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HIGHER INDEPENDENCE

VERA FISCHER AND DIANA CAROLINA MONTOYA

Abstract. We study higher analogues of the classical independence number on �. For κ regular
uncountable, we denote by i(κ) the minimal size of a maximal κ-independent family. We establish ZFC
relations between i(κ) and the standard higher analogues of some of the classical cardinal characteristics,
e.g., r(κ) ≤ i(κ) and d(κ) ≤ i(κ). For κ measurable, assuming that 2κ = κ+ we construct a maximal
κ-independent family which remains maximal after the κ-support product of � many copies of κ-Sacks
forcing. Thus, we show the consistency of κ+ = d(κ) = i(κ) < 2κ . We conclude the paper with interesting
open questions and discuss difficulties regarding other natural approaches to higher independence.

§1. Introduction. A family A contained in [�]� is said to be independent if for
every two finite disjoint subfamilies B and C the set

⋂
B\

⋃
C is infinite. We refer to

such sets as Boolean combinations. The least size of a maximal (under inclusion)
independent family is denoted i. For an excellent introduction to the subject of
cardinal characteristics of the continuum and definition of various characteristics
we refer the reader to [2].

The past decade has seen an increased volume of work regarding natural higher
analogues for uncountable cardinals κ of the classical cardinal characteristics.
However, even though we already have a comparatively rich literature in this area
there is very little known about analogues of the notion of independence. Even
in the classical, countable setting, the independence number, and the notion of
independence in general, do not seem to be that well-studied. Among the many
open questions surrounding independence are the consistency of cof(i) = � and the
consistency of i < a. A difficulty in the study of the higher independence number is
the fact that it is not a priori clear what the natural generalization of the classical
independence number should be. Given an uncountable cardinalκ1 one may consider
subfamilies A of [κ]κ which have the property that every Boolean combination
generated by strictly less than κ many elements of A is unbounded. That is, one
may require that for every two disjoint subfamilies B and C of A, such that |B| < κ
and |C| < κ, the Boolean combination

⋂
B\

⋃
C is unbounded. We refer to such

families as strongly independent. A major problem presenting itself in the study of
this notion of strong independence on κ is the very existence of maximal, under
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HIGHER INDEPENDENCE 1607

inclusion, strongly independent families. Results regarding these families, together
with a number of interesting open questions are included in the last section of the
paper. An earlier study of the notion of strong independence can be found in [20],
where it is shown that the existence of a maximal strongly �1-independent family is
equiconsistent with the existence of a measurable.

A more restrictive, but fruitful, approach towards the generalization of the
classical notion of independence is the requirement that for a given family A ⊆ [κ]κ

the finitely generated Boolean combinations are unbounded. That is, given a family
A ⊆ [κ]κ we say that A is κ-independent if for every two disjoint finite subfamilies B
and C contained in A, the set

⋂
B\

⋃
C is unbounded.2 The existence of a maximal

under inclusion κ-independent family is provided by the Axiom of Choice and thus
given an uncountable regular cardinal κ, one can define the higher independence
number, denoted i(κ), to be the minimal size of a maximal κ-independent family.
A standard diagonalization argument going over all Boolean combinations, shows
that κ+ ≤ i(κ). Classical examples of independent families of cardinality 2� do
generalize into the uncountable and provide the existence of κ-independent families
and so of maximal κ-independent families of cardinality 2κ (see Lemma 2.4). An
example of a strongly κ-independent family of cardinality 2κ, under some additional
hypothesis on κ, is provided in Lemma 10.2.

One of the main breakthroughs in the study of the classical independence number
is the consistency of i < u, established in 1992 by Shelah (see [22]). The consistency
proof carries a somewhat hidden construction of a Sacks indestructible maximal
independent family, that is a maximal independent family which remains maximal
after the countable support product and countable support iterations of Sacks
forcing. A tree version of Shelah’s poset, known as party forcing, has been used
in [7] to establish the consistency of i = f < u, where f is the free sequences number.3

For recent studies on Sacks indestructible, co-analytic maximal independent families
see [5], as well as [1, 9, 23]. In this paper, we prove:

Theorem. Let κ be a measurable cardinal and let 2κ = κ+. Then there is a maximal
κ-independent family which remains maximal after the κ-support product of �-many
copies of κ-Sacks forcing.

The existence of this indestructible maximal κ-independent family is closely
related to the properties of a normal measure U on κ. With the indestructible
family A, we associate a κ+-complete filter fil<�,κ(A) which is properly contained
in U and its elements meet every Boolean combination on an unbounded set. The
properties of this filter capture to a great extent the indestructibility of the associated
independent family.

For readers familiar with the countable setting, we will draw a more detailed
comparison. As developed originally in the work of Shelah [22] and later analyzed
for example in [7], an independent family which is maximal in a strong sense and
whose density filter (a similarly to fil<�,κ(A) associated filter) is selective (which

2Clearly every strongly independent family is independent.
3Partial orders and their tree versions often differ. Good example is given by the poset for adding an

infinitely often equal real and its tree version. The former adds a Silver real and so kills all p-points (see
[8]), while the latter preserves p-points (see [15]).
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1608 VERA FISCHER AND DIANA CAROLINA MONTOYA

means both a P-set and Q-set) is indestructible by countable support products and
iterations of Sacks forcing. While fil<�,κ(A) is a κ-P-set, in the sense that every
subfamily of cardinality ≤ κ has a pseudo-intersection in the filter (see Definition
5.4 and Lemma 5.5), the role of the Q-set property from the countable setting is
taken by the fact that for every ground model strictly increasing function in κκ there
is a set in the filter whose enumeration function grows faster than the given function
(see Lemma 5.6 and Corollary 5.7).4 In both, the countable and the uncountable
setting a strengthening of the maximality of the corresponding maximal independent
family plays an important role. In the countable setting this strengthening is known
as dense maximality, a property which originally appears in [16]. The κ-maximal
independent family which we construct is densely maximal in a similar sense (see
Definition 6.1). Moreover we make an explicit use of an equivalent characterisation
of dense maximality given in Lemma 6.2, characterization which plays a key role in
our main theorem. An analogue to the countable setting of the overall approach,
which we take in this paper can be found in the more recent studies [1, 9, 23]. Note
that an analogue of the equivalent characterization given in Lemma 6.2 implicitly
appears in [22].

Finally, the existence of a κ-mad family, which remains maximal after an arbitrar-
ily long κ-supported product of κ-Sacks reals is a straightforward generalization of
the classical case. Moreover, if d(κ) = κ+ then a(κ) = κ+ (see [3, 21]). Thus our
result leads to the following statement:

Theorem. Let κ be a measurable cardinal and 2κ = κ+. Then there is a cardinal
preserving generic extension in which

a(κ) = d(κ) = r(κ) = i(κ) = κ+ < 2κ.

One of the very interesting open questions regarding the classical independence
number is the consistency of i < a. As a very partial result towards this question we
obtain the following:

Corollary. Let κ be regular uncountable. If i(κ) = κ+ then a(κ) = κ+.

1.1. Structure of the paper. In Section 2 we define a notion of independence at κ,
for κ arbitrary infinite cardinal and define the cardinal number i(κ) for κ regular
uncountable. In Section 3, given a measurable cardinal κ, witnessed by a normal
measure U and working under the hypothesis that 2κ = κ+, we define a κ+ closed
poset PU which adjoins a maximal κ-independent family, which we denote AG .5

In Section 4 we study the properties of an ideal on κ, to which we refer as density
ideal and denote id<�,κ(AG), which is contained in the dual ideal of U and which
naturally captures crucial properties of the independent family AG . In Section 5.1,
we show that the dual filter of this ideal, denoted fil<�,κ(AG) is a κ-P-set. In Section
6 we show that the family AG is densely maximal in a natural sense and characterize

4In the countable setting the filter in question is generated by a tower, see for example [5] and so the
filter remains a P-set throughout an iteration of Sacks forcing. For our current argument, which only
deals with products of κ-Sacks forcing, the fact that fil<�,κ(A) is a κ-P-set is sufficient.

5Using the normal measure U and the hypothesis 2κ = κ+ one can alternatively use the properties of
the poset PU to construct a family A having all essential properties of AG using a transfinite recursion
of length κ+.
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dense maximality in terms of properties of the density ideal. Section 7 introduces the
concepts of preprocessed conditions and outer hulls necessary for the proofs in the
last section. In Section 8 we prove our main theorem, by showing that the densely
maximal κ-independent family AG remains maximal after the κ-support product of
�many copies of κ-Sacks forcing. We conclude the paper with some open questions
and an appendix, discussing the notion of strong independence.

§2. The higher independence number. In the following we set to define a higher
analogue of the notion of independent families on � for the special case in which
the Boolean combinations are finitely generated.

Definition 2.1. Let κ be a regular uncountable cardinal and let FF<�,κ(A) be
the set of all finite partial functions with domain included in A and range the set
{0, 1}. For each h ∈ FF<�,κ(A) let Ah =

⋂
{Ah(A) : A ∈ dom(h)} where Ah(A) = A

if h(A) = 0 andAh(A) = κ\A if h(A) = 1. We refer to sets of the form Ah as Boolean
combinations.

With this we can state the definition of κ-independence. For a discussion of
the most general definition in which the Boolean combinations are generated by
arbitrarily large subfamilies of the given family, see [10].

Definition 2.2.

(1) A family A ⊆ [κ]κ is said to be κ-independent if for each h ∈ FF<�,κ(A) the
set Ah is unbounded. It is said to be a maximal κ-independent family if it is
κ-independent and maximal under inclusion.

(2) The least size of a maximal κ-independent family is denoted i(κ).

Remark 2.3. For κ = � the above notions coincide with the classical notions of
independence on [�]� and i(κ) = i, where i is the classical independence number.

Lemma 2.4. Let κ be a regular infinite cardinal. Then
(1) Every κ-independent family is contained in a maximal κ-independent family.
(2) κ+ ≤ r(κ) ≤ i(κ).
(3) There is a maximal κ-independent family of cardinality 2κ.
(4) d(κ) ≤ i(κ).

