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Abstract

Certain omissions in the recently introduced dual for fractional minimax programming problem 'minimize
max f(x, y)/h(x, y), subject to g(x) < 0', are indicated and two modified duals for this problem are
ynY

presented. Various fractional programming and generalized fractional programming duals are shown to
be special cases of this study.

1991 Mathematics subject classification (Amer. Math. Soc): 90C32.

1. Introduction

The study of minimax optimization problems has been of considerable interest in the
past-—see for example [7] and [8], and the references cited therein. Schmitendrof [14]
considered a very general class of static minimax problems and presented neces-
sary/sufficient optimality conditions for the same. Later, Tanimoto [15] constructed a
dual to the problem studied by Schmitendrof [14] and proved various duality theorems
under convexity assumptions on objective and constraint functions. Recently, Yadav
and Mukherjee [16] attempted to construct a dual to the fractional analogue of the
problem considered by Tanimoto [15] and presented a duality theorem similar to the
one given in [15].

The purpose of this paper is to point out certain omissions and inconsistencies in the
work reported in [16] and to present two modified models of the dual for the fractional
minimax problem considered there. These models have been motivated by those due
to Mond and Weir [11] for scalar fractional programming and Bector et alia [2] for
generalized fractional programming problems.

This paper has been divided into four sections. Section 2 includes preliminaries
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and statement of the problem, while Section 3 is devoted to the construction of
the modified duals and establishing main duality results. Certain special cases are
discussed in Section 4. For the sake of convenience and ready reference, we have
followed the notations of [16] as far as possible.

2. Problem Formulation and Preliminaries

Let R" denote the n -dimensional Euclidean space and Rn
+ its non-negative or-

thant. Let / ( . , .) and h{.,.) be real valued differentiable functions on Rn x Rm

and g : /?"-»• Rp be convex and differentiable. Let Y C Rm be compact and
X = {x € R" : g(x) < 0} with f{x, y) > 0 and h(x, y) > 0 on X for each
y € Y. Let / = {1, 2 , . . . , p] and x e X, J(x) - {j e J : gj(x) = 0} and

Y{x) = [y e Y : f(x, y)/h(x, y) = sup/(*, z)/h(x, z)\.

Recently, Yadav and Mukherjee [16] considered the following problem (P):

(P) minsap {f(x,y)/h(x,y)).

Let K be the set of triplets (s, t, y) where 5 ranges over the positive integers such
that 1 < i < n +1, t = (t\,..., ts) an s-dimensional vector with t > 0, ^;=i k = 1,
y = (yu ,.., ys) an ms-dimensional vector with v, e Y{x) (i = 1, 2 , . . . , s) for some
x e R". Also for x e X, (s,t,y) e K, y, e Y(x), v = f (x, yt)/ h(x, y,) we
defined H(s, t,y) = { (x, n) e R" x Rp : x and /x satisfy [yu y2,..., ys] C Y(x),
M e ^ and C=i( ' / /*(*, y.-)(V,/U, y,) - uV,A(jr, y,)) + Ef=i My«; W = 0 }.

With notation defined as above, Yadav and Mukherjee [16] introduced the dual (D)
to (P) as follows:

p

(D) max sup F(x) + Y
(s,t.y)€K

where F(JC) = sup/(x, y)/h(x, y), and proved duality theorems under convexity
yeY

assumptions on the objective and constraint functions. However, a closer look at the
dual problem (D) suggests certain omissions and inconsistencies in its formulation
which causes difficulties in the proof of Theorem 2.1 of [16]. For this, let us take Y
as a singleton. The problem (P) then becomes the standard fractional programming
problem:
(FP) min/(jr)/A0O

xeX
while (D) reduces to,

(FD) max\f(x)/h(x)

,
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subject to V(f(x)/h(x) + £;=1 njgj(x)) = 0, n>0.
But it is well known (see for example Schaible [12]) that the above pair of primal

and dual problems gives rise to a duality gap.
Examining the construction of the dual (D) one notes that in the definition of

H(s, t, y), v should also be treated as a variable, but then equation (2) as given in
the proof of Theorem 2.1 of [16] does not hold.

In the following we shall correct these omissions by presenting two modified
models of the dual to (P) and establishing duality theorems with respect to each.

We shall use the following theorem and its corollary proved by Schmitendrof [14]
for the following minimax problem:

(P) min sup cj>{x, y)
xeX y€Y

where </>(.,.): R" x Rm —>• R is differentiable and Y and X are the same as stated for
the problem (P).

