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Curvature of K-contact Semi-Riemannian
Manifolds
Domenico Perrone

Abstract. In this paper we characterize K-contact semi-Riemannian manifolds and Sasakian semi-
Riemannian manifolds in terms of curvature. Moreover, we show that any conformally flat K-contact
semi-Riemannian manifold is Sasakian and of constant sectional curvature κ = ε, where ε = ±1
denotes the causal character of the Reeb vector field. Finally, we give some results about the curvature
of a K-contact Lorentzian manifold.

1 Introduction

Contact Riemannian manifolds, in particular K-contact and Sasakian manifolds,
have been intensively studied. The recent monographs [2, 5] give a wide and de-
tailed overview of the results obtained in this framework. Contact semi-Riemannian
structures (η, g), also called contact pseudo-metric structures, where η is a contact
1-form and g a semi-Riemannian metric associated to it, are a natural generaliza-
tion of contact Riemannian structures also called contact metric structures. Contact
Lorentzian structures are particular contact semi-Riemannian structures. The rele-
vance of contact semi-Riemannian structures for physics was pointed out in [1, 9].
Contact structures equipped with semi-Riemannian metrics were first introduced
and studied by Takahashi [16], who focused on the Sasakian case. However, in the
semi-Riemannian case, even for Sasakian and K-contact manifolds, there are few re-
sults. Recently, in [6] (see also [7, 8]) we introduced a systematic study of contact
structures with semi-Riemannian associated metrics. In this paper we continue this
study, turning our attention to the case of K-contact semi-Riemannian manifolds,
emphasizing analogies and differences with respect to the Riemannian case. The
paper is organized in the following way. In Section 2 we report some basic infor-
mation for contact pseudo-metric manifolds. In Section 3 we characterize K-contact
and Sasakian, semi-Riemannian manifolds in terms of curvature (see Theorems 3.1,
3.3). Note that, in the Riemannian case, Theorem 3.1(i) holds in a stronger form (cf.
Remark 3.2). Then, in Section 4 we show that any conformally flat K-contact semi-
Riemannian manifold is Sasakian and of constant sectional curvature κ = ε, where
ε = ±1 denotes the causal character of the Reeb vector field. Section 5 contains some
results about the curvature of a K-contact Lorentzian manifold. In particular, a sim-
ply connected η-Einstein Lorentzian-Sasaki manifold of dimension 2n + 1 > 3, with
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scalar curvature rL < 2n, admits a transverse homothety whose resulting Lorentzian-
Sasaki manifold (M, g̃L) is Einstein, and thus it is a spin manifold. In dimension three,
the Lie groups SU (2), S̃L(2,R), and a special non-unimodular Lie group, are the only
simply connected manifolds that admit a Lorentzian-Sasaki structure with constant
scalar curvature rL 6= 2. In particular, the unimodular Lie group S̃L(2,R) and a
special non-unimodular Lie group are the only simply connected three-manifolds
that admit a left invariant Lorentzian-Sasaki structure of constant sectional curva-
ture κ = −1.

2 Preliminaries on Contact Semi-Riemannian Manifolds

In this section, we collect some basic facts about contact semi-Riemannian manifolds
[6]. All manifolds are assumed to be connected and smooth. A (2n + 1)-dimensional
manifold M is said to be a contact manifold if it admits a global 1-form η such that
η ∧ (dη)n 6= 0. Given η, there exists a unique vector field ξ, called the characteristic
vector field or the Reeb vector field, such that η(ξ) = 1 and dη(ξ, · ) = 0. Furthermore,
a semi Riemannian metric g is said to be an associated metric if there exists a tensor ϕ
of type (1, 1) such that

η = εg(ξ, · ), dη( · , · ) = g( · , ϕ · ), ϕ2 = −I + η ⊗ ξ,

where ε = ±1, and so g(ξ, ξ) = ε (the light-like case cannot occur for the Reeb vector
field). In particular, the signature of an associated metric is either (2p + 1, 2n −
2p) or (2p, 2n − 2p − 1), according to whether ξ is space-like or time-like. Then
(η, g, ξ, ϕ), or (η, g), is called a contact semi Riemannian structure, or contact pseudo
metric structure, and (M, η, g, ξ, ϕ) a contact semi-Riemannian manifold or a contact
pseudo metric manifold. We denote by ∇ the Levi-Civita connection and by R the
corresponding Riemann curvature tensor given by

RXY = ∇[X,Y ] − [∇X,∇Y ].

