖 ≤ 2, so the recipe shows that
they have the same tangential 2-types if and only if their fundamental groupoids are equivalent. It also
implies that the tangential 2-type of a smooth manifold does not depend on the smooth structure, since
Stiefel–Whitney classes are defined for topological manifolds.

Lemma 5.3. Let M be an m-manifold and 𝑘 ≥ 0 a number. For any 𝑑 ≥ 4 with 𝑘 ≤ � 𝑑2  , there exists a
closed d-manifold P with the same tangential k-type as M.

Proof. We may assume 𝑘 ≥ 1 and that M is connected; apply the claim to each connected component
otherwise. Choose a Moore–Postnikov k-factorisation 𝑀 → 𝐵 → BO of the stable tangent bundle into
a k-connected map followed by a k-coconnected map 𝜃 : 𝐵 → BO. The condition 𝑘 ≤ � 𝑑2  in particular
implies that 𝑑 ≥ 𝑘 + 1, so the d-sphere 𝑆𝑑 admits a 𝜃-structure by obstruction theory. Doing surgeries
compatible with the 𝜃-structure (see [Kre99, Proposition 4]), we obtain a closed d-manifold P with a
k-connected 𝜃-structure. �

5.1.2. 𝜽-bordism
Given a 𝜃-manifold M, a choice of inwards pointing vector field induces a 𝜃-structure on the boundary
𝜕𝑀 . Using the canonical vector field 𝜕

𝜕𝑥 on [0, 1], we moreover obtain a 𝜃-structure on 𝑀×[0, 1], which
restricts to a 𝜃-structure on the double 𝑀∪𝜕𝑀 𝑀 � 𝜕 (𝑀×[0, 1]) of M. Here, 𝑀 is the 𝜃-manifold whose
underlying manifold is M but which is equipped with the opposite 𝜃-structure obtained by restricting the
induced 𝜃-structure on 𝑀 × [0, 1] to 𝑀 × {1} ⊂ 𝜕 (𝑀 × [0, 1]). A 𝜃-bordism from a d-dimensional 𝜃-
manifold P to another d-dimensional 𝜃-manifold Q is a (𝑑 +1)-dimensional 𝜃-manifold W together with
a 𝜃-diffeomorphism 𝜕𝑊 � 𝑃�𝑄; we denote this 𝑊 : 𝑃 � 𝑄. A 𝜃-manifold P is 𝜃-null bordant if there
is a 𝜃-bordism 𝑃 � ∅. By construction, the double 𝑀 ∪𝜕𝑀 𝑀 of any 𝜃-manifold M is 𝜃-nullbordant.

5.1.3. Handle decompositions
Given a compact d-dimensional bordism 𝑊 : 𝑃 � 𝑄 between closed (𝑑 − 1)-manifolds, a handle
decomposition of the bordism W is a decomposition

𝑃 = 𝑊−1
𝑊 (−1,0]
� 𝑊0

𝑊 (0,1]
� · · ·

𝑊 (𝑑−2,𝑑−1]
� 𝑊𝑑−1

𝑊 (𝑑−1,𝑑 ]
� 𝑊𝑑 = 𝑄

of W as a union of bordisms between closed (𝑑 − 1)-manifolds 𝑊𝑖 such that 𝑊 (𝑘 − 1, 𝑘] is obtained
from a collar on𝑊𝑘−1 by attaching finitely many handles of index k. Such a decomposition always exists
– for instance, by choosing a self-indexing Morse function. By construction, 𝑊𝑘+1 is obtained from 𝑊𝑘

by finitely many k-surgeries. We abbreviate

𝑊 (𝑚, 𝑘] � ∪𝑚≤𝑖≤𝑘−1𝑊 (𝑖, 𝑖 + 1] and 𝑊 [𝑚, 𝑘] � ∪𝑚−1≤𝑖≤𝑘−1𝑊 (𝑖, 𝑖 + 1]

and consider these as bordisms from 𝑊𝑚 to 𝑊𝑘 and from 𝑊𝑚−1 to 𝑊𝑘 , respectively. The idea behind the
notation is that the half-open or closed interval indicates which handles the submanifold contains. Given
𝑚 ≤ 𝑘 , we say that W has handle type [𝑚, 𝑘] if there is a handle decomposition with 𝑊 = 𝑊 [𝑚, 𝑘]. A
d-manifold M has handle type [𝑚, 𝑘] if it has that property when viewed as a bordism 𝑀 : ∅ � 𝜕𝑀 .
It is said to have handle dimension ≤ 𝑘 if it has handle type [0, 𝑘]. A codimension 0 submanifold
inclusion 𝑁 ⊂ int(𝑀) has relative handle type [𝑚, 𝑘] if the bordism 𝑀\int(𝑁) : 𝜕𝑁 � 𝜕𝑀 has handle
type [𝑚, 𝑘], and 𝑁 ⊂ int(𝑀) has relative handle dimension ≤ 𝑘 if this bordism has handle type [0, 𝑘].
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5.1.4. Handle trading and connectivity
The following two lemmas are certainly standard, but we could not find references for them in the
generality we needed.

Lemma 5.4. Let 𝑊 : 𝑃 � 𝑄 be a bordism between closed d-manifolds P and Q with 𝑑 ≥ 4. If both
boundary inclusions 𝑃 ⊂ 𝑊 ⊃ 𝑄 are k-connected for some 𝑘 ≥ 0, then the following holds:

(i) If 2𝑘 < 𝑑 − 1, then 𝑊 : 𝑃 � 𝑄 has handle type [𝑘 + 1, 𝑑 − 𝑘] and
(ii) If 2𝑘 = 𝑑 − 1, then 𝑊♯(𝑆𝑘+1 × 𝑆𝑘+1)♯𝑟 : 𝑃 � 𝑄 has type [𝑘 + 1, 𝑑 − 𝑘] for some 𝑟 ≥ 0.

Proof. We begin with the first case. Starting from a handle decomposition of the bordism 𝑊 : 𝑃 � 𝑄,
we obtain a potentially different handle decomposition of W of type [𝑘 + 1, 𝑑 + 1] by handle trading,
without changing the number of i-handles for 𝑖 ≥ 𝑘 + 3 (see, for example, the proof of [Wal71, Theorem
3]). Now we apply the same procedure to the dual of this new handle decomposition to obtain yet
another handle decomposition, this time of type [0, 𝑑 − 𝑘] and with the same number of i-handles for
𝑖 ≤ 𝑑 − 𝑘 − 2. Since 𝑘 ≤ 𝑑 − 𝑘 − 2 and we previously arranged that there are no i-handles for 𝑖 ≤ 𝑘 , the
resulting decomposition has type [𝑘 + 1, 𝑑 − 𝑘].

In the case 2𝑘 = 𝑑 − 1, we may reindex so that the claim reads as follows (set 𝑛 = 𝑘 + 1): given a
2𝑛-dimensional bordism 𝑊 : 𝑃 � 𝑄 with 2𝑛 ≥ 6 such that the inclusions 𝑃 ⊂ 𝑊 ⊃ 𝑄 are (𝑛 − 1)-
connected, there exists an 𝑟 ≥ 0 such that the bordism (𝑊♯(𝑆𝑛 × 𝑆𝑛)♯𝑟 ) : 𝑃 � 𝑄 admits a handle
decomposition with only n-handles. We are not aware of a classical reference for this fact; we learned
it from the proof of [GRW14, Lemma 6.21]. �

Lemma 5.5. Let 𝜃 : 𝐵 → BO be a map and (𝑃, ℓ𝑃) and (𝑄, ℓ𝑄) two closed d-dimensional 𝜃-manifolds
that are 𝜃-bordant. Assume 𝑑 ≥ 4 and fix 𝑘 ≥ 0 with 2𝑘 < 𝑑.

(i) If ℓ𝑃 is k-connected, then there is a 𝜃-bordism 𝑊 : 𝑃 � 𝑄 such that 𝑃 ⊂ 𝑊 is k-connected.
(ii) If also ℓ𝑄 is k-connected, then we may assume that 𝑊 ⊃ 𝑄 is k-connected as well.

Proof. For part (i), we refer to the proof of the correction [HJ20, Proposition p. 48] to a part of [Kre99,
Proposition 4]. The proof of part (ii) is a minor extension of their argument which we spell out for the
convenience of the reader in the case 𝑘 ≥ 1, leaving 𝑘 = 0 as an easy exercise.

Starting from a 𝜃-bordism (𝑊, ℓ𝑊 ) : (𝑃, ℓ𝑃) � (𝑄, ℓ𝑄), we can assume that ℓ𝑊 is k-connected by
performing surgery in the interior of W. As ℓ𝑃 and ℓ𝑄 are k-connected, this ensures that the inclusions
𝑃 ⊂ 𝑊 ⊃ 𝑄 induce an isomorphism on homotopy groups at all basepoints in degrees ≤ 𝑘 − 1. By
considering each component in 𝜋0 (𝑃) � 𝜋0 (𝑊) � 𝜋0 (𝑄) � 𝜋0 (𝐵) separately, we may assume that each
of 𝑃,𝑊,𝑄, 𝐵 is connected. We now consider the long exact sequences

. . .

{
𝜋𝑘 (𝑃)

𝜋𝑘 (𝑄)
𝜋𝑘 (𝑊)

{
𝜋𝑘 (𝑊, 𝑃)

𝜋𝑘 (𝑊,𝑄)

{
𝜋𝑘−1 (𝑃)

𝜋𝑘−1 (𝑄)
𝜋𝑘−1(𝑊) . . .

𝜋𝑘 (𝐵) 𝜋𝑘−1(𝐵)

0 �

�
�

of the pairs (𝑊, 𝑃) and (𝑊,𝑄). We first assume 𝑘 ≥ 2. By the relative Hurewicz theorem, we have
𝜋𝑘 (𝑊, 𝑃) � H𝑘 (𝑊, 𝑃) and similarly for 𝜋𝑘 (𝑊,𝑄), where (̃−) denotes the universal covers, so these
groups are in particular finitely generated as 𝜋1 (𝑊)-modules. Contemplating the diagram shows that
there are finite sets of elements {𝑝𝑖} and {𝑞𝑖} of 𝜋𝑘 (𝑊) that (i) map trivially to 𝜋𝑘 (𝐵) (and thus trivially
to 𝜋𝑘 (BO)) and (ii) map to sets of generators of 𝜋𝑘 (𝑊, 𝑃) and 𝜋𝑘 (𝑊,𝑄) as 𝜋1 (𝑊)-modules, respectively.
As 2𝑘 < 𝑑, we may represent these elements by two disjoint embeddings 𝑝 : �𝑖𝑆𝑘 ×𝐷𝑑+1−𝑘 ↩→ int(𝑊)
and 𝑞 : �𝑖𝑆𝑘 × 𝐷𝑑+1−𝑘 ↩→ int(𝑊). Doing 𝜃-surgery on these embeddings (see [Kre99, Lemma 2])
yields a 𝜃-bordism 𝑊 ′ : 𝑃 � 𝑄 which we claim to satisfy the requirements of the statement; that is,
𝜋𝑖 (𝑊

′, 𝑃) = 0 and 𝜋𝑖 (𝑊
′, 𝑄) = 0 for 𝑖 ≤ 𝑘 – the reason being that (i) 𝜋𝑖 (𝑊 ′, 𝑃) vanishes for 𝑖 ≤ 𝑘 − 1

since it is isomorphic to 𝜋𝑖 (𝑊, 𝑃) = 0, and (ii) 𝜋𝑘 (𝑊 ′, 𝑄) vanishes since it is a quotient of 𝜋𝑘 (𝑊,𝑄)
by a subgroup that contains the 𝜋1 (𝑊)-orbit of the images of {𝑝𝑖} and {𝑞𝑖}, and we chose the {𝑝𝑖}
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so that their images generate 𝜋𝑘 (𝑊
′, 𝑃) as 𝜋1 (𝑊)-modules. The same argument applies to the groups

𝜋𝑖 (𝑊
′, 𝑄), so the claim in the case 𝑘 ≥ 2 follows. For 𝑘 = 1, the same argument applies even though

𝜋1 (𝑊, 𝑃) and 𝜋1 (𝑊,𝑄) need no longer be groups: instead of the relative Hurewicz theorem, one uses
that 𝜋1 (𝑊) is finitely generated, being the fundamental group of a compact manifold. �

Combining the previous two lemmas we get the following:
Corollary 5.6. Let 𝜃 : 𝐵 → BO be a map and (𝑃, ℓ𝑃) and (𝑄, ℓ𝑄) two closed 𝜃-manifolds of dimension
𝑑 ≥ 4 that are 𝜃-bordant. If ℓ𝑃 and ℓ𝑄 are k-connected for some 𝑘 ≥ 0 with 2𝑘 < 𝑑, then Q can be
obtained from P by a finite sequence of p-surgeries with 𝑘 ≤ 𝑝 ≤ 𝑑 − 𝑘 − 1.
Proof. Lemmas 5.4 and 5.5 ensure that there is a bordism 𝑊 : 𝑃 � 𝑄 of handle type [𝑘 + 1, 𝑑 − 𝑘],
which implies the statement. �

5.2. k-type invariance

To state the announced tangential k-type result, we denote by ℎManc
𝑑 the 1-category whose objects are

smooth compact d-manifolds (potentially with boundary) and whose morphisms are isotopy classes of
codimension 0 embeddings. Fixing another 1-category C, we prove the following result for functors of
the form 𝐹 : ℎManc

𝑑 → C.
Theorem 5.7. Let 𝑑 ≥ 4 and 𝐹 : ℎManc

𝑑 → C be a functor such that F maps codimension 0 submanifold
inclusions of relative handle type [𝑘 + 1, 𝑑] to isomorphisms for some fixed 0 ≤ 𝑘 < 𝑑/2. Then for any
compact d-manifolds M and N of the same tangential k-type, the following holds:

(i) There exists an isomorphism 𝐹 (𝑀) � 𝐹 (𝑁).
(ii) For any codimension 0 embedding 𝑒 : 𝐿 ↩→ 𝑀 where L has handle dimension ≤ 𝑘 , there is an

embedding 𝑒′ : 𝐿 ↩→ 𝑁 for which the isomorphism (i) can be chosen so that the diagram

𝐹 (𝐿)

𝐹 (𝑀) 𝐹 (𝑁)

𝐹 (𝑒) 𝐹 (𝑒′)

�

is commutative.
(iii) Any embedding 𝑒 : 𝑀 ↩→ 𝑁 that is an equivalence on tangential k-types induces an isomorphism

𝐹 (𝑀) � 𝐹 (𝑁) as in (i).
Remark 5.8. Theorem 5.7 is based on arguments we learned from the literature on the space of positive
scalar curvature metrics on a manifold M – in particular, [ERW22, EW24]. This space shares strong
formal properties with the 𝒟isc-structure space: it is often an infinite loop space [ERW22, Theorems
A-B], depends conjecturally only on the tangential 2-type (see [EW24, Conjecture C] and [ERW22,
Section 9]), and is often nontrivial (see, for example, [ERW22, Remark 1.1.1]).
Remark 5.9. Taking complements, ℎManc

𝑑 can be viewed equivalently as the ‘homotopy category of
null bordisms’, by which we mean the undercategory ℎℬord(𝑑) (∞,1)

∅/
of the empty manifold ∅ viewed

as an object in the homotopy category ℎℬord(𝑑) (∞,1) , whose objects are closed (𝑑 − 1)-manifolds and
whose morphisms are diffeomorphism classes of compact bordisms.

As preparation to the proof of Theorem 5.7, we show that the values of the functor are invariant
under certain surgeries.
Lemma 5.10. Let F be as in Theorem 5.7. If two compact d-manifolds M and N differ by p-surgeries in
the interior with 𝑘 ≤ 𝑝 ≤ 𝑑 − 𝑘 − 1, then there exists an isomorphism 𝐹 (𝑀) � 𝐹 (𝑁).
Proof. It suffices to show the claim in the case where N is obtained from M by a single p-surgery along
an embedding 𝑆𝑝 × 𝐷𝑑−𝑝 ↩→ int(𝑀). We consider the zig-zag

𝐹 (𝑀) ←− 𝐹 (𝑀\int(𝑆𝑝 × 𝐷𝑑−𝑝)) −→ 𝐹 (𝑁)
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induced by the inclusions 𝑀\int(𝑆𝑝 × 𝐷𝑑−𝑝) ⊂ 𝑀 and 𝑀\int(𝑆𝑝 × 𝐷𝑑−𝑝) ⊂ 𝑁 . The former has
relative handle type [𝑑 − 𝑝, 𝑑], and the latter has relative handle type [𝑝 + 1, 𝑑]. As 𝑑 − 𝑝 ≥ 𝑘 + 1 and
𝑝 +1 ≥ 𝑘 +1, and F sends inclusions of submanifolds of relative handle type [𝑘 +1, 𝑑] to isomorphisms
by assumption, we conclude the claim. �

Proof of Theorem 5.7. Recall that two d-manifolds M and N have the same tangential k-type if there
exists a map 𝜃 : 𝐵 → BO and k-connected 𝜃-structures ℓ𝑀 and ℓ𝑁 on M and N.

Part (i) of the claim asserts an isomorphism 𝐹 (𝑀) � 𝐹 (𝑁). In the case that (𝑀, ℓ𝑀 ) and (𝑁, ℓ𝑁 )
are closed manifolds that are 𝜃-bordant, this follows directly from Corollary 5.6 and Lemma 5.10. To
show the general case, we pick a handle decomposition of M viewed as a bordism 𝑀 : ∅ � 𝜕𝑀 and
consider the zig-zag (using the notation from Section 5.1.3)

𝐹
(
𝑀
)
←− 𝐹

(
𝑀 [0, 𝑘]

)
−→ 𝐹

(
𝑀 [0, 𝑘] ∪𝑀𝑘 𝑀 [0, 𝑘]

)
(74)

whose arrows are induced by 𝑀 [𝑘 +1, 𝑑] : 𝑀𝑘 � 𝜕𝑀 and 𝑀 [0, 𝑘] : 𝑀𝑘 � ∅. The former is of handle
type [𝑘 + 1, 𝑑] and the latter of handle type [𝑑 − 𝑘, 𝑑], so using that 𝑑 − 𝑘 > 𝑘 , the two submanifold
inclusions inducing the maps in the zig-zag have relative handle type [𝑘 + 1, 𝑑], so the zig-zag consists
of isomorphisms. Applying the same reasoning for N, we see that the claim follows once we provide an
isomorphism between the values of F at the two doubles 𝑀 [0, 𝑘] ∪𝑀𝑘 𝑀 [0, 𝑘] and 𝑁 [0, 𝑘] ∪𝑁𝑘 𝑁 [0, 𝑘].
Both of these doubles are closed manifolds that are 𝜃-nullbordant (see Section 5.1.2), so they are in
particular 𝜃-bordant to each other. This implies the claim by the first part as long as we make sure that
the induced 𝜃-structures on these doubles are k-connected. But this is the case, since it holds for M
and N by assumptions, and the above handle considerations in particular imply that all inclusions in
𝑀 ⊃ 𝑀 [0, 𝑘] ⊂ 𝑀 [0, 𝑘] ∪𝑀𝑘 𝑀 [0, 𝑘] and 𝑁 ⊃ 𝑁 [0, 𝑘] ⊂ 𝑁 [0, 𝑘] ∪𝑁𝑘 𝑁 [0, 𝑘] are k-connected.

To prove part (ii), we fix an embedding 𝐿 ↩→ 𝑀 as in the claim which we may assume by transversality
to be contained in 𝑀 [0, 𝑘] ⊂ 𝑀 , as the complement 𝑀 [𝑘 + 1, 𝑑] ⊃ 𝜕𝑀 has relative handle dimension
≤ 𝑑 − (𝑘 + 1) and L has handle dimension ≤ 𝑘 by assumption. The zig-zag (74) is then compatible with
the maps from 𝐹 (𝐿) induced by inclusion. Now 𝑀 [0, 𝑘] ∪𝑀𝑘 𝑀 [0, 𝑘] differs from 𝑁 [0, 𝑘] ∪𝑁𝑘 𝑁 [0, 𝑘]
by surgeries of index 𝑘 ≤ 𝑝 ≤ 𝑑 − 𝑘 − 1, which we may assume (again by transversality) to be done
away from L, so there is an embedding 𝐿 ↩→ 𝑁 [0, 𝑘] ∪𝑁𝑘 𝑁 [0, 𝑘], such that the induced isomorphism
𝐹 (𝑀 [0, 𝑘] ∪𝑀𝑘 𝑀 [0, 𝑘]) � 𝐹 (𝑁 [0, 𝑘] ∪𝑁𝑘 𝑁 [0, 𝑘]) is compatible with the maps from 𝐹 (𝐿). Using
transversality one last time, we see that we may isotope the embedding 𝐿 ↩→ 𝑁 [0, 𝑘] ∪𝑁𝑘 𝑁 [0, 𝑘] to
land in 𝑁 [0, 𝑘] since 𝑁 [0, 𝑘] ⊂ has handle dimension ≤ 𝑘 and 2𝑘 < 𝑑. With respect to the isotoped
embedding, the zig-zag (74) is compatible with the maps from 𝐹 (𝑁), and this concludes the proof.