Proof. Since the increasing union of a collection of κ-independent families is
κ-independent, by the Axiom of Choice every κ-independent family is contained
in a maximal one. Note that if A is a maximal κ-independent family, then the set
of Boolean combinations {Ah : h ∈ FF<�,κ(A)} is not split and so r(κ) ≤ |A|. For
a construction of a κ-independent family of cardinality 2κ, see [14, Theorem 4.2].
Finally, the proof that d(κ) ≤ i(κ) follows closely the proof of the classical case, i.e.,
d ≤ i (see [18]). �

One of the most interesting open questions, regarding the classical cardinal
characteristics is the consistency of i < a. By the last item of the above theorem
and the fact that if d(κ) = κ+ implies that a(κ) = κ+ (see [3, 21]), we obtain the
following:

Corollary 2.5. Let κ be a regular uncountable cardinal. Then if i(κ) = κ+ then
a(κ) = κ+.
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§3. Adjoining a maximal κ-independent family. In this section, we provide a
partial order which adjoins a maximal κ-independent family, a family which we
will later show to be indestructible by products of κ-Sacks forcing.

Let κ be a measurable cardinal and U a normal measure on κ.

Definition 3.1. LetPU be the poset of all pairs (A, A) whereA is aκ-independent
family of cardinalityκ andA ∈ U has the property that ∀h ∈ FF<�,κ(A) the setAh ∩
A is unbounded. The extension relation is defined as follows: (A1, A1) ≤ (A0, A0) if
and only if A1 ⊇ A0 and A1 ⊆∗ A0.6

Lemma 3.2. Assume 2κ = κ+. Then PU is κ+-closed and κ++–cc.

Proof. Let {(Ai , Ai)}i∈κ be a decreasing sequence in PU . We can assume
that {Ai}i∈κ is strictly decreasing, i.e., for each i > j we have Aj ⊆ Ai . Then
A =

⋃
i∈κ Ai is an independent family of cardinality κ and the diagonal intersection

A′ = Δi∈κAi ∈ U .
Now, for each i ∈ κ, let {hi,j}j∈κ enumerate FF<�,κ(A). Recursively we will

define a set A′′ = {ki,l,m}l,m<i ;i<κ which is a pseudo-intersection of {Ai}i∈κ and
which meets every Boolean combination Ah for h ∈ FF<�,κ(A) on an unbounded
set. Then A = A′ ∪ A′′ is an element of U and (A, A) ∈ PU is a common extension
of {(Ai , Ai)}i∈κ.

3.1. Construction of A′′. At step i pick ki,m,l ∈ Ai ∩ Ahm,li for eachm, l < i . Then

in particular ki,m,l ∈ Am for each m ≤ i and ki,m,l ∈ Ahm,lm for each m, l < i . Take
A′′ = {ki,m,l}m,l<i ;i<κ. ThenA′′ meets every Boolean combination on an unbounded
set and is a pseudo-intersection. Fix � ∈ κ. Then for all � such that � > � and all
m, l < � we have that k�,l,m ∈ A� ⊆ A� . Thus A′′\A� ⊆ {k�,l,m}�<�;l,m<� , which is a
bounded set.

The poset has the κ++-cc, because |PU | = κ+. Indeed,
∣∣∣[[κ]κ

]κ∣∣∣ = κ+. �

Lemma 3.3. If (A, A) ∈ PU , then there is B /∈ A such that B ⊆ A and
(A ∪ {B}, A) ≤ (A, A).

Proof. Let {hi}i∈κ be a fixed enumeration of FF<�,κ(A). Since Ah0 ∩ A is
unbounded, we can find distinct k0,0, k0,1 in Ah0 ∩ A. Suppose we have defined {ki,j :
i ∈ �, j ∈ 2} distinct. Since Ah� ∩ A is unbounded, we can find distinct k�,0, k�,1
in (Ah� ∩ A)\{ki,j : i ∈ �, j ∈ 2}. Finally, take B = {ki,0}i∈κ. Clearly B ⊆ A and
A ∪ {B} is independent. To verify the latter note that for each h ∈ FF<�,κ(A) there
are unboundedly many hi ⊇ h. Then for unboundedly many i ∈ κ, ki,0 ∈ Ahi ∩ B ⊆
Ah ∩ B and ki,1 ∈ Ahi \B ⊆ Ah\B . �

Corollary 3.4. Let G be PU -generic filter. Then AG =
⋃
{A : ∃A ∈

U with (A, A) ∈ G} is a κ-maximal independent family.

Proof. SupposeX ∈ [κ]κ \ AG and AG ∪ {X} is independent. Take (A, A) ∈ G
such that

(A, A) � “AG ∪ {X} is independent and X /∈ AG.”

6Throughout A ⊆∗ B means |A\B| < κ.
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Since PU is κ+-closed, the set X belongs to the ground model. Now, if for each
h ∈ FF<�,κ(A) the intersectionsAh ∩ X ∩ A andAh ∩ A ∩ Xc are unbounded, then
(A ∪ {X}, A) ≤ (A, A) and

(A ∪ {X}, A) � “X ∈ AG,”

which is a contradiction. Therefore there is h ∈ FF<�,κ(A) such that either Ah ∩
A ∩ X or Ah ∩ A ∩ Xc is bounded. However, by Lemma 3.3, there is B /∈ A such
that B ⊆ A and (A ∪ {B}, A) ≤ (A, A). But then,

(A ∪ {B}, A) � “∃h ∈ FF<�,κ(AG) such that AhG ∩ X or AhG \ X is bounded.”

Therefore (A ∪ {B}, A) � “AG ∪ {X} is not independent, ” which is a contradic-
tion. �

Remark 3.5. Given a measurable cardinal κ and a normal measure U on κ,
whenever A = AG is the generic maximal κ-independent family given by a PU -
generic filter G, we will say that A is U -supported.

§4. The density ideal. The density ideal (see [11]) plays an important role in
describing the properties of maximal independent families on �. A higher analogue
of this notion will play an equally important role in the study of maximal κ-
independent families indestructible by κ-Sacks forcing.

Definition 4.1. Let A be a U -supported independent family. The density ideal
id<�,κ(A) is the ideal of all X ∈ U∗, where U∗ is the dual ideal of U , such that
∀h ∈ FF<�,κ(A) there is h′ ∈ FF<�,κ(A) such that h′ ⊇ h and Ah′ ∩ X = ∅.

Lemma 4.2.

(1) If A be an independent family, then id<�,κ(A) is an ideal.
(2) If A0,A1 are independent families such that A0 ⊆ A1, then id<�,κ(A0) ⊆

id<�,κ(A1).

Proof. To prove item (1) above consider anyX0 andX1 in id<�,κ(A). Fix any h ∈
FF<�,κ(A). Then there is h0 ⊇ h such that Ah0 ∩ X0 = ∅ and there is h1 ⊇ h0 such
that Ah1 ∩ X1 = ∅. But then h1 ⊇ h and Ah1 ∩ (X0 ∪ X1) = ∅. Clearly, id<�,κ(A) is
closed under subsets and thus id<�,κ(A) is an ideal.

To prove item (2) consider any X ∈ id<�,κ(A0). Let h ∈ FF<�,κ(A1). Then h′ =
h � A0 ∈ FF<�,κ(A0) and by hypothesis there is h0 in FF<�,κ(A0) extending h′

such that Ah00 ∩ X = ∅. Let h1 = h0 ∪ h � (A1\A0). Then Ah11 ∩ X ⊆ Ah00 ∩ X and

so Ah11 ∩ X = ∅. �

Remark 4.3. Note that id<�,κ(A) is not necessarily κ-complete.

Lemma 4.4. �PU id<�,κ(AG) =
⋃
{id<�,κ(A) : ∃A(A, A) ∈ G}.

Proof. To see �PU
⋃
{id<�,κ(A) : ∃A(A, A) ∈ G} ⊆ id<�,κ(AG) consider any

PU -generic filter G. In V [G ] we have AG =
⋃
{A : ∃A(A, A) ∈ G}. Now for all

(A, A) ∈ G , by Lemma 4.2(2), id<�,κ(A) ⊆ id<�,κ(AG). Therefore
⋃
{id<�,κ(A) :

∃A(A, A) ∈ G} ⊆ id<�,κ(AG).
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The fact that �PU id<�,κ(AG) ⊆
⋃
{id<�,κ(A) : ∃A(A, A) ∈ G} follows from the

κ+-closure of PU . Consider any p = (A, A) ∈ G and a PU -name Ẋ for a subset of
κ such that p � Ẋ ∈ id<�,κ(AG). Fix h ∈ FF<�,κ(A). Then

p � ∃h′ ∈ FF<�,κ(AG)(h ⊆ h′ and Ah′G ∩ X = ∅).

Thus there is (A′, A′) ≤ (A, A) such that h′ ∈ FF<�,κ(A′), h′ ⊇ h and Ah′ ∩ X = ∅.
Proceed inductively to construct a decreasing sequence {(Ai , Ai)}i∈κ of conditions
below p such that if Aκ =

⋃
i∈κ Ai then for all h ∈ FF<�,κ(Aκ) there is h′ ∈

FF<�,κ(Aκ) extending h and such that Ah′ ∩ X = ∅. Thus X ∈ id<�,κ(Aκ). By the
κ+-closure of PU , there is p′ = (B, B) ∈ PU which is an extension of all (Ai , Ai).
Thus X ∈ id<�,κ(B), p′ ≤ p and

p′ � Ẋ ∈
⋃

{id<�,κ(A) : ∃A(A, A) ∈ G}. �

Lemma 4.5. Let (A, A) ∈ PU and let X ∈ id<�,κ(A). Then (A, A\X ) ∈ PU .

Proof. It is sufficient to show that for each h ∈ FF<�,κ(A) the set Ah ∩ (A\X )
is unbounded. Fix h ∈ FF<�,κ(A). Since X ∈ id<�,κ(A) there is h′ ⊇ h, h′ ∈
FF<�,κ(A) extending h such that Ah′ ∩ X = ∅. Thus Ah′ ⊆ κ\X . However

Ah′ ∩ A = (Ah′ ∩ A ∩ X ) ∪ (Ah′ ∩ A ∩ Xc).

Thus Ah′ ∩ A = Ah′ ∩ A ∩ Xc is unbounded. Therefore (A, A\X ) is a
condition. �

Corollary 4.6. Let G be aPU -generic filter. Then inV [G ] the density ideal id(AG)
is generated by {κ\A : ∃A(A, A) ∈ G}. That is

�PU id<�,κ(AG) = 〈{κ\A : ∃A(A, A) ∈ G}〉.