THEOREM 2.1. Let x* be a solution to the minimax problem (P). Then there exists
a positive integer a, scalars A, > 0, i = 1 , . . . , a, scalars /x, > 0, i = 1, 2 , . . . , p,
vectors yt e Y(x*) i = 1 , . . . , a, such that

, y,) + J2^JVSj(x*) = 0,

(1) 2>- + ^ ; * 0 .

Moreover, if /3 is the number of non-zero /J,J, then l < a + / J < n + l .

COROLLARY 2 . 1 . If the vectors Vgj(x*), j e J(x*) are linearly independent, then
52"=1 A, ^ 0 can replace (1).

3. Duality

Let / ( . , y) and — h(., y) be convex functions of x for every y and AT be the set as
defined in Section 2. We now present two modified models of the dual to the minimax
problem (P).
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MODEL I. Let H{(s, t, y) denote the set of all triplets (x, /x, v) G R" x Rp x R

satisfying

(2)

(3)

(4)
7 = 1

(5) {yuy2,...,ys)£Y(x),

(6) £ ' . • = !, ' < > 0 (i = l , 2 , . . . , s ) , n>0.
i=i

In this model, we introduce a dual (Dl) to the minimax problem (P) as follows:

(Dl) max sup v.

If for a triplet (i, f, y) in A' the set Hi (s, t, j ) is empty, then we define the supremum
over it to be —oo. The theorem given below establishes the duality relationship
between problem (P) and (Dl).

THEOREM 3.1. Let x* be an optimal solution of the problem (P) and let Vgj(x),
j G J(x*) be linearly independent. Then there exist (s*, t*, y) G K, v* e R and
/z* e Ri with (x*, ix*, v*) G Hi(s*, t*, y) such that (s*, t*, y) and (x*, /x*, v*) give
an optimal solution to the problem (Dl). Also, the two problems (P) and (Dl) have
the same extremal values.

PROOF. Since x* is an optimal solution of (P) and Vgj(x*), j e J(x*) are linearly
independent, then by Theorem 2.1 and its corollary, there exists a positive integer s*,
1 < s* < n + 1, t° = (f°, q,..., t°) with t? > 0 (i = 1 , . . . , s*) y = (yu ..., y s . )
with yt G Y(x*) (i = 1, 2 , . . . , s*) and /x° = (fx°,..., n°p) € Rp

+ such that

(7) £ t?V{f(x', y,)/h(x\ y,-)) + ̂ M°Vg;U*) = 0,
,=1 ;=1

and

(8) ? ( !>&•<* * ) ) =0 .
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Now defining v* = f(x*, yd/h(x*, yd, Equation (7) gives,

j * p

J^t°/h(x*, yd {V/(JC*. yd - v*Vh(x*, yd) + (j^^gjix*)) = 0.

Furthermore, taking

t* = —jr1 , . and /LI* = ^^77
2_,,=i(

we have

E C {V/(x*, yd - v*Vh(x\ y,)} + V £**;&•(**) = 0,
i = l ; = 1

where /z* e /?^, r* > 0 for all / and £ - 1 , «* = 1. We also have

v*h(x* y Y; {/(*', y,) - v*h(x*, y,)} = 0 and Y.^jSM*) = 0.
1=1 j=\

Hence (JC*, /x*, w*) e //,(5*, /*, y).

We now show that (x*, fi*, v*) attains the maximum of the following problem:

max v, subject to (x, /x, v) e / / i ( s \ t*, y).

For this, let (x, /z, v) e H^s*, t*, y). Using {yu y2,..., ys] C Y(x*) we get

)/(

1=1 1=1

1=1

, y,) - vh(x, y,))

c'-x)-
j=l ' 7 = 1

> 0 (because of (2) and the fact that x* e X and /x > 0).
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To complete the proof, we must show that for any (s, t, y) e K,

sup < v*.
(x,)i,v)£H,(s,t,y)

We may assume that Hi (s, t, y) is non-empty. Now for any (x, /x, v) e Hx (s, t, y),
we have

v = f(x,yd/h(x,yd =

Also by (3), v* > £;=1 tifix*, yd/ £!=, Uh{x\ yd-
Therefore

5 S

v* - v > Cy^tifix*, yd I ^r,7i(x*, yd) — v

Uh{x*, yd) \2_^tj(f{x*, yd - vh(x*, y,))J

t,yt)-v*

which in view of convexity of / , —h and g, is > 0.
The theorem follows.