For part (iii), we may assume without loss of generality that the embedding is a submanifold inclusion
of the form 𝑀 ⊂ 𝑀 ∪𝜕𝑀 𝑊 for 𝑊 : 𝜕𝑀 � 𝜕𝑁 a bordism. We now consider the commutative square
of codimension 0 submanifold inclusions

𝑐(𝑀𝑘 ) 𝑐(𝑀𝑘 ) ∪𝑀𝑘 𝑀 [𝑘 + 1, 𝑑] ∪𝜕𝑀 𝑊

𝑀 𝑀 ∪𝜕𝑀 𝑊 = 𝑁,

(75)

where 𝑐(𝑀𝑘 ) ⊂ 𝑀 is a closed bicollar of 𝑀𝑘 ⊂ 𝑀 . The vertical inclusions are of relative handle type
[𝑘+1, 𝑑] (this uses 𝑑−𝑘 ≥ 𝑘+1), so we conclude that they map to isomorphisms under F. It thus suffices
to show that F maps the top horizontal inclusion to an isomorphism. Since the vertical inclusions and the
𝜃-structures ℓ𝑀 and ℓ𝑁 are k-connected, it follows that the top horizontal inclusion is an equivalence on
tangential k-type equivalence. Since 𝑑 ≥ 4, we have 𝑑/2 ≤ 𝑑 − 2, so 𝑘 < min(𝑑/2, 𝑑 − 2). Abbreviating
𝑉 = 𝑀 [𝑘, 𝑑]∪𝜕𝑀𝑊 , an application of [KK24c, Lemma 6.10] shows that we can factor the top horizontal
inclusion as a composition of the form 𝑐(𝑀𝑘 ) ⊂ 𝑐(𝑀𝑘 ) ∪𝑀𝑘 𝑉 [𝑘, 𝑘] ⊂ 𝑐(𝑀𝑘 ) ∪𝑀𝑘 𝑉 , where the first
inclusion is obtained by attaching trivial k-handles and the second by attaching ≥ 𝑘 + 1-handles. By
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assumption, F sends the second inclusion to an isomorphism, so it suffices to show that the same holds
for the first inclusion. By attaching cancelling (𝑘 + 1)-handles, the first inclusion fits into a sequence of
inclusions 𝑐(𝑀𝑘 ) ⊂ 𝑐(𝑀𝑘 ) ∪𝑀𝑘 𝑉 [𝑘, 𝑘] ⊂ 𝑐′(𝑀𝑘 ) whose composition is given by attaching a collar
(so is an isotopy equivalence), and the second inclusion is obtained by attaching (𝑘 + 1)-handles. Now
F sends the second inclusion and the composition to isomorphisms, and so also the first. �

5.3. 2-type invariance of the 𝓓isc-structure space

By Section 4.5.2, the 𝒟isc-structure spaces of compact manifolds form the values of a functor
𝑆𝒟isc
𝜕

(−) : ℬord(𝑑) (∞,1)
∅/

→ 𝒮 of ∞-categories, which induces on homotopy categories in view of
Remark 5.9 a functor

𝑆𝒟isc
𝜕 (−) : ℎManc

𝑑 � ℎℬord(𝑑) (∞,1)
∅/

−→ ℎ𝒮.

The goal of this section is to show that this functor satisfies the assumptions of Theorem 5.7 for
𝑘 = 2. This can be rephrased as follows:

Proposition 5.11. Let 𝑀 � ∅ � 𝑃 and 𝑊 : 𝑃 � 𝑄 be d-dimensional bordisms. If W is of handle type
[3, 𝑑], then the gluing map (− ∪𝑃 𝑊) : 𝑆𝒟isc

𝜕
(𝑀) → 𝑆𝒟isc

𝜕
(𝑀 ∪𝑃 𝑊) is an equivalence.

Once this is proved, Theorem 5.7 implies the following refined version of Theorem A.

Theorem 5.12. Let 𝑑 ≥ 5, and M, N be two compact d-manifolds of the same tangential 2-type.

(i) There exists an equivalence 𝑆𝒟isc
𝜕

(𝑀) � 𝑆𝒟isc
𝜕

(𝑁).
(ii) For any embedding 𝑒 : 𝐿 ↩→ 𝑀 of a d-manifold L with handle dimension ≤ 2, there is an embedding

𝑒′ : 𝐿 ↩→ 𝑁 so that the equivalence of 5.12 can be chosen to be compatible with

𝑒∗ : 𝑆𝒟isc
𝜕 (𝐿) → 𝑆𝒟isc

𝜕 (𝑀) and 𝑒′
∗ : 𝑆𝒟isc

𝜕 (𝐿) → 𝑆𝒟isc
𝜕 (𝑁).

(iii) Any embedding 𝑒 : 𝑀 ↩→ 𝑁 that induces an equivalence on tangential 2-types induces an equiva-
lence 𝑆𝒟isc

𝜕
(𝑀) � 𝑆𝒟isc

𝜕
(𝑁) as in 5.12.

Proof of Proposition 5.11. Unravelling the statement using Definition 4.13, the task is to show that

ℬord(𝑑)𝑃 ℬord(𝑑)𝑄

ℳod(𝑑)
rep,�
𝐸𝑃×𝐼

ℳod(𝑑)
rep,�
𝐸𝑄×𝐼

𝐸

(−)∪𝑃𝑊

𝐸

(−)∪𝐸𝑃×𝐼 𝐸𝑊

is a pullback in 𝒮, where ℳod(𝑑)
rep,�
𝐸𝑃×𝐼

⊂ ℳod(𝑑)�𝐸𝑃×𝐼
and ℳod(𝑑)

rep,�
𝐸𝑄×𝐼

⊂ ℳod(𝑑)�𝐸𝑄×𝐼
are the ∞-

groupoids given as the full subcategories of those objects in the image of the functor 𝐸 : ℬord(𝑑)𝑃 →
ℳod(𝑑)�𝐸𝑃×𝐼

and in the image of its analogue for P replaced by Q, respectively. We prove that it is a
pullback by showing that the map on horizontal fibres are equivalences, for which we use that for any
map 𝑓 : 𝐸 → 𝐵 in 𝒮 (thought of as a full subcategory of 𝒞at∞) and a point 𝑏 ∈ 𝐵, the fibre of f over b
agrees with the colimit colim𝐸 Map𝐵 ( 𝑓 (−), 𝑏). This follows from [Lur09a, 3.3.4.6] combined with the
fact that the fibre over b is the total space of the unstraightening of the functor Map𝐵 ( 𝑓 (−), 𝑏) : 𝐸 → 𝒮,
which in turn follows from [Lur09a, 3.3.2.8].

Applying this to the situation at hand and using the description of E on mapping spaces from
Section 4.1.7, the claim follows once we show that for each nullbordism 𝑁 ∈ ℬord(𝑑)𝑄, the map

colim
(ℬord(𝑑)𝑃)op

[
Mapℬord(𝑑)𝑄

(
(−) ∪𝑃 𝑊, 𝑁

) ] 𝐸
−→ colim

(ℳod(𝑑)
rep,�
𝐸𝑃×𝐼

)op

[
Mapℳod(𝑑)�𝐸𝑄×𝐼

(
(−) ∪𝐸𝑃×𝐼 𝐸𝑊 , 𝐸𝑁

) ]
https://doi.org/10.1017/fmp.2024.25 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2024.25


66 M. Krannich and A. Kupers

is an equivalence. Using the factorisation 𝐸 : ℬord(𝑑) → ℳod(𝑑) through the noncompact version of
the bordism double ∞-category ncℬord(𝑑), this map fits into a commutative diagram

colim
(ℬord(𝑑)𝑃)op

[
Mapℬord(𝑑)𝑄

(
(−) ∪𝑃 𝑊, 𝑁

) ]
colim

(ℳod(𝑑)
rep,�
𝐸𝑃×𝐼

)op

[
Mapℳod(𝑑)�𝐸𝑄×𝐼

(
(−) ∪𝐸𝑃×𝐼 𝐸𝑊 , 𝐸𝑁

) ]

colim
(ncℬord(𝑑)𝑃)op

[
Mapncℬord(𝑑)𝑄

(
(−) ∪𝑃 𝑊, 𝑁

) ]
colim

(ℳod(𝑑)
rep
𝐸𝑃×𝐼

)op

[
Mapℳod(𝑑)𝑄

(
(−) ∪𝐸𝑃 𝐸𝑊 , 𝐸𝑁

) ]

Mapncℬord(𝑑)𝑄

(
𝑃 × (−1, 0] ∪𝑃 𝑊, 𝑁

)
Mapℳod(𝑑)𝐸𝑄×𝐼

(
𝐸𝑃×(−1,0]∪𝑃𝑊 , 𝐸𝑁

)
,

1

𝐸

2
𝐸

𝐸

� �

where the bottom vertical equivalences result from the fact that the bordism (𝑃 × (−1, 0]) : ∅ � 𝑃 is
initial in ncℬord(𝑑)𝑃 and its image under E is initial in ℳod(𝑑)

rep
𝐸𝑃×𝐼

, by Remark 4.6. By Corollary 4.7,
the bottom map is an equivalence as the handle dimension of 𝑃 × (−1, 0] ∪𝑃 𝑊 relative to Q is ≤ 𝑑 − 3
by assumption. It thus suffices to show that 1 and 2 are equivalences.

We begin with 1 . Since the mapping spaces in ncℬord(𝑑)𝑃 are given by spaces of embeddings
fixing the boundary and composition is given by composition of embeddings (see Section 4.1.1) and
the same holds for ℬord(𝑑)𝑃 with embeddings replaced by diffeomorphisms (see Section 4.1.2), the
map 1 is the map induced by restriction

colim
(ℬord(𝑑)𝑃)op

Diff𝜕 ((−) ∪𝑃 𝑊, 𝑁) −→ Emb𝑄 (𝑊, 𝑁).

Using the decomposition ℬord(𝑑)𝑃 =
⊔

𝑀 ∈𝜋0 ℬord(𝑑)𝑃 BDiff𝜕 (𝑀) into path components (see Sec-
tion 4.1.2), this can further be simplified as⊔

𝑀 ∈𝜋0 ℬord(𝑑)𝑃

Diff𝜕 (𝑀 ∪𝑃 𝑊, 𝑁)/Diff𝜕 (𝑀) −→ Emb𝑄 (𝑊, 𝑁). (76)

To show that the map (76) is an equivalence, we show separately that it induces a bijection on components
and that it is an equivalence on each component. To see that it is surjective on components, pick
an embedding 𝑒 ∈ Emb𝑄 (𝑊, 𝑁). Up to changing e within its isotopy class, we can assume that
𝑃 ⊂ 𝑊 is mapped to the interior of N and that the complement of 𝑒(𝑊\𝑃) ⊂ 𝑁 defines a bordism
(𝑁\𝑒(𝑊\𝑃)) : 𝑃 � 𝑄. In this case, the class in 𝜋0 Diff𝜕 (𝑀 ∪𝑃𝑊, 𝑁)/𝜋0 Diff𝜕 (𝑀) = 𝜋0 (Diff𝜕 (𝑀 ∪𝑃

𝑊, 𝑁)/Diff𝜕 (𝑀)) of the diffeomorphism (𝑁\𝑒(𝑊\𝑃)) ∪𝑃 𝑊 � 𝑁 obtained by extending e by the
identity provides a preimage of [𝑒] ∈ 𝜋0 Emb𝑄 (𝑊, 𝑁). Injectivity of (76) on 𝜋0 follows from the
isotopy extension theorem in the form of the homotopy fibre sequence

Diff𝜕 (𝑀)
𝜙◦( (−)∪𝑃 id𝑊 )
−−−−−−−−−−−−→ Diff𝜕 (𝑀 ∪𝑃 𝑊, 𝑁)

res
−−→ Emb𝑄 (𝑊, 𝑁)

with fibre taken over the image of a diffeomorphism 𝜙 : 𝑀 ∪𝑃 𝑊 � 𝑁 . This sequence also implies that
(76) is an equivalence on components, which finishes the proof for 1 .

The argument for 2 is similar. Using Sections 4.1.6 and 4.1.7, the reduction to showing that (76) is
an equivalence applies also to the map 2 and shows that it agrees with the map⊔

𝐸𝑀 ∈𝜋0 ℳod(𝑑)
rep,�
𝐸𝑃×𝐼

Mapℳod(𝑑)�𝐸𝑄×𝐼

(𝐸𝑀∪𝑃𝑊 , 𝐸𝑁 )/Autℳod(𝑑)�𝐸𝑃×𝐼
(𝐸𝑀 )

Mapℳod(𝑑)�𝐸𝑄×𝐼

(𝐸𝑃×(−1,0]∪𝑃𝑊 , 𝐸𝑁 )
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induced by the inclusion 𝑃 × (−1, 0] ∪𝑃 𝑊 ⊂ 𝑀 ∪𝑃 𝑊 . From the commutativity of the big diagram
above and the fact that 1 and the bottom horizontal map are equivalences, we see that 2 is surjective
on 𝜋0 (−), so we must show it is injective on 𝜋0 (−) and induces an equivalence on components. This
follows as for 1 once we show that for 𝐸𝑀 ∈ ℳod(𝑑)

rep,�
𝐸𝑃×𝐼

and 𝜙 ∈ Mapℳod(𝑑)�𝐸𝑄×𝐼

(𝐸𝑀 ∪𝐸𝑃 𝐸𝑊 , 𝐸𝑁 ),
the sequence

Autℳod(𝑑)�𝐸𝑃×𝐼
(𝐸𝑀 ) −→ Mapℳod(𝑑)�𝐸𝑄×𝐼

(𝐸𝑀∪𝑃𝑊 , 𝐸𝑁 )
res
−−→ Mapℳod(𝑑)𝐸𝑄×𝐼

(𝐸𝑃×(−1,0]∪𝑃𝑊 , 𝐸𝑁 ),

whose left map is given by 𝜙 ◦ ((−) ∪𝐸𝑃×𝐼 id𝐸𝑊 ), is a homotopy fibre sequence when taking homotopy
fibres over the image of 𝜙. By postcomposition with an inverse of 𝜙, it suffices to show this in the case
𝜙 = id. This follows from the second part of Theorem 4.10 (set 𝑃 = ∅, 𝑄 = 𝑃, 𝑅 = 𝑄, 𝑊 = ∅, 𝑊 ′ = 𝑊 ,
𝑀 = 𝑀 , and 𝑁 = 𝑀). The hypothesis to apply this result holds by Corollary 4.7, since it follows from
the assumption that 𝑘 × R𝑑 � 𝑃 × (−1, 0] ∪𝑃 𝑊 is the interior of a manifold obtained from a closed
collar on Q by attaching (≤ 𝑑 − 3)-handles for all k. �

We conclude this section with a first application of the tangential 2-type invariance. We will later use
it to reduce the proof of the nontriviality result for 𝑆𝒟isc

𝜕
(𝑀) to the case of 𝑀 = 𝐷𝑑 .

Corollary 5.13. For a compact spin d-manifold 𝑀 ≠ ∅ with 𝑑 ≥ 5, the space 𝑆𝒟isc
𝜕

(𝑀) contains
𝑆𝒟isc
𝜕

(𝐷𝑑) as a homotopy retract.

Proof. This essentially follows from the fact that any finitely presented group arises as the fundamental
group of a compact connected codimension 0-submanifold 𝑁 ⊂ 𝐷𝑘 as long as 𝑘 ≥ 5 (in fact, 𝑘 ≥ 4 is
known to suffice, but we will not need this harder result). Indeed, apply this to 𝑘 = 𝑑 and the fundamental
group of each path component of M to obtain a compact d-manifold 𝑁 ⊂ 𝐷𝑑 whose fundamental
groupoid is equivalent to that of M. Since N admits an embedding into 𝐷𝑑 , it is in particular spin, so
the final discussion in Example 5.2 shows that M and N have the same tangential 2-type. Using the
tangential 2-type invariance of 𝑆𝒟isc

𝜕
(−) from Theorem 5.12, it thus suffices to show the claim for N.

The latter follows by choosing an embedded disc 𝐷𝑑 ⊂ 𝑁 so that the composition 𝐷𝑑 ⊂ 𝑁 ⊂ 𝐷𝑑 is
isotopic to the identity and applying 𝑆𝒟isc

𝜕
(−). �

6. Theorem B: infinite loop space

The goal of this section is the proof of Theorem B, or rather the following strengthening of it:

Theorem 6.1. For a compact manifold M of dimension 𝑑 ≥ 8, 𝑆𝒟isc
𝜕

(𝑀) admits the structure of an
infinite loop space. If M is 1-connected spin, then the bound 𝑑 ≥ 8 can be improved to 𝑑 ≥ 6.

In Section 1.2.4, we already gave an informal overview of the proof. We now make it precise.

6.1. Operads with homological stability

The proof of Theorem 6.1 relies on work of Basterra–Bobkova–Ponto–Tillmann–Yaekel [BBP+17] on
operads with homological stability which generalises earlier work of Tillmann [Til00]. We summarise
their main result in this subsection.

Remark 6.2. [BBP+17] is written in the setting of classical operads in topological spaces and algebras
over them. To make it fit in our framework, we will rephrase their result in terms of (symmetric) ∞-
operads and algebras over them (see Section 2.7). This translation is justified by the fact that there
is an equivalence of ∞-categories between the ∞-category 𝒪pd∞ of ∞-operads, and the ∞-category
underlying the model category 𝑠𝒪p of classical coloured operads in simplicial sets (see [CHH18,
p. 858]), which is in turn Quillen equivalent to that of classical coloured operads in topological spaces;
these equivalences do not affect the induced operad in the homotopy category. These equivalences
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extend to corresponding equivalences between categories of algebras over operads: [PS18, Theorem
7.11] shows that (under mild conditions) the comparison functor from the ∞-category underlying the
model category of algebras over a simplicial operad to the ∞-category of algebras over the associated ∞-
operad is an equivalence, and applying Sing(−), induces (under mild conditions) a Quillen equivalence
from the model category of algebras over a topological operad to the model category of algebras over
the corresponding simplicial operad. The ‘mild conditions’ in both steps are satisfied for all operads
appearing in this section.

Let N0 denote the set of nonnegative integers. To state the main result of [BBP+17], we consider
N0-graded ∞-operads, by which we mean (symmetric) ∞-operads 𝒫, together with a map of ∞-
operads 𝒫⊗ → FinN0

∗ to the ∞-operad FinN0
∗ that is induced (via the operadic nerve [Lur17, 2.1.1.27])

by N0 under addition, considered as a symmetric monoidal category with a single object. Unpacking
the definition, this amounts to an N0-indexed disjoint union decomposition Mul𝒫 (𝑥1, . . . , 𝑥𝑛; 𝑦) =
�𝑔≥0Mul𝒫 (𝑥1, . . . , 𝑥𝑛; 𝑦)𝑔 of all spaces of multi-operations that is additive under operadic composition.
Every ∞-operad 𝒪 can be viewed as an N0-graded operad in grading 0; formally, this amounts to
considering the composition 𝒪⊗ → Fin∗ → FinN0

∗ , where the second arrow is induced by {0} ⊂ N0.

Definition 6.3. An operad with homological stability is an N0-graded ∞-operad 𝒫 with a single colour
(whose space of k-ary operations we write as Mul𝒫 (∗, . . . , ∗; ∗) = 𝒫(𝑘) = �𝑔≥0𝒫𝑔 (𝑘)), together with

(i) a map of N0-graded ∞-operads 𝒜ssoc → 𝒫 from the associative operad 𝒜ssoc (see Example 2.11)
concentrated in degree 0, and

(ii) a distinguished element 𝑠 ∈ 𝒫1(1), called the stabilising element,

such that

(a) the map on 2-ary operations 𝒜ssoc(2) → 𝒫0 (2) lands in a single path component, and
(b) the map 𝒫∞(𝑘) � colim𝑔 𝒫𝑔 (𝑘) → colim𝑔 𝒫𝑔 (0) ≕ 𝒫∞(0) induced by taking horizontal

colimits in the commutative diagram in 𝒮

· · · 𝒫𝑔−1(𝑘) 𝒫𝑔 (𝑘) 𝒫𝑔+1(𝑘) · · ·

· · · 𝒫𝑔−1(0) 𝒫𝑔 (0) 𝒫𝑔+1(0) · · ·

◦𝑃 (𝑠;−)

◦𝑃 (−;∗,...,∗)

◦𝑃 (𝑠;−)

◦𝑃 (−;∗,...,∗) ◦𝑃 (−;∗,...,∗)
◦𝑃 (𝑠;−) ◦𝑃 (𝑠;−)

is an integral homology isomorphism for all 𝑘 ≥ 0; here, ◦𝑃 (−; −) is the operadic composition, and
∗ ∈ 𝒫0(0) is the image of ∗ � 𝒜ssoc(0) → 𝒫0 (0).

