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SUMMARY

A defining characteristic of many rainfed tropical agricultural systems is their vulnerability to weather
variability. There is now increased attention paid to climate-agriculture links as the world is focused on
climate change. This has shown the need for increased understanding of current and future climate and
the links to agricultural investment decisions, particularly farmers’ decisions, and that integrated strategies
for coping with climate change need to start with managing current climate risk. Research, largely from an
Association for Strengthening Agricultural Research in Eastern and Central Africa (ASARECA) project
to demonstrate the value of such increased understanding, is presented in this issue of the journal. Key
lessons from this research are as follows:

1. Statistical methods of analysis of historical climate data that are relevant to agriculture need not be
complex. The most critical point is to describe the climate in terms of events of direct relevance to
farming (such as the date of the start of a rainy season) rather than simple standard measures (such as
annual total rainfall).

2. Analysis requires access to relevant data, tools and expertise. Daily climate data, both current and
historical, are primarily the responsibility of national meteorological services (NMS). Accessing such
data, particularly daily data, is not always easy. Including staff from the NMS as research partners, not
just data providers, can reduce this problem.

3. Farmers’ perceptions of climate variation, risk and change are complex. They are keenly aware of
variability, but there is evidence that they over-estimate risks of negative impacts and thereby fail to
make use of good conditions when they occur. There is also evidence that multiple causes of changes are
confounded, so farmers who observe decreasing crop production may not be distinguishing between
rainfall change and declining soil fertility or other conditions. Hence any project working with farmers’
coping and adaptation to climate must also have access to analyses of observed climate data from
nearby recording stations.

4. Mechanisms for reducing and coping with risks are exemplified in pastoral systems that exist in the most
variable environments. New approaches to risk transfer, such as index-based insurance, show potential
for positive impact.

5. Skilful seasonal forecasts, which give a better indication of the coming season than a simple average,
would help farmers take decisions for the coming cropping season. Increasing meteorological knowledge
shows that such forecasting is possible for parts of Africa. There are institutional barriers to farmers
accessing and using the forecast information. Furthermore, the skill of the forecasts is currently limited
so that there are maybe still only a few rational choices for a farmer to make on the basis of a forecast.

With the justified current interest in climate and agriculture, all stakeholders including researchers, data
providers, policy developers and extension workers will need to work together to ensure that interventions
are based on a correct interpretation of a valid analysis of relevant data.
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I N T RO D U C T I O N

In the preface to this issue, Cooper and Coe (2011) point out that there is increasing
evidence that the quantification of climate risk and its management can greatly support
risk-averse farmers’ decision-making process and hence enhance the adoption of more
sustainable and productive farming practices. The studies presented in this special issue
illustrate a range of such tools, their effectiveness, their limitations and some of their
challenges. In this paper we summarize the key lessons from them and pose further
questions which they raise.

Most of the studies were initiated and supported by a project funded by the
Association for Strengthening Agricultural Research in Eastern and Central Africa
(ASARECA) titled ‘Managing Uncertainty: Innovation Systems for Coping with
Climate Variability and Change’. The project had the aim of informing agricultural
decisions and investment on coping with risks and realizing opportunities associated
with climate variability and change in Eastern and Central Africa. The project also
aimed to identify ways of including climate-related activities in further initiatives
funded through ASARECA.

There were three main components:

1. A review of the state of knowledge and availability of tools in the region (van de
Steeg et al. 2009).

2. Linkages with, and capacity building of national meteorological services (NMSs).
3. Small projects designed as case studies that have led to this publication and other

outputs.

The importance of the general topic is evident. The agricultural science community
has taken seriously the task of understanding the implications of climate change and
so have (maybe to a greater extent) the rural development community. Staff in one
national agricultural research programme explained to us that some donors now
demand a climate change component in every project proposal. Staff comply but
are then unsure how their general statements can translate into well-defined project
activities. We hope that the papers in this edition provide some ideas.

There is also evidence that governments, aid organizations and local people within
East Africa have been so sensitized to the threat of climate change that almost any
moderately extreme weather event, or even weather that does not conform to a current
ideal, is labelled as being a consequence of climate change. Osbahr et al. (2011, this
issue) state ‘Scientific “truths” of global climate change may have turned into myths
about environmental change at the local level.’ If reactions to climate change are
to be realistic and constructive they need to be based on an objective assessment of
what is happening and is likely to happen to the climate, and to understand this in the
context of other changes that are known to be occurring, such as increasing population
pressure and soil degradation.