Moreover, we denote by Ric the Ricci tensor of type (0, 2), by Q the corresponding
endomorphism field and by r the scalar curvature. The tensor h = 1

2Lξϕ, where L

denotes the Lie derivative, is symmetric and satisfies

(2.1) ∇ξ = −εϕ− ϕh, ∇ξϕ = 0, hϕ = −ϕh, hξ = 0.

If {E1, . . . , E2n+1} is an arbitrary local pseudo-orthonormal basis on M and εi =
g(Ei , Ei), then

tr∇ϕ =

2n+1∑
i=1

εi(∇Eiϕ)Ei = 2nξ,(2.2)

Ric(ξ, ξ) = 2n− tr h2.(2.3)

A contact semi-Riemannian manifold is said to be η-Einstein if the Ricci operator Q
is of the form Q = aI + bη ⊗ ξ, where a, b are smooth functions. A contact semi-
Riemannian manifold is said to be a K-contact manifold if ξ is a Killing vector field,
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or equivalently, h = 0. Moreover, a contact semi-Riemannian structure (ξ, η, ϕ, g) is
said to be Sasakian if it is normal, that is [ϕ,ϕ] + 2dη ⊗ ξ = 0. This last condition is
equivalent to

(∇Xϕ)Y = g(X,Y )ξ − εη(Y )X.(2.4)

Any Sasakian manifold is K-contact and the converse also holds when n = 1, that is,
for three-dimensional spaces. It is worthwhile to remark here a difference between
the Riemannian case and the general semi-Riemannian one. In fact, in both cases,
tr h2 = 0 implies Ric(ξ, ξ) = 2n. Moreover, it is well known that K-contact Rieman-
nian manifolds are characterized by the condition Ric(ξ, ξ) = 2n, since it implies
trh2 = 0, and so h = 0, because h is diagonalizable. On the other hand, there exist
contact pseudo-metric manifolds for which trh2 = 0 but h 6= 0, as we showed in
[6] (see also [7, Example 1.1]). For a contact semi-Riemannian manifold (M, η, g),
h2 = 0 does not imply h = 0. We refer to [6–8] for more information about contact
pseudo metric geometry.

3 K-contact and Sasakian Semi-Riemannian Manifolds

Theorem 3.1 Let (M, η, g, ξ, ϕ) be a K-contact semi-Riemannian manifold. Then

(i) ξ is an eigenvector of the Ricci operator Q: Qξ = 2nεξ;
(ii) M is Sasakian if and only if the curvature tensor R satisfies

(3.1) R(X,Y )ξ = η(X)Y − η(Y )X.

Proof (i) Since ξ is a Killing vector field, then it is affine and hence satisfies

R(X, ξ)Y = −∇X∇Y ξ +∇∇XY ξ;

moreover, by (2.1),∇ξ = −εϕ. Then

(3.2) R(X, ξ)Y = ε∇XϕY − εϕ∇XY = ε(∇Xϕ)Y.

Consequently, if Ei is a local pseudo-orthonormal basis, we have

Qξ =

2n+1∑
i=1

εiR(Ei , ξ)Ei = ε

2n+1∑
i=1

εi(∇Eiϕ)Ei = ε tr∇ϕ.

Since, by (2.2), tr∇ϕ = 2nξ, we get Qξ = 2nεξ.
(ii) If M is Sasakian, by (2.4), we have

(∇Xϕ)Y = g(X,Y )ξ − εη(Y )X.(3.3)

Moreover, M is K-contact and thus holds (3.2). Using (3.2) and (3.3) we get (3.1).
Conversely, if (3.1) holds, we have R(X, ξ)ξ = ϕ2X. On the other hand, ξ is Killing,
that is,∇ξ = −εϕ. Thus holds (3.2). Consequently, using (3.1) and (3.2), we obtain

εg((∇Xϕ)Y,Z) = g(R(X, ξ)Y,Z) = −g(R(Y,Z)ξ,X)

= −g(η(Y )Z − η(Z)Y,X)

= g(−η(Y )X,Z)− εg(X,Y )g(ξ,Z).