Given 𝒫 as in Definition 6.3, we may forget the grading and consider the composition

Alg𝒫 (𝒮) −→ Alg𝒜ssoc (𝒮)
LurieHA, p 465
−−−−−−−−−−−→

�
Mon(𝒮)

Ω𝐵
−→ Mongrp (𝒮)

𝑈
−→ 𝒮, (77)

where the first arrow is the functor between ∞-categories of algebras in 𝒮 with its cartesian symmetric
monoidal structure, induced by the morphism 𝒜ssoc → 𝒫 of ∞-operads (see Section 2.7), the second
arrow is given by group completion (i.e., the left adjoint of the full subcategory inclusion Mongrp (𝒮) ⊂
Mon(𝒮) of group-like objects – that is, those monoid objects 𝑀 ∈ Mon(𝒮) ⊂ Fun(Δop,𝒮) in the sense
of Section 2.5 for which the induced monoid of path components 𝜋0 (𝑀[1] ) is a group), and the final
arrow is the forgetful functor, given by evaluation at [1] ∈ Δ . Recall (see, for example, [Lur17, 5.2.6])
that the composition of the final two arrows sends 𝑀 ∈ Mon(𝒮) to the pullback in 𝒮

Ω𝐵𝑀 𝑀[0] � ∗

∗ � 𝑀[0] 𝐵𝑀,

with 𝐵𝑀 = colim
Δop

𝑀.
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Writing Alggrp
𝐸∞

(𝒮) ⊂ Alg𝐸∞
(𝒮) for the full subcategory of group-like algebras in𝒮 over the 𝐸∞-operad

[Lur17, 5.1.1.6], the main result of [BBP+17] reads as follows:

Theorem 6.4 (Basterra–Bobkova–Ponto–Tillmann–Yeakel). For an operad with homological stability
𝒫, there exists a dashed functor fitting into a commutative diagram of ∞-categories

Alggrp
𝐸∞

(𝒮)

Alg𝒫 (𝒮) 𝒮,

𝑈

(6.1)

where U is the forgetful functor.

In other words, the underlying space of the group completion of an algebra over an operad with
homological stability (viewed as an ungraded operad) admits functorially the structure of a group-like
𝐸∞-algebra, or equivalently – by the recognition principle [Lur17, 5.2.6.26] – of an infinite loop space.

6.2. A manifold operad with homological stability

The main example of an operad with homological stability considered in [BBP+17] is constructed out
of the manifolds

𝑊2𝑛
𝑔,𝑘+𝑙 � 𝑊2𝑛

0,𝑘+𝑙♯(𝑆
𝑛 × 𝑆𝑛)♯𝑔 with 𝑊2𝑛

0,𝑘+𝑙 � 𝑆2𝑛\int((�𝑘𝐷2𝑛) � (�𝑙𝐷2𝑛))

for 𝑘, 𝑙 ≥ 0 and 𝑛 ≥ 1, considered as bordisms of the form �𝑘𝑆2𝑛−1 � �𝑙𝑆2𝑛−1. Here, ♯ denotes the
connected sum operation. This is also the operad that is relevant for the proof of Theorem 6.1, so we
recall its construction in our setting. We omit the 2𝑛-superscripts for brevity.

Consider the tangential structure 𝜃 = 𝜏∗Fr(𝛾) in the sense of Section 4.1.3 given as the GL2𝑛 (R)-
space, which is the pullback of the frame bundle of the universal bundle 𝛾 → BO(2𝑛) along the n-
connected cover map 𝜏 : 𝜏>𝑛BO(2𝑛) → BO(2𝑛). Since 𝑆2𝑛−1 is stably parallelisable, its once-stabilised
tangent bundle admits a 𝜃-structure ℓ0 compatible its canonical orientation, unique up to equivalence
of 𝜃-structures. We consider the symmetric monoidal ∞-category ℬord𝜃 (2𝑛) (∞,1) from Section 4.1.3
and write ℬord𝜃 (2𝑛) (∞,1) ,𝑊 for the sub symmetric monoidal ∞-category (see Example 2.13) obtained
by restricting objects to those equivalent to �𝑘 (𝑆2𝑛−1, ℓ0) for 𝑘 ≥ 0 and restricting morphisms to those
𝜃-bordisms whose underlying bordism without 𝜃-structure is equivalent to a disjoint union of 𝑊𝑔,𝑘+1’s
for some 𝑔, 𝑘 ≥ 0. Up to issues with components and different models, [BBP+17, Theorem 1.3] shows
that the endomorphism operad

𝒲 ≔ Endℬord𝜃 (2𝑛) (∞,1) ,𝑊 (𝑆2𝑛−1, ℓ0)

of (𝑆2𝑛−1, ℓ0) in this category (see Section 2.7.1) can be enhanced to an operad with homological
stability for all 2𝑛 ≥ 2. For completeness and to deal with these issues, we give a proof in our setting by
adapting their argument. As in [BBP+17], the main ingredient is a stable homological stability result of
Galatius–Randal-Williams [GRW17] (for the case 2𝑛 = 2, one can use [Har85]).

Proposition 6.5. 𝒲 admits the structure of an operad with homological stability for all 2𝑛 ≥ 2.

Proof. By definition and (68), the space of k-ary operations

𝒲(𝑘) = Mapℬord𝜃 (2𝑛) (∞,1) ,𝑊

(
�𝑘 (𝑆2𝑛−1, ℓ0), (𝑆

2𝑛−1, ℓ0)
)

is the ∞-groupoid of 𝜃-bordisms �𝑘 (𝑆2𝑛−1, ℓ0) � (𝑆2𝑛−1, ℓ0) that are, after forgetting 𝜃-structures,
equivalent to𝑊𝑔,𝑘+1 for some 𝑔 ≥ 0. As the manifolds𝑊𝑔,𝑘+1 are pairwise non-diffeomorphic for 𝑔 ≥ 0,
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Figure 8. A 5-ary operation in the ∞-operad 𝒲.

this induces a decomposition 𝒲(𝑘) = �𝑔≥0𝒲(𝑘)𝑔 which is compatible with the operad structure given
by gluing bordisms with 𝜃-structures, so it gives rise to an N0-grading on 𝒲.

To construct a map 𝒜ssoc → 𝒲 from the associative operad (put in degree 0), we first use
Example 2.11 to recognise 𝒜ssoc as a suboperad in the sense of Section 2.7.1 of the endomorphism
operad Endℬordfr (2)𝜕, (∞,1) (𝐷1, st) of the 1-disc with the standard 1-framing (that is, framing of its
once-stabilised tangent bundle) considered as an object of the 2-dimensional framed bordism category
with boundary from Section 4.1.3 (formally, the tangential structure involved is fr = (id : GL2(R) →
GL2(R)). Namely, we restrict to those bordisms (𝑁, ℓ) : �𝑘 (𝐷1, st) � (𝐷1, st) for which (𝑁, ℓ) is
diffeomorphic (after smoothing corners) to 𝐷2 with its standard framing such that �𝑘 (𝐷1, st) ⊂ 𝜕𝐷2

is orientation-preserving, (𝐷1, st) ⊂ 𝜕𝐷2 is orientation-reversing (see Figure 8 for an example). From
Example 2.11, one sees that this suboperad is equivalent to 𝒜ssoc since its space of k-ary operations
is homotopy discrete with components Σ𝑘 (with the regular Σ𝑘 -action) as a consequence of the facts
that (i) the diffeomorphism group of 𝐷2 fixing some boundary intervals is contractible as a result of
the equivalences Diff𝜕 (𝐷

1) � ∗ and Diff𝜕 (𝐷
2) � ∗ (the first is folklore, the latter is [Sma59, Theorem

B]) and that (ii) the space of framings of 𝐷2 relative to fixed 1-framings on collared intervals in the
boundary is homotopy discrete (as ΩGL2(R) is).

Now we consider the composition of symmetric monoidal ∞-categories

ℬordfr (2)𝜕, (∞,1) (−)×(𝐷2𝑛−1 ,st)
−−−−−−−−−−−−→ ℬordfr (2𝑛 + 1)𝜕, (∞,1) 𝜕

−→ ℬord1−fr (2𝑛) (∞,1) −→ ℬord𝜃 (2𝑛) (∞,1) ,

where the first arrow takes the product with 𝐷2𝑛−1 equipped with the standard framing and smooths
corners (see Example 3.13), the second arrow takes boundaries and lands in the bordism category
with 1-stabilised framings (see Example 3.12), and the final arrow is induced by the naturality (62)
in the tangential structure and the fact that there is a map of tangential structures (1−fr) → 𝜃 since
𝜏 : 𝜏>𝑛BO(2𝑛) → BO(2𝑛) arises as the pullback of 𝜏>𝑛BO(2𝑛 + 1) → BO(2𝑛 + 1) along BO(2𝑛) →
BO(2𝑛 + 1) and thus receives a map from the pullback of ∗ → BO(2𝑛 + 1). Taking endomorphism
operads and precomposing with the map from 𝒜ssoc, we have a composition

𝒜ssoc ⊂
−→ Endℬordfr (2)𝜕, (∞,1) (𝐷

1, st) −→ Endℬord𝜃 (2𝑛) (∞,1) (𝑆2𝑛−1, ℓ0),

which lands in the suboperad of Endℬord𝜃 (2𝑛) (∞,1) (𝑆2𝑛−1, ℓ0) whose underlying bordisms are equivalent
to 𝑊0,𝑘+1, using that 𝜕 (𝐷2 × 𝐷2𝑛−1)\int(�𝑘+1𝐷1 × 𝐷2𝑛−1) � 𝑊0,𝑘+1 after smoothing corners. In other
words, it lands in the degree 0-part of the operad 𝒲 and thus gives a map 𝒜ssoc → 𝒲 as in part
(i) of Definition 6.3. As 𝑠 ∈ 𝒲1(1) in part (ii), we choose the bordism 𝑊1,1 : 𝑆2𝑛−1 � 𝑆2𝑛−1 with an
admissible 𝜃-structure as in [GRW17, p. 130] that extends ℓ0 on the boundary spheres.

It remains to check conditions (a) and (b) of Definition 6.3. For (a), one observes that already the
composition 𝒜ssoc(2) → Endℬordfr (2)𝜕, (∞,1) (𝐷1, st) (2) → Endℬordfr (2𝑛+1)𝜕, (∞,1) (𝐷2𝑛, st) (2) lands in a
single path component, since the bordism (𝐷2𝑛+1, st) : �2(𝐷2𝑛, st) � (𝐷2𝑛, st) is for 𝑛 ≥ 1 framed
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diffeomorphic to the same bordism with the two source components permuted using the isotopy extension
theorem and the fact that the space of framed embeddings �2𝐷𝑑 ↩→ 𝐷𝑑 is connected for 𝑑 ≥ 2.

Finally, to verify (b), we note that the image of ∗ � 𝒜ssoc(0) → 𝒲 is the bordism 𝐷2𝑛 : 𝑆2𝑛−1 � ∅,
equipped with some 𝜃-structure, so the map 𝒲∞(𝑘) → 𝒲∞(0) is a homology equivalence as a result of
applying [GRW17, Theorem 1.3] to the bordism (with some 𝜃-structure)

(𝐷2𝑛)�𝑘 � (𝑆2𝑛−1 × [0, 1]) : (𝑆2𝑛−1)�𝑘 � 𝑆2𝑛−1 � 𝑆2𝑛−1,

which, being (𝑛 − 1)-connected relative to its source, satisfies the condition of that theorem. �

6.3. Group completion and 𝓓isc-structure spaces

Fixing numbers 2 ≤ 2𝑛 ≤ 𝑑 and a closed (𝑑 − 2𝑛)-manifold P, we consider the sequence of symmetric
monoidal ∞-categories

ℬord𝜃 (2𝑛) (∞,1) ,𝑊 ⊂ ℬord𝜃 (2𝑛) (∞,1) 𝑈
−→ ℬord(2𝑛) (∞,1) 𝑃×−

−→ ℬord(𝑑) (∞,1) 𝐸
−→ ℳod(𝑑) (∞,1) ,

(78)

where U forgets tangential structures, 𝑃 × (−) takes products (see Step ⑧ in Section 3), and the final
functor is discussed in Section 4.1.7. (78) lands in the sub symmetric monoidal ∞-category

ℳod(𝑑) (∞,1) ,𝑊 ⊂ ℳod(𝑑) (∞,1) ,

which is obtained by the restricting the objects to those equivalent to 𝐸�𝑘𝑃×𝑆2𝑛−1×𝐼 for 𝑘 ≥ 0 and the
morphisms to those bimodules equivalent to 𝐸�𝑚𝑃×𝑊𝑔,𝑘+1 for some 𝑚, 𝑘, 𝑔 ≥ 0. We write

ℬord(2𝑛) (∞,1) ,𝑊 ⊂ ℬord(2𝑛) (∞,1)

for the symmetric monoidal sub ∞-category obtained by restricting objects and morphisms to those that
land in ℳod(𝑑) (∞,1) ,𝑊 ⊂ ℳod(𝑑) (∞,1) . Taking endomorphism operads, we obtain a composition

𝒜ssoc → 𝒲 = Endℬord𝜃 (2𝑛) (∞,1) ,𝑊 (𝑆2𝑛−1, ℓ0)

→ End
ℬord(𝑑) (∞,1) ,𝑊 (𝑃 × 𝑆2𝑛−1) → Endℳod(𝑑) (∞,1) ,𝑊 (𝑃 × 𝑆2𝑛−1)

of maps of ∞-operads. On 0-ary operations, this induces a map of 𝒲-algebras (see Section 2.7.1)

Map
ℬord(2𝑛) (∞,1) ,𝑊 (∅, 𝑃 × 𝑆2𝑛−1) −→ Mapℳod(𝑑) (∞,1) ,𝑊 (𝐸∅, 𝐸𝑃×𝑆2𝑛−1×𝐼 ), (79)

which we can also view as a map of 𝒜ssoc-algebras in 𝒮, or equivalently, one of monoid objects in 𝒮.
Going through the construction, the unit in Mapℳod(𝑑) (∞,1) ,𝑊 (∅, 𝐸𝑃×𝑆2𝑛−1×𝐼 ) is given by the bimodule
𝐸𝑃×𝐷2𝑛 , and the fibre at that object of (79), viewed as a map in 𝒮, is exactly 𝑆𝒟isc(𝑃 × 𝐷2𝑛) from
Section 4.5.2. Since the forgetful functor Mon(𝒮) → 𝒮 preserves limits, 𝑆𝒟isc (𝑃 × 𝐷2𝑛) inherits a
monoid structure which fits into a pullback diagram in Mon(𝒮)

𝑆𝒟isc
𝜕

(𝑃 × 𝐷2𝑛) Map
ℬord(𝑑) (∞,1) ,𝑊 (∅, 𝑃 × 𝑆2𝑛−1)

∗ Mapℳod(𝑑) (∞,1) ,𝑊 (𝐸∅, 𝐸𝑃×𝑆2𝑛−1×𝐼 ).
𝐸𝑃×𝐷2𝑛

(80)

Under mild conditions, this square remains a pullback after group completion. We show this as the first
part of the following proposition.
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Proposition 6.6. Fix 2 ≤ 2𝑛 ≤ 𝑑 with 𝑑 ≥ 6 and a closed (𝑑 − 2𝑛)-manifold P.

(i) If also 2𝑛 ≥ 4, then the pullback (80) in Mon(𝒮) remains a pullback after group completion.
(ii) 𝑆𝒟isc

𝜕
(𝑃 × 𝐷2𝑛) is group-like when considered as a monoid object in 𝒮.

Proof. The first part is an application of the following fact, which can be deduced from [Ste21, Theorem
2.11]: if a map 𝜑 : 𝑋 → 𝑌 of monoid objects in 𝒮 has the property that for all 𝑦 ∈ 𝑌 there is an 𝑥 ∈ 𝑋
such that 𝜑(𝑥) = 𝑦 and the following squares are pullbacks in 𝒮

𝑋 𝑋

𝑌 𝑌

(−) ·𝑥

(−) ·𝑦

and
𝑋 𝑋

𝑌 𝑌,

𝑥 · (−)

𝑦 · (−)

then group completion preserves pullbacks of monoid objects in 𝒮 along the map 𝜑 : 𝑋 → 𝑌 .
To conclude 6.6, it thus suffices to check the condition for the right vertical map in (80) which

amounts to showing that the square in 𝒮

Map
ℬord(𝑑) (∞,1) ,𝑊 (∅, 𝑃 × 𝑆2𝑛−1) Map

ℬord(𝑑) (∞,1) ,𝑊 (∅, 𝑃 × 𝑆2𝑛−1)

Mapℳod(𝑑) (∞,1) ,𝑊 (𝐸∅, 𝐸𝑃×𝑆2𝑛−1×𝐼 ) Mapℳod(𝑑) (∞,1) ,𝑊 (𝐸∅, 𝐸𝑃×𝑆2𝑛−1×𝐼 )

(−)�(𝑃×𝑊𝑔,1)

(−)�𝐸𝑃×𝑊𝑔,1

is cartesian for all 𝑔 ≥ 0, where (−) � (−) denotes the monoid structure of the monoid objects in (80),
and that the same holds for the square where we take products from the left. We focus on the former;
the latter is proved in the same way.

Going through the construction of the map 𝒜ssoc → 𝒲 in the proof of Proposition 6.5, we see that
(−) � (𝑃×𝑊𝑔,1) is given a ‘pair of pants-product’: it sends a bordism 𝑀 : ∅ � 𝑃× 𝑆2𝑛−1 to the disjoint
union (𝑀�𝑃×𝑊𝑔,1) : ∅ � �2𝑃×𝑆2𝑛−1 and then takes composition with (𝑃×𝑊0,2+1) : �2𝑃×𝑆2𝑛−1 �
𝑃×𝑆2𝑛−1. By monoidality, this agrees with the map that sends 𝑀 : ∅ � 𝑃×𝑆2𝑛−1 first to its composition
with ([0, 1] × 𝑃 × 𝑆2𝑛−1 � 𝑃 × 𝑊𝑔,1) : 𝑃 × 𝑆2𝑛−1 � �2𝑃 × 𝑆2𝑛−1 and then takes composition with
𝑃 ×𝑊0,2+1 : �2 𝑃 × 𝑆2𝑛−1 � 𝑃 × 𝑆2𝑛−1. The composition of the latter two bordisms is diffeomorphic,
as a self-bordism of 𝑃 × 𝑆2𝑛−1, to 𝑃 ×𝑊𝑔,1+1. The same argument applies to (−) � 𝐸𝑃×𝑊𝑔,1 , so using
monoidality of the functor 𝐸 : ℬord(𝑑) (∞,1) → ℳod(𝑑) (∞,1) , we may replace the top and bottom maps
in the previous square by the gluing maps (−) ∪𝑃×𝑆2𝑛−1 (𝑃 × 𝑊𝑔,1+1) and (−) ∪𝐸𝑃×𝑆2𝑛−1×𝐼

𝐸𝑃×𝑊𝑔,1+1 ,
respectively. Taking vertical homotopy fibres, it thus suffices to show that for ℎ ≥ 0, the gluing map(

(−) ∪𝑃×𝑆2𝑛−1 (𝑃 ×𝑊𝑔,1+1)
)
: 𝑆𝜕 (𝑃 ×𝑊ℎ,1) → 𝑆𝜕 (𝑃 ×𝑊ℎ+𝑔,1)

is an equivalence. In the setting of Theorem 5.12, this map is induced by the inclusion (id𝑃 × inc) : 𝑃 ×
𝑊ℎ,1 ↩→ 𝑃×𝑊ℎ+𝑔,1, so it is an equivalence by part (iii) of the theorem because the latter inclusion is an
equivalence on tangential 2-types as a result of 𝑊ℎ,1 for all ℎ ≥ 0 being parallelisable and 1-connected
since we assumed 2𝑛 ≥ 4.