The weather has, of course, always been variable and that variability is a defining
characteristic of agricultural environments even in the absence of any climate
change. Within the tropics, the relative variability (the coefficient of variation) of
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rainfall is closely related to the mean, with locations of lower average rainfall
experiencing greater relative year-to-year variation (Cooper et al., 2009). Hence risks
and uncertainties are generally larger in drier zones. Rural livelihood systems have
evolved to cope with this variation to some extent, but two obvious questions are as
follows:

• To what extent can formal analysis of the variability lead to increased insights and
improved livelihood options?

• Can such analysis help to clarify the distinction between what is a change and what
is expected anyway?

The lessons from the cases that are discussed here help answer these questions.
Jarvis et al. (2011, this issue) puts the ideas of climate risk analysis described in the

other papers into the broader context of strategies for handling the implications
of climate change for agriculture. The first of the three components of their
mitigation and adaptation strategy is the management of climate risk. The case they
make reinforces that provided by Cooper and Coe (2011, this issue) justifying the
focus of the work reported here. The other two components of their strategy are
accelerated adaptation and emissions mitigation. These two components also require
an understanding of risk, because risk and variation will continue to be a determinant
of agricultural investment. The usual basis for describing current risk is the analysis
of the recent past. Estimating risk for evolving and future climates is, of course, more
complex and the results are correspondingly less certain.

S TAT I S T I C A L A N A LY S I S

Despite the ubiquity of experience and interest in climate variability, the basic concepts
concerned seem to cause confusion. The IPCC’s famous ‘hockey stick diagram’ (IPCC,
2007) was controversial in part because of different understandings of the idea of
climate change and trend. The starting point is the common experience that, at any
location, the weather shows some typical pattern though the year. These patterns
repeat, with some variation, each year. The climate is then defined as that typical
pattern, which is quantified statistically as an average. The typical or average pattern
includes variation – it is typical for the weather to be different from one year to the next,
within some range. Statistical summaries of climate therefore usually include quantities
that describe both the average and a measure of variation. For example the total
rainfall for January for a given site and set of years is summarized by giving the mean
as well as the standard deviation, or another measure of variation, such as the chance
or risk that the total is less that 100 mm.

Stern and Cooper (2011, this issue) show that it is simple to calculate such summaries
of mean and variation or risk. If daily data are available they also demonstrate that
it is possible to tune the analyses to real questions of relevance in agriculture – such
as the date of the start of a rainy season. Further, the event or climate characteristic
described can be as complex as needed as long as it is driven by climate data. They
give the example of an estimate of risks for a measure of crop water balance, while
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Dixit et al. (2011, this issue) do so for a crop yield simulated from climate data and
Farrow et al. (2011, this issue) estimates disease risk. Any other agriculturally important
quantities that depend on variation driven by climate, such as prices, could similarly
be evaluated if a model is available that describes their connection to the climate. An
intriguing example of pest dynamics is given by Cheke et al. (2007).

The confusion arises when we start looking at climate change. Part of the problem
is that calculation of climate averages, including risks, requires multiple years. The
standard set by WMO (1983; 2007) for calculating climate normals is 30 years, but
there is no strong reason for selecting that time span. But if we think the climate
might be changing, why average across years? The trend should first be estimated and
then subtracted from the data. The second problem is that formal statistical tests of
differences between periods or of smooth trends depend on assumptions that can be
hard to justify. Most tests, such as those for trend used by Stern and Cooper (2011,
this issue), require the assumption that, once a smooth trend has been allowed for, the
remaining variation between years is random with constant variance and uncorrelated
from year to year. Whether that is true is something we actually want to find out.
Strictly, independent replicate series are needed to unambiguously distinguish trend
from random variation, in much the same way that experimenters need replicates to
distinguish real treatment effects from plot-level noise. While having data from more
than one location helps, it does not solve the problem as (a) trends in different places
may be different and (b) the weather at different places may not be independent. Real
replicates would mean having replicate planet Earths, which we do not have. So some
compromises are necessary. We assume that simple trend curves do indeed account
for all the change and assess the size of that change relative to remaining year-to-year
variation. Stern and Cooper (2011, this issue) then show that our problems are not
over. From these and other examples in Africa it is clear that there has always been
some trend or change in rainfall so that the apparent patterns depend on when you
start the analysis and how smooth you assume any trend to be.

Three other important lessons from Stern and Cooper (2011, this issue) are:

1. It is as easy to look at trends in occurrence of agriculturally important weather
events as it is to look at rainfall totals – but with the same problem of distinguishing
annual variation from a shift in the mean.