Proof. Let G be aPU -generic filter. By Lemma 4.4, id<�,κ(AG) =
⋃
{id<�,κ(A) :

∃A(A, A) ∈ G}. Let IG be the ideal generated by {κ\A : ∃A(A, A) ∈ G}.
First we will show that id<�,κ(AG) ⊆ IG . Let X ∈ id<�,κ(AG). Thus there is

(A, A) ∈ G such that X ∈ id<�,κ(A). However the set DX = {(B, B) ∈ PU : X ∩
B = ∅} is dense below (A, A) (indeed, if (B, B) ≤ (A, A) then X ∈ id<�,κ(B) and
by Lemma 4.5 (B, B\X ) ≤ (B, B)) and so there is (B, B) ∈ G such thatX ∩ B = ∅.
That is X ⊆ κ\B and so X ∈ IG .

To show that IG ⊆ id<�,κ(AG), consider any X ∈ IG . Then there is a finite set
of conditions {(Ai , Ai)}i∈n in G such that X ⊆

⋃
i∈n κ\Ai = κ\

⋂
i∈n Ai . Note

that (B, B) ∈ G , where (B, B) = (
⋃
i∈n Ai ,

⋂
i∈n Ai). Thus X ⊆ κ\B . Fix any h ∈

FF<�,κ(AG). Then there is (C, C ) ∈ G such that h ∈ FF<�,κ(C). Take (E , E) ∈ G
which is a common extension of (B, B) and (C, C ). Then (E , E) ≤ (C, B) and so in
particular (C, B) ∈ G . However the setHB = {(C′, C ′) : ∃Y ∈ C′(Y ⊆ B)} is dense
below (C, B) (apply Lemma 3.3) and so there is (C′, C ′) ∈ G such that for some
Y ∈ C′,Y ⊆ B . Then h′ = h ∪ {(Y, 0)} ∈ FF<�,κ(AG) and Ah′G ∩ X = ∅. ThusX ∈
id<�,κ(AG). �
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§5. The density filter. Of particular interest for our investigations will be the dual
filter of the density ideal. Note that the density filter plays an important role in the
original work of [22] on the relative consistency of i < u, from which the existence of
a Sacks indestructible maximal independent family can be extracted (see also [11]).

Remark 5.1. Let G be PU -generic, let FG = {A : ∃A such that (A, A) ∈ G}, and
let fil<�,κ(AG) be the dual filter of id<�,κ(AG). By Corollary 4.6, fil<�,G(AG) is
generated by FG .

Lemma 5.2. Let (A, A) ∈ PU , Y ∈ [κ]κ and h ∈ FF<�,κ(A). Then there is h∗ ⊇ h
in FF<�,κ(A) and B ⊆ A such that (A, B) ≤ (A, A) and Ah∗ ∩ B is contained either
in Y, or in κ\Y .

Proof. If there is h′ extending h such that Ah′ ∩ A ∩ Y is bounded, then
Ah′ ∩ A =∗ Ah′ ∩ A ∩ (κ\Y ) and so for all h′′ ⊇ h′ the set Ah′′ ∩ A ∩ (κ\Y ) is
unbounded. Then take B = (Ah′ ∩ A ∩ (κ\Y )) ∪ (A\Ah′). Then B =∗ A and so
B ∈ U , (A, B) is as desired.

If there is h′ ⊇ h such that Ah′ ∩ A ∩ (κ\Y ) is bounded, then Ah′ ∩ A =∗ Ah′ ∩
A ∩ Y and so for all h′′ ⊇ h′ the set Ah′′ ∩ A ∩ Y is unbounded. Then take B =
(Ah′ ∩ A ∩ Y ) ∪ (A\Ah′). Then B =∗ A and so B ∈ U , and the condition (A, B) is
as desired.

Suppose, none of the above two cases holds. Thus for every h′ ⊇ h, the
sets Ah′ ∩ A ∩ Y and Ah′ ∩ A ∩ (κ\Y ) are unbounded. Then each of the sets
B0 = (Ah ∩ A ∩ Y ) ∪ (A\Ah) and B1 = (Ah ∩ A ∩ (κ\Y )) ∪ (A\Ah) meets every
Boolean combination Ah′ for h′ ∈ FF<�,κ(A) on an unbounded set. Thus if
A\Ah ∈ U , both B and B ′ are as desired. Suppose A\Ah /∈ U . Then A ∩ Ah ∈ U
and so either A ∩ Ah ∩ Y or A ∩ Ah ∩ (κ\Y ) is in the normal measure. We can
choose appropriately. �

Corollary 5.3. Let E = {Y, κ\Y} be a partition. Then the set of (A, A) ∈ PU
such that for each h ∈ FF<�,κ(A) there is h′ ⊇ h in FF<�,κ(A) with the property that
Ah′ is either contained in Y, or in κ\Y is dense in PU .

Proof. Consider an arbitrary (A, A) ∈ PU . Fix h0 ∈ FF<�,κ(A). Then there is
A0 ⊆ A such that (A, A0) ≤ (A, A) and there is h1 ∈ FF<�,κ(A) extending h0 and
B ⊆ A such that Ah1 ∩ B is contained either in Y, or in κ\Y . However, by Lemma
3.3 there is B0 ⊆ B such that (A ∪ {B0}, B) ≤ (A, B). Then extend h1 to h′1 =

h1 ∪ {(B0, 0)} and note that h′1 ∈ FF<�,κ(A1), where A1 = A ∪ {B0}, and that Ah
′
1

1
is either contained in Y or in κ\Y . Proceed inductively and use the fact that PU is
κ+-closed. �

Definition 5.4. Let F ⊆ [κ]κ. We say that F is a κ-P-set if every H ⊆ F of
cardinality ≤ κ has a pseudo-intersection in F .

Lemma 5.5. Let G be a PU -generic filter. Then FG is a κ– P –set.

Proof. Suppose FG is not a κ-P-set. Thus there is p ∈ PU such that

p � ∃H ∈ [FG ]κ s.t. ∀F ∈ FG∃H ∈ H(F �⊆∗ H ).
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Fix G a PU -generic filter such that p ∈ G . Since PU is κ+-closed, we can find
H′ = {Ai}i∈κ in the ground model witnessing the above property. For each i ∈ κ,
letAi be such that (Ai , Ai) ∈ G . We can assume that � = {(Ai , Ai)}i∈κ is decreasing
and that (A0, A0) ≤ p. Now, take q = (A, A) in PU to be a common lower bound
of �. Then q ≤ p and q forces that A is a pseudo-intersection of H′, which is a
contradiction. �

5.1. Increasing functions and the density filter. In the countable setting a key
feature of the Sacks indestructible maximal independent family appearing in [22]
is the fact that the associated density filter is a Q-set. The existence of sufficiently
fast growing sets in fil<�,κ(AG), which we discuss in this section, will be of vital
importance for our main result.

If E ⊆ κ is an unbounded set and for each α ∈ κ let sE(α) = min{	 ∈ E :
	 > α}.

Lemma 5.6. Let f ∈ V ∩ κκ be a strictly increasing function and let (A, A) ∈ PU .
Then there is A∗ ⊆ A such that (A, A∗) ≤ (A, A) and if {a(i)}i<κ is the increasing
enumeration of A∗ then f(a(i)) < a(i + 1) for all i.

Proof. LetCf = {� < κ : ∀
 < �(f(
) < �)}. ThusCf is a club and soCf ∈ U .
ThenE = A ∩ Cf ∈ U . Let {hi}i<κ be an enumeration of the elements of FF<�,κ(A)
such that each element occurs unboundedly often. The set A∗ will be constructed as
the union of an increasing sequence {B�}�<κ of subsets of A.

LetB0 = ∅. IfAh0 ∩ E �= ∅, leta0 = minAh0 ∩ E. Otherwise, takea0 = minAh0 ∩
A. Let

B1 = {a0} ∪ (E ∩ sE(f(a0))) ∪ {sE(f(a0))}.

Suppose we have defined B� . If (Ah�+1 ∩ E)\(B� ∪ {supB�}) �= ∅, let a�+1 =
min((Ah�+1 ∩ E)\(B� ∪ {supB�})). Otherwise, let a�+1 = min{a ∈ Ah�+1 ∩ A : a >
supB�}. Let

B�+1 = B� ∪ {a�+1} ∪ (E ∩ sE(f(a�+1))) ∪ {sE(f(a�))}.

Now, suppose � is a limit and for all 
 < �, the set B
 has been defined. Take
B∗
� =

⋃

<� B
 . If (Ah� ∩ E)\(B∗

� ∪ {supB∗
� }) �= ∅, let a� = min(Ah� ∩ E)\(B∗

� ∪
{supB∗

� }) �= ∅. Otherwise, let a� = min{a ∈ Ah� ∩ A : a > supB∗
� }. Let

B� = B∗
� ∪ {a�} ∪ E ∩ sE(f(a�)) ∪ {sE(f(a�))}.

Finally, takeA∗ =
⋃
�<κ B� . ThenA∗ meets every Boolean combination Ah of A on

an unbounded set (witnessed by the a� ’s), A∗ ⊆ A and since {a�}�<κ is unbounded
in κ and

E ∩ sE(f(a�)) ⊆ B� ⊆ A∗
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for each �, we also have that E ⊆ A∗. Let b < a be elements of A∗. If a ∈ E, then
by definition of Cf we have that f(b) < a. If a /∈ E and a = a�+1 for some �, then

a� < f(a�) < sE(f(a�)) < a�+1

by construction. If � is a limit, a = a� and f(a
) < sE(f(a
)) < a� for each 
 < �
again by construction. Since b = a
 for some 
 < �, f(b) < a. �

The following corollary will play an important role in the main result of the paper.

Corollary 5.7. Let G be PU -generic, f ∈ V ∩ κκ be strictly increasing. Then
there isA ∈ fil<�,κ(AG) such that if {a(i)}i∈κ is the increasing enumeration of A then
f(a(i)) < a(i + 1) for all i ∈ κ.

Proof. Since fil<�,κ(AG) is generated by FG (the set of second coordinated of
elements of the generic filter G) we may use the previous lemma and get the result.