To show (ii), we first recall from Section 4.5 that 𝜋0 𝑆
𝒟isc
𝜕

(𝑃 × 𝐷2𝑛) is the set of equivalence classes
of pairs (𝑊, 𝜙) of a compact manifold W whose boundary is identified with 𝑃 × 𝑆2𝑛−1, together with
an equivalence 𝜙 : 𝐸𝑀 → 𝐸𝑃×𝐷2𝑛 in ℳod(𝑑)�

𝑃×𝑆2𝑛−1 , and two such pairs are equivalent if there exists
a diffeomorphism between the manifolds that makes the evident triangle in ℳod(𝑑)�

𝑃×𝑆2𝑛−1 homotopy
commute. Forgetting 𝜙 induces an exact sequence of pointed sets

𝜋0 Autℳod(𝑑)�𝐸
𝑃×𝑆2𝑛−1×𝐼

(𝐸𝑃×𝐷2𝑛 ) −→ 𝜋0 𝑆
𝒟isc
𝜕 (𝑃 × 𝐷2𝑛) −→ 𝑀𝜕 (𝑃 × 𝐷2𝑛) −→ 0, (81)
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where 𝑀𝜕 (𝑃×𝐷2𝑛) is the pointed set of compact d-manifolds W with boundary identified with 𝑃×𝑆2𝑛−1

such that there exists an unspecified equivalence 𝐸𝑊 � 𝐸𝑃×𝐷2𝑛 inℳod(𝑑)𝐸𝑃×𝐷2𝑛 , up to diffeomorphism
relative to the boundary, and based at 𝑃×𝐷2𝑛. The monoid structure on 𝜋0 𝑆

𝒟isc
𝜕

(𝑃×𝐷2𝑛) given by the
‘pair of pants product’ induces a compatible monoid structure on 𝑀𝜕 (𝑃 × 𝐷2𝑛), concretely given by

𝑊 �𝑊 ′ � (𝑊 �𝑊 ′) ∪𝑃×𝑆2𝑛−1�𝑃×𝑆2𝑛−1 𝑃 ×𝑊0,2+1. (82)

A priori, the leftmost pointed set in (81) carries two monoid structures – one induced by the ‘pair of
pants product’ (−) � (−) and one by composition – but these agree by the Eckmann–Hilton argument.
Thus, (81) is an exact sequence of monoids whose leftmost term is a group. Monoid-extensions of
groups are groups, so it suffices to show that 𝑀𝜕 (𝑃 × 𝐷2𝑛) is a group. We do so by showing that every
element has a right- and a left-inverse; since the two constructions are essentially identical, we will only
explain the right-inverse.

For this, it is convenient to use the notion of relative bordism 𝑉 : 𝑁0 � 𝑁1 between two compact
manifolds 𝑁0 and 𝑁1 with identified boundary 𝜕𝑁0 � 𝜕𝑁1, by which we mean a compact manifold V
with a division of its boundary into three codimension zero submanifolds 𝜕𝑉 = 𝑁0 ∪ (𝜕𝑁0 × 𝐼) ∪ 𝑁1
that intersect at corners. Up to creating some corners, we can regard an element 𝑊 ∈ 𝑀𝜕 (𝑃 × 𝐷2𝑛)
as a relative bordism of the form 𝑃 × 𝐷2𝑛−1 � 𝑃 × 𝐷2𝑛−1 by dividing the identified boundary
𝜕𝑊 � 𝑃 × 𝑆2𝑛−1 into (𝑃 × 𝐷2𝑛−1 × {0}) ∪ (𝑃 × 𝜕𝐷2𝑛−1 × [0, 1]) ∪ (𝑃 × 𝐷2𝑛−1 × {1}). In these terms,
the monoid structure is given by composition of relative bordisms. By definition of 𝑀𝜕 (𝑃 × 𝐷2𝑛), the
manifold W admits an equivalence 𝜙 : 𝐸𝑊 → 𝐸𝑃×𝐷2𝑛 in ℳod(𝑑)𝐸𝑃×𝑆2𝑛−1×𝐼

. In general, for manifold N
viewed as a nullbordism 𝑁 : ∅ � 𝜕𝑁 , we can consider the composition

𝐸𝜕𝑁×𝐼 � 𝐸∅ ⊗ 𝐸𝜕𝑁×𝐼
𝐸𝜄⊗id
−−−−→ 𝐸𝑁 ⊗ 𝐸𝜕𝑁×𝐼

act
−−→ 𝐸𝑁

in PSh(𝒟isc𝑑) using the Day convolution product ⊗, the unique embedding ∅ → 𝑁 and the fact that
𝐸∅ is the monoidal unit. Evaluating this composition at R𝑑 and taking quotients by the Diff (R𝑑) �
Emb(R𝑑 ,R𝑑)-action by functoriality recovers the homotopy class of the boundary inclusion 𝜕𝑁 ⊂ 𝑁 .
Applying this principle to the equivalence 𝜙 above, we obtain a homotopy equivalence 𝑊 � 𝑃 × 𝐷2𝑛

under 𝑃 × 𝑆2𝑛−1. In terms of relative bordisms, this says that W is a strongly inertial relative h-
cobordism: that is, not only are the inclusions of the incoming and outgoing boundary homotopy
equivalences, but the induced homotopy equivalence between them is homotopic to a diffeomorphism
relative to the boundary. Since we assumed 𝑑 ≥ 6, relative h-cobordisms 𝑊 : 𝑊0 = 𝑃 × 𝐷2𝑛−1 � 𝑊1,
up to diffeomorphism relative to the incoming boundary 𝑃 × 𝐷2𝑛−1, are classified by their Whitehead
torsion 𝜏(𝑊) ∈ Wh1 (𝜋1 𝑃), and the Whitehead torsions of strongly inertial relative h-cobordisms form
a subgroup (cf. the discussion in [JK15, Section 3]). Thus, we may find another strongly relative h-
cobordism𝑊 ′ : 𝑃×𝐷2𝑛−1 � 𝑃×𝐷2𝑛−1 with a diffeomorphism𝑊∪𝑃×𝐷2𝑛−1 𝑊 ′ � 𝑃×𝐷2𝑛 that respects
part of the boundary identification – namely, 𝑃 × 𝐷2𝑛−1{0} ∪ (𝑃 × 𝜕𝐷2𝑛−1 × [0, 1]). By changing the
identification of the outgoing boundary of 𝑊 ′ if necessary, we may assume that this diffeomorphism
respects the full boundary identification. Smoothing corners, this gives a diffeomorphism 𝜓 : 𝑊 �𝑊 ′ →
𝑃 × 𝐷2𝑛 relative to 𝑃 × 𝑆2𝑛−1. To show that 𝑊 ′ is a right inverse to W in 𝑀𝜕 (𝑃 × 𝐷2𝑛), it thus suffices
to produce an equivalence 𝐸𝑊 ′ � 𝐸𝑃×𝐷2𝑛 in ℳod𝐸𝑃×𝑆2𝑛−1×𝐼

. This is given by

𝐸𝑊 ′ � 𝐸𝑃×𝐷2𝑛 � 𝐸𝑊 ′
𝜙−1�id
−−−−−→ 𝐸𝑊 � 𝐸𝑊 ′ � 𝐸𝑊�𝑊 ′

𝐸𝜓
−−→ 𝐸𝑃×𝐷2𝑛 . �

Corollary 6.7. For 4 ≤ 2𝑛 ≤ 𝑑 with 𝑑 ≥ 6 and a closed (𝑑 − 2𝑛)-manifold P, the 𝒟isc-structure space
𝑆𝒟isc
𝜕

(𝑃 × 𝐷2𝑛) admits the structure of an infinite loop space.

Proof. Combining both parts of Proposition 6.6, 𝑆𝒟isc
𝜕

(𝑃 × 𝐷2𝑛) agrees with the fibre of the group
completion of the right vertical map in (80). As the group completion of a map of 𝒲-algebras, this map
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can be enhanced to a map of infinite loop spaces by Theorem 6.4 and Proposition 6.5. Fibres of infinite
loop maps carry infinite loop space structures, so the claim follows. �

Combining Corollary 6.7 with the invariance under the tangential 2-type from Theorem 5.12, we can
complete the goal of this section:

Proof of Theorem 6.1. For M a compact d-manifold with 𝑑 ≥ 8, we pick an 2𝑛 ≥ 4 such that 2𝑛− 𝑑 ≥ 4
(the choice 2𝑛 = 4 always works) and use the case 𝑘 = 2 of Lemma 5.3 to pick a closed (𝑑 − 2𝑛)-
manifold P of the same tangential 2-type as M. Both 𝑃×𝐷2𝑛 and M are d-dimensional and have the same
tangential 2-type, so 𝑆𝒟isc

𝜕
(𝑃 × 𝐷2𝑛) � 𝑆𝒟isc

𝜕
(𝑀) by Theorem 5.12 5.12. As 𝑆𝒟isc

𝜕
(𝑃 × 𝐷2𝑛) admits the

structure of an infinite loop space by Corollary 6.7, the first part follows. For the claimed improvement,
one can replace the role of P in the argument with 𝑃 = 𝑆𝑑−2𝑛 for any 2𝑛 ≥ 4 with 𝑑 − 2𝑛 ≥ 2, using
that any two 1-connected spin manifolds have the same tangential 2-type (see Example 5.2). �

Remark 6.8. The construction of the infinite loop space structure on S𝒟isc
𝜕

(𝑀) as presented in this
section comes with several drawbacks:

(i) It depends on several choices, most notably: (a) the choice of 2𝑛 ≥ 4 with 2𝑛 − 𝑑 ≥ 4 and (b)
the choice of a closed (𝑑 − 2𝑛)-manifold P of the same tangential 2-type as M. In particular, the
construction does not lift the functor 𝑆𝒟isc

𝜕
(−) : ℬord(𝑑) (∞,1)

/∅
→ 𝒮 to a functor with values in

Alggrp
𝐸∞

(𝒮), but it does enhances the Diff(𝑃)-action on the space S𝒟isc
𝜕

(𝐷2𝑛 × 𝑃) for fixed 2𝑛 ≥ 4
and a closed manifold P to an action in Alggrp

𝐸∞
(𝒮).

(ii) The restrictions on the dimension are likely not optimal.
(iii) The space 𝑆𝒟isc

𝜕
(𝑃 × 𝐷2𝑛) ought to carry the structure of an 𝐸2𝑛-algebra, and the infinite loop

space structure we give ought to extend this 𝐸2𝑛-structure.

We expect that there is a better construction of the infinite loop space structure on S𝒟isc
𝜕

(𝑀) that does
not suffer from these shortcomings.

7. Localisations of mapping spaces between operads

This section serves to prove general results on mapping spaces between (truncated) operads and their
localisations at collections of primes. In particular, given ∞-operads 𝒪 and 𝒫, we rely on work of
Göppl–Weiss [GW24] to study the effect on homotopy groups of a map

Map(𝒪,𝒫)Q → Map(𝒪Q,𝒫Q) (83)

from the rationalisation of the mapping space between 𝒪 and 𝒫 to the mapping space between the
respective rationalisations. In Section 8, we use these results to prove Theorems C and E.

Convention 7.1. Up to this point, we phrased our results and arguments in the language of ∞-categories.
In this and the following section, we will use several intermediate results from various sources, none of
which are written in this language. To stay close to these sources, we switch language for the remainder
of this paper and work in the category of simplicial sets or the category of compactly generated weak
Hausdorff spaces. We denote either of these categories by S and leave the necessary transitions based
on the usual Quillen equivalence between the standard model structures on these categories to the
reader. As a result of not working ∞-categorically, we have to derive all mapping spaces in various
categories that appear (spaces, operads, etc.) with respect to a class of weak equivalences for example,
using Dwyer–Kan’s functorial simplicial localisation [DK80a, DK80b]. We indicate various derived
mapping spaces by adding an h-subscript, so write Mapℎ (−,−), and we will mention the class of weak
equivalences with respect we derive whenever a new type of derived mapping space is considered.
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7.1. Localisation of spaces and groups at a set of primes

We first recall some facts about T-localisations of spaces for a set of primes T. Recall that a space Z is T-
local if the map (−◦𝑔) : MapℎS (𝑌, 𝑍) → MapℎS (𝑋, 𝑍) is a weak equivalence for any map 𝑔 : 𝑋 → 𝑌 that
is an isomorphism on H∗(−; Z𝑇 ). Here, the mapping spaces are derived with respect to weak homotopy
equivalences, and Z𝑇 is the localisation of Z obtained by inverting all primes in T. Immediately from
the definition, we see that the class of T-local spaces is closed under

(i) taking homotopy limits,
(ii) passing to collections of path components,

(iii) applying MapℎS (𝑋,−) for any space X.

A map 𝑓 : 𝑋 → 𝑌 is a T-localisation if Y is T-local and f is a Z𝑇 -homology isomorphism. Any space
admits a T-localisation, and, suitably modelled, this yields an S-enriched functor

(−)𝑇 : S −→ S (84)

together with a natural transformation 𝑟𝑇 : id → (−)𝑇 which enjoys the following properties (see, for
example, [Far96, 1.A.3, 1.A.8, 1.B.2, 1.B.7, 1.C.9, 1.C.13, 1.E.4]):

(a) the map 𝑟𝑇 : 𝑋 → 𝑋𝑇 is a T-localisation, so a weak equivalence if X is T-local,
(b) (−)𝑇 preserves weak equivalences,
(c) the canonical map (𝑋 × 𝑌 )𝑇 → 𝑋𝑇 × 𝑌𝑇 is a weak equivalence,
(d) the map (−) ◦ 𝑟𝑇 : MapℎS (𝑋𝑇 , 𝑌 ) → MapℎS (𝑋,𝑌 ) is a weak equivalence if Y is T-local.

If T is the set of all primes, T-localisation is rationalisation, which we denote as (−)Q.

7.1.1. Localisation of groups
Recall that a group G is T-local if the map (− ◦ 𝑔) : Hom(𝐻,𝐺) → Hom(𝐾,𝐺) is an isomorphism
for all 𝑔 : 𝐾 → 𝐻 such that H1 (𝑔; Z𝑇 ) is an isomorphism and H2 (𝑔; Z𝑇 ) is surjective. The homotopy
groups of a T-local space at any basepoint are T-local groups [Bou75, Theorem 5.5]. A morphism of
groups 𝑓 : 𝐻 → 𝐺 is a T-localisation if G is T-local and f has the property on H∗(−; Z𝑇 ) for ∗ = 1, 2
just described. One way to construct T-localisations of groups is as follows: the functor (84) has an
analogue (−)𝑇 : S∗ → S∗ in the pointed setting, which agrees with (84) on connected spaces [Far96,
A.7]. Defining 𝐺𝑇 � 𝜋1 ((𝐵𝐺)𝑇 ), we obtain a functor (−)𝑇 : Grp → Grp on the category of groups
with a natural transformation id → (−)𝑇 which is a T-localisation [Bou75, Lemma 7.3]. Note that we
have (𝐺)ab ⊗ Z𝑇 � (𝐺𝑇 )ab ⊗ Z𝑇 by construction and the Hurewicz theorem. On nilpotent groups, (−)𝑇
agrees with the usual T-localisation of nilpotent groups in the algebraic sense.

7.1.2. Localisation of nilpotent spaces
Recall that a space X is nilpotent if it is connected, has nilpotent fundamental group, and its 𝜋1 (𝑋)-
action on 𝜋𝑖 (𝑋) for 𝑖 ≥ 2 is nilpotent. T-localisation preserves nilpotent spaces and can be characterised
as follows (see, for example, [MP12, 6.1.2]):

Lemma 7.2. Let 𝑓 : 𝑋 → 𝑌 be a map from a nilpotent space X to a T-local space Y. Then the following
are equivalent:

(i) 𝑓 : 𝑋 → 𝑌 is a T-localisation of spaces,
(ii) 𝑓∗ : H̃𝑘 (𝑋; Z) → H̃𝑘 (𝑌 ; Z) is a T-localisation of abelian groups for all 𝑘 ≥ 1,

(iii) 𝑓∗ : 𝜋𝑘 (𝑋) → 𝜋𝑘 (𝑌 ) is a T-localisation of abelian and nilpotent groups for all 𝑘 ≥ 1.

Localisations of nilpotent spaces behave well with respect to many constructions, such as the follow-
ing:

Lemma 7.3. Let 𝑓 : 𝑋 → 𝐴 and 𝑔 : 𝑌 → 𝐴 be based maps between spaces with nilpotent basepoint
component. Then
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(i) the basepoint component (𝑋 ×ℎ
𝐴 𝑌 )0 ⊆ 𝑋 ×ℎ

𝐴 𝑌 of the homotopy pullback is nilpotent,
(ii) the natural map (𝑋 ×ℎ

𝐴 𝑌 )0 → (𝑋𝑇 ×ℎ
𝐴𝑇

𝑌𝑇 )0 is a T-localisation of nilpotent spaces, and
(iii) if 𝑋0, 𝑌0 and 𝐴0 have finitely generated homotopy groups, then so does (𝑋 ×ℎ

𝐴 𝑌 )0.

Proof. Since (𝑋0 ×ℎ
𝐴0

𝑌0)0 = (𝑋 ×ℎ
𝐴 𝑌 )0, and similarly for the localised version, we may assume that

X, Y and A are connected. In this case, (i) and (ii) are [MP12, 6.2.5]. For (iii), we use the long exact
sequence for the homotopy groups of a homotopy pullback which exhibits 𝜋𝑖 (𝑋 ×ℎ

𝐴 𝑌 ) for 𝑖 ≥ 1 as a
central extension of subquotients of finitely generated nilpotent groups. As the latter are closed under
taking subgroups, quotients and extensions, the statement follows. �

The next lemma involves equivariant mapping spaces Map𝐺 (−,−) � MapS𝐺 (−,−) between G-
spaces for finite groups G, which we derive with respect to the G-equivariant maps whose underlying
maps of spaces are weak homotopy equivalences.

Lemma 7.4. Let X and Y be G-spaces for G a finite group. If

• 𝑋ℎ𝐺 is weakly equivalent to a finite CW complex and
• Y has nilpotent path components,

then for any 𝑓 ∈ Mapℎ𝐺 (𝑋,𝑌 ), the following holds:

(i) the path component Mapℎ𝐺 (𝑋,𝑌 ) 𝑓 ⊆ Mapℎ𝐺 (𝑋,𝑌 ) is nilpotent,
(ii) the postcomposition map (𝑟𝑇 ◦ (−)) : Mapℎ𝐺 (𝑋,𝑌 ) 𝑓 → Mapℎ𝐺 (𝑋,𝑌𝑇 )(𝑟𝑇 ◦ 𝑓 ) is a T-localisation,

(iii) if Y has finitely generated homotopy groups at all basepoints, then so does Mapℎ𝐺 (𝑋,𝑌 ) 𝑓 .

Proof. By the assumption on 𝑋ℎ𝐺 , we may assume that X is a finite G-CW complex consisting of
free G-cells. This allows us to argue by induction on the number of cells: if X is obtained from 𝑋 ′ by
attaching a single free G-cell, there are commutative squares

𝑆𝑑−1 × 𝐺 𝑋 ′

𝐷𝑑−1 × 𝐺 𝑋

and
Mapℎ𝐺 (𝑋,𝑌 ) Mapℎ (𝐷𝑑 , 𝑌 )

Mapℎ𝐺 (𝑋 ′, 𝑌 ) Mapℎ (𝑆𝑑−1, 𝑌 ).

The left square is a homotopy pushout of G-spaces, and the right square is obtained from it by applying
Mapℎ𝐺 (−, 𝑌 ), so it is a homotopy pullback. By an induction over a principal Postnikov tower of the
path components of Y, one sees that the conclusions hold for all components of the right-hand terms of
the right-hand diagram. By induction, we may assume they hold for the bottom-left corner in the right
diagram, so using Lemma 7.3 and that subgroups of (finitely generated) nilpotent groups are (finitely
generated) nilpotent, they also hold for all components of the top-left corner in the right diagram. �

Recall that a 𝑘-cubical diagram is a functor on the poset of subsets of 𝑘 � {1, . . . , 𝑘}.

Lemma 7.5. Let X be a 𝑘-cubical diagram of spaces with nilpotent path components.

(i) holim∅≠𝐼 ⊆𝑟𝑋 (𝐼) has nilpotent components, and the map holim∅≠𝐼 ⊆𝑘𝑋 (𝐼) → holim∅≠𝐼 ⊆𝑘 (𝑋 (𝐼)𝑇 )
induced by the T-localisations of the 𝑋 (𝐼)’s, is a T-localisation when restricted to any component
of the source and the corresponding component of the target.

(ii) If 𝑋 (𝐼) has finitely generated homotopy groups at all basepoints for all ∅ ≠ 𝐼 ⊆ 𝑘 , then
holim∅≠𝐼 ⊆𝑘𝑋 (𝐼) has finitely generated homotopy groups at all basepoints.
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Proof. We prove the claim by induction on k. For 𝑘 = 1, the claim is vacuous as holim∅≠𝐼 ⊆1𝑋 (𝐼) � 𝑋 (1).
For larger k, we use that the homotopy limit fits into a homotopy cartesian square

holim
∅≠𝐼 ⊆𝑘

𝑋 (𝐼) 𝑋 (𝑘)

holim
∅≠𝐼 ⊆𝑘−1

𝑋 (𝐼) holim
∅≠𝐼 ⊆𝑘−1

𝑋 (𝐼 ∪ {𝑘}).