2. Pulling apart a simple climate measure – for example looking at the number of
raindays and amounts per rainday rather than rain totals, or separating El Niño
from normal years, often gives a clearer picture of trends.

3. Estimates of risks for important climatic events, based on Markov chain-type
modelling of the daily rainfall data, can be obtained from relatively short records of
the data. Stern and Cooper (2011, this issue) give an example from just a six-year
record.

One further technique that could have been included is the use of a ‘sliding window’
of years to show changes in a variance or risk. One prediction of global circulation
models is that rainfall in East Africa might get more extreme. The extent to which
that is evident could be checked by calculating a risk or variance for a moving 30-year
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period. Another approach to estimating climate risks in the face of change would be
to consider variation around a trend rather than around a constant ‘normal’. Risk
estimates for the immediate future (next couple of years) derived from such a model
might be more realistic than those without a built in trend. The methods based on
modelling daily rainfall probabilities, described by Stern and Cooper (2011, this issue)
would be one method of doing this.

One result that stands out from all the climate series presented in these papers is
that any trends or changes in the mean rainfall are small compared with the random
year-to-year variation. This reinforces the conclusion from Cooper et al. (2009) that
an understanding of the farmer’s options for coping better with current variation is
a necessary preparation for adaptation to future climate change. For example, the
response from an NMS employee to the request, during a meeting, for an estimate
of climate change at a site in 2080, was (without a reference) that the mean annual
rainfall is expected to be 5% less than at present. Currently the mean is about 1000 mm,
so a 5% reduction would give a new mean of 950 mm. However, a 1000 mm mean
implies totals in individual years that are usually between about 500 mm and 1500
mm. Hence, even if this statement of a 5% change is true, it would not imply many
years with a rainfall outside the experience of recent past years. This situation does
not necessarily apply to temperature changes. The effect of (say) a 2 ◦C rise in the
maximum and minimum temperatures could be much more serious. Nor do we wish
to imply that changes in rainfall climate are not important. An agricultural activity that
is just viable at present may become unviable with only modest changes in rainfall risk.

The weather we experience occurs as a spatial process yet most analyses, including
those referred to above, consider data from individual locations separately. This is
because direct measurements of climate are collected at individual locations, there are
often problems of accessing data from many stations (see section on ‘Access to data
and tools’ below) and, until recently, repeating analysis for many places was very time-
consuming. Two papers in this collection take a spatial approach. Farrow et al. (2011)
map the risk of bean root rot and Gathenya et al. (2011) map hydrological processes
and integrate them to estimate stream flow. These two analyses differ from each other
in an important methodological way. The risk of bean root rot was estimated for
each location with a separate climate record and the resulting probabilities were then
mapped. This approach to analysis cannot estimate the risk that two locations both
have bean root rot in the same year. Farrow et al. (2011) had to use simulated data
due to unavailability of measured records and we do not yet have the tools to simulate
rainfall fields that realistically reproduce the correlation between different stations.
However, the approach with independent data at each site limits the value of the
analysis, as the problem of bean root rot (or many other risky agricultural outcomes)
depends on the area over which the problem is experienced at the same time. If one
farmer loses her crop due to rot, it is a problem for her but will have little impact on
others. If all the bean farmers in a large area lose their crop at the same time then
it could have major implications for markets, consumers and food security. This idea
is referred to as ‘covariate risks’, and its importance is described in the index-based
insurance literature (e.g. Barnett et al. 2008).
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The analyses by Gathenya et al. (2011, this issue) use observed daily data measured
on the same day for the whole watershed, so that, for example, the flow at the outlet
will depend on whether it rains everywhere in the catchment on the same day or not.
The use of the real data means that the spatial correlations are automatically included.
However, their analysis is still limited by data availability and so again compromises
are necessary to make progress. They take the rainfall at any point in the watershed
as equal to that at the nearest gauge. This might have the effect of overestimating the
spatial coherence of rainfall and hence overestimating the high and low flows at the
outlet. Spatial analysis of the rainfall patterns may give some insight into the scale at
which rainfall tends to be coherent, but it will not suggest a way of filling the gaps if
the spatial scale is found to be less than the distance between gauges, something that
will probably have to be done by simulation. A lesson from this is that we need better
climatological information on spatial organization of rainfall at different time scales
and tools adapted for using the space-time information.