Indeed, this is a standard density argument: Let Df be the set of all (A, A) ∈ PU
such that if {a(i)}i<κ is the enumeration function of A then f(a(i)) < a(i + 1)
for all i < κ. By Lemma 5.6 the set Df is dense. Thus, G ∩Df �= ∅ and so there
is (A, A) ∈ G ∩Df . But, by definition of the set FG , we have that A ∈ FG (see
also Remark 5.1), and by the same remark A ∈ fil<�,κ(AG). Since (A, A) ∈ Df , we
obtain that f(a(i)) < a(i + 1). �

§6. Dense maximality. The notion of densely maximal independent families on
� appears for the first time in [16]. Moreover, the maximal independent family
constructed in [22] which becomes a witness to i = ℵ1 in the model of [22, Theorem
3.1] is densely maximal. A similar notion will play a vital role for our considerations:

Definition 6.1. An independent family A is said to be densely maximal if for
every X ∈ [κ]κ\A and every h ∈ FF<�,κ(A) there is h′ ∈ FF<�,κ(A) extending h
such that either Ah′ ∩ X = ∅ or Ah′ ∩ (κ\X ) = ∅.

The following characterization of dense maximality on� appears implicitly in the
proof of [22, Theorem 3.1]. This characterization will be the main tool in showing
that a specially designed normal measure supported κ-maximal independent family
preserves its maximality after forcing with a large product of κ-Sacks forcing.

Lemma 6.2. Let A be an independent family. Then A is densely maximal if and
only if

(∗) ∀h ∈ FF<�,κ(A)∀X ⊆ Ah either there is B ∈ id<�,κ(A) such that Ah\X ⊆ B ,
or there is h′ ∈ FF<�,κ(A) such that h′ ⊇ h and Ah′ ⊆ Ah\X .

Proof. Suppose A satisfies property (∗). Let X ∈ [κ]κ, h ∈ FF<�,κ(A) and
consider Y = X ∩ Ah . Apply property (∗). If there is B ∈ id<�,κ(A) such that
Ah\X ⊆ B , then Ah\X ∈ id<�,κ(A). Then there is h′ ⊇ h such that Ah′ ∩
(Ah\X ) = Ah′\X = ∅. If there is h′ ⊇ h such that Ah′ ⊆ Ah\X , then Ah′ ∩ X = ∅.
Thus A is densely maximal.

Now suppose A is densely maximal. Fix h ∈ FF<�,κ(A) such that X ⊆ Ah . We
will show that A satisfies property (∗). Suppose, there is no B ∈ id<�,κ(A) such that
Ah\X ⊆ B . Thus in particular Ah\X /∈ id<�,κ(A) and so there is h′ ∈ FF<�,κ(A)
such that for all h′′ ⊇ h′ the set Ah′′ ∩ (Ah\X ) �= ∅. If h and h′ are incompatible
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as conditions in FF<�,κ(A), then Ah′ ∩ (Ah\X ) = ∅, which is a contradiction.
Therefore h and h′ are compatible. Without loss of generality, h′ ⊇ h (otherwise
pass to a common extension of h and h′). Thus h has an extension, namely h′, such
that for all h′′ ⊇ h′ the set Ah′′\X is non-empty. Apply the fact that A is densely
maximal to Ah′ and X. Thus, there is h′′ ⊇ h′ such that Ah′′ ∩ X = ∅. Therefore
Ah′′ ⊆ Ah′\X ⊆ Ah\X , which completes the proof of property (∗). �

Lemma 6.3. Let G be PU -generic. Then in V0 = V [G ] the family AG :=
⋃
{A :

∃A(A, A) ∈ G} is densely maximal.

Proof. It is sufficient to show that AG satisfies property (∗) from Lemma 6.2.
Thus, fix h and X as in (∗). Suppose there is no B ∈ id<�,κ(AG) such that AhG\X ⊆
B . Then, in particular AhG\X /∈ id<�,κ(AG) and so there is h0 ∈ FF<�,κ(AG) such
that for all h1 ⊇ h0 the set Ah1 ∩ (Ah\X ) �= ∅ (by definition of the density ideal).
Consider the partition

E = {Ah\X, κ\(Ah\X )}

and the set Ah0 . By Corollary 5.3 there is h1 ∈ FF<�,κ(AG) extending h0 such
that Ah1 is contained in one element of E . However, if Ah1 ⊆ κ\(Ah\X ), then
Ah1 ∩ (Ah\X ) = ∅, which is a contradiction to the choice of h0. Thus Ah1 ⊆ Ah\X
and so Ah1 ∩ X = ∅. �

§7. Preprocessed conditions and outer hulls. In this section we introduce the
notions of preprocessed conditions and outer hulls for the special case of κ-Sacks
forcing and its products. Note that both of these notions play a key role in Shelah’s
proof of i < u from [22]: preprocessed conditions appear in [22, Claim 1.11], while
outer hulls appear in proof of [22, Theorem 3.1] (page 440 of the article). Throughout
this section we work under the assumption of GCH (at least 2κ = κ+ and 2<κ = κ)
and κ measurable. Thus in particular κ is strongly inaccessible. We will work with
the generalization of Sacks forcing and its products to the uncountable, both of
which were first studied by Kanamori [19].

Recall thatp ⊆ 2<κ is a tree if it is closed under initial segments. That is, u ∈ p and
v ⊆ u imply v ∈ p. Whenever p is a tree, t, r ∈ p, and t is a proper initial segment or
equal to r, we write t � r and r � t. A node u ∈ p splits in p if both u�0 and u�1
belong to p. Given a tree p, we denote by split(p) the set of splitting nodes of p.

Definition 7.1. For a strongly inaccessible κ, the κ-Sacks forcing, denoted Sκ,
is the poset consisting of sub-trees p of 2<κ such that:

(1) for each u ∈ p there is t ∈ p such that u � t and t splits in p (t is said to be a
splitting extension of u);

(2) for any α < κ, if (u	 : 	 < α) is a sequence of nodes in p such that 	 < � <
α → u	 ⊆ u� , then

⋃
{u	 : 	 < α} ∈ p;

(3) if � < κ is a limit ordinal, u ∈ 2� , and for arbitrarily large 	 < � the node
u � 	 splits in p, then u splits in p.

The extension relation on Sκ is defined by p ≤ q if and only if p ⊆ q.
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As in the countable case we define the stem(p) where p is a condition in Sκ as the
unique splitting node that is comparable with all elements in p. By recursion on κ
define:

Definition 7.2 (The α-th splitting level of p). Given p ∈ Sκ let

• split0(p) = stem(p),
• splitα+1(p) = {stem(pu�i ) : u ∈ splitα(p) and i ∈ 2},
• for � < κ is a limit ordinal, split�(p) = {s ∈ p : s is a limit of nodes in⋃

α<� splitα(p)}.

We refer to splitα(p) as the α-th splitting level of p. Moreover for t ∈ split(p), let
sl(t, p) = α where t ∈ splitα(p).

Using this splitting levels we define the fusion orderings ≤α on Sκ: Given q and p
in Sκ let q ≤α p if and only if q ≤ p and splitα(p) = splitα(q).

Definition 7.3. A fusion sequence (pα : α < κ) ⊆ Sκ is sequence of conditions in
Sκ such that pα+1 ≤α pα for all α < κ and whenever � < κ is a limit, then p� ≤α pα
for all α < �.

For any regular uncountable cardinal � we denote by S
�
κ the κ-support product

of � many copies of Sκ. Moreover:

Definition 7.4 (Product fusion, Definition 1.7 in [19]).

• If (pα : α < 	) ⊆ S
�
κ, we define a condition p =

∧
α<	 pα with dom(p) =⋃

α<	 dom(pα) and for every � ∈ dom(p), p(�) =
⋂
{pα(�) : � ∈ dom(pα)}.

Note that in the case p � � /∈ S
�
κ for � ∈ dom(p) or |dom(p)|> κ then p is left

undefined.
• If p, q ∈ S

�
κ, α < κ and F ⊆ dom(q) with |F |≤ κ, we say p ≤F,α q if and only

if p ≤ q and for every 	 ∈ F , p(	) ≤α q(	).

Lemma 7.5 (Generalized fusion [19]). Suppose (pα : α < κ) ⊆ S
�
κ and Fα ⊆ �

have the following properties:
(1) pα+1 ≤Fα,α pα and p� =

∧
α<� pα when � is a limit ordinal <κ.

(2) |Fα |< κ, Fα ⊆ Fα+1, F� =
⋃
α<� Fα for limit � < κ and

⋃
α<κ Fα =⋃

α<κ dom(pα).
Then p =

∧
α<κ pα ∈ S

�
κ and we refer to (pα, Fα : α < κ) as a generalized fusion

sequence.

In the following, we fix some notation:

Definition 7.6.

• Given a condition p ∈ S
�
κ, α < κ and F ⊆ supp(p) so that |F |< κ let ΛFα (p) =∏

i∈F splitα(p(i)). That is

ΛFα (p) = {
̄ = (
i )i∈F : 
i ∈ splitα(p(i))}.

• For all 
̄ ∈ ΛFα (p) let p
̄ ≤ p be defined as follows: supp(p) = supp(p
̄) and

p
̄(i) =

{
(p(i))
i , if i ∈ F,
p(i), otherwise.
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• Given h ∈ F 2 and 
̄ ∈ ΛFα (p), letph
̄ be defined as follows: supp(ph
̄) = supp(p)
and

ph
̄(i) =

{
(p(i))



�
i h(i)

, if i ∈ F,
p(i), otherwise.

7.1. Preprocessed conditions. The following notion of begin preprocessed for a
condition can be seen for example in [22, Lemma 1.11]. Given a name for a real �
and a condition p in an appropriate partial order, in particular the poset QI from
[22], Sacks forcing, or Miller partition forcing (see for definition for example [17]),
the notion provides a sufficiently good ground model approximation of � realized
by a condition q stronger than p.

We adapt the notion in the context of κ-Sacks forcing and its products.

Definition 7.7.

(1) Let Ẋ be an Sκ-name for a subset of κ. We say that p ∈ Sκ is preprocessed
for Ẋ if for all α ∈ κ and all t ∈ splitα(p) there is xt ∈ α2 such that pt � �Ẋ �
α = x̌t .