Therefore, we get (2.4) and thus M is Sasakian.
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Remark 3.2 A contact semi-Riemannian manifold (M, η, g, ξ, ϕ) is K-contact if
and only if the tensor h = 1

2Lξϕ vanishes. In the Riemannian case, Theorem 3.1(i)
holds in a stronger form; that is, M is K-contact if and only if Qξ = 2nξ (cf. [2,
Theorem 7.1 and Proposition 7.2]). In fact Qξ = 2nξ implies trh2 = 0, and so h = 0,
because h is diagonalizable. When M is semi-Riemannian, the condition Qξ = 2nεξ
implies, by using (2.3), trh2 = 0, but as we showed in [6] (see also [7, Example 1.1])
in general trh2 = 0 does not imply h 6= 0. In the Riemannian case, Theorem 3.1(ii)
holds in the same form (cf. [2, Proposition 7.6]).

The following is a characterization of K-contact semi-Riemannian manifolds in
the class of all semi-Riemannian manifolds. In the Riemannian case, the correspond-
ing result was given in [11].

Theorem 3.3 A semi-Riemannian manifold (M, g) is K-contact if and only if M ad-
mits a Killing vector field ξ, with g(ξ, ξ) = ε, such that the sectional curvature of all
nondegenerate plane sections containing ξ equals ε.

Proof Let p be a point of M. We recall that a plane section span(Xp,Y p) is nonde-
generate if A(Xp,Y p) := g(Xp,Xp)g(Y p,Y p) − g(Xp,Y p)2 6= 0. Suppose first that
(ξ, ϕ, η, g) is a K-contact structure on M. For a contact semi-Riemannian manifold,
by (2.1), one gets

R( · , ξ)ξ = −ϕ∇ξh + ϕ2 + h2.(3.4)

Since ξ is Killing, i.e., h = 0, for a nondegenerate plane section span(ξp,Xp),
g(ξp,Xp) = 0, from (3.4) we have

K(ξp,Xp) = −
g(R(Xp, ξp)ξp,Xp)

εg(Xp,Xp)
= −

g(ϕ2Xp,Xp)

εg(Xp,Xp)
= ε.

Conversely, suppose that ξ is a Killing vector field with g(ξ, ξ) = ε = ±1, and define
η and ϕ by

η = εg(ξ, · ), ϕ = −ε∇ξ.

Since g(ξ, ξ) = ε, the nondegenerate plane sections containing ξ are nondegenerate
for any vector field X ∈ Ker ηp, which is either space-like or time-like. Let p be a
point of M. Then

ε = K(ξ,Xp) = −
g(R(Xp, ξp)ξp,Xp)

εg(Xp,Xp)
, that is g(R(Xp, ξp)ξp + Xp,Xp) = 0,

for any Xp ∈ Ker ηp, with Xp either space-like or time-like. Now, if Y p ∈ Ker η is a
null vector, that is, span(ξp,Y p) is degenerate, by [14, Lemma 40, p. 78], the vector Y p

is limit of nonull vectors Xp of Ker ηp. Since g(R(Xp, ξp)ξp + Xp,Xp) is a continuous
function of Xp, we get

g(R(Xp, ξp)ξp + Xp,Xp) = 0, for any Xp ∈ Ker ηp.
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Then, since the endomorphism S(Xp) := R(Xp, ξp)ξp + Xp is self-adjoint, we have

(3.5) R(Xp, ξp)ξp = −Xp, for any Xp ∈ Ker ηp and p ∈ M.