By induction, the conclusion of the statement holds for two diagrams defining the bottom row, and by
assumption also for 𝑋 (𝑘), so Lemma 7.3 gives the induction step. �

7.2. Operads and dendroidal spaces

In this and the following sections, operads O,P, . . . are understood as single-coloured operads in S in the
classical sense. Declaring a weak equivalence to be a levelwise weak equivalence gives rise to derived
mapping spaces MapℎOpd (O,P) between such operads. We will be mostly interested in 1-reduced operads
which are operads O whose space of 0- and 1-ary operations O(0) and O(1) are weakly contractible.
For such operads, there are equivalent point of views on their mapping spaces that we will make us of,
related by natural maps

MapℎOpd (O,P)
1

−→ MapℎPSh(Ω) (𝑁𝑑O, 𝑁𝑑P)
2

−→ MapℎPSh(Ω) (𝑁𝑑O, 𝑁𝑑P), (85)

which we explain in the following two subsections. Part of our discussion in this and the following
subsection is similar to that in [Wei21, Section 3.4].

7.2.1. Dendroidal spaces and the map 1
The two alternative points of view stem from Moerdijk–Weiss’ dendroidal spaces. Briefly (see [HM22]
for details), the category of dendroidal spaces is the category of presheaves 𝒪 : Ωop → S on a certain
category Ω of finite rooted trees with specified subsets of leaves. More formally, an object (𝑡, ≤, ℓ(𝑡))
in Ω is a finite partially ordered set (𝑡, ≤) of edges together with a specified subset ℓ(𝑡) ⊂ 𝑡 of maximal
elements (the leaves) such that (a) {𝑣 ∈ 𝑡 | 𝑤 ≤ 𝑣} is totally ordered for all 𝑤 ∈ 𝑇 and (b) there is
a unique maximal element 𝑣 ∈ 𝑇 with respect to the partial order, the root (see Section 3.2 loc.cit.).
The subset 𝜈(𝑡) � 𝑡\ℓ(𝑇) ⊂ 𝑡 is the set of vertices of the tree. The incoming edges in(𝑣) ⊂ 𝑡 of a
vertex v is the set of maximal elements in {𝑤 ∈ 𝑡 | 𝑤 < 𝑣}. We refer to Section 3.2–3.3 loc.cit. for
a description of the morphisms in Ω. There is a functor 𝑁𝑑 (−) from operads to dendroidal spaces,
the dendroidal nerve (see Example 12.11 loc.cit.), given by 𝑁𝑑O(𝑡) �

�
𝑣 ∈𝜈 (𝑡) O(|in(𝑣) |). Declaring

weak equivalences between dendroidal spaces to be levelwise weak equivalences gives rise to derived
mapping spaces MapℎPSh(Ω)

(−,−) of dendroidal spaces, and as 𝑁𝑑 (−) preserves weak equivalence, we
obtain the map 1 .

7.2.2. (1-reduced) dendroidal Segal spaces and the map 2
There is a convenient class of dendroidal spaces that includes dendroidal nerves of 1-reduced operads
but is homotopically more flexible. To define it, we consider the k-corolla which is the unique (up to
isomorphism) tree in Ω with one vertex and k leaves, denoted by 𝑡𝑘 . The unique (up to isomorphism)
tree in Ω with no vertices is denoted 𝜂. For each vertex v in a tree t, there is a morphism 𝑡𝑘 → 𝑡 (unique
up to automorphism of 𝑡𝑘 ) that takes the root to v and the leaves to in(𝑣). Given a dendroidal space 𝒪

and a tree t, these morphisms assemble to a map

𝒪(𝑡) −→
�

𝑣 ∈𝜈 (𝑡) 𝒪(𝑡 |in(𝑣) |). (86)
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The following definition mimics the definition of a 1-reduced operad on the level of dendroidal Segal
spaces. The examples to keep in mind are dendroidal nerves 𝑁𝑑O of 1-reduced operads.

Definition 7.6. A 1-reduced dendroidal Segal space 𝒪 is a dendroidal space such that the values 𝒪(𝑡0)
and 𝒪(𝑡1) at the 0- and 1-corollas are weakly contractible and such that (86) is a weak equivalences for
all trees 𝑡 ∈ Ω (this says in particular that 𝒪(𝜂) is weakly contractible).

The full subcategory Ω ⊂ Ω of closed trees (i.e., trees t with ℓ(𝑣) = ∅) (see [HM22, p. 92, 97], is
often easier to work with. Presheaves 𝒪 : Ωop → S are called closed dendroidal spaces. Morphisms
between those are still natural transformations and weak equivalences are levelwise; we denote the
resulting derived mapping spaces by MapℎPSh(Ω)

(−,−). Restriction along Ω ⊂ Ω induces a map

MapℎPSh(Ω) (𝒪,𝒫) → MapℎPSh(Ω) (𝒪,𝒫)

of which 2 is a special case. For 1-reduced operads O and P, both maps 1 and 2 turn out to be weak
equivalences (see [HM22, Corollary 14.42] for 1 and [GW24, Lemma 3.2.4] for 2 ):

Proposition 7.7. For 1-reduced operads O and P, the maps 1 and 2 are weak equivalences.

7.3. A tower of derived mapping spaces

The category Ω of closed trees admits a filtration

Ω≤0 ⊂ Ω≤1 ⊂ · · · ⊂ Ω,

by the full subcategories Ω≤𝑘 on those trees whose vertices v have at most k incoming edges. Denoting
the restriction of a closed dendroidal space 𝒪 along Ω≤𝑘 ⊂ Ω by the same symbol, we obtain a natural
tower of derived mapping spaces

. . .

MapℎPSh(Ω≤1)
(𝒪,𝒫)

MapℎPSh(Ω)
(𝒪,𝒫) MapℎPSh(Ω≤0)

(𝒪,𝒫),

(87)

all derived with respect to the levelwise weak equivalences. For simplicity, we write

Mapℎ (𝒪,𝒫) � MapℎPSh(Ω) (𝒪,𝒫) and Mapℎ≤𝑘 (𝒪,𝒫) � MapℎPSh(Ω≤𝑘 )
(𝒪,𝒫). (88)

This tower was studied by Göppl and Weiss [GW24]. In Lemma 3.1.1 loc.cit. they note that it converges;
that is, we have a weak equivalence

Mapℎ (𝒪,𝒫)
�

−→ holim
𝑘

Mapℎ≤𝑘 (𝒪,𝒫). (89)

To identify its layers (i.e., the homotopy fibres of the vertical maps), they consider the kth matching and
latching object of a 1-reduced dendroidal space 𝒪

Latch𝑘 (𝒪) � hocolim
(𝑡𝑘→𝑡) ∈(Ω≤𝑘−1)𝑡𝑘 /

𝒪(𝑡), and Match𝑘 (𝒪) � holim
(𝑡→𝑡𝑘 ) ∈(Ω≤𝑘−1)/𝑡𝑘

𝒫(𝑡).

Here, 𝑡𝑘 ∈ Ω is the closed k-corolla, the unique (up to isomorphism) closed tree with 𝑘 + 1 vertices
of which one has k incoming edges and the others have none. Permuting incoming edges defines an
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action of the symmetric group Σ𝑘 on 𝑡𝑘 in Ω which induces a natural Σ𝑘 -action on Match𝑘 (𝒫) and
Latch𝑘 (𝒫). These are related by Σ𝑘 -equivariant maps

Latch𝑘 (𝒪) −→
(
𝒪(𝑡𝑘 ) ≕ 𝒪(𝑘)

)
−→ Match𝑘 (𝒪). (90)

Göppl and Weiss used these maps to identify the vertical homotopy fibres in the above tower in terms of
the matching and latching objects and spaces of derived maps between Σ𝑘 -spaces; see Theorem 3.2.7
and Remark 3.2.15 loc.cit.:
Theorem 7.8 (Göppl–Weiss). For 𝑘 ≥ 1 and 1-reduced dendroidal Segal spaces 𝒪 and 𝒫, there is a
natural homotopy cartesian square whose left and top arrow is induced by restriction

Mapℎ≤𝑘 (𝒪,𝒫) MapℎΣ𝑘 (𝒪(𝑘),𝒫(𝑘))

Mapℎ≤𝑘−1(𝒪,𝒫) 𝑃𝑘 (𝒪,𝒫).

The corner 𝑃𝑘 (𝒪,𝒫) fits into a natural homotopy cartesian square

𝑃𝑘 (𝒪,𝒫) MapℎΣ𝑘 (𝒪(𝑘),Match𝑘 (𝒫))

MapℎΣ𝑘 (Latch𝑘 (𝒪),𝒫(𝑘)) MapℎΣ𝑘 (Latch𝑘 (𝒪),Match𝑘 (𝒫))

whose bottom and right maps are induced by (90).

7.4. Localisations of dendroidal spaces

Given a dendroidal space 𝒪, its T-localisation 𝒪𝑇 for a set of primes T is the dendroidal space given as
the composition of 𝒪 : Ωop → S with the localisation functor (−)𝑇 : S → S. The natural transformation
idS → (−)𝑇 induces a map 𝑟𝑇 : 𝒪 → 𝒪𝑇 of dendroidal Segal spaces. It follows from properties (b) and
(c) from Section 7.1 that if 𝒪 is a 1-reduced dendroidal Segal space, then so is 𝒪𝑇 .
Lemma 7.9. For dendroidal spaces 𝒪 and 𝒫 such that 𝒫 is levelwise T-local, MapℎPSh(Ω)

(𝒪,𝒫) is
T-local and the natural zig-zag

MapℎPSh(Ω) (𝒪,𝒫)
(−)𝑇
−−−→ MapℎPSh(Ω) (𝒪𝑇 ,𝒫𝑇 )

𝑟𝑇 ◦(−)
←−−−−− MapℎPSh(Ω) (𝒪𝑇 ,𝒫)

consists of weak equivalences. The same holds when replacing Ω by Ω or Ω≤𝑘 .
Proof. The derived mapping spaces appearing in the statement are formed in a category of space-
valued presheaves with levelwise weak equivalences, so they can be computed as homotopy limits of a
diagram of levelwise mapping spaces. We saw in Section 7.1 that T-local spaces are closed under taking
homotopy limits and applying MapℎS (𝑋,−) for any space X, so this implies the first part of the claim.
Moreover, this argument reduces the second part to proving that the zigzag of derived mapping spaces
in the category of spaces

MapℎS (𝒪(𝑡),𝒫(𝑡))
(−)𝑇
−−−→ MapℎS (𝒪(𝑡)𝑇 ,𝒫(𝑡)𝑇 )

𝑟𝑇 ◦(−)
←−−−−− MapℎS (𝒪(𝑡)𝑇 ,𝒫(𝑡))

consists of weak equivalences for all trees 𝑡 ∈ Ω. For the second map, this follows follows the fact that
𝑟𝑇 : 𝒫(𝑡) → 𝒫(𝑡)𝑇 is a weak equivalence by property (a) of T-localisation. For the first map, we note

MapℎS (𝒪(𝑡),𝒫(𝑡))
(−)𝑇
−−−→ MapℎS (𝒪(𝑡)𝑇 ,𝒫(𝑡)𝑇 )

(−)◦𝑟𝑇
−−−−−→ MapℎS (𝒪(𝑡),𝒫(𝑡)𝑇 )
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agrees with postcomposition with 𝑟𝑇 : 𝒫(𝑡) → 𝒫(𝑡)𝑇 , and so is a weak equivalence. The second map
is a weak equivalence by property (d), so the first map is one too. �

7.4.1. Localisations of derived mapping spaces
Recalling the abbreviations of (88), denoting the path component of 𝑓 ∈ Mapℎ≤𝑘 (𝒪,𝒫) by

Mapℎ≤𝑘 (𝒪,𝒫) 𝑓 ⊆ Mapℎ≤𝑘 (𝒪,𝒫),

and abbreviating 𝒪(𝑡𝑘 ) to 𝒪(𝑘), we can now state the following result:

Theorem 7.10. Let 𝒫 and 𝒪 be 1-reduced dendroidal Segal spaces such that for all 𝑘 ≥ 0,

• 𝒫(𝑘) has nilpotent path components and
• 𝒪(𝑘)ℎΣ𝑘 and Latch𝑘 (𝒪)ℎΣ𝑘 are weakly equivalent to finite CW complexes.

Then the following holds for all 𝑘 ≥ 0 and any map 𝑓 ∈ Mapℎ≤𝑘 (𝒪,𝒫):

(i) the path component Mapℎ≤𝑘 (𝒪,𝒫) 𝑓 is nilpotent,
(ii) for a set of primes T, the natural map induced by T-localisation 𝑟𝑇 : 𝒫 → 𝒫𝑇

Mapℎ≤𝑘 (𝒪,𝒫) 𝑓 −→ Mapℎ≤𝑘 (𝒪,𝒫𝑇 )𝑟𝑇 ◦ 𝑓

is a T-localisation of nilpotent spaces, and
(iii) if the spaces 𝒫(𝑘 ′) have finitely generated homotopy groups at all basepoints for all 𝑘 ′ ≥ 0, then

so does Mapℎ≤𝑘 (𝒪,𝒫) 𝑓 .

The first part of this result (and the strategy of proof) is similar to [Wei21, Proposition 5.2.4]. We
start the proof with an auxiliary lemma:

Lemma 7.11. Let T be a set of primes and 𝒫 a 1-reduced dendroidal Segal space such that 𝒫(𝑘) has
nilpotent path components for all 𝑘 ≥ 0. The following holds for all 𝑘 ≥ 0:

(i) Match𝑘 (𝒫) has nilpotent path components,
(ii) the natural map Match𝑘 (𝒫) → Match𝑘 (𝒫𝑇 ) is a T-localisation when restricted to a path compo-

nent of the source and the corresponding path component of the target,
(iii) if the space 𝒫(𝑘 ′) has finitely generated homotopy groups at all basepoints for 0 ≤ 𝑘 ′ ≤ 𝑘 , then

so does Match𝑘 (𝒫).

Proof. Identifying the vertices of 𝑡𝑘 with no incoming edges with 𝑘 = {1, 2, . . . , 𝑘}, every subset 𝐼 ⊆ 𝑘
defines a closed subcorolla 𝑡 𝐼 ⊆ 𝑡𝑘 . This gives rise to an 𝑘-cubical diagram 𝑘 ⊇ 𝐼 ↦→ 𝒫(𝑡𝑘\𝐼 ).
By the argument above Theorem 3.4.7 in [Wei21], there is a natural equivalence Match𝑘 (𝒫) �
holim∅≠𝐼 ⊆𝑘𝒫(𝑡𝑘\𝐼 ), so the claim follows from an application of Lemma 7.5. �

Proof of Theorem 7.10. We prove the claim by induction on k. The initial case 𝑘 = 0 is trivial since 𝒫

is assumed to be 1-reduced, so the mapping spaces appearing in the statement are contractible. For the
induction step, we assume the claim for 𝑘 − 1 and prove it for k. To do so, we consider the homotopy
cartesian squares of Theorem 7.8. A choice of 𝑓 ∈ Mapℎ≤𝑘 (𝒪,𝒫) induces basepoints in all spaces
participating in these squares; we denote these also by f. Now consider the maps

MapℎΣ𝑘 (𝒪(𝑘),𝒫(𝑘)) 𝑓 −→ MapℎΣ𝑘 (𝒪(𝑘),𝒫(𝑘)𝑇 ) 𝑓

MapℎΣ𝑘 (𝒪(𝑘),Match𝑘 (𝒫)) 𝑓 −→ MapℎΣ𝑘 (𝒪(𝑘),Match𝑘 (𝒫)𝑇 ) 𝑓

MapℎΣ𝑘 (Latch𝑘 (𝒪),𝒫(𝑘)) 𝑓 −→ MapℎΣ𝑘 (Latch𝑘 (𝒪),𝒫(𝑘)𝑇 ) 𝑓

MapℎΣ𝑘 (Latch𝑘 (𝒪),Match𝑘 (𝒫)) 𝑓 −→ MapℎΣ𝑘 (Latch𝑘 (𝒪),Match𝑘 (𝒫)𝑇 ) 𝑓

(91)

induced by postcomposition with the T-localisations of the codomains. Combining Lemma 7.4 with
Lemma 7.11, all four maps are T-localisations of nilpotent spaces. Moreover, by the first part of

https://doi.org/10.1017/fmp.2024.25 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2024.25


Forum of Mathematics, Pi 81

Lemma 7.11, we may replace Match𝑘 (𝒫)𝑇 in the codomain of the second and fourth map by
Match𝑘 (𝒫𝑇 ). An application of Lemma 7.3 to the second square in Theorem 7.8 shows that the map
𝑃𝑘 (𝒪,𝒫) 𝑓 → 𝑃𝑘 (𝒪,𝒫𝑇 ) 𝑓 between the components induced by f is a T-localisation of nilpotent
spaces. Combining this with the induction hypothesis, another application of Lemma 7.3 – this time to
the first square – shows that the natural map Mapℎ≤𝑘 (𝒪,𝒫) 𝑓 → Mapℎ≤𝑘 (𝒪,𝒫𝑇 ) 𝑓 is a T-localisation
between nilpotent spaces, so (i) and (ii) hold.

We argue similarly for (iii): if the spaces 𝒫(𝑘) have finitely generated homotopy groups at all
basepoints, then so does Match𝑘 (𝒫) by the second part of Lemma 7.11. By the second part of Lemma 7.4,
we conclude that the domains of the four maps have finitely generated homotopy groups, so the same
holds for 𝑃𝑘 (𝒪,𝒫) 𝑓 by an application of the final part of Lemma 7.3 and thus also for Mapℎ≤𝑘 (𝒪,𝒫) 𝑓
by another application of that lemma and the induction hypothesis. �

This finishes the first part of this section as outlined in Section 1.2.5 after (III).

7.5. Inverse limits and countability

The second part of this section begins with general results on the behaviour of homotopy groups of
homotopy limits of towers of spaces.

7.5.1. Towers of groups
Following [BK72, IX.2], we call a sequence of groups 𝐺0 ← 𝐺1 ← 𝐺2 ← · · · a tower of groups and
abbreviate it by {𝐺𝑘 }. Such a tower has a limit group lim𝑘 𝐺𝑘 and a pointed lim1-set lim1

𝑘 𝐺𝑘 [BK72,
IX.2.1]. If the tower consists of abelian groups, then lim1

𝑘 𝐺𝑘 inherits an abelian group structure. A
short exact sequence of towers of groups induces a long exact sequence as follows [BK72, IX.2.3]:

Lemma 7.12. A levelwise short exact sequence of towers of groups

0 → {𝐺𝑘 } → {𝐻𝑘 } → {𝐾𝑘 } −→ 0

induces a natural exact sequence of groups and pointed sets

0 → lim𝑘 𝐺𝑘 → lim𝑘 𝐻𝑘 → lim𝑘 𝐾𝑘 → lim1
𝑘 𝐺𝑘 → lim1

𝑘 𝐻𝑘 → lim1
𝑘 𝐾𝑘 → 0.

Recall that a map { 𝑓𝑘 } : {𝐺𝑘 } → {𝐻𝑘 } of towers of groups is called a pro-isomorphism if for all
𝑠 ≥ 0, there exists a 𝑡 ≥ 𝑠 and a homomorphism 𝐻𝑡 → 𝐺𝑠 such that the diagram

𝐺𝑠 𝐺𝑡

𝐻𝑠 𝐻𝑡

𝑓𝑠 𝑓𝑡

commutes. Pro-isomorphisms have the following property [BK72, Proposition III.2.6]:

Lemma 7.13. For a pro-isomorphism { 𝑓𝑘 } : {𝐺𝑘 } → {𝐻𝑘 }, the induced map lim𝑘 𝐺𝑘 → lim𝑘 𝐻𝑘 is
an isomorphism, and the induced map lim1

𝑘 𝐺𝑘 → lim1
𝑘 𝐻𝑘 is a pointed bijection.

For a tower of groups {𝐺𝑘 } and 𝑟 ≥ 1, the rth derived tower (𝐺 (𝑟 )
𝑘 ) is defined by

𝐺 (𝑟 )
𝑘 � im

(
𝐺𝑘+𝑟 → 𝐺𝑘

)
.

For each fixed k, this defines a tower {𝐺 (𝑟 )
𝑘 }𝑟 ∈N of inclusions of subgroups. The tower (𝐺𝑘 ) is called

Mittag–Leffler if for each k, there is an 𝑚 < ∞ so that lim𝑚′ ≥𝑚𝐺 (𝑚′)
𝑘 → 𝐺 (𝑚)

𝑘 is an isomorphism.
Examples of Mittag–Leffler towers include towers of finite groups or finite dimensional vector spaces.
Mittag–Leffler towers have the following property [BK72, Corollary IX.3.5]:
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Lemma 7.14. If a tower of groups {𝐺𝑘 } is Mittag–Leffler, then lim1
𝑘 𝐺𝑘 = ∗.