(2) (a) Let Ẋ be an S
�
κ name for a subset of κ, p ∈ S

�
κ and F ⊆ supp(p) with

|F |< κ. We say that p ∈ S
�
κ is preprocessed for the pair (F, Ẋ ) if for all

α < κ and all 
̄ ∈ ΛFα (p) there are F ′ ⊇ F , such that F ′ ⊆ dom(p) and
|F ′|< κ, �̄
̄ ∈ ΛF

′
α (p), and x
̄ ∈ α2 such that 
̄ � �̄
̄ and p�̄
̄ � �Ẋ � α =

x̌
̄ .7

(b) We say that a condition p ∈ S
�
κ is preprocessed for the name Ẋ if for all

F ⊆ dom(p) such that |F |< κ, p is preprocessed for (Ẋ , F ).

Remark 7.8.

(1) Note that ifp ∈ Sκ is preprocessed for Ẋ , then for eachα ∈ κ there isYα ⊆ α2
such that p � �Ẋ � α ∈ Y̌α . Indeed, take Yα =

⋃
{xt : t ∈ splitα(p)} where

xt is defined as in the definition above.
(2) Similarly, if p ∈ S

�
κ is preprocessed for (F, Ẋ ) (F like above), then for each

α < κ there is Yα ⊆ α2 such that p � �Ẋ � α ∈ Y̌α . Just take Yα =
⋃
{x
̄ :


̄ ∈ ΛFα (p)} where x
̄ is defined as above.

Lemma 7.9.

(1) Let p ∈ Sκ and let Ẋ be an Sκ-name for a subset of κ. Then there is q ≤ p such
that q is preprocessed for Ẋ .

(2) Letp ∈ S
�
κ and let Ẋ be an S�κ-name for a subset ofκ. Then, for allF ⊆ supp(p)

with |F |< κ and � < κ there is q ≤F,� p such that q is preprocessed for (F, Ẋ ).

Proof. (1) We build a fusion sequence 〈qα : α < κ〉 below p such that for all
α > 0 and all t ∈ splitα(qα) there isxt ∈ α2 such that (qα)t � �Ẋ � α = x̌t . Start with
q0 = p. Consider t ∈ split0(p), i.e., t = stem(p). For each i ∈ {0, 1} there is wt,i ≤
pt�i and x(t, i) ∈ {0, 1} such that wt,i � �Ẋ (0) = x̌(t, i). Note that stem(wt,i) �
stem(pt�i) � t

�i . Define q1 = w0
t,0 ∪ w0

t,1. Then q1 ≤0 q0 and for all s ∈ split1(q1)

7Here 
̄ � �̄
̄ means for all i ∈ F
i = �i .
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there is xs ∈ 12 such that (q1)s � �Ẋ � 1 = x̌s . Indeed, if s ∈ split1(q1) then s � t�i
for i ∈ {0, 1} and so (q1)s = wt,i . Thus (q1)s � �Ẋ � 1 = xs where xs = (0, x(s, i)).

Now, suppose qα has been defined and ∀t ∈ splitα(qα) there is xt ∈ α2 such
that (qα)t � �Ẋ � α = x̌t . For each t ∈ splitα(qα) and each i ∈ {0, 1} find wt,i ≤
(qα)t�i and x(t, i) ∈ {0, 1} such that wαt,i � �Ẋ (α) = x̌(t, i). Then, take qα+1 =⋃
{wt,i : t ∈ splitα(qα), i ∈ {0, 1}}. Then splitα(qα+1) = splitα(qα) and so qα+1 ≤α
qα . Moreover, for all t ∈ splitα+1(qα+1) there is xt ∈ α+12 such that (qα+1)t �
�Ẋ � α + 1 = x̌t . Indeed. Fix t ∈ splitα+1(qα+1). Thus r�i � t for some r ∈
splitα(qα+1) = splitα(qα) for some i ∈ {0, 1}. By Inductive Hypothesis (qα)r � �Ẋ �
α = x̌r for some xr ∈ α2. However t � r�i and so (qα+1)t = wr,i ≤ (qα)r�i ≤ (qα)r .
Thus, (qα+1)t � �Ẋ � α = x̌r and �Ẋ (α) = x̌(r, i). That is (qα+1)t � �Ẋ � α + 1 =
x̌t where xt = xr ∪ {(α, x(r, i))}.

It remains to consider the limit case. Suppose 〈q	 : 	 < α〉 have been defined
and for all 	 < α and all t ∈ split	(q	) there is xt ∈ 	2 such that (q	)t � �Ẋ � 	 =
x̌t . Then take qα = ∧	<αq	 . Note that if t ∈ splitα(qα) then there is {�� : � < α}
unbounded in α such that t � �� ∈ split�(q�) and so by inductive hypothesis for
some xt��� ∈ �2 we have (q�)t��� � �Ẋ � � = x̌t��� . Then for xt =

⋃
{xt��� : � < α}

we have (qα)t � �Ẋ � α = x̌t .
(2) The argument for the product runs similarly as the above case: Let p ∈ S

�
κ,

� < κ and F ⊆ supp(p) so that |F |< κ. We shall define a fusion sequence 〈qα, Fα :
α < κ〉 ⊆ S

�
κ below p, ordinals (�α : α < κ) and bijections gα : Fα → �α such that

for all α < κ:

(1) qα+1 ≤Fα,�+α qα .
(2) �α ≥ α.
(3) For all α < α′ < κ, gα ⊆ gα′ and for limit ordinals � < κg� =

⋃
α<� gα .

(4) For all 
̄ ∈ ΛFα�+α(qα) there is x
̄ ∈ α2 such that (qα+1)
̄ � �Ẋ � α = x̌
̄ .

Since similar arguments will be used in the upcoming results we give the proof in
full detail. Start with q0 = p and F0 = F , in order to arrange that qα+1 ≤Fα,�+α qα
start the following construction at some indecomposable ordinal α > � (otherwise
for all ordinals 	 < α, 	 + α = α and so, at α we would just get qα+1 ≤Fα,α qα)
and letting q	 = p for all 	 < α. At limit stages � < κ the construction of q� and
F� is determined by the conditions in Definition 7.4. Let �� = supα<� �α and g�
as above.

Finally for the successor case, suppose qα , �α , gα , and Fα have been defined.
Fix an enumeration {�l = (
̄l , hl ) : l < �} of all pairs of the form (
̄, h) such that

̄ ∈ ΛFα
 (qα) and h ∈ Fα2. Note that the ordinals � is < κ.

Inductively, we will construct a sequence {rαl : l < �} of conditions below qα
satisfying:

(1) rα0 = qα ,
(2) rαl+1 ≤Fα,�+α rαl ,

(3) (rαl+1)hl
̄l forces a value x̌(α, l) for �Ẋ � α,
(4) For l limit ordinal rαl =

∧
k<l r

α
k .

It is enough to explain how the successor step is built: Suppose that we have
constructed rαl satisfying the conditions above and consider the pair �l = (
̄, h), then
find a conditionwl ≤ (rl )h
̄ forcing a value x(
̄, l) for �Ẋ � α. Note thatwl is clearly
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not a condition that satisfies (2), so we build rαl+1 as follows: supp(rαl+1) = supp(wl )
and

rαl+1(i)

=

{
(wl (i)) ∪ {(qα(i))��j : � ∈ splitα(rl (i)) \ 
i or j = 1 – h(i)}, if i ∈ Fα,
wl (i), otherwise.

Note that this is now a condition satisfying the properties above. Put
qα+1 =

∧
l<� r

α
l Fα+1 = Fα ∪ {min(supp(qα+1)\Fα)}, �α+1 = �α + 1, and gα+1 =

gα ∪ {(min(supp(qα+1)\Fα), �α)}.
In order to finish the proof, we check that the condition q is indeed preprocessed

for (F, Ẋ ). Fix α < κ and 
̄ ∈ ΛFα (q). First, extend 
̄ to a sequence 
̄′ = 
̄��̄0 in
ΛFαα (q) by adding a fix tail �̄0 of splitting nodes in q(i) at level α for each i ∈ Fα\F .

Since q ≤α,Fα qα we get that ΛFαα (q) = ΛFαα (qα) and so 
̄′ ∈ ΛFαα (qα) and we can
use the fusion properties to get that there is an x
̄′ ∈ α2 such that (qα+1)
̄′ � �Ẋ �
(α) = x̌
̄′ , so we finally use that the condition q
̄′ ≤ (qα+1)
̄′ to get that (q)
̄′ �
�Ẋ � (α) = x̌
̄′ as we wanted. �

Corollary 7.10. Let p ∈ S
�
κ and let Ẋ be an S

�
κ-name for a subset of κ, then we

can find q ≤ p such that q is preprocessed for Ẋ .

Proof. Recall first that there are κ-many sets G ⊆ dom(p) so that |G |< κ, so
let (G	 : 	 < κ) be an enumeration of them. We can use build a fusion sequence
(qα, Fα) below p such that for all α < κ, qα+1 is preprocessed for (Ẋ , Gα).

Start with q0 = p and F0 = G0. The limit step is built as usual and it is left to
explain how the successor case is constructed: Suppose we have already defined qα
and Fα , then we use the lemma above for Ẋ , qα , and Fα to get a condition r ≤α,Fα qα
that is preprocessed for (Ẋ , Gα). Define then qα+1 = r and Fα+1 = Fα ∪Gα .

We claim that the fusion q of the sequence defined above is preprocessed for all
Gα ’s: Indeed, if α is fixed we know that qα+1 is preprocessed for (Ẋ , Gα), then
it is enough to notice that since q ≤α+1,Fα+1 qα+1, then q is also preprocessed for
(Ẋ , Gα). �

7.2. Outer hull. Below, we introduce the notion of an outer hull, making explicit
some well-known techniques. In the consistency proof of i < u from [22], outer hulls
appear on page 440. Other more recent applications of the notion can be found for
example in [17].

Definition 7.11.

• Let p ∈ Sκ and let Ẋ be an Sκ-name for a subset of κ. For each t ∈ splitα(p),
we refer to the set Yt = {	 ∈ κ : pt �� 	̌ /∈ Ẋ}, as the outer hull of Ẋ below
pt . Moreover, if qt,	 ≤ pt and qt,	 � 	̌ ∈ Ẋ , we say that qt,	 is a witness for
	 ∈ Yt .