The availability of remote sensed climate data from satellite and radar imagery
changes the status of spatial climate analysis as the raw data are spatial. In this special
issue, only Farrow et al. (2011) attempted to use satellite-derived rainfall data. They
show very low correlation between the estimates of three-day rainfall for the 25 km ×
25 km cell produced from satellite data and that measured at a single gauge within
the cell. These remote sensed data are probably better for estimating rainfall over
longer periods (Coppola et al., 2006) and will certainly improve over time. Estimates
of rainfall from numerical weather models are also becoming available (Diro et al.

2009). UNEP (2011) provides an example of the results that can emerge from looking
at climate trends using spatial data. When spatially interpolated rain gauge data are
combined with satellite-based estimates of vegetation response to rainfall at a regional
scale (West Africa), the results provide an intriguing picture of the way rainfall patterns
have shifted in space over time.

A C C E S S TO DATA A N D TO O L S

A key message from the account of statistical analysis (above) is that an analysis of
climate data to give highly useful information on averages, variability, risks and trends
is not difficult, but it requires access to data and tools and also the capacity to use them.
The data requirements depend on the actual question but most analyses of agricultural
importance need rainfall. In addition, crop modelling requires temperature and,
ideally, radiation and evaporation data. For most crop models, these are needed
as daily records.

Averages can be estimated from relatively short records: 20 years will give a
mean with precision equal to about 20% of the annual variation. Estimation
of risks requires longer records, the length needed depending on how extreme
the risks to be estimated are. Analysis of trend inevitably requires long series.
There are international public archives of climate data, for example at the Global
Observing Systems Information Center (http://gosic.org), the World Data Centre
for Meteorology (http://www.ncdc.noaa.gov/oa/wdc/), the Intergovernmental Panel
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on Climate Change Data Distribution Centre (http://www.ipcc-data.org/obs/) or
the Climatic Research Unit at the University of East Anglia, UK (http://www.cru.
uea.ac.uk/cru/data/). However, the data available from such archives is often already
summarized as monthly averages or totals, sometimes on a gridded basis. Rainfall
data in these archives are sometimes estimated from satellite observations, rather than
from ground stations. There remains great potential for combining information from
ground stations with satellite estimates, but further work is needed on the methods.
However, the primary sources of daily climate records are still the NMSs. In East
Africa, as elsewhere, a substantial collection of climate data is held by NMSs, though
they would always like further recording stations. Some climate projects view the NMS
largely as a source of data and can be disappointed at the time and, sometimes, the
cost of obtaining the observations they need. Difficulties include:

1. Poor communications within meteorology services, so that requests for data become
lost in bureaucracy.

2. Metadata describing what climate records actually exist not available.
3. Some daily data, particularly for variables other than rainfall are still only in paper

format.
4. A requirement that NMSs sell data as a cost recovery mechanism.

Once electronic copies of data are obtained, further common difficulties include:

5. Reformating of data to prepare it for analysis.
6. Data errors due to inadequate quality management.
7. Missing values which, for some purposes (e.g. crop modelling) require imputation.

The ASARECA project sought to engage with NMSs from the start. They were
contacted at the earliest possible stage when there was a first draft concept note
and they responded positively and enthusiastically. About a quarter of the funds were
allocated to activities concerned with collaboration and capacity-building that involved
the NMS staff directly. The aim was for the NMS staff to become full partners in the
research, rather than be largely providers of the data. The challenges this poses for
the NMS are considerable and are spelled out in detail in IRI (2006).

The usual responsibilities of a NMS currently include the following:

• Provision of short-term weather forecasts
• Support for aviation
• Provision of seasonal forecasts.

These responsibilities all build on the physics skills that are routine in the training
of NMS staff. However, they are also custodians of the historical data they and others
have collected. Building statistical capacity of NMS staff along with partners in the
agricultural teams would allow them to process their own data. They could then join
research teams based on their skills and be able to add value to their own data, rather
than simply supply it to others. Many NMSs also have staff who collect the climate
data at individual stations, often including agricultural research stations. It would be
ideal if these staff had the skills to analyse the data they collect and provide products
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to local clients, thus decentralizing some of the NMS activities. Hence the statistical
capacity-building in the ASARECA project was also for some of these staff.