To recognise Mittag–Leffler towers, we use the following result from [MM92, Theorem 2]:

Lemma 7.15 (McGibbon–Møller). For a tower {𝐺𝑘 } of countable groups, the following statements are
equivalent:

(i) lim1
𝑘 𝐺𝑘 is countable,

(ii) lim1
𝑘 𝐺𝑘 vanishes,

(iii) the tower {𝐺𝑘 } is Mittag–Leffler.

The following lemma appears in [DS78, Corollary 6.1.9], but we include a proof for the convenience
of the reader. For a group G, we denote the constant tower with value G by {𝑐 𝐺}.

Lemma 7.16 (Dydak–Segal). If a tower of groups {𝐺𝑘 } is Mittag–Leffler and lim𝑘 𝐺𝑘 is countable,
then the canonical map {𝑐 lim𝑘 𝐺𝑘 } → {𝐺𝑘 } is a pro-isomorphism.

Proof. Any Mittag–Leffler tower of groups {𝐺𝑘 } is pro-isomorphic to one with surjective transition
maps (consider the tower {𝐺 ′

𝑘 } of stable images 𝐺 ′
𝑘 ⊂ 𝐺𝑘 (i.e., 𝐺 ′

𝑘 = im(𝐺𝑘+𝑚 → 𝐺𝑘 ) for 𝑚 " 0)), so
we may assume this is the case. This in particular ensures that the maps lim𝑘 𝐺𝑘 → 𝐺𝑘 are surjective,
so 𝐺𝑘 is countable for all 𝑘 ≥ 0, and it also shows that the claim is true if lim𝑘 𝐺𝑘 = 0. and thus, 𝐺𝑘 = 0
for all k. We use this special case to prove the following claim, which implies the general statement
when applied to the map {𝑐 lim𝑘 𝐺𝑘 } → {𝐺𝑘 }:

Claim. Let {𝐺𝑘 } be a Mittag–Leffler tower of countable groups and { 𝑓𝑘 } : {𝐺𝑘 } → {𝐻𝑘 } a levelwise
surjective map of towers of groups. If lim𝑘 𝑓𝑘 : lim𝑘 𝐺𝑘 → lim𝑘 𝐻𝑘 is an isomorphism, then { 𝑓𝑘 } is a
pro-isomorphism.

Proof of claim. Consider the short exact sequence of towers 1 → {ker( 𝑓𝑘 )} → {𝐺𝑘 } → {𝐻𝑘 } → 1
and the associated long exact sequence of Lemma 7.12. Since (a) the map lim𝑘 𝑓𝑘 : lim𝑘 𝐺𝑘 → lim𝑘 𝐻𝑘

is an isomorphism, (b) {𝐺𝑘 } is Mittag–Leffler, and (c) Lemma 7.14, it follows that lim𝑘 ker( 𝑓𝑘 ) and
lim1

𝑘 ker( 𝑓𝑘 ) both vanish. Invoking Lemma 7.15, we see that {ker( 𝑓𝑘 )} is Mittag–Leffler, so by the first
part of the proof, {ker( 𝑓𝑘 )} is pro-isomorphic to {𝑐 0}. The result follows since a levelwise surjective
map of towers of groups is a pro-isomorphism if its towers of levelwise kernels are pro-isomorphic to
{𝑐 0} [BK72, Proposition III.2.2]. �

This completes the proof of the lemma. �

Mittag–Leffler towers often behave well with T-localisation in the sense of Section 7.1.1:

Lemma 7.17. Let {𝐺𝑘 } be Mittag–Leffler. If lim𝑘 𝐺𝑘 is countable, then the canonical map(
lim𝑘 𝐺𝑘

)
𝑇 −→ lim𝑘

(
(𝐺𝑘 )𝑇 )

is an isomorphism for any set of primes T.

Proof. By Lemma 7.16, the canonical map of towers {𝑐 lim𝑘 𝐺𝑘 } → {𝐺𝑘 } is a pro-isomorphism, as
lim𝑘 𝐺𝑘 is countable. As (−)𝑇 preserves pro-isomorphisms and limits of constant towers, the canonical
map from the constant tower on {lim𝑘 𝐺𝑘 }𝑇 to {(𝐺𝑘 )𝑇 } is a pro-isomorphism, and the result follows
from Lemma 7.13. �

Remark 7.18. We stated Lemma 7.17 in terms of T-localisation since this is what we will use, but the
same proof applied to (−)𝑇 replaces by any endofunctor on the category of groups.

7.5.2. Towers of spaces
Given a tower 𝑋0 ← 𝑋1 ← · · · of based spaces, taking homotopy groups results in a tower of pointed
sets {𝜋𝑖 (𝑋𝑘 )} (of groups for 𝑖 ≥ 1). The limits of these towers fit into the following Milnor exact
sequence [BK72, Theorem IX.3.1].
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Lemma 7.19. For a tower 𝑋0 ← 𝑋1 ← · · · of based spaces and 𝑖 ≥ 0, there is a natural short exact
sequence of pointed sets (of groups for 𝑖 ≥ 1)

0 → lim1
𝑘 𝜋𝑖+1(𝑋𝑘 ) → 𝜋𝑖 (holim𝑘𝑋𝑘 ) → lim𝑘 𝜋𝑖 (𝑋𝑘 ) −→ 0.

Together with Lemma 7.15, this has the following consequence.

Proposition 7.20. Fix 𝑖 ≥ 1. For a tower of based spaces 𝑋0 ← 𝑋1 ← · · · such that 𝜋𝑖 (𝑋𝑘 ) is countable
for all 𝑘 ≥ 0, at least one of the following statements holds:

(i) 𝜋∗(holim𝑘𝑋𝑘 ) is uncountable in degree 𝑖 − 1 or i,
(ii) (lim𝑘𝜋𝑖 (𝑋𝑘 ))𝑇 → lim𝑘 (𝜋𝑖 (𝑋𝑘 )𝑇 ) is an isomorphism for all sets of primes T.

Moreover, if 𝜋𝑖+1(𝑋𝑘 ) is countable for all 𝑘 ≥ 0, then at least one of the following is the case:

(i’) 𝜋𝑖 (holim𝑘𝑋𝑘 ) is uncountable,
(ii’) the natural surjection 𝜋𝑖 (holim𝑘𝑋𝑘 ) → lim𝑘𝜋𝑖 (𝑋𝑘 ) is an isomorphism.

Proof. By Lemma 7.15, the assumption that 𝜋𝑖 (𝑋𝑘 ) is countable for 𝑘 ≥ 0 implies that either (a)
lim1

𝑘 (𝜋𝑖 (𝑋𝑘 )) is uncountable or (b) the tower is Mittag–Leffler. In case (a), we apply Lemma 7.19 in
degree 𝑖−1 to conclude that 𝜋𝑖−1 (holim𝑘𝑋𝑘 ) is uncountable, so (i) holds. In case (b), either 𝜋𝑖 (holim𝑘𝑋𝑘 )
is uncountable and (i) holds, or it is countable and Lemma 7.19 in degree i implies that lim𝑘 𝜋𝑖 (𝑋𝑘 )
is countable, so (ii) holds by Lemma 7.17. Similarly, if 𝜋𝑖+1(𝑋𝑘 ) is countable for 𝑘 ≥ 0, then either
𝜋𝑖 (holim𝑘𝑋𝑘 ) is uncountable and (i′) holds, or it is countable and so lim1

𝑘 𝜋𝑖+1 (𝑋𝑘 ) is countable by
Lemma 7.19 and thus vanishes by Lemma 7.15, so the claim follows from the Milnor exact sequence. �

7.6. Applications to maps between operads

Together with Theorem 7.10, we use Proposition 7.20 to prove the following result about the map

Mapℎ (𝒪,𝒫) −→ Mapℎ (𝒪Q,𝒫Q)

for 1-reduced dendroidal Segal spaces 𝒪 and 𝒫 in the sense of Section 7.2.

Theorem 7.21. Let 𝒪 and 𝒫 be 1-reduced dendroidal Segal spaces such that for all 𝑘 ≥ 0,

• all components of 𝒫(𝑘) are nilpotent and have finitely generated homotopy groups,
• 𝒪(𝑘) and Latch𝑘 (𝒪)ℎΣ𝑘 are weakly equivalent to finite CW complexes.

Then for all 𝑖 ≥ 1 and all basepoints 𝑓 ∈ Mapℎ (𝒪,𝒫), at least one of the following is the case:

(i) 𝜋∗(Mapℎ (𝒪,𝒫)) is uncountable in degree 𝑖 − 1 or i,
(ii) the canonical map 𝜋𝑖 (Mapℎ (𝒪,𝒫))Q → 𝜋𝑖 (Mapℎ (𝒪Q,𝒫Q)) is an isomorphism.

Proof. During the proof, we implicitly use the equivalence Mapℎ (𝒪,𝒫Q) � Mapℎ (𝒪Q,𝒫Q) and its
truncated analogue (see Lemma 7.9). Then (89) gives

Mapℎ (𝒪,𝒫) � holim𝑘 Mapℎ≤𝑘 (𝒪,𝒫) and Mapℎ (𝒪Q,𝒫Q) � holim𝑘 Mapℎ≤𝑘 (𝒪Q,𝒫Q),

so from the two Milnor sequences (see Lemma 7.19) together with the fact that 𝜋𝑖 (Mapℎ (𝒪Q,𝒫Q)) is
Q-local as the homotopy group of a Q-local space (see Lemma 7.9), we obtain a square

𝜋𝑖 (Mapℎ (𝒪,𝒫))Q
(
lim𝑘𝜋𝑖 (Mapℎ≤𝑘 (𝒪,𝒫))

)
Q

𝜋𝑖 (Mapℎ (𝒪Q,𝒫Q)) lim𝑘 𝜋𝑖 (Mapℎ≤𝑘 (𝒪Q,𝒫Q)).

1

2
3
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Assuming that 𝜋∗(Mapℎ (𝒪,𝒫)) is countable in degrees 𝑖 − 1 and i, we need to show that the left
vertical map is an isomorphism, which we do proving that this holds for the three circled maps. By
Theorem 7.10 (iii), the homotopy groups of Mapℎ≤𝑘 (𝒪,𝒫) are finitely generated for all k, so they
are in particular countable. By Proposition 7.20 (ii′), this implies that 1 is an isomorphism, even
before rationalisation. By Theorem 7.10 (ii), we have 𝜋𝑘 (Mapℎ≤𝑘 (𝒪,𝒫))Q � 𝜋𝑘 (Mapℎ≤𝑘 (𝒪Q,𝒫Q))

for all 𝑘 ≥ 1, so 2 is an isomorphism by Proposition 7.20 (ii). Finally, by the Milnor sequence
(see Lemma 7.19), 3 is surjective and its kernel agrees with lim1

𝑘 𝜋𝑖+1(Mapℎ≤𝑘 (𝒫Q,𝒪Q)), so it is an
isomorphism if {𝜋𝑖+1(Mapℎ≤𝑘 (𝒫Q,𝒪Q))} is Mittag–Leffler. For this it suffices that it is a tower of finite-
dimensional vector spaces, which is indeed the case by Theorem 7.10 (ii) and (iii). �

7.6.1. Applications to maps between 𝑬𝒏-operads
Here and henceforth, we write 𝐸𝑛 for any operad weakly equivalent to the operad of little n-discs (the
unital version, so 𝐸𝑛 (0) � ∗). As 𝐸𝑛 (1) � ∗, we can consider 𝐸𝑛 via the dendroidal nerve as a 1-reduced
dendroidal Segal space, denoted by the same symbol, and abbreviate its T-localisation (see Section 7.4)
by 𝐸𝑇

𝑛 . Proposition 7.7 says that the derived mapping spaces between 𝐸𝑛-operads do not depend on
whether we consider them as operads or as 1-reduced dendroidal Segal spaces. Keeping this in mind,
we use Theorems 7.10 and 7.21 to prove the following two results:
Theorem 7.22. Fix 𝑛 ≥ 1 and 𝑚 ≥ 3, and a set of primes T. For 𝑓 ∈ Mapℎ≤𝑟 (𝐸𝑛, 𝐸𝑚) and 𝑘 ≥ 0, the
following holds:

(i) the path component Mapℎ≤𝑘 (𝐸𝑛, 𝐸𝑚) 𝑓 is nilpotent,
(ii) the map (𝑟𝑇 ◦ (−)) : Mapℎ≤𝑘 (𝐸𝑛, 𝐸𝑚) 𝑓 → Mapℎ≤𝑘 (𝐸𝑛, 𝐸

𝑇
𝑚)𝑟𝑇 ◦ 𝑓 is a T-localisation,

(iii) the homotopy groups of Mapℎ≤𝑘 (𝐸𝑛, 𝐸𝑚) 𝑓 are finitely generated.
The case of Theorem 7.22 that will be relevant to the proof of Theorem C and Corollary E in the

next section is 𝑛 = 𝑚. For 𝑚 − 𝑛 ≥ 2 and (−)𝑇 being rationalisation, this result appears also in Section
10.2 of [FTW17] (see Remark 10.9 and Proposition 10.10 loc.ċit.).
Theorem 7.23. Fix 𝑛 ≥ 1 and 𝑚 ≥ 3. For all 𝑖 ≥ 1 and any basepoint in Mapℎ (𝐸𝑛, 𝐸𝑚), at least one
of the following statements holds:
(i) 𝜋∗(Mapℎ (𝐸𝑛, 𝐸𝑚)) is uncountable in degrees 𝑖 − 1 or i,

(ii) the canonical map 𝜋𝑖 (Mapℎ (𝐸𝑛, 𝐸𝑚))Q → 𝜋𝑖 (Mapℎ (𝐸Q
𝑛 , 𝐸

Q
𝑚)) is an isomorphism.

Proof of Theorems 7.22 and 7.23. This follows from Theorems 7.10 and 7.21 once we checked the hy-
pothesis. The space of k-ary operations 𝐸𝑛 (𝑘) is weakly equivalent to the space of ordered configurations
𝐹𝑘 (R𝑛), so 𝐸𝑛 is 1-reduced for all 𝑛 ≥ 1. Moreover, by transversality, 𝐸𝑛 (𝑘) is 1-connected (so in partic-
ular, nilpotent) as long as 𝑛 ≥ 3, so its homotopy groups are finitely generated if its homology groups are.
We are thus left to show that 𝐸𝑛 (𝑘)ℎΣ𝑘 and Latch𝑘 (𝐸𝑛)ℎΣ𝑘 have the weak homotopy type of finite CW
complexes for all 𝑛 ≥ 1 and that 𝐸𝑛 (𝑘) has degreewise finitely generated homology groups for 𝑛 ≥ 3. By
[GW24, Examples 1.1.6, 2.1.13] (see also [Wei21, Proposition 3.4.6]), the map Latch𝑛 (𝐸𝑛) → 𝐸𝑛 (𝑘)
agrees up to weak equivalence of Σ𝑘 -spaces with the boundary inclusion 𝜕FM𝑛 (𝑘) ⊂ FM𝑛 (𝑘) of the
Fulton–MacPherson compactification of 𝐹𝑘 (R𝑛). This is a compact manifold with corners and free Σ𝑘 -
action [Sin04], so we conclude (i) that (𝐸𝑛 (𝑘))ℎΣ𝑘 � 𝐹𝑀𝑛/Σ𝑘 and (Latch𝑘 (𝐸𝑛))ℎΣ𝑘 � 𝜕𝐹𝑀𝑛/Σ𝑘 have
the weak homotopy type of smooth compact manifolds with corners and so are weakly equivalent to
finite CW complexes, and (ii) that 𝐸𝑛 (𝑘) � FM𝑛 (𝑘) has degreewise finitely generated homology. �

8. Theorem C: nontriviality

In this section, we prove results on the homotopy groups of the homotopy fibre Autℎ (𝐸𝑑)/Top(𝑑)
of the map BTop(𝑑) → BAutℎ (𝐸𝑑) mentioned as (4) in the introduction (and explained below), and
deduce results on the homotopy groups of 𝑆𝒟isc

𝜕
(𝐷𝑑); Theorem C and Corollary E will follow as special

cases. As explained in the outline in Section 1.2.5, the main ingredient besides Theorem 7.23 is work
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of Boavida de Brito–Weiss [BdBW18] and work of Fresse–Turchin–Willwacher [FTW17]. We also
make use of results of Krannich, Kupers, Randal-Williams and Watanabe [KrRW21, KuRW25, Wat09],
though this can be avoided in most cases (see Remark 8.15).

8.1. A theorem of Boavida de Brito–Weiss

We first extract the relevant parts of [BdBW18]. By Theorem 1.2 loc.cit., the space Mapℎ (𝐸𝑑 , 𝐸𝑑) =
MapℎOpd (𝐸𝑑 , 𝐸𝑑) of derived operad maps is equivalent to a mapping space between certain ∞-categories
of configurations spaces associated to R𝑑 . These configuration categories only depend on the underlying
topological manifold, so this in particular shows that the standard action of O(𝑑) on 𝐸𝑑 factors through
an action of Top(𝑑) and thus gives a map

BTop(𝑑) −→ BAutℎ (𝐸𝑑). (92)

We will explain below how a reformulation of further results of Boavida de Brito–Weiss relates the
homotopy fibre Autℎ (𝐸𝑑)/Top(𝑑) of this map to the 𝒟isc-structure space 𝑆𝒟isc

𝜕
(𝐷𝑑) of a disc. To state

the precise result, we denote by

Ω𝑑+1
O(𝑑)

(
Autℎ (𝐸𝑑)/Top(𝑑)

)
⊆ Ω𝑑+1 (Autℎ (𝐸𝑑)/Top(𝑑)

)
the collection of those path components that are sent to classes in the image of the map 𝜋𝑑+1 (BO(𝑑)) →
𝜋𝑑+1 (BTop(𝑑)) under the map

𝜋0 (Ω
𝑑+1 (Autℎ (𝐸𝑑)/Top(𝑑))) = 𝜋𝑑+1 (Autℎ (𝐸𝑑)/Top(𝑑)) −→ 𝜋𝑑+1 (BTop(𝑑)).

Theorem 8.1 (Boavida de Brito–Weiss). For 𝑑 ≠ 4, there exists a 0-coconnected map of the form

Ω𝑑+1
O(𝑑) (Autℎ (𝐸𝑑)/Top(𝑑)) −→ 𝑆𝒟isc

𝜕 (𝐷𝑑).

Recall that being 0-coconnected amounts to being an ‘inclusion of path components’, meaning a map
that induces an injection on 𝜋0 (−) and an isomorphism on 𝜋𝑖 (−) for 𝑖 ≥ 1. After taking loop spaces,
Theorem 8.1 can also be deduced from work of Ducoulombier–Turchin [DT22, (13)].

Remark 8.2. After this work was finalised, a different proof of Theorem 8.1 was given in [KK24c,
Section 5.9.4]. This proof is independent of [BdBW18] and [DT22] and shows the slightly stronger
statement Ω𝑑+1 (Autℎ (𝐸𝑑)/Top(𝑑)) � 𝑆𝒟isc

𝜕
(𝐷𝑑).

Proof of Theorem 8.1. This can be deduced from [BdBW18] as follows: combining their Theorems 1.2
and 1.4 with their Section 6 (see also Equation (1.3)), there is contractible space C(𝐷𝑑 , 𝐷𝑑) (a certain
mapping space of configuration categories) which fits into a homotopy cartesian square

𝑇∞Emb𝜕 (𝐷𝑑 , 𝐷𝑑) C(𝐷𝑑 , 𝐷𝑑)

Bun𝜕 (𝑇𝐷𝑑 , 𝑇𝐷𝑑) Ω𝑑Mapℎ (𝐸𝑑 , 𝐸𝑑),

where Bun𝜕 (𝑇𝐷𝑑 , 𝑇𝐷𝑑) is the space of vector bundle maps of 𝑇𝐷𝑑 that are fixed on the boundary and
𝑇∞Emb𝜕 (𝐷𝑑 , 𝐷𝑑) is the embedding calculus approximation to Emb𝜕 (𝐷𝑑 , 𝐷𝑑). The bottom horizontal
map admits a factorisation

Bun𝜕 (𝑇𝐷𝑑 , 𝑇𝐷𝑑) → Bun𝜕 (𝑇𝐷𝑑 , 𝑇𝐷𝑑)Top → Ω𝑑Mapℎ (𝐸𝑑 , 𝐸𝑑) (93)

https://doi.org/10.1017/fmp.2024.25 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2024.25


86 M. Krannich and A. Kupers

through the space of topological microbundle maps (compare the proof of Theorem 1.6 loc.cit.). Under
the equivalences Bun𝜕 (𝑇𝐷𝑑 , 𝑇𝐷𝑑) � Ω𝑑O(𝑑) and Bun𝜕 (𝑇𝐷𝑑 , 𝑇𝐷𝑑)Top � Ω𝑑Top(𝑑), this agrees with
the d-fold looping of the composition O(𝑑) → Top(𝑑) → Autℎ (𝐸𝑑).