MODEL II. Let us define H2(s, t, y) to be the set of all tuples (x, /A) e R" x Rp

satisfying

(9) V ( ( X > / ( J C , yd + Yinjgj(x))/i2tih(x, yd) = 0,
;i yi / i

X(10) J2 tif(x, yd + X! **;&•(*) > 0,

(12) M > 0 ,

The second modified form of the dual to (P) is given as follows

s p s

(D2) max sup (V/,/(x, yd + Y\^jgj(x)) / Y\tMx, ys).
U,t,y)eK (^,^)e//2(j,i,>) ^7T7 jTf > ' ~{
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As for Model I, if for a triplet (s, t, y) e K the set H2(s,t,y) is empty we define
the supremum over it to be —oo. We now present an analogous form of Theorem 3.1,
which establishes the duality relationship between the problems (P) and (D2).

THEOREM 3.2. Let x* be an optimal solution of the problem (P) and let Vgj(x*),
j € J{x*) be linearly independent. Then there exists (s*, t*, y) in K and /x* € R^
with (x*, n*) e H2(s*, t*, y) suchthat{s*, t*, y) and(x*, /x*) give an optimal solution
to problem (D2). The two problems (P) and (D2) have the same extremal values.

PROOF. Since x* is an optimal solution of (P) and Vg;(x*), j e J(x*) are linearly
independent, there exists a positive integer s*, 1 < s* < n + 1, t° = (tf, ?2°,..., t°)
with t? > 0 (/ = 1 , . . . , s*), y = (yi,y2,.-., y~r) with y, e Y(x*) (i - 1 , . . . , s*)

and fi° = (/Xp ...,fi°p)eR+ such that

and

(14)
y=i

But equation (13) implies

E (ITT^r
j^\h{x*,yi)

' , yd]

and therefore by defining

*; - (t°/h(x\ yt))/ E/li(r°/*(**. y.")) and

we obtain /x* € Rp
+, t* > 0 for all i,

1 = 1 1 = 1 1 = 1

p
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On simplification this gives

p

383

((E w . y>) + !>;
11 ji

In view of (14),

Thus (x*, /x*) e H2is*, f, y).

We now claim that (x*, /z*) is optimal for the following problem:

maxl > t f(x,yd+/ Uig/ix))/ > t, h(x , yd, subiectto(x, u) i

For any (x, \x) € //2(5*, ?*, y), we have

Ef*/(^*, yd + E /*;&•(*•) E t*fix, yd + E My«y(J

T,t*h(x*,yd t*h(x, yd
i=\

s* p

E ',*/(*> y«-) + E Vjgjix*)
i=\ y=i

/=i

,y,-)
i = l

5*
(x* - x)T V

i = i

^?*/z(x, j ,

*, t\

= 0 (because Ot, fi) e 7/2(5*, f*, 51))-

Hence we have proved the claim. To complete the proof we must show that for any
(s,t,y) G K,

s p s

sup CVtifix, yd + J2iJ.jgj(x))/J2tMx, yd
(x,nHH2(s,t,y) V ~7 ~f 'I ~7

^ ( E f W ' y<) + E *UM'))I E f.̂ (̂ *' y.-).
y=i 1 = 1
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Now,

Thus

\L iH 'J'; + j-**ig'K >)/ L.

1=1

i=\

E ',*/(*% y,-)
j=\

1=1

7 = 1

tMx\yd.
1 = 1

E'.•*(*. y.-)

E'-•/(**. y.-) + E/*;&•(**)
i = l 7 = 1

. y.0
7 = 1

E'.•*(**. y.-)

-(x* -x)TV
E t f(x v) +
1 = 1 7 =

= 0 (because (x, /i) e H2(s,t, y))

and hence the first assertion of the theorem follows. It is clear that the optimal values
of the primal and dual problem are the same.

REMARK 1. Modifications similar to ones introduced above are also required for
the alternative duality theorem discussed in Section 3 of Yadav and Mukherjee [16].

4. SPECIAL CASES

(1) In case Y is a singleton, the problem (P) becomes the standard fractional
programming problem and duals (Dl) and (D2) reduce to the well known duals of
Schaible [12] and Bector [1] respectively.
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(2) For the case of generalized fractional programming ([2, 3 , 4, 6 and 10]),
the set Y can be taken as the simplex Y — [y e Rm : y,• > 0, £^"=1 y>: — *} an^
fix, y)/h(x, y) = (£7=1 yifiix)/ E7=i yMx)). Then (Dl) and (D2) reduce to the
duals of [2] and [4]. Such problems in a much more abstract setting have been studied
very recently by Gwinner and Jeyakumar in [9], where certain applications ([5 and
13]) have also been mentioned.
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