Moreover, since ξ is Killing with g(ξ, ξ) = const, we have

ϕξ = −ε∇ξξ = 0, g(ϕX,Y ) = −g(X, ϕY )

and

R(X, ξ)ξ = −∇X∇ξξ +∇∇Xξξ = ∇∇Xξξ = ϕ2X.(3.6)

So from (3.5) and (3.6), we get ϕ2X = −X for any X ∈ Ker η. This gives ϕ2X =
−X + η(X)ξ for arbitrary X. Moreover,

2ε(dη)(X,Y ) = Xg(ξ,Y )− Y g(ξ,X)− g(ξ, [X,Y ]) = g(∇Xξ,Y )− g(X,∇Y ξ)

= −εg(ϕX,Y ) + εg(X, ϕY )

= 2εg(X, ϕY ).

This implies that η is a contact 1-form, ξ the associated Reeb vector field, and g an
associated metric. Since ξ is Killing, the structure (η, g, ξ, ϕ) is K-contact.

4 Conformally Flat K-contact Semi-Riemannian Manifolds

Generalizing a result of Okumura [13], Tanno [17] proved that a conformally flat
K-contact Riemannian manifold is of constant sectional curvature +1. In this section,
we show the corresponding result in the semi-Riemannian case.

Theorem 4.1 Let M = (M, η, g, ξ, ϕ) be a conformally flat K-contact semi-Rieman-
nian manifold. Then M is Sasakian and of constant sectional curvature κ = ε =
g(ξ, ξ).

Proof We first consider M of dimension 2n + 1 > 3. We recall that a semi-Rieman-
nian (2n + 1)-manifold, n > 1, is conformally flat if and only if

(2n− 1)R(X,Y )Z = g(Z,X)QY + g(QZ,X)Y − g(Z,Y )QX − g(QY,Z)X(4.1)

− r

2n

(
g(Z,X)Y − g(Z,Y )X

)
.

In particular, for Z = ξ, we have

(2n− 1)R(X,Y )ξ = g(ξ,X)QY + g(Qξ,X)Y − g(ξ,Y )QX − g(QY, ξ)X

− εr

2n

(
η(X)Y − η(Y )X

)
.

(4.2)

On the other hand, by Theorem 3.1, for a K-contact manifold we have Qξ = 2nεξ,
and hence (4.2) implies

(4.3) 2n(2n− 1)R(X, ξ)ξ = 2n
(

4nη(X)ξ − εQX − 2nX
)
− εr

(
η(X)ξ − X

)
.
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But, in the K-contact case, R(X, ξ)ξ = ϕ2X = −X + η(X)ξ. Then (4.3) implies

(4.4) QX =
r − 2nε

2n
X +

2n(2n + 1)ε− r

2n
η(X)ξ.

From (4.2) and (4.4) we get R(X,Y )ξ = η(X)Y − η(Y )X. Then since ξ is Killing, by
Theorem 3.1, M is Sasakian.

Next, we consider the ∗-scalar curvature r∗ of a contact pseudo-metric manifold
(M, η, g) by contracting the curvature tensor by ϕ insteaded of by the metric. Pre-
cisely,

r∗ = tr Ric∗ =

2n+1∑
i, j=1

ε jεig
(

R(E j , Ei)ϕE j , ϕEi

)
where {E1, . . . , E2n+1} is a pseudo-orthonormal basis. Then we get

(4.5) r∗ − r + 4n2ε = ε tr h2 +
1

2

(
‖∇ϕ‖2 − 4nε

)
(see [6, Lemma 4.6]). By using (4.1), a direct calculation gives

(4.6) r∗ =

2n+1∑
i, j=1

ε jεig
(

R(E j , Ei)ϕE j , ϕEi

)
=

r − 4nε + 2ε tr h2

2n− 1
.

From (4.5) and (4.6), one gets

(4.7) 4(n− 1)
(
−r + 2n(2n + 1)ε

)
= 2ε(2n− 3) tr h2 + (2n− 1)(‖∇ϕ‖2 − 4nε).