Now the factorisation (93) allows us to form the commutative diagram

Emb𝜕 (𝐷𝑑 , 𝐷𝑑) Emb𝜕 (𝐷𝑑 , 𝐷𝑑)Top

𝑇∞Emb𝜕 (𝐷𝑑 , 𝐷𝑑) C(𝐷𝑑 , 𝐷𝑑)

Bun𝜕 (𝑇𝐷𝑑 , 𝑇𝐷𝑑) Bun𝜕 (𝑇𝐷𝑑 , 𝑇𝐷𝑑)Top

Bun𝜕 (𝑇𝐷𝑑 , 𝑇𝐷𝑑) Ω𝑑Mapℎ (𝐸𝑑 , 𝐸𝑑)

whose front and back face are homotopy cartesian; the former by what was said above and the latter by
smoothing theory (see [KS77, Essay V]; this uses 𝑑 ≠ 4). Note that Emb𝜕 (𝐷𝑑 , 𝐷𝑑) = Diff𝜕 (𝐷

𝑑) and
Emb𝜕 (𝐷𝑑 , 𝐷𝑑)Top = Homeo𝜕 (𝐷𝑑). From the constructions in [BdBW18], one sees that this diagram
is in fact a diagram of 𝐴∞-spaces if one uses the 𝐴∞-structure on 𝑇∞Emb𝜕 (𝐷𝑑 , 𝐷𝑑) by composition
induced by the model for embedding calculus with boundary condition from [BdBW13, p. 379] which
agrees with the 𝐴∞-structure provided by our model as a result of Proposition 4.8 (see the discussion
at the beginning of Section 4.3.1). Using contractibility of C(𝐷𝑑 , 𝐷𝑑) and of Homeo𝜕 (𝐷𝑑) (using the
Alexander trick) and Theorem 4.5, the diagram becomes a map of homotopy fibre sequences

Diff𝜕 (𝐷
𝑑) Ω𝑑O(𝑑) Ω𝑑Top(𝑑)

Mapℳod(𝑑)𝐸
𝜕𝐷𝑑×𝐼

(𝐸𝐷𝑑 , 𝐸𝐷𝑑 ) Ω𝑑O(𝑑) Ω𝑑Autℎ (𝐸𝑑)

𝐸

of 𝐴∞-spaces. Here, we used the abbreviation from (72). Aside from the bottom left fibre, all spaces in
this diagram are visibly group-like, so this fibre is as well; that is,

Mapℳod(𝑑)𝐸
𝜕𝐷𝑑×𝐼

(𝐸𝐷𝑑 , 𝐸𝐷𝑑 ) = Autℳod(𝑑)𝐸
𝜕𝐷𝑑×𝐼

(𝐸𝐷𝑑 ),

using the notation from Section 4.5. We may thus deloop the diagram once (after restricting the
components of the rightmost spaces to those in the image of the maps from Ω𝑑O(𝑑)) and take vertical
homotopy fibres to get

Ω𝑑+1
O(𝑑)Aut(𝐸𝑑)/Top(𝑑) � Autℳod(𝑑)𝐸

𝜕𝐷𝑑×𝐼
(𝐸𝐷𝑑 )/Diff𝜕 (𝐷

𝑑).

The right-hand space is a collection of components of 𝑆𝒟isc
𝜕

(𝐷𝑑) by (73), so the claim follows. �

8.2. Some results of Fresse–Turchin–Willwacher

Next, we recall part of work of Fresse–Turchin–Willwacher [FTW17], who gave a complete description
of the rational homotopy groups of Mapℎ (𝐸𝑛, 𝐸

Q
𝑚) in terms of certain graph complexes. We collect the

parts of their results that are relevant to us below, after explaining why they are applicable in our setting.

8.2.1. A comparison
The derived mapping spaces Mapℎ (𝐸𝑛, 𝐸

Q
𝑚) considered in [FTW17] differ a priori from those we

considered in Section 7.6.1 in two ways:
First, the derived mapping spaces between operads considered in [FTW17] are formed not in the

usual category sOp of simplicial operads as we did in Section 7.2, but instead in a certain category
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sΛOp∅∗ of connected simplicial Λ-operads, equipped with levelwise weak equivalences. This category
is isomorphic to the full subcategory sOp∗1 ⊂ sOp of the category of simplicial operads such that
P(0) and P(1) are singletons (see the discussion following Proposition 4.4. loc.cit.). The inclusion
functor sΛOp∅∗ � sOp∗1 → sOp induces weak equivalences on derived mapping spaces: by [FTW18,
Theorem 1], the inclusion sOp∗ → sOp induces weak equivalences on derived mapping spaces, and
the same holds for sOp∗1 → sOp∗ since this full subcategory inclusion preserves fibrant and cofibrant
objects in suitable model categories on these categories with levelwise weak equivalences (see [Fre17,
p. 369] where this is explained in terms of the isomorphic categories sΛOp∅∗ ⊂ sΛOp∅). Hence, the
mapping spaces Mapℎ (𝐸𝑛, 𝐸𝑚) considered in [FTW17] agree with any of the variants of mapping space
we discussed in (85) as a result of Proposition 7.7, using that the space of 0- and 1-operations of 𝐸𝑛 are
weakly contractible.

Second, the authors in [FTW17] rationalise operads differently than we do – namely, via a rationali-
sation functor of Fresse [Fre17, Section 12.2] (therein denoted 𝐿𝐺•Ω∗

♯
(−) and phrased in terms of the

isomorphism sΛOp∅∗ � sOp∗1 mentioned above) that we denote

(−)FQ : sOp∗1 −→ sOp∗1.

This functor comes with a natural transformation 𝑟FQ : id → (−)FQ and has the property that any operad
P ∈ sOp∗1, the induced maps 𝑟FQ : P(𝑘) → PFQ(𝑘) agree up to weak equivalence with the Sullivan
rationalisation as long as H∗(P(𝑘); Q) is degreewise finite dimensional for all 𝑘 ≥ 1 (see Theorem 2.2.1
loc.cit.). We can compare this to the rationalisation (−)Q we use (that is, levelwise T-localisation for T
the set of all primes) as follows:

Lemma 8.3. If P ∈ sOp∗1 is levelwise connected nilpotent such that H∗(P(𝑘); Q) is degreewise finite
dimensional for all 𝑘 ≥ 1, then there exists a natural zig-zag of weak equivalences

𝑁𝑑 (PFQ) � (𝑁𝑑 (P))Q

between the dendroidal nerve of Fresse’s rationalisation and the rationalisation of the dendroidal nerve
in the sense of Section 7.4.

Proof. Consider the zigzag 𝑁𝑑 (PFQ)
𝑟Q
−→ (𝑁𝑑 (PFQ))Q

𝑁𝑑 (𝑟FQ)Q
←−−−−−−− (𝑁𝑑 (P))Q. To check both these maps

are weak equivalences, it suffices to do so levelwise. Using the dendroidal Segal condition and the fact
that rationalisation commutes with products of connected nilpotent spaces by Lemma 7.3 (ii), we may
verify this on corollas. For those, the zig-zag becomes

PFQ(𝑘)
𝑟Q
−→ PFQ(𝑘)Q

𝑟FQ
←− P(𝑘)Q.

Under the assumption on P(𝑘), Sullivan rationalisation agrees with the rationalisation in Section 7.1,
so all three spaces in the zig-zag are Q-local and the two maps are weak equivalences. �

8.2.2. Homotopy groups of spaces of maps between rationalised 𝑬𝒏-operads
The ingredient from [FTW17] required for the proofs of Theorem C and Corollary E is a computation
of the homotopy groups of the derived mapping space Mapℎ (𝐸𝑑 , 𝐸

Q
𝑑 ) based at the rationalisation map

𝑟Q : 𝐸𝑑 → 𝐸Q
𝑑 in a range of degrees, which we summarise as the first two items in the following theorem.

In its statement, we write Q[𝑘] for the Z-graded 1-dimensional vector space concentrated in degree k,
and we write 𝜄 : 𝐸𝑑 → 𝐸𝑑+𝑘 for the standard inclusion.
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Theorem 8.4 (Fresse–Turchin–Willwacher).

(i) For 2𝑛 ≥ 4, we have an inclusion of graded rational vector spaces

𝜋∗>0 (Mapℎ (𝐸2𝑛, 𝐸
Q
2𝑛), 𝑟Q) ⊃

(⊕
𝑖≥0 Q[2𝑛 − 4𝑖 − 1]

)
⊕

Q[6𝑛 − 6] ⊕ Q[10𝑛 − 10] ⊕ Q[12𝑛 − 15]⊕
Q[14𝑛 − 14] ⊕ Q[16𝑛 − 16] ⊕ Q[16𝑛 − 19]⊕
Q[18𝑛 − 18] ⊕ Q[18𝑛 − 21] .

This inclusion is an equality in degrees ∗ ≤ 20𝑛 − 28.
(ii) For 2𝑛 + 1 ≥ 3, we have an inclusion of graded rational vector spaces

𝜋∗>0 (Mapℎ (𝐸2𝑛+1, 𝐸
Q
2𝑛+1), 𝑟Q) ⊃

(⊕
𝑖≥0 Q[2𝑛 − 4𝑖 − 2]

)
⊕

Q[4𝑛 − 1] ⊕ Q[6𝑛 − 3] ⊕ Q[8𝑛 − 5]⊕
Q2 [10𝑛 − 7] ⊕ Q2 [12𝑛 − 9] ⊕ Q[12𝑛 − 6]⊕
Q3 [14𝑛 − 11] ⊕ Q[14𝑛 − 8] .

This inclusion is an equality in degrees ∗ ≤ 16𝑛 − 14.
(iii) For 𝑑 ≥ 2, (−) ◦ 𝜄 : Mapℎ (𝐸𝑑 , 𝐸

Q
𝑑 )𝑟Q → Mapℎ (𝐸𝑑−1, 𝐸

Q
𝑑 )𝑟Q◦ 𝜄 is a weak equivalence.

(iv) For 𝑑 ≥ 1, 𝜋𝑑+1 (Mapℎ (𝐸𝑑 , 𝐸
Q
𝑑+2), 𝑟Q ◦ 𝜄) is an infinite-dimensional Q-vector space.

Proof. By [FTW17, Corollary 5], there is an isomorphism of graded vector spaces of the form
𝜋∗>0 (Mapℎ (𝐸𝑑 , 𝐸

Q
𝑑 ), 𝑟Q) � 𝐻∗>0(GC2

𝑑) for 𝑑 ≥ 3, where GC2
𝑑 is a certain graph complex introduced

by Kontsevich (see loc.cit. for details). This complex splits into subcomplexes according to the number
of loops of the graphs. The subspaces in (i) and (ii) are the homologies of the subcomplexes of loop
order ≤ 9 and ≤ 7 depending on the parity of d (see Equation (4) loc.cit.). The fact that this subspace
spans the full homology in the claimed ranges appears as Corollary 6 loc.cit., which proves (i) and (ii)
(see also [BW24] for more computations in this direction). Part (iii) is [FTW17, Equation (12)]. Part
(iv) follows from the isomorphism 𝜋𝑘 (Mapℎ (𝐸𝑑 , 𝐸

Q
𝑑+2), 𝑟Q ◦ inc) � 𝐻𝑘−1(HCG𝑑,𝑑+2) of Corollary 3

loc.cit. by considering the 1-loop contribution to degree n of HCG𝑑,𝑑+2 explained in Equation (2) loc.cit.
and noting that the graph 𝐻𝑘 in that equation has degree d for all k. �

Remark 8.5. Note that we have Mapℎ (𝐸𝑛, 𝐸
Q
𝑚)𝑟Q◦ 𝜄 � Mapℎ (𝐸Q

𝑛 , 𝐸
Q
𝑚)𝜄Q by Lemma 7.9.

8.3. Homotopy groups of Aut𝒉 (𝑬𝒅)/Top(𝒅)

We now state our main technical result on the homotopy groups of the fibre Autℎ (𝐸𝑑)/Top(𝑑) of the
map BTop(𝑑) → BAutℎ (𝐸𝑑) from (92). We phrase the result in terms of the following statement that
we will refer to as (H𝑑

𝑘,𝑚). It depends on a choice of dimension 𝑑 ≥ 1 and degrees 𝑘, 𝑚 ≥ 2.
At least one of the following two scenarios is the case:

(i) 𝜋∗(Autℎ (𝐸𝑑)/Top(𝑑)) is uncountable in degree 𝑘 − 2 or 𝑘 − 1, or (H𝑑
𝑘,𝑚)

(ii) 𝜋𝑚(Autℎ (𝐸𝑑)/Top(𝑑))Q is nontrivial.

Theorem 8.6. The statement (H𝑑
𝑘,𝑚) holds in the following cases:

(i) dimension 𝑑 = 3 and degrees 𝑘 = 7 and 𝑚 = 6,
(ii) dimension 𝑑 = 4 and degrees 𝑘 = 4 and 𝑚 = 4,

(iii) dimension 𝑑 = 2𝑛 + 1 ≥ 5, degrees 𝑘 ≤ 8𝑛 − 12 with 𝑘 ≡ 0 (mod 4) and 𝑘 ≠ 6𝑛 − 2, and 𝑚 = 𝑘 .
For 2𝑛 + 1 = 5, the bound 𝑘 ≤ 8𝑛 − 12 can be weakened to 𝑘 ≤ 8𝑛 − 8,

(iv) dimension 𝑑 = 2𝑛 ≥ 6, degrees 2𝑛 ≤ 𝑘 ≤ 8𝑛 − 12 with 𝑘 ≡ 0 (mod 4), and 𝑚 = 𝑘 . If n is odd, then
the condition 2𝑛 ≤ 𝑘 can be removed.

https://doi.org/10.1017/fmp.2024.25 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2024.25


Forum of Mathematics, Pi 89

This in particular shows that the map BTop(𝑑) → BAutℎ (𝐸𝑑) is not a weak equivalence for 𝑑 ≥ 3,
so proves the first part of Corollary E in these cases (the second part follows by combining Theorems
6.1 and 8.1). In the low-dimensional case 𝑑 ≤ 2, the map is an equivalence which one can see by
combining the facts that in these dimensions, BO(𝑑) → BTop(𝑑) and BO(𝑑) → BAutℎ (𝐸𝑑) are weak
equivalences, the first by [KS77, Essay V.§5.0(7)] and the latter by work of Horel for 𝑑 = 2 [Hor17,
Theorem 8.5] and a folklore result for 𝑑 = 1.

To prepare the proof of Theorem 8.6, we extract two results on the homotopy groups of the space
BTop(𝑑) from the literature. The first says they are countable, and its proof requires the following lemma
which is likely known to experts but for which we do not know a reference.

Lemma 8.7. For a compact topological manifold M, possible with boundary, or the interior of such a
manifold, the homotopy groups of BHomeo𝜕 (𝑀) are countable.

Lemma 8.7 will be a consequence of the following point-set topological fact. Recall that a topological
space is second countable if its topology has a countable basis, and locally weakly-contractible if for
every neighbourhood U of a point p, there exists a weakly-contractible open neighbourhood𝑉 ⊆ 𝑈 of p.

Lemma 8.8. If X is a locally weakly-contractible second countable space, then the homotopy groups of
X based at any basepoint are countable.

Proof. Recall (for instance, from [Dug78, VIII.6.3]) that every second countable space X is Lindelöf
(i.e., every open cover has a countable subcover). For locally weakly contractible X, we apply this to
the collection of all weakly-contractible open subsets to see that X admits a countable open cover by
weakly-contractible subsets. As being a locally weakly-contractible second countable space is preserved
by passing to an open subset, the same is true for open subsets of X. This allows one to inductively
construct an open hypercover 𝑈• → 𝑋 such that each 𝑈• has countable many components, each of
which is weakly-contractible. Now consider the zigzag 𝑋 ← hocolim𝑈• → hocolim 𝜋0 (𝑈•) whose
left map is the weak homotopy equivalence of [DI04, Theorem 1.3] and whose right map is induced
by taking path components, so it is also a weak homotopy equivalence since homotopy colimits take
objectwise weak homotopy equivalences to weak homotopy equivalences. Now observe that the right
term is equivalent to a countable CW complex – for example, using the formula in [DI04, Proposition
3.2] exhibiting the homotopy colimit as the geometric realisation of a simplicial set with countable sets
of k-simplices for all k – and hence has countable homotopy groups. �

Proof of Lemma 8.7. For M compact, restriction to the boundary induces a fibration sequence
Homeo𝜕 (𝑀) → Homeo(𝑀) → Homeo(𝜕𝑀) as a result of the existence of collars. Hence, it suffices
to prove the result for the topological group of homeomorphisms of a compact manifold with boundary
or the interior of such a manifold, with no boundary condition. This space is second countable in the
compact-open topology [GP57, Proposition 5.4] and locally contractible by [Čer69, Theorem 1, Theo-
rem 2] (or [Che08, Corollary] for the case R𝑑 , which also serves an erratum for the previous reference)
or [EK71, Corollary 1.1, Corollary 6.1] (or [Kir69, Theorem 4] for the case R𝑑), so the claim follows
from Lemma 8.8. �

Applying Lemma 8.7 to R𝑑 = int(𝐷𝑑), we conclude the following:

Corollary 8.9. The homotopy groups of BTop(𝑑) are countable.

Remark 8.10. For 𝑑 ≠ 4, Corollary 8.9 also follows by combining [Mil09, Lemma 10, p. 188] with
[KS77, Essay V.§5.0(1)]. The advantage of the proof above is that it applies to 𝑑 = 4.
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The second result on BTop(𝑑) we will use follows from works of Krannich, Kupers, Randal-Williams
and Watanabe [KrRW21, KuRW25, Wat09]. It concerns two commutative squares

BO(2𝑛) 𝐾 (Q, 2𝑛) × BO BO(2𝑛 + 1) 𝐾 (Q, 4𝑛) × BO

BTop(2𝑛) 𝐾 (Q, 2𝑛) × BTop BTop(2𝑛 + 1) 𝐾 (Q, 4𝑛) × BTop,

𝜄

(𝑒,stab)

id× 𝜄�Q

(𝐸,stab)

𝜄 id× 𝜄�Q

(𝑒,stab) (𝐸,stab)

(94)

where the vertical arrows are induced by the inclusion O(𝑑) ⊂ Top(𝑑) and the horizontal arrows by
the stabilisation map, the Euler class 𝑒 ∈ H2𝑛 (BTop(2𝑛); Q), and the odd-dimensional analogue of its
square 𝐸 ∈ H2𝑛+1 (BTop(2𝑛 + 1); Q) (see [KrRW21, Sections 1.2.2 and 8.1.1] for further information
on this class). That the right vertical maps are rational equivalences follows from the finiteness of the
groups 𝜋∗(Top/O) [KS77, Essay V.§5.0(5)].

Theorem 8.11. The maps induced by the bottom horizontal arrows

𝜋𝑘 (BTop(2𝑛))Q → 𝜋𝑘 (𝐾 (Q, 2𝑛) × BTop)Q 𝜋𝑘 (BTop(2𝑛 + 1))Q → 𝜋𝑘 (𝐾 (Q, 4𝑛) × BTop)Q

are surjective in degrees 𝑘 ≤ 4𝑛 − 1 for all n, and in degrees 𝑘 ≤ 8𝑛 − 12 as long as 𝑛 ≥ 3. Moreover,
the right-hand map for 𝑛 = 2 is also surjective in degree 4𝑛.

Proof. In degrees ∗ ≤ 4𝑛 − 1, the claimed surjectivity follows from the classical fact that the upper
horizontal arrows are rationally surjective in exactly this range.

In order to show the claim for the bottom horizontal map in the left square of (94) for 𝑛 ≥ 3 in
the range ∗ ≤ 8𝑛 − 12, it thus suffices to show that the map Ω2𝑛

0 BTop(2𝑛) → Ω2𝑛
0 BTop is surjective

on 𝜋∗(−)Q for ∗ ≤ 6𝑛 − 12, which can be further reduced to showing that the map BDiff𝜕 (𝐷
2𝑛) �

Ω2𝑛
0 Top(2𝑛)/O(2𝑛) → Ω2𝑛

0 Top/O(2𝑛) is surjective on 𝜋∗(−)Q for ∗ ≤ 6𝑛 − 13; here, we have used
Morlet’s smoothing theory equivalence [KS77, p 241]. This surjectivity was proved in [KuRW25,
Corollary 6.7]. By precomposing the map BTop(2𝑛+1) → BTop with BTop(2𝑛) → BTop(2𝑛+1), this
argument also shows that the bottom horizontal map in the right square of (94) for 𝑛 ≥ 3 is surjective
on 𝜋∗(−)Q for ∗ ≤ 6𝑛 − 12 as long as ∗ ≠ 4𝑛.