Despite the collaboration, this part of the ASARECA project was not a complete
success. Thus few of the papers in this issue were able to include NMS staff as
authors and some, such as Dixit et al (2011), illustrated that partnership does not
guarantee immunity from frustrations in being able to access and use daily climatic
data. What were the main lessons learned? Discussions at the end of the ASARECA
project re-enforced the view that the strategy of partnership was appropriate and
should be continued in future climatic work. Where there are problems, all partners
need to recognize the formidable nature of the challenges and try harder rather than
change direction. This includes the NMSs themselves, who agreed that they need
to become more proactive if staff are to develop the skills to the level needed to
become fully involved in future agro-climatic research activities. It would also help
if more information about analytical capacity and data holdings, including meta-
data, were routinely available on the NMS websites. Ethiopia sets a good example at
www.ethiomet.gov.et.

It was clear early in the ASARECA project that crop simulation models would
play an important role in the work. These models transform climatic variability into
estimated crop growth and yield variability for a wide variety of crops and crop, soil
and water management practices. This enables us to phrase risk statements in terms
of their impact on yields and to assess the effect of alternative cropping strategies
on this risk. If crop modelling is done using say APSIM (Keating et al., 2003) in
Australia, it is easy to get the climatic data, see www.longpaddock.qld.gov.au/silo/.
Modellers can then concentrate on the soil, crop and agronomic characteristics. In
Africa the large effort currently needed to arrange for climatic data in the right form
for the crop models is a serious limitation. The African NMSs could remove this
limitation. Being able to provide data in relevant formats with documented quality
assurance procedures and supporting expertise to use the data effectively could turn
these services into sought-after partners in agricultural research and development.
Without taking this step, the NMSs risk being sidelined as data acquisition and access
become more international.

The practical difficulties of obtaining daily climatic data led some of the studies
reported in this issue to make use of MarkSim (Jones and Thornton, 2002). This
software is a tour-de-force, particularly considering that it was work mainly done
more than 10 years ago. Dixit et al. (2011) and Farrow et al. (2011) demonstrate
that MarkSim can generate synthetic rainfall series that accurately show patterns of
variability that are important in agriculture. However such models, which are based
on very simple descriptions of rainfall processes, will never be able to reproduce all
important characteristics of the data. For example, real rainfall series often show much
longer-term memory than assumed by the Markov chain models used in MarkSim.
Moreover, given when it was developed, it would be excellent if an updated version
could be produced. This could be in collaboration with the respective NMSs, as it
complements what they will be able to provide in the future. A new version should use
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improved underlying models of the pattern of rainfall, temperatures and radiation,
use a more complete database, and allow integration of observed and simulated data
in various ways. It could also allow the possibility of modelling trends over time. A
further enhancement would be the generation of rainfall fields with realistic spatial
correlation structure. Such a development of ‘MarkSim Mark 2’ would be a substantial
undertaking but would be a valuable addition to the climate analysis toolbox.

Climate data are not the only data needed. The crop simulation models integrate
a large data-based collection of evidence and still need calibrating for particular
problems using field experiments. Simpler models – for example, as used by Farrow
et al. (2011) to relate weather to bean root rot outbreak – also require field data.
The bean root rot example is based on rather weak evidence of the weather events
that trigger the disease. This raises the question of how more robust data should be
collected. What spatial scale is relevant – should the presence of the disease be observed
at plant, plot, field or larger scale? At what distance away does meteorological data
need recording? Are standard weather variables sufficient or should others (e.g. soil
or leaf moisture) be observed? What covariates, such as soil texture, are needed?
Modelling is not going to reduce the need for insight and skills in designing effective
field data collection, but it can provide useful guidance.

Statistical software of sufficient quality and generality are freely available. The
most comprehensive open source statistics software is R (R Development Core Team,
2009), but it does not currently have tools specifically developed to implement the
type of analyses described by Stern and Cooper (2011). Instat (University of Reading,
2008) is much less comprehensive but has built-in facilities for analysis of events of
agricultural significance in daily rainfall records and comes with a comprehensive
guide to such analyses. A version of Genstat (VSN International, 2010) is freely
available to researchers in developing countries and also has a guide to the analysis of
climate data (Gallagher and Stern, 2009).