• Let p ∈ S
�
κ and let Ẋ be an S

�
κ-name for a subset of κ. For all α < κ, F ⊆

supp(p) such that |F |< κ and 
̄ ∈ ΛFα (p) we refer to the set Y
̄ = {	 ∈ κ :
p
̄ �� 	̌ /∈ Ẋ}, as the outer hull of Ẋ below p
̄ . Moreover, if q
̄,	 ≤ p
̄ and

q
̄,	 � 	̌ ∈ Ẋ , we say that q
̄,	 is a witness for 	 ∈ Y
̄ .
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Remark 7.12. Let Ẋ be an Sκ-name for a subset of κ. SupposeYt is the outer hull
of Ẋ below pt . If pt � 	̌ ∈ Ẋ , then pt is a witness to 	 ∈ Yt and so pt � Ẋ ⊆ Y̌t .
Analogously for S�κ and Y
̄ .

We proceed with the following lemma.

Lemma 7.13.

(1) Let p ∈ Sκ be preprocessed for Ẋ and for each t ∈ split(p) let Yt be the outer
hull of Ẋ below pt . Then for each α < κ, t ∈ splitα(p) and 	 ∈ Yt there is
an r(t, 	) ∈ p such that t is an initial segment of r(t, 	) and pr(t,	) � 	̌ ∈ Ẋ .
Moreover, for each t ∈ split(p) and each 	 ∈ Yt there is r = r(t, 	) ∈ split	(p)

such that pr � 	̌ ∈ Ẋ .
(2) Let p ∈ S

�
κ be preprocessed for (Ẋ , F ) (where F ⊆ supp(p) and |F |< κ) and

for each 
̄ ∈ ΛFα (p) let Y
̄ be the outer hull of Ẋ below p
̄ . Then for each
α < κ, 
̄ ∈ ΛFα (p), 	 ∈ Y
̄ , and i ∈ F there are F ′ ⊇ F , |F ′|< κ, and �̄′ ∈
ΛF

′
α (p) such that if �̄′ = (ri(
̄, 	) : i ∈ F ′) then ri(
̄, 	) ∈ p(i) such that 
i is

an initial segment of ri(
̄, 	) for all i ∈ F and p�̄′ � 	̌ ∈ Ẋ . Moreover, for each

̄ ∈ ΛFα (p), 	 ∈ Y
̄ , and i ∈ F there are F ′ ⊇ F , |F ′|< κ, and �̄′ ∈ ΛF

′
α (p)

such that if �̄ = (ri(
̄, 	) : i ∈ F ′) where ri = ri(
̄, 	) ∈ split	(p)(i) for all

i ∈ F , then p�̄′ � 	̌ ∈ Ẋ .

Proof. (1) Fix α, t and 	 ∈ Yt . Then there is q ≤ pt such that q � 	 ∈ Ẋ .
Take any r = r(t, 	) ∈ split	(q). Note that t � r and there is 	 ′ ≥ 	 such that
r ∈ split	′(p). On the other hand, because p is preprocessed we can use Lemma

7.9 to find xr ⊆ α′2 such that pr � �Ẋ � 	 ′ = x̌r . Since qr ≤ pr we must have that
x̌t(	) = 1. Thus pr � 	 ∈ Ẋ .

Moreover, if r∗ � r and r∗ ∈ split	+1(p) then already pr∗ � 	̌ ∈ Ẋ . Indeed, since
p is preprocessed there is an xr∗ ∈ 	2 so that pr∗ � �Ẋ �	+1∈ x̌r∗ , thus pr forces
a value for �Ẋ (	) which has to be 1 because qr ≤ q, pr and so pr � 	̌ ∈ Ẋ . In
particular, if 	 ≤ sl(t, p) then in fact pt � 	̌ ∈ Ẋ .

(2) In the same way, fix now α, F and 
̄ ∈ ΛFα (p). Then there is q ≤ p
̄ such that
q � 	 ∈ Ẋ . For all i ∈ F take any ri = ri(
̄, 	) ∈ split	(q(i)). Note that 
i � ri for
all i ∈ F . We can find 	 ′ ≥ 	 such that ri ∈ split	′(p(i)) uniformly for all i ∈ F .

Hence if �̄ = (ri(
̄, 	) : i ∈ F ), by Lemma 7.9 there are F ′ ⊇ F , �̄′ ∈ ΛF
′
α (p), and

x�̄′ ∈ 	
′
2 such that p�̄′ � �Ẋ � 	 ′ = x̌�̄ . Let y = �Ẋ � 	 ′. Since q�̄′ ≤ p�̄′ we must

have that y(	) = 1. Thus p�̄′ � 	 ∈ Ẋ . The argument for the moreover part is the
same as for part (1). �

Definition 7.14. For p ∈ S
�
κ and F ∈ [supp(p)]<κ, let Λ(F ) =

⋃
α<κ ΛFα . For 
̄

and �̄ in Λ(F ) we say that �̄ � 
̄ if and only if for each i ∈ F (�̄(i) � 
̄(i)).

Corollary 7.15.

(1) Let Ẋ be an Sκ-name for an infinite subset of κ. If p ∈ Sκ is preprocessed for
Ẋ , t ∈ split(p), and Yt is the outer hull of Ẋ below pt , then

Yt = {	 < κ : ∃r ∈ split(p) such that t � r and pr � 	̌ ∈ Ẋ}.
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(2) Let Ẋ be an S
�
κ-name for an infinite subset of κ. If p ∈ S

�
κ is preprocessed for

(Ẋ , F ∈ [supp(p)]<κ) and 
̄ ∈ Λ(F ), then

Y
̄ = {	 ∈ κ : ∃�̄ ∈ Λ(F ′) for F ′ ⊇ F, |F ′|< κ such that 
̄ � �̄ and p�̄ � 	̌ ∈ Ẋ}.

§8. κ-Sacks indestructibility. In this section we set out to obtain our main result,
namely the relative consistency of i(κ) < 2κ. For this we start with a measurable
cardinal κ and a normal measure U on κ. Using the forcing notion PU we adjoin a
U -supported κ-maximal independent family, which by Lemma 6.3 is densely
maximal. A key feature of our proof is Lemma 6.2 which gives an equivalent
characterisation of dense maximality via the property (∗) of the same lemma. In
fact, to show that A = AG for a PU -generic filter G remains maximal after forcing
with a large product of κ-Sacks forcing, we show that the property (∗) is preserved.
With other words, we show that in the final generic extension a κ-independent
family which we adjoin via forcing at an initial step of the construction satisfies
property (∗). Note that in difference with the original work of Shelah [22], we are
only interested in products of κ-Sacks forcing and not iterations.

Theorem 8.1 (GCH). Let κ be a measurable cardinal, let U be a normal measure
on κ, and let G be PU -generic filter over the ground model V0. Let A = AG and
V = V0[G ]. Then

V Sκ � A is a densely maximal independent family.

Proof. Note that GCH holds in V and κ is inaccessible in V. By Lemma 6.3
the family A is densely maximal in V. To prove that (A is densely maximal)V

Sκ we
will show that in V Sκ , property (∗) of A from Lemma 6.2 holds. More precisely, we
will show that in V Sκ for each X ⊆ κ and each h ∈ FF<�,κ(A) such that X ⊆ Ah
property (∗)X,h holds, where

(∗)X,h either ∃B ∈ id<�,κ(A) such that Ah\X ⊆ B or there is h′ ⊇ h such that
Ah′ ⊆ Ah\X .

Suppose not. Thus, there are X ⊆ κ, h ∈ FF<�,κ(A) such that X ⊆ Ah and
¬(∗)X,h . That is,

V Sκ � X ⊆ Ah ∧ Ah\X /∈ id<�,κ(A) ∧ ∀h′ ⊇ h(Ah′ ∩ X �= ∅).

Let Ẋ be an Sκ-name for X in V and let p ∈ Sκ force the above. By Lemma 7.9
we can assume that p is preprocessed for Ẋ and by Corollary 7.15 that for each
t ∈ split(p) for the outer hull Yt of Ẋ below pt is of the form Yt = {	 < κ : ∃r ∈
split(p) such that t � r or r � t and pr � 	̌ ∈ Ẋ}.

Claim 8.2. Let t ∈ split(p). Then Yt ⊆ Ah .

Proof. Let m ∈ Yt . Thus there is qt,m ≤ pt such that qt,m � m̌ ∈ Ẋ . But pt �
Ẋ ⊆ Ah and so m must be an element of Ah . �

We will make use of the following function H ∈ κκ ∩ V . Given t ∈ split(p) and
	 ∈ Yt , let r(t, 	) be a witness to 	 ∈ Yt such that t is comparable with r(t, 	) and
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r(t, 	) is of least splitting level. Then define

H (�) = sup{� + 1} ∪ {sl(r(t, 	)) : t ∈ split�(p), 	 ≤ �},

where if r(t, 	) is not defined, i.e., 	 /∈ Yt , then we take sl(r(t, 	)) = 0.
Fix t ∈ split(p). Since Yt ⊆ Ah , by the dense maximality of A in V either there is

B ∈ id<�,κ(A) such thatAh\Yt ⊆ B or there is h′ ⊇ h such thatAh′ ⊆ Ah\Yt . In the
latter case, Ah′ ∩ Yt = ∅ and since p � Ẋ ⊆ Y̌t , we obtain that p � Ah′ ∩ Ẋ = ∅,
contrary to the choice of p. Thus, we can assume that ∀t ∈ split(p)∃Bt ∈ id<�,κ(A)
such that Ah\Yt ⊆ Bt , Ah\Yt ∈ id<�,κ(A). But then Yt ∪ κ\Ah ∈ fil<�,κ(A). Now,
since fil<�,κ(A) is a κ-p-set, there is C ∈ fil<�,κ(A) such that C ⊆∗ Yt ∪ κ\Ah for
each t ∈ split(p). Thus in particular, C ∩ Ah ⊆∗ Yt for all t ∈ split(p) and so we
can find a function f ∈ V ∩ κκ such that

∀α ∈ κ ∀t ∈ splitα+1(p) (C ∩ Ah)\Yt ⊆ f(α).

Equivalently, for each α ∈ κ,

(C ∩ Ah)\f(α) ⊆
⋂

t∈splitα+1(p)

Yt.