Since M is Sasakian, h = 0, and by (2.4) we easily find (‖∇ϕ‖2 − 4nε) = 0. Then
(4.7) and n > 1 give r = 2n(2n + 1)ε, and by (4.4) we get QX = 2nεX. Thus
M is a conformally flat, Einstein semi-Riemannian manifold. Then formula (4.1),
QX = 2nεX, and r = 2n(2n + 1)ε give

R(X,Y )Z = ε
(

g(Z,X)Y − g(Z,Y )X
)
,

namely M has constant sectional curvature κ = ε.
Now, let (M, η, g) be a three-dimensional conformally flat K-contact semi-Rie-

mannian manifold. In this case a pseudo-orthonormal ϕ-basis {ξ, E, ϕE} of Ker η,
satisfies g(ϕE, ϕE) = g(E, E) = ±g(ξ, ξ) = ±ε. Moreover, in dimension three, any
K-contact semi-Riemannian manifold is automatically Sasakian and η-Einstein (see
Remark 5.2), thus

(4.8) Ric = αg + βη ⊗ η, where α =
( r

2
− ε
)

and β =
(

3− ε r

2

)
.

Since ξ is Killing, it leaves Ric invariant, that is Lξ Ric = 0. This and (4.8) imply

(4.9)
(
∇ξ Ric

)
(E, ϕE) = 0.
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Recall that a semi-Riemannian 3-manifold is conformally flat if and only if

(4.10)
(
∇X Ric

)
(Y,Z)−

(
∇Y Ric

)
(X,Z) = (1/4)

(
g(Y,Z)X(r)− g(X,Z)Y (r)

)
From (4.10) and (4.8), we have(

∇ξ Ric
)

(E, ϕE) =
(
∇E Ric

)
(ξ, ϕE) = −Ric(∇Eξ, ϕE)− Ric(ξ,∇EϕE)

= εRic(ϕE, ϕE)− Ric(ξ,∇EϕE)

= ± ε2α− αg(ξ,∇EϕE)− βη(ξ)η(∇EϕE)

= ± α∓ α∓ βε = ∓ βε.

Therefore, (4.9) gives β = 0; that is, M is Einstein with r = 6ε, namely M has
constant sectional curvature κ = ε.

Corollary 4.2 Any conformally flat K-contact Lorentzian manifold is Lorentzian-
Sasaki and of constant sectional curvature κ = ε = g(ξ, ξ).

Besides, as a consequence of Theorems 4.1 and 3.3 we get the following corollary.

Corollary 4.3 Let (M, g) be a conformally flat semi-Riemannian manifold. If M
admits a Killing vector field ξ with g(ξ, ξ) = ε, such that the sectional curvature of all
nondegenerate plane sections containing ξ equals ε, then M admits a Sasakian semi-
Riemannian structure (η, g) of constant sectional curvature κ = ε.

Example 4.4 (Sasakian semi-Riemannian manifolds of constant curvature) Con-
sider (R2n+2

2s , g̃) the pseudo-Euclidean space with the standard indefinite Käler metric.
The pseudosphere and the pseudohyperbolic space are defined by

S2n+1
2s (1) = {x ∈ R2n+2

2s : g̃(x, x) = 1} and H2n+1
2s−1(−1) = {x ∈ R2n+2

2s : g̃(x, x) = −1}.

They are hyperquadrics of R2n+2
2s , both of dimension (2n+1), of index 2s and (2s−1),

and of constant sectional curvature 1 and −1 respectively. Moreover, they have a
canonical Sasakian semi-Riemannian structure, with characteristic vector field space-
like and time-like respectively [16].

5 Some Remarks on Contact Lorentzian Manifolds

It is easy to see that a smooth manifold admits a Lorentzian metric if and only if it
admits a nowhere vanishing vector field. So contact semi-Riemannian geometry is
quite natural in the Lorentzian setting. Lorentzian Sasaki structures are related to
the Kaehler structures by the following (cf. [1, p. 46]): M has a Lorentzian Sasakian
structure (gL, η) if and only if the cone C(M) = (M × R, gC = t2gL − dt ⊗ dt) has a
(semi-Riemannian) Kaehler structure. In this section we give some results about the
curvature of a contact Lorentzian manifold.

Let (M, η, g) be a contact semi-Riemannian manifold of dimension 2n + 1, with
g(ξ, ξ) = ε. Then it is easy to check that for any real constant t 6= 0 the tensors

(5.1) η̃ = tη, ξ̃ =
1

t
ξ, ϕ̃ = ϕ, g̃ = tg + εt(t − 1)η ⊗ η
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describe another contact semi-Riemannian structure on M, having the same contact
distribution Ker η̃ = Ker η, called a D-homothetic deformation (or a transverse ho-
mothety) of (ϕ, ξ, η, g). Clearly, (5.1) is the natural semi-Riemannian generalization
of D-homothetic deformations of a contact Riemannian structure, where one has
g(ξ, ξ) = 1 and needs to assume t > 0 so that g̃ is still Riemannian [18]. Notice that

g̃(ξ̃,X) = εη̃(X). In particular, ε̃ = g̃(ξ̃, ξ̃) = g(ξ, ξ) = ε, that is, D-homothetic
deformation preserves the causal character of the Reeb vector field. For t < 0, if g
is of signature (2p + 1, 2n − 2p), then g̃ is of signature (2n − 2p + 1, 2p). The Ricci
tensors, the scalar curvatures, and the sectional curvatures satisfy

R̃ic = Ric−2ε(t − 1)g + 2(t − 1)(nt + n + 1)η ⊗ η(5.2)

+
t − 1

t
g
(
ε(∇ξh)ϕ + 2h, ·

)
,

r̃ =
1

t
r − ε t − 1

t2
Ric(ξ, ξ)− 2nε

(t − 1)2

t2
,(5.3)

K̃(ξ̃,X) =
1

t2
K(ξ,X) + ε

t2 − 1

t2
+ 2

t − 1

t2

g(hX,X)

g(X,X)
,(5.4)

K̃(X, ϕX) =
1

t
K(X, ϕX)− 3ε

t − 1

t
− ε t − 1

t2

g(hX,X)2 + g(ϕhX,X)2

g(X,X)2
,(5.5)

for all X ∈ Ker η = Ker η̃, either space-like or time-like (see [6, Section 3]).
Recall that there is a canonical way to associate a contact Riemannian structure

with a contact Lorentzian structure (and conversely). Let (ϕ, ξ, η, gL) be a contact
Lorentzian structure on a smooth manifold M, where the Reeb vector field ξ is time-
like. Then

g = gL + 2η ⊗ η

is a Riemannian metric, and is still compatible with the same contact structure
(ϕ, ξ, η). Moreover, in such case g(ξ, ξ) = −gL(ξ, ξ) = +1. Hence, (ϕ, ξ, η, g) is
a contact Riemannian structure on M. We remark that gL = −g−1, where

g−1 = −g + 2η ⊗ η

is obtained by the D-homothetic deformation of g for t = −1. Consequently, the
Levi-Civita connection and curvature of gL can be easily deduced from the formu-
lae valid for a general D-homothetic deformation. Taking into account that in the
Lorentzian case the tensor h is diagonalizable, for a unit vector field X ∈ Ker η,
hX = λX, from (5.3)–(5.5) we have the following formulae (see also [6, Proposi-
tion 3.9]):

rL = r + 4n + 2 tr h2 ≥ r + 4n ,

KL(ξ,X) = −K(ξ,X) + 4λ ,

KL(X, ϕX) = K(X, ϕX) + 2(3− λ2) .

So we obtain the following proposition.
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Proposition 5.1 Let (M, η, gL) be a contact Lorentzian manifold. If the eigenvalues
of h are constant, then the scalar curvature, respectively the vertical sectional curvature
and the holomorphic sectional curvature, of (M, η, gL) is constant if and only if the cor-
responding curvature of (M, η, g) is constant. Moreover, rL = r + 4n if and only if
(M, η, gL) is K-contact Lorentzian.

Since the operator hL = 1
2Lξϕ = h does not depend on the metric, we have (η, gL)

is K-contact if and only if (η, g) is. Moreover, since g̃ := g−1 = −gL, η̃ = −η, ξ̃ = −ξ,
and