This leaves us with showing that for all 𝑛 ≥ 2, the bottom horizontal map of the right square of (94)
is surjective on 𝜋4𝑛 (−)Q. Since the pullback of the class 𝐸 ∈ H4𝑛 (BTop(2𝑛 + 1); Q) to BO(2𝑛) agrees
with 𝑒2 by definition of E and hence is decomposable, evaluation of the pullback of E on the image of the
Hurewicz map 𝜋4𝑛 (BO(2𝑛))Q → 𝐻4𝑛 (BO(2𝑛); Q) is trivial. Hence, the fact that the map BO(2𝑛) →
BTop is surjective on 𝜋4𝑛 (−)Q implies that the direct summand 𝜋4𝑛 (BTop)Q ⊂ 𝜋4𝑛 (𝐾 (Q, 4𝑛) ×BTop)Q
is in the image. So we are left with showing that the map 𝐸 : BTop(2𝑛 + 1) → 𝐾 (Q, 4𝑛) is nontrivial
for all 𝑛 ≥ 2. Using the smoothing theory equivalence BDifffr

𝜕 (𝐷2𝑛+1)0 � Ω2𝑛+1
0 Top(2𝑛 + 1) involving

the framed diffeomorphism group, the composition

𝜋4𝑛 (BDifffr
𝜕 (𝐷2𝑛+1))Q � 𝜋4𝑛 (BTop(2𝑛 + 1))Q

𝐸
−→ Q ⊂ R

agrees by [KrRW21, Theorem B.4, Remark B.5] up to a constant with the ‘Kontsevich class’ 𝜁2,3 from
[Wat09, p. 631], so it is nontrivial for 𝑛 ≥ 2 by Theorem 3.1 loc.cit and [Wat22]. �

Proof of Theorem 8.6. Throughout the proof, we use the fact that 𝜋𝑘>0 (BTop)Q is 1-dimensional for
𝑘 ≡ 0 (mod 4) and trivial otherwise, and that BTop(𝑑) has countable homotopy groups by Corollary 8.9.
We divide the proof into three cases.

𝑑 = 3 Applying Theorem 7.23 for 𝑛 = 𝑚 = 3 and 𝑖 = 6, we see that either
(a) 𝜋∗(BAutℎ (𝐸3)) is uncountable in degrees 6 or 7, or
(b) 𝜋7 (BAutℎ (𝐸3))Q � 𝜋7 (BAutℎ (𝐸Q

3 )).
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By the long exact sequence of Autℎ (𝐸3)/Top(3) → BTop(3) → BAutℎ (𝐸3), there is nothing
left to show in the first case since BTop(𝑑) has countable homotopy groups. In the second case,
we use that first, the map BO(3) → BTop(3) is a weak equivalence by [Hat83, p. 605], and
thus, 𝜋7 (BTop(3))Q � 𝜋7 (BO(3))Q vanishes, and that second, Theorem 8.4 (ii) combined with
Remark 8.5 shows that 𝜋7 (BAutℎ (𝐸Q

3 )) � 𝜋6 (Mapℎ (𝐸Q
3 , 𝐸Q

3 ); id) is nontrivial – in fact, at least
3-dimensional (since 12𝑛 − 6 = 14𝑛 − 8 for 𝑛 = 3). Using the same long exact sequence as before,
this shows the claim in the second case.

𝑑 = 4 The logic is the same as in the case 𝑑 = 3: we again apply Theorem 7.23, this time for 𝑛 = 𝑚 = 4
and 𝑖 = 3, to see that either

(a) 𝜋∗(BAutℎ (𝐸4)) is uncountable in degrees 3 or 4, or
(b) 𝜋4 (BAutℎ (𝐸4))Q � 𝜋4 (BAutℎ (𝐸Q

4 )).
As before, there is nothing left to show in the first case. In the second case, we use that
first, 𝜋4 (BTop(4))Q is at least 2-dimensional as a result of Theorem 8.11, and that second,
𝜋4 (BAutℎ (𝐸4

Q)) is 1-dimensional as a result of Theorem 8.4 (i) (since 2𝑛 − 4𝑖 − 1 = 3 for 𝑖 = 0,
and all other terms are in degree ≥ 7).

𝑑 ≥ 5 Theorem 7.23 for 𝑛 = 𝑚 = 𝑑 and 𝑖 = 𝑘 − 1 shows that either
(a) 𝜋∗(BAutℎ (𝐸𝑑)) is uncountable in degrees k or 𝑘 − 1, or
(b) 𝜋𝑘 (BAutℎ (𝐸𝑑))Q � 𝜋𝑘 (BAutℎ (𝐸Q

𝑑 )).
As previously, nothing is left to show in the first case. In the second case, we first consider odd d.
If 𝑑 = 2𝑛 + 1 ≥ 5 and 1 ≤ 𝑘 ≤ 8𝑛 − 12 (or 1 ≤ 𝑘 ≤ 8𝑛 − 8 if 𝑛 = 2) such that 𝑘 ≠ 6𝑛 − 2 and
𝑘 ≡ 0 (mod 4), then we use first, that 𝜋𝑘 (BTop(2𝑛 + 1))Q is at least 2-dimensional if 𝑘 = 4𝑛 and
otherwise at least 1-dimensional by Theorem 8.11, and second, that Theorem 8.4 (ii) shows that
𝜋𝑘 (BAutℎ (𝐸Q

2𝑛+1)) is trivial for 𝑘 ≠ 4𝑛 and 1-dimensional for 𝑘 = 4𝑛. Finally, for even 𝑑 = 2𝑛 ≥ 6
and 𝑘 ≡ 0 (mod 4) with 2𝑛 ≤ 𝑘 ≤ 8𝑛 − 2 for n even and 𝑘 ≤ 8𝑛 − 2 for n odd, we use a) that
𝜋𝑘 (BTop(2𝑛))Q is at least 1-dimensional and at least 2-dimensional for 𝑘 = 2𝑛 if n is even by
Theorem 8.11, and b) that Theorem 8.4 (i) shows that 𝜋𝑘 (BAutℎ (𝐸Q

2𝑛)) is trivial for 𝑘 ≠ 2𝑛 and
1-dimensional for 𝑘 = 2𝑛.

�

Remark 8.12. The proof of Theorem 8.6 simply compares the homotopy groups of Top(𝑑) and
Autℎ (𝐸𝑑) abstractly. It does not use anything about the specific map Top(𝑑) → Autℎ (𝐸𝑑).

8.3.1. Applications to 𝑺𝓓isc
𝝏 (𝑫𝒅)

In view of the 0-coconnected map of Theorem 8.1

Ω𝑑+1
O(𝑑)Autℎ (𝐸𝑑)/Top(𝑑) −→ 𝑆𝒟isc

𝜕 (𝐷𝑑),

as long as 𝑘 − 𝑑 − 3 ≥ 0, the statement (H𝑑
𝑘,𝑚) implies the following variant for 𝑆𝒟isc

𝜕
(𝐷𝑑):

At least one of the following two scenarios is the case:

(i) 𝜋∗(𝑆
𝒟isc
𝜕

(𝐷𝑑)) is uncountable in degree 𝑘 − 𝑑 − 3 or 𝑘 − 𝑑 − 2, or (H𝑑,𝒟isc
𝑘,𝑚 )

(ii) 𝜋𝑚−𝑑−1 (𝑆
𝒟isc
𝜕

(𝐷𝑑))Q is nontrivial.

For 𝑘 − 𝑑 − 3 = 0, this implication uses that if 𝜋0 (Ω𝑑+1Autℎ (𝐸𝑑)/Top(𝑑)) is uncountable, then so
is 𝜋0 (Ω𝑑+1

O(𝑑)
Autℎ (𝐸𝑑)/Top(𝑑)). This is because 𝜋𝑑+1 (BTop(𝑑)) is countable, so if the domain of the

map 𝜋𝑑+1 (Aut(𝐸𝑑)/Top(𝑑)) → 𝜋𝑑+1 (BTop(𝑑)) is uncountable, then so is its kernel. Combined with
Theorem 8.6, we therefore obtain the following:

Corollary 8.13. Under the additional assumption 𝑘 − 𝑑 − 3 ≥ 0, the statement (H𝑑,𝒟isc
𝑘,𝑚 ) holds for all

choices of triples (𝑑, 𝑘, 𝑚) to which Theorem 8.6 applies.

We now use Corollary 8.13 to prove that 𝑆𝒟isc
𝜕

(𝐷𝑑) is not contractible for all 𝑑 ≥ 5 with 𝑑 ≠ 3.

Theorem 8.14. For 𝑑 = 3 or 𝑑 ≥ 5, the space 𝑆𝒟isc
𝜕

(𝐷𝑑) is not contractible.
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Proof. For 𝑑 = 3, the claim follows from (H𝑑,𝒟isc
𝑘,𝑚 ) for the triple (𝑑, 𝑘, 𝑚) = (3, 7, 6) since this statement

holds true in this case 𝑘 − 𝑑 − 3 ≥ 0 and Theorem 8.6 applies to this triple. In the case 𝑑 ≥ 5, the claim
follows similarly as long as we ensure that there exists a k such that 𝑘 − 𝑑 − 3 ≥ 0 and Theorem 8.6
applies to the triple (𝑑, 𝑘, 𝑘). For 𝑑 = 2𝑛 + 1 with 𝑛 ≥ 4, we pick the unique 𝑘 ≡ 0 (mod 4) with
2𝑛 + 5 ≤ 𝑘 ≤ 2𝑛 + 8. This satisfies the requirements because 𝑘 − 𝑑 − 3 ≥ 0 and 𝑘 ≠ 6𝑛 − 2 as
2𝑛 + 8 < 6𝑛 − 2 and 2𝑛 + 8 ≤ 8𝑛 − 12. For 𝑑 = 2𝑛 + 1 with 𝑛 = 3, we choose 𝑘 = 12. This works
because 𝑘 − 𝑑 − 3 = 2 ≥ 0 and 12 ≤ 8𝑛 − 12 = 12. For 𝑑 = 2𝑛 + 1 with 𝑛 = 2, we choose 𝑘 = 8, which
works using the improvement of the bound since 𝑘 − 𝑑 − 3 = 0 ≥ 0 and 𝑘 ≤ 8𝑛 − 8 = 8. For 𝑑 = 2𝑛
with 𝑛 ≥ 4, we can pick the unique 𝑘 ≡ 0 (mod 4) with 2𝑛 + 4 ≤ 𝑘 ≤ 2𝑛 + 7, which is valid since
𝑘 − 𝑑 − 3 ≥ 0 and 𝑘 ≤ 2𝑛 + 7 ≤ 8𝑛 − 12. Finally, for 𝑑 = 2𝑛 with 𝑛 = 3, we pick 𝑘 = 12, which works
because 𝑘 − 𝑑 − 3 = 3 ≥ 0 and 𝑘 ≤ 8𝑛 − 12 = 12. �

Remark 8.15. If one relaxes the range 𝑘 ≤ 8𝑛 − 12 in Theorem 8.6 (iii) and (iv) to 𝑘 ≤ 4𝑛 − 1, then
the proof we gave does not rely on the recent works [KrRW21, KuRW25, Wat09], since the proof of
Theorem 8.11 does not use them in this range. This is sufficient to deduce Corollary E. It also gives
a weaker version of Corollary 8.13 that does not rely on these works. The latter is good enough to
conclude Theorem 8.14 except in dimensions 𝑑 = 5, 6, 7.

Combining Theorem 8.14 with Corollary 5.13 implies Theorem C.

Remark 8.16. Even though Theorem 8.14 applies to 𝑑 = 3 and all orientable 3-manifolds M are spin,
we cannot conclude that 𝑆𝒟isc

𝜕
(𝑀) is nontrivial in this case, because our tangential 2-type invariance

result does not apply if 𝑑 = 3, so Corollary 5.13 is not available. Nonetheless, 𝑆𝒟isc
𝜕

(𝑀) is nontrivial if
M embeds into 𝐷3 after removing finitely many codimension 0 discs, since

(i) removing discs does not change the homotopy type of 𝑆𝒟isc
𝜕

(𝑀) by Proposition 5.11,
(ii) 𝑆𝒟isc

𝜕
(𝐷3) is a homotopy retract of 𝑆𝒟isc

𝜕
(𝑀) if M embeds into 𝐷3 by the same argument as in the

second part of proof of Corollary 5.13, and
(iii) 𝑆𝒟isc

𝜕
(𝐷3) is nontrivial by Theorem 8.14.

This applies in particular to 𝑆3 or to the handlebodies (𝑆1 × 𝐷2)♮𝑔♮(𝑆2 × 𝐷1)♮𝑔 for 𝑔, ℎ ≥ 0, with ♮
denoting the boundary connected sum operation.

8.4. Positive codimension

We conclude this section with a brief discussion of an analogue of the nontriviality results of the previous
section in positive codimension, by which we mean the following: the subgroup O(𝑐) ⊂ O(𝑑) acting
on the last c coordinates stabilises the standard inclusion 𝐸𝑑−𝑐 → 𝐸𝑑 for 𝑐 ≥ 0 under the O(𝑑)-action
on Mapℎ (𝐸𝑑−𝑐 , 𝐸𝑑), so we have a map O(𝑑)/O(𝑐) → Mapℎ (𝐸𝑑−𝑐 , 𝐸𝑑). In the same way as in the case
𝑐 = 𝑑 discussed in Section 8.1, Boavida de Brito–Weiss’ work [BdBW18] shows that this action factors
as a composition

O(𝑑)/O(𝑐) −→ Top(𝑑)/Top(𝑑, 𝑑 − 𝑐) −→ Mapℎ (𝐸𝑑−𝑐 , 𝐸𝑑),

where Top(𝑑, 𝑑 − 𝑐) ⊂ Top(𝑑) is the subgroup of those homeomorphisms that fix {0} × R𝑑−𝑐 ⊂ R𝑑 .
Generalising from the codimension 𝑐 = 0 case of Corollary E, one might wonder whether

Top(𝑑)/Top(𝑑, 𝑑 − 𝑐) −→ Mapℎ (𝐸𝑑−𝑐 , 𝐸𝑑) (95)

is a weak equivalence. In codimension 𝑐 ≥ 3, this was shown by Boavida de Brito–Weiss [BdBW18,
Theorem 1.6] after taking (𝑑−𝑐+1)-fold loop spaces. Adapting the methods of the previous subsection,
we consider the remaining cases 𝑐 = 1, 2. As before, we phrase the result in terms of the following
placeholder statement involving dimension 𝑑 ≥ 1, codimension 𝑐 ∈ {1, 2}, degrees 𝑘 ≥ 3 and 𝑚 ≥ 1.
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At least one of the following two scenarios is the case:

(i) The homotopy groups

𝜋∗

(
hofib 𝜄

(
Top(𝑑)/Top(𝑑, 𝑑 − 𝑐) → Mapℎ (𝐸𝑑−𝑐 , 𝐸𝑑)

) )
are uncountable in degree 𝑘 − 3 or 𝑘 − 2, or (H𝑑,𝑐

𝑘,𝑚)
(ii) The homotopy group

𝜋𝑚−1

(
hofib 𝜄

(
Top(𝑑)/Top(𝑑, 𝑑 − 𝑐) → Mapℎ (𝐸𝑑−𝑐 , 𝐸𝑑)

) )
Q

is nontrivial.

The proof requires some results about the homotopy groups of the spaces Top(𝑑, 𝑑 − 𝑐):

Lemma 8.17.

(i) The map (−) × R𝑑−1 : O(1) � Top(1) → Top(𝑑, 𝑑 − 1) is a homotopy equivalence.
(ii) The map (−) × R𝑑−2 : O(2) � Top(2) → Top(𝑑, 𝑑 − 2) is (𝑑 − 2)-connected.

Proof. Part (i) admits an elementary argument: if 𝑓 (−,−) : R𝑑−1 × R = R𝑑 → R𝑑 is an orientation-
preserving homeomorphism fixing R𝑑−1 × {0} pointwise, then

[0,∞) × R𝑑−1 × R 
 (𝑡, 𝑥, 𝑠) ↦−→ 𝑓𝑡 (𝑥, 𝑠) �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(𝑥, 𝑠) if |𝑠 | ≤ 𝑡,

𝑓 (𝑥, 𝑠 − 𝑡) if 𝑠 > 𝑡,

𝑓 (𝑥, 𝑠 + 𝑡) if 𝑠 < −𝑡

gives an isotopy of homeomorphisms that extends continuously to 𝑡 = ∞ with value idR𝑑 and depends
continuously on f. If f is orientation-reversing, a similar formula works. Part (ii) is due to Kirby–
Siebenmann [KS75, Theorem B] for 𝑑 ≠ 4, who deduce it using immersion theory from an existence
and uniqueness result for normal bundles of codimension 2 locally flat embeddings into d-manifolds. In
the remaining case 𝑑 = 4, the necessary results on normal bundles of locally flat embeddings of surfaces
into 4-manifolds were established later by Freedman–Quinn [FQ90, Section 9.4]. �

Remark 8.18. The proof of Corollary 8.9 extends to show that Top(𝑑, 𝑑 − 𝑐) has countable homotopy
groups: use Lemma 8.8, that it is second countable being a subspace of Top(𝑑), and that it is locally
weakly-contractible by the variant of [EK71, Corollary 7.3] for this group.

Theorem 8.19. The statement (H𝑑,𝑐
𝑘,𝑚) holds in the following cases.

(i) For 𝑐 = 1, it holds for all choices of (𝑑, 𝑘, 𝑚) to which Theorem 8.6 applies.
(ii) For 𝑐 = 2, it holds for 𝑑 ≥ 3, 𝑘 = 𝑑 and 𝑚 = 𝑑 − 1.

Proof. For 8.19, we consider the following zig-zag of maps:

Top(𝑑) → Top(𝑑)/Top(𝑑, 𝑑 − 1)

→ Mapℎ (𝐸𝑑−1, 𝐸𝑑)
𝑟Q◦(−)
−−−−−→ Mapℎ (𝐸𝑑−1, 𝐸

Q
𝑑 )

(−)◦ 𝜄
←−−−− Mapℎ (𝐸𝑑 , 𝐸

Q
𝑑 ).

After taking loop spaces, the leftmost and the rightmost arrow become weak equivalences – the former by
Lemma 8.17 (i) and the latter by Theorem 8.4 (iii). Since the homotopy groups of Top(𝑑) are countable
by Corollary 8.9, it thus suffices to prove that for choices 𝑘 ≥ 3 and 𝑚 ≥ 1 as in the claim, either

(a) 𝜋∗(Map(𝐸𝑑 , 𝐸𝑑); id) is uncountable in degrees 𝑘 − 2 or 𝑘 − 1, or
(b) the dimension of 𝜋𝑚−1 (Top(𝑑); id)Q is larger than that of 𝜋𝑚−1 (Map(𝐸𝑑 , 𝐸𝑑); id)Q.
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But we already showed this, as part of the proof of Theorem 8.6. To establish 8.19, we apply
Theorem 7.23 to degree 𝑖 = 𝑑 − 1 to conclude that either

(a) 𝜋∗(Mapℎ (𝐸𝑑−𝑐 , 𝐸𝑑), 𝜄) is uncountable in degrees 𝑑 − 2 or 𝑑 − 1, or
(b) 𝜋𝑑−1 (Mapℎ (𝐸𝑑−𝑐 , 𝐸𝑑), 𝜄)Q � 𝜋𝑑−1 (Mapℎ (𝐸𝑑−𝑐 , 𝐸

Q
𝑑 ), 𝑟Q ◦ 𝜄).

Since 𝜋𝑑−1 (Mapℎ (𝐸𝑑−2, 𝐸
Q
𝑑 ), 𝑟Q ◦ 𝜄) is infinite-dimensional by Theorem 8.4 (iv), it suffices to show

that the groups 𝜋∗(Top(𝑑)/Top(𝑑, 𝑑 − 2)) are finitely generated in degrees ∗ ≤ 𝑑 − 1. The latter follows
from a combination of the following facts:

(i) 𝜋∗(Top(𝑑)) is finitely generated in degrees ∗ ≤ 𝑑 − 1 for all d.
(ii) The map (−) × R𝑑−2 : O(2) � Top(2) → Top(𝑑, 𝑑 − 2) is (𝑑 − 2)-connected, so in particular,

𝜋∗(Top(𝑑, 𝑑 − 2)) is finitely generated in degrees ∗ ≤ 𝑑 − 2.

The first statement follows from [KS77, Essay V.§5.0] for 𝑑 ≠ 4 and from [FQ90, Theorem 8.7A]
for 𝑑 = 4, and the second is Lemma 8.17 (ii). �

Unwrapping the statement, Theorem 8.19 in particular implies the following:

Corollary 8.20. The map (95) is not an equivalence if 𝑑 ≥ 3 and 𝑐 = {1, 2}.

Remark 8.21. There are no maps of the form 𝐸𝑑−𝑐 → 𝐸𝑑 for 𝑐 < 0. Indeed, by restricting to 2-ary
operations, such a map would induce an equivariant map 𝑆𝑑−𝑐−1 → 𝑆𝑑−1 with respect to the antipodal
action, which implies 𝑐 ≥ 0 by the Borsuk–Ulam theorem.
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