Moreover, we can assume that H (α) + 1 < f(α) and that f is strictly increasing.
Now, we use Corollary 5.7 for the strictly increasing function f2 = f ◦ f,

i.e., the composition of f with itself. Then there is a set C ∗ ∈ fil<�,κ(A) such
that ∀α ∈ C ∗∀� ∈ α ∩ C ∗(f2(�) < α). Now, let C ′ = C ∩ C ∗ ∩ (f(1), κ). Thus
C ′ ∈ fil<�,κ(A). Let {k(α) : α < κ} be an increasing enumeration ofC ′ ∩ Ah . Since
C ′ ∈ fil<�,κ(A) the latter set is indeed unbounded in κ. Recursively, we will define a
fusion sequence � = 〈qα : α ∈ κ〉 below p such that:

(1) qα+1 ≤α qα .
(2) qα+1 � k(α) ∈ Ẋ .
(3) If q is the fusion of � then q � C ′ ∩ Ah ⊆ Ẋ .

But then, since q � Ah\Ẋ ⊆ Ah\C ′ and Ah\C ′ ⊆ κ\C ′ ∈ id<�,κ(A), we obtain
that q � Ah\Ẋ ∈ id<�,κ(A), which is again a contradiction to the choice of p.

Here is the construction of �. Start with q0 = p and at limits take intersections.
Consider k(0) and put r = stem(p). Since

(C ∩ Ah)\f(0) ⊆
⋂

t∈split1(p)

Yt,

for each j ∈ {0, 1} and p is preprocessed for Ẋ there is rj(t, k(0)) ∈ splitH (k(0))(p)

such that prj (t,k(0)) � ǩ(0) ∈ Ẋ . Let q1 =
⋃
{prj (t,k(0)) : t ∈ split1(p), j ∈ {0, 1}}.

Thus q1 ≤0 q0 as we wanted.
For completeness we present the construction of the next step: take k(1) and

t ∈ split1(q1). Note that split1(q1) = split�(p) for some 1 ≤ � ≤ H (k(0)) ≤ f(k(0))
and since f2(k(0)) < k(1) and C\Yr ⊆ f(f(k(0))) for all r ∈ splitf(k(0))+1(p), we
obtain k(1) ∈ Yr for all r ∈ splitf(k(0))+1(p). Using the fact that p is preprocessed
and repeating the argument above, find for each j ∈ {0, 1} an extension rj(t, k(1)) ≤
pt�j such that rj(t, k(1)) � k(1) ∈ Ẋ . Let q2 =

⋃
{rj(t, k(1)) : t ∈ split1(q1) ∧ j ∈

{0, 1}}. Then q2 is a condition, q2 ≤1 q1, and q2 � k(1) ∈ Ẋ .
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In general, suppose we have constructed qα and consider k(α), and t ∈ splitα(qα),
then there is � ≥ α so that t ∈ split�(p) and � ≤ H (k(α)). Again, since f2(k(α)) <
k(α + 1) and C\Yr ⊆ f(f(k(α))) for all r ∈ splitf(k(α))+1(p) we get that k(α) ∈
Yt , so again use that p is preprocessed and repeat the argument above to find
conditions rj(t, k(α)) ≤ pt�j forcing rj(t, k(α)) � k(α) ∈ Ẋ j ∈ {0, 1}. Put qα+1 =⋃
{rj(t, k(α)) : t ∈ splitα(qα) ∧ j ∈ {0, 1}}. Then qα+1 is a condition, qα+1 ≤α qα ,

and qα+1 � k(α) ∈ Ẋ . �
Theorem 8.3. The generic maximal independent family adjoined by PU over a

model V0 of GCH remains maximal after the κ-support product S�κ.

Proof. The idea for this proof is not much different than the one for the successor
step; however, the fusion argument has to be handled more carefully. We give now
an outline with the most important details. As in the case above start with a densely
maximal independent family A in V = V PU . To prove that

(A is densely maximal independent family)V
S
�
κ
,

we will show that in V S
�
κ , property (∗) from Lemma 6.2 holds for the family A.

Specifically, we show that in V S
�
κ for eachX ⊆ κ and each h ∈ FF<�,κ(A) such that

X ⊆ Ah property (∗)X,h holds, where (∗)X,h states:

either ∃B ∈ id<�,κ(A) such that Ah\X ⊆ B
or there is h′ ⊇ h such that Ah′ ⊆ Ah\X.

Suppose not. Thus, there areX ⊆ κ, h ∈ FF<�,κ(A) such thatX ⊆ Ah and ¬(∗)X,h .
That is,

V S
�
κ � X ⊆ Ah ∧ Ah\X /∈ id<�,κ(A) ∧ ∀h′ ⊇ h(Ah′ ∩ X �= ∅).

Let Ẋ be an S
�
κ-name for X in V and let p ∈ S

�
κ force the above. Passing to a stronger

condition if necessary we can assume that p is preprocessed for Ẋ . Now, for every
α < κ and all F ⊆ supp(p) such that |F |< κ consider the set ΛFα (p). This is a set
of size <κ because |splitα(p(i))|≤ 2|α| and |F |< κ. Also, {ΛFα (p) : α < κ ∧ F ⊆
supp(p) ∧ |F |< κ} has size κ and so does its union.

Similarly to Claim 8.2 we obtain:

Claim 8.4. For all α < κ and F ⊆ supp(p) such that |F |< κ, if 
̄ ∈ ΛFα (p) then
Y
̄ ⊆ Ah .

Before proceeding with construction of a fusion sequence, which will lead to
the desired contradiction, we need to define one more auxiliary object, namely the
function H defined below. Whenever 
̄ ∈ ΛFα (p) and 	 ∈ Y
̄ , let r(
̄, 	) be a witness
to 	 ∈ Y
̄ such that for each i ∈ F the stem of the condition r(
̄, 	)(i) is of minimal
height. DefineH ∈ κκ ∩ V as follows:

H (�) = sup{� + 1}
∪ {sl(stem(r(
̄, 	))) : 
̄ ∈ ΛF� (p), 	 ≤ �, F ⊆ supp(p) ∩ � and |F |< κ}.

Again, following the argument for the single step, we can assume that for allα < κ
and all 
̄ ∈ ΛFα (p) there exists B
̄ ∈ id<�,κ(A) such that Ah\Y
̄ ⊆ B
̄ , Ah\Y
̄ ∈
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id<�,κ(A). But thenY
̄ ∪ κ\Ah ∈ fil<�,κ(A). Now, since fil<�,κ(A) is a κ-p-set, there
is C ∈ fil<�,κ(A) such that C ⊆∗ Y
̄ ∪ κ\Ah for each 
̄ ∈ ΛFα . Thus in particular,
C ∩ Ah ⊆ Y
̄ for each 
̄ ∈ ΛFα (p) and so we can find a function f ∈ V ∩ κκ such
that,

∀α ∈ κ ∀F ⊆ supp(p) ∀
̄ ∈ ΛFα+1(p) (|F |< κ → C ∩ (Ah\Y
̄) ⊆ f(α)).

Thus, for each α ∈ κ, 
̄ ∈ ΛFα+1(p), and 	 ∈ C ∩ Ah , if 	 > f(α) then 	 ∈ Y
̄ .
Moreover, we can assume that f is strictly increasing, that H (α) ≤ f(α) and α +
2 < f(α) for all α ∈ κ.

By Corollary 5.7, there is C ∗ ∈ fil<�,κ(A) such that ∀α ∈ C ∗∀� ∈ α ∩
C ∗(f2(�) < α). Now, let C ′ = C ∩ C ∗ ∩ (f(0), κ). Thus C ′ ∈ fil<�,κ(A). Let
{k(α) : α ∈ κ} be an increasing enumeration of C ′ ∩ Ah . Since C ′ ∈ fil<�,κ(A)
the latter set is indeed unbounded in κ. Recursively, we will define a fusion
sequence � = 〈qα, Fα : α ∈ κ〉 ⊆ S

�
κ below p, ordinals (�α : α < κ), and bijections

gα : Fα → �α such that for all α < κ:

(1) qα+1 ≤Fα,α qα..
(2) �α ≥ α
(3) For all α < α′ < κ, gα ⊆ gα′ , and for limit ordinals � < κg� =

⋃
α<� gα .

(4) qα+1 � k(α) ∈ Ẋ .

Now, if q is the fusion of � then q � C ′ ∩ Ah ⊆ Ẋ . But then, since q � Ah\Ẋ ⊆
Ah\C ′ and Ah\C ′ ⊆ �\C ′ ∈ id<�,κ(A), we obtain that q � Ah\Ẋ ∈ id<�,κ(A),
contradicting the choice of p.

We proceed with the recursive construction of �. Start with q0 = p, F0 =
min(supp(p)), �0 = 0, and g0 = ∅. At limit stages � < κ the construction of q�
and F� it is already been determined so that the conditions in Definition 7.4 are
fulfilled. Finally, let �� = supα<� �α and g� as above. Consider k(0) and put 
̄ =
〈stem(p(min(supp(p))))〉. Since for all �̄ ∈ ΛF0

1 (p), C \ Y�̄ ⊆ f(0), k(0) ≥ f(0),
and p is preprocessed for (Ẋ , F0) we have that k(0) ∈ Y�̄ for all �̄ ∈ ΛF0

1 (p) and so,
by Corollary 7.15 for each h ∈F0 2 there exists a set F ′

0 ⊇ F0, a �̄ � 
̄, and condition
rh(�̄h , k(0)) ≤ ph�̄h such that rh(�̄h , k(0)) � k(0) ∈ Ẋ .

For completeness, we give a more detailed proof of the existence of the conditions
rh(�̄h , k(0)). Recall that ph
̄ is defined as follows:

ph
̄(i) =

{
(p(i))



�
i h(i)
, if i ∈ F,

p(i), otherwise.

There are sequences 
̄′h ∈ ΛF0
1 (p) such that 
̄h � 
̄′h where 
̄h is such that 
h(i) =


(i)�h(i) for all i ∈ F0. Hence, using that p is preprocessed we can get a set F ′
0 ⊇

F0 such that |F ′
0 |< κ and sequences �̄h � 
̄′h so that p�̄h � k(0) ∈ Ẋ . Thus, take

rh(�̄h , k(0)) = p�̄h .