The value of modelling crop response to climate has been demonstrated here
by Dixit et al. (2011) and in numerous other studies. APSIM (Keating et al., 2003)
and the DSSAT suite (Jones et al., 2003) are standard models which have been
widely used for annual crops. Researchers have developed and published numerous
other models to simulate other weather-related systems (Matthews and Stephens,
2002) and to broaden the scope beyond annual crops – for example Wanulcas
(van Noordwijk et al., 2004) simulates tree-crop interactions in agroforestry systems.
All these models have the characteristic of providing realistic descriptions of many
processes, but require considerable skill and experience to use them. An alternative
approach is to develop simpler models that meet specific purposes. Simple models,
such as the FAO water balance model used by Stern and Cooper (2011), can
be constructed without use of modelling tools. More sophisticated models become
easier for non specialists to construct using modelling software such as Stella
(www.iseesystems.com/softwares/Education/StellaSoftware.aspx). These tools allow
modellers to concentrate on the logic and performance of a model rather than the
details of computer code.
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P E RC E P T I O N S A N D AT T I T U D E S TO R I S K A N D C H A N G E

Osbahr et al. (2011) and Rao et al. (2011) investigated farmers’ perceptions of climate
variability and change and also their attitude to climate risks. Their conclusions
are similar and contain important lessons for the growing number of initiatives
that include an assessment of farmer perceptions in climate change adaptation and
mitigation projects. Both papers combined a survey with the analysis of climate data
from nearby stations, the latter component being rare in projects that aim to help
farmers take action to reduce climate risks. The results showed that farmers are
well aware of climate conditions in their area, its season-to-season variability and
its impact on crop performance. Farmers were also able to recollect recent seasons
fairly accurately, especially the ‘good’ and ‘poor’ seasons which matched well with
the meteorological records. However recollections become rather vague after more
than about five seasons. Farmers classification of seasons into ‘good’, ‘average’ and
‘poor’ is based on criteria that include a complex mix of factors that relate to the
outcome of their activities. These include rainfall, onset and cessation of the rainy
season, and distribution of rainfall especially in relation to critical stages of growth.
The near uniformity among the farmers in defining the criteria is a clear indication
of their good understanding of the climate.

However, there were some distinct differences between farmers’ assessments and
researchers’ conclusions based on analysis of climate data. Two factors seem to be
important. First, farmers compare the weather in one season with an assumed ideal
for their conditions, rather than the actual long-term pattern, mentally replacing
‘rainfall expected’ with ‘rainfall hoped for’. Secondly, farmers over-estimate the risk
of poor conditions and so reduce opportunities for benefiting from good conditions.

Both Osbahr et al. (2011) and Rao et al. (2011) elicited farmers’ perceptions of climate
change and compared them with the climate record. Farmer observations in these
locations, that rainfall patterns are changing, agreed well with reported perceptions
from other places across the African continent. They were also internally consistent
between different groups of farmers, but they were generally not consistent with
observed records. Whilst Osbahr et al. found both farmers and the climate data
agreeing on increasing temperatures, there is limited evidence from these locations
for the changes in rainfall amount, seasonality or extreme events that farmers
report. There are some subtle rainfall patterns that do support some of the farmers’
perceptions. For example, in this bi-modal rainfall region in Uganda, the risk of
increased mid-season drought observed in the first season (March–May) by farmers
was also suggested in the climate data, where the first season was found to have a less
reliable distribution than the second season and the persistence of rain on consecutive
days is now more likely in the second (October–December) season.

Both Rao et al. (2011) and Osbahr et al. (2011) hypothesize that farmers report a
decline in rainfall because it is crop production that farmers recall, rather than the
climate. Farmers may be reporting a decline in rainfall because their need for crop
available water has changed over time and has increased demands on the rains. Rao et

al. (2011) showed that there were clear decreasing trends in district-level maize yields
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at the study-locations in Kenya that could be attributed to declining soil fertility but
that farmers attributed to rainfall. Other factors that might be changing and influence
perceptions of climate are household economic circumstances and an increased local-
level demand for water. This agrees with other studies of drought (Meze-Hausken,
2004; Slegers, 2008) that show that it is the impact on livelihood that is important
in defining drought from the viewpoint of local people rather than a cause directly
related to rainfall.

The two factors of confounded changes and assessment relative to ideal rather than
previous weather suggest that caution is needed when interpreting results based on
farmer perceptions. Two recommendations are:

1. Ensure sound methods are used when eliciting farmers’ views on climate change.
Such methods should not place too much emphasis on testing memory or attitudes
to hypothetical situations.

2. Complement farmer knowledge with an analysis of observed climate records.

Without these there is a good chance that projects will perpetuate myths and develop
interventions that fail because they are tackling the wrong problem.

A third factor that can make it hard to elicit and interpret such data is that change
in climate has always happened and any description of change has to be clear about
the baseline.