Then if q1 =
⋃
{rh(
̄, k(0)) : h ∈ F02, �̄h ∈ Λ

F ′
0

0 (p)}, F1 = F ′
0 ∪ {min{supp(q1)\

F ′
0}}, �1 = �0 + 1, and g1 = g0 ∪ {(min{supp(q1)\F ′

0 , �1)} we have that q1 ≤0,F ′
0

q0 and q1 � k(0) ∈ Ẋ as we wanted.
In general, suppose we have constructed qα , Fα , �α , and gα as desired. Consider

k(α) and the set ΛFαα+1(pα). Fix an enumeration {�l = (
̄l , hl ) : l < �} of all pairs
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of the form (
̄, h) such that 
̄ ∈ ΛFαα+1(qα) and h ∈ Fα2. Note that the ordinal � is
< κ. Inductively, we will construct a sequence {rαl : l < �} of conditions below qα
satisfying:

(1) rα0 = qα .
(2) rαl+1 ≤α,Fα rαl .

(3) (rαl+1)hl
̄l � ǩ(α) ∈ Ẋ .
(4) For l limit ordinal rαl =

∧
k<l r

α
k .

It is enough to explain how the successor step is built: Suppose then that
we have constructed rαl satisfying the conditions above and consider the pair
�l = (
̄, h). Notice that since |Fα |< κ for all i ∈ Fα , splitα(qα(i)) ⊆ split�(p(i))
for some � ≤ H (k(α)). Also, sincef2(k(α)) < k(α + 1) and for all �̄ ∈ ΛFα

f(α)+1(p)

we have thatC\Y�̄ ⊆ f(f(k(α))), we obtain that k(α) ∈ Y�̄ for all �̄ ∈ ΛFα
f(α)+1(p).

Thus, again we repeat the argument above using the fact that p is preprocessed

for (Ẋ , Fα) and find a set F ′
α ⊇ Fα , a sequence �̄h ∈ ΛF

′
α
α (p), and conditions

wh(�̄h , k(α)) ≤ ph�̄h forcing wh(�̄h , k(α)) � k(α) ∈ Ẋ . Moreover, we can choose

wh(�̄h , k(α)) so that wh(�̄h , k(α)) ≤ (qα)h�̄h . Note that wh(�̄h , k(α)) might not yet
be a condition satisfying the condition (2). In order to fix this, we define rαl+1 as
follows: supp(rαl+1) = supp(wl ) and

rαl+1(i) ={
(wh(�̄h , k(α))(i) ∪ {(qα(i))��j :� ∈ splitα(rl (i))\
i or j = 1 – h(i)}, if i ∈ F ′

α,

wh(
̄, k(α))(i), otherwise.

Finally, let qα+1 =
∧
l<� r

α
l , �α+1 = �α + 1, Fα+1 = F ′

α ∪ {min(supp(qα+1)\F ′
α)},

and gα+1 = gα ∪ {(min(supp(qα+1)\F ′
α), �α)}. The construction is now complete.

Indeed, to see that qα+1 � ǩ(α) ∈ Ẋ notice that for all 
̄ ∈ ΛFαα (qα+1) and all h ∈
Fα2, (qα+1)h
̄ � ǩ(α) ∈ Ẋ . �

Remark 8.5. Note that κ might cease to be measurable in V S
�
κ from the above

theorem. For a preparation of the universe, which guarantees that κ remains
measurable see [13].

§9. Concluding remarks and questions. The use of the assumption 2κ = κ+ played
a crucial role in our construction of a densely maximal κ-independent family. Thus
one may ask:

Question 9.1. Does ZFC imply the existence of a densely maximal κ-
independent families?

Even though we are able to show both that consistently if(κ) = κ+ < 2κ and
κ+ < if(κ) = 2κ, the currently available techniques seem to be insufficient to answer
the following:

Question 9.2. Let κ be a regular uncountable cardinal. Is it consistent that
κ+ < i(κ) < 2κ?
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The analogous question in the countable can be answered to the positive with the
use of the so-called diagonalization filters (see [12]). A natural generalization of the
notion of a diagonalization filter to the uncountable is given below:

Definition 9.3. Let A be a κ-independent family. A κ-complete filter F is said
to be a κ-diagonalization filter forA if ∀F ∈ F∀h ∈ FF<�,κ(A)|F ∩ Ah | = κ and F
is maximal with respect to the above property.

Moreover, as a straightforward generalization of the countable case (see [12]) one
can show that:

Lemma 9.4 (See [12, Lemma 2]). Suppose A is a κ-independent family and F is a
κ-diagonalization filter for A. Let MκF be the generalized Mathias forcing relativized
to the filter F .8 Let G be an M

κ
F -generic filter and let xG =

⋃
{a : ∃A(a,A) ∈ G}.

Then A ∪ {xG} is κ-independent and moreover for each Y ∈ ([κ]κ ∩ V )\A such that
A ∪ {Y} is κ-independent, the family A ∪ {xG,Y} is not κ-independent.

Even though an appropriate iteration of posets of the above form would produce
a positive answer to Question 9.2, the following remains open:

Question 9.5. Given a κ-independent family A is there a κ-diagonalization filter
for A? The co-bounded filter does satisfy the characterization property in Definition
9.3; however, the requirement for maximality is not straightforward to satisfy. Is
there a large cardinal property which guarantees the existence of such maximal
filter? Note that a diagonalization filter is never an ultrafilter.

Moreover of interest remain the following:

Question 9.6. Is it consistent that i(κ) < a(κ)?

Clearly, if the above is consistent then in the corresponding model, i(κ) ≥ κ++.
One of the original questions, which motivated the work on this project is the
evaluation of i(κ) in the model from [6]. More precisely, we would like to know:

Question 9.7. Is it consistent that i(κ) < u(κ)?

The consistency of r < i holds in the Miller model. However, products of the
generalized Miller poset MI

U
κ , where U is a κ-complete normal ultrafilter on κ add

κ-Cohen reals (see [4, Theorem 85]) and so increase r(κ). Even though MI
U
κ has

the generalized Laver property (see [4, Proposition 81]), it is open if the generalized
Laver property is preserved under κ-support iterations. This leaves us with the
following:

Question 9.8. Is it consistent that r(κ) < i(κ)?

§10. Appendix: strong independence. Another approach towards finding a higher
analogues of independence for a given uncountable cardinal κ is to consider Boolean
combinations generated by strictly less than κ (not just finitely) many members of
the family. More precisely one can give the following definition:

Definition 10.1. Letκ be a regular uncountable cardinal,A ⊆ [κ]κ of cardinality
at least κ.

8That is MκF consists of all pairs (a, A) ∈ [κ]<κ ×F such that sup a < minA.
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(1) Let FF<κ,κ(A) be the set of partial functions h : A → {0, 1} with domain of
cardinality strictly below κ and for h ∈ FF<κ,κ(A) let Ah =

⋂
{Ah(A) : A ∈

dom(h)} where Ah(A) = A if h(A) = 0 and Ah(A) = κ\A if h(A) = 1.
(2) The family A is said to be strongly κ-independent if for every h ∈ FF<κ,κ(A)

the Boolean combination Ah is unbounded.
(3) The family A is said to be maximal strongly κ-independent if it is strongly
κ-independent and is not properly contained in another strongly
κ-independent family.

(4) Suppose κ is a regular uncountable cardinal for which maximal strongly
κ-independent families exist. With is(κ) we denote the minimal size of a
maximal strongly κ-independent family.

Note that the increasing union of a countable sequence of strongly κ-independent
families is not necessarily strongly κ-independent. Thus one cannot apply Zorn’s
lemma to claim the existence of maximal strongly κ-independent families. What we
can say is the following:

Theorem 10.2. Let κ be a regular uncountable cardinal.

(1) For κ strongly inaccessible, there is a strongly κ-independent family of
cardinality 2κ.

(2) If A is strongly κ-independent and |A| < r(κ) then A is not maximal.
(3) Suppose d(κ) is such that for every � < d(κ), �<κ < d(κ). If A is strongly
κ-independent and |A| < d(κ) then A is not maximal.

Proof. We will prove (1). Let C = {(�, A) : � < κ,A ⊆ P(�)}. Given X ⊆
κ define YX = {(�, A) ∈ C : X ∩ � ∈ A}. Then YX : X ⊆ κ} is strongly κ-
independent. Indeed. Consider two disjoint subfamilies of [κ]κ, each of size
strictly smaller than κ, say {Xi}i∈I1 and {Zj}j∈I2 . Note that (�, A) ∈ X =⋂
i∈I1 YXi ∩

⋂
j∈I2(C\YZj ) if for all i ∈ I1, Xi ∩ A ∈ A and for all j ∈ I2,

Zj ∩ � /∈ A. However, there are unboundedly many � ∈ κ such that:

• Xi ∩ � �= Xi ′ ∩ � for i �= i ′ both in I1,
• Zj ∩ � �= Zj′ ∩ � for j �= j′ both in I2, and
• Xi ∩ � �= Zj ∩ � for all i ∈ I1, j ∈ I2.

It remains to observe that for each such �, we have (�, A�) ∈ X , whereA� = {Xi ∩ � :
i ∈ I1}.

To see part (2) note that if |A| < r(κ), then the set {Ah : h ∈ FF<κ,κ(A)} is
split by some X ∈ [κ]κ and so A ∪ {X} is strongly κ-independent which properly
contains A.

For a proof of part (3), see [6, Proposition 27]. �

Corollary 10.3. Thus, if is(κ) is defined, then κ+ ≤ is(κ) ≤ 2κ. Moreover r(κ) ≤
is(κ) and if for every � < d(κ), �<κ < d(κ), then d(κ) ≤ is(κ).

Question 10.4.

(1) Is there a large cardinal property which implies the existence of a maximal
strongly κ-independent family?

(2) Given a strongly κ-independent family A, is there a large cardinal property
which implies the existence of a κ-diagonalization filter for A?

https://doi.org/10.1017/jsl.2022.33 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.33


HIGHER INDEPENDENCE 1629

(3) Suppose is(κ) is defined. A family which is strongly κ-independent is
κ-independent. However a maximal strongly independent family is not
necessarily maximal independent. Is there a ZFC relation between is(κ) and
i(κ)?
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