R I S K M I T I G AT I O N A N D C O P I N G

Risk mitigation refers to actions or strategies that households pursue ex ante to avoid or
reduce the impact of future shock or to reduce risks. Risk coping strategies are those
that households pursue ex post, mainly to deal with the negative effects of a shock. Risk
mitigation strategies may improve long-term resilience, while risk coping strategies
mostly ensure survival during and after a shock. The need to address questions of
risk mitigation and reducing the risks to farmers was a driver of most papers in this
edition. However, only the paper on pastoral systems by Ouma et al. (2011) explicitly
looked at current risk mitigation and coping strategies. Risk mitigation and coping are
popular themes for projects motivated by global climate change. Perhaps the concepts
are not so distinct, for as soon as a coping action becomes something farmers are
prepared for it is then part of their system and hence something that reduces the
negative consequences of a shock, and is thus part of their risk mitigation strategy.
The literature on climate risk mitigation and coping is substantial. A useful overview
is give by Hellmuth et al. (2007). Some important lessons from the collection of papers
in this issue are:

1. Hansen et al. (2011) point out that it is not just farmers and pastoralists for whom
climate risk mitigation ideas are relevant. All those along the value chain can be
affected by climate risk and can probably take action to reduce those risks.
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2. Dixit et al. (2011) show that risk and variation should not only be a concern of
those operating in less favoured climates. Attention to variation in a ‘breadbasket’
of highland Kenya can increase productivity and profitability.

3. Current risk mitigation strategies can be complex, exemplified by the web of
social and economic mechanisms found in pastoralist areas (Ouma et al., 2011).
Interventions to alter them will have to deal with the complexity, and hence analysis
of climate data to understand the risks will need to be similarly nuanced.

4. The complexity of mitigation strategies also means that their effectiveness will be
influenced by multiple changes, and they cannot be designed simply as responses
to climate change. For example, Ouma et al. (2011) report that pastoralists see
diversified livelihoods as becoming increasingly important to mitigate climate risk.
Hence assessments of climate risk must include impacts on other enterprises in
addition to those on livestock. Changes such as population increase and reduced
options for migration must also be included in risk assessments, both current and
for future scenarios.

5. An important aspect of mitigating risk is that of targeting interventions. Gathenya
et al. (2011) predicted very different responses to interventions even in neighbouring
parts of one small watershed.

Ouma et al. (2011) finish with the very positive message that there are new and
emerging risk mitigation ideas for pastoralists that hold hope for the future. These
include: (i) index-based livestock insurance, (ii) improvements in the management of
food insecurity response for pastoralists (cash instead of food aid) and (iii) recasting of
development interventions as risk management. It seems likely that risk mitigation for
rainfed cropping farmers will need some equally innovative responses that go beyond
what can be achieved by better matching of crop genotype and agronomy to climate.

S E A S O N A L F O R E C A S T S

With year-to-year variation in weather being such a large component of agricultural
risk, forecasts that predict the weather for the coming season would be very beneficial.
Hansen et al. (2011) provide a comprehensive review of the methods currently being
used to provide seasonal forecasts, together with steps being taken to improve the
methods in the future. They state that interactions between the atmosphere and
underlying oceans provides the basis for probabilistic forecasts of climate conditions
at a seasonal lead-time, including during cropping seasons in parts of sub-Saharan
Africa. The forecast is based on combining information from the global models with
a statistical approach that relates sea-surface temperatures to the three-month rainfall
totals. It is surprising that the final forecast is still produced subjectively by a consensus.
We wonder what information is being brought by the participating parties that cannot
be included in a quantitative data analysis process.

Hansen et al. (2011) accept that there remains a considerable gap between the
information needed to support farm decision-making and the seasonal forecast
information that is routinely available. Indeed it is often hard to see how the seasonal
forecast in the format currently disseminated can be of great help to a farmer. In
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the absence of a forecast, the risk of the seasonal rainfall being ‘below average’ is, by
definition, 33%. The forecast changes this, reducing it to as low as 20% or increasing
it to 50%, but very rarely going outside this range. This raises the question of what
decisions a farmer will change on the basis of this rather small change in probability.
Hansen et al. (2011) propose changing from this tercile (probabilities of below average,
average and above average) presentation to providing a shifted probability of any
amount being exceeded. This seems correct but as the shift in probabilities is still
small and as the forecast remains based on the three month rainfall totals, it still has
the same problem of what actions can be taken. One limitation of forecasts of this
resolution is well illustrated by the 2010 ‘short rains’ in southeast Kenya, ongoing as
this is written. The forecast was for a late start and below average rainfall. This has
happened, but the rainfall distribution has matched crop requirements so crops are
nevertheless performing well (K.P.C. Rao, personal communication).

Stern and Cooper (2011) and others, indicate that there is scope to work with the
total number of rain days rather than only the rainfall totals. Some of the forecast skill
arises because of the El Niño effect and it would be interesting to see how much skill
remains after this is taken into account in describing the climatology, as in Stern and
Cooper.

Hansen et al. (2011) report studies that show through modelling that there is useful
skill in the seasonal forecasts. This is encouraging. They also claim positive results
from field studies that aimed to evaluate farmers’ response to forecasts. Such studies
are not easy to design so that the value of the forecasts per se can be separated from the
value of other information provided and actions taken. A well-designed experiment
would require a control group of farmers that had the same level of attention as the
group receiving forecasts and got all information and other inputs except the forecast
itself. We have not seen results from such an experiment.

A further challenge in evaluating farmers’ responses is to generate a long enough
series. A probabilistic forecast that says, for example, that the chance of rain being in
the lower tercile is 50% is accurate if the actual rainfall is in the lower tercile in 50%
of the years that get such a forecast. In a single year, there is a 50% chance that the
rain is low, and farmer’s react positively to the forecast of low rain. But there is also
a 50% chance that the rain is in the ‘average’ or ‘above average’ tercile, and farmers
may be disappointed by the ‘failure’ of the forecast. Roncoli et al. (2009) makes the
point that the positive assessment of the forecast in one season can be attributed to it
actually being close to experience, but that cannot be expected to happen every year.
Efforts to help farmers understand the nature of probabilistic forecasts are necessary.

The seasonal forecast is disseminated by the NMSs. There is an opportunity for
NMSs to merge seasonal forecasting with their other roles of providing climate risk
assessments. If questions of agricultural risk are posed long before the season, then
estimates of risks can only be based on the historical data. As the season approaches,
these risks could be modified, by adding the extra information that becomes available
from the seasonal forecast. Then, during the season, farmers can also make use of the
short-term forecast, that is routinely provided, and is usually for the subsequent five
or ten days.

https://doi.org/10.1017/S001447971100010X Published online by Cambridge University Press

https://doi.org/10.1017/S001447971100010X


408 R . C O E A N D R . D. S T E R N

Hansen et al. (2011) describe well how constraints related to legitimacy, salience,
access, understanding, capacity to respond and data scarcity have so far limited the
widespread use and benefit from seasonal prediction among smallholder farmers.
Constraints related to the information products and policies can be overcome, and it
is probably worth doing so. However, continued effort is needed to evaluate the actual
value of current forecasts to be sure we are not generating false expectations of better
information than is actually possible.

Two other messages related to forecasts emerge from the papers. First, there are
potential users beyond farmers, for example those responsible for co-ordinating input
and credit supply, food crisis management, trade and agricultural insurance. Secondly,
there is a substantial opportunity cost associated with climatic uncertainty. Forecasts
can help make the most of favourable weather in the better seasons, as well as avoiding
disastrous losses in the poor ones.

National Meteorological Services have achieved considerable publicity by their
work on seasonal forecasting. This publicity for the service is useful, but the current
seasonal products perhaps do not justify the level of publicity on their own. The
seasonal products should improve over the coming years as the dynamic models of
the global system continue to advance. In the interim, we suggest that the addition
of further products, from the analysis of the historical data (i.e. from the sections on
statistical analysis and access to data and tools of this paper) would be welcomed by
users.

C O N C L U S I O N S

With the justified current interest in climate and agriculture, all stakeholders including
researchers, data providers, policy developers and extension workers will need to
work together to ensure that interventions are based on a correct interpretation of
a valid analysis of relevant data. This requires capacity-building. However, many
training workshops have already been held, including some within the ASARECA
project, and they have had only limited impact. They have often been supply-driven
rather than demand-driven and hence they have usually not been linked to proposed
changes in working practices. This paper outlines the lessons we have learned from
the ASARECA project, and from the other papers in this issue of the journal. Perhaps
further actions, including future proposals for further capacity development, could
build on the lessons that each partner has learned. One of these lessons is that, as
in all scientific areas, those working on climate risk and variation need to be critical,
observant, questioning and continually seeking better evidence to support assertions.

Improved methods and data sources will continue to be developed. However, the
current tools and data are underused. Interventions related to climate and agriculture
would be more effective if routinely linked to a thorough and insightful analysis of
climate data.
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‘Managing Uncertainty: Innovation Systems for Coping with Climate Variability and
Change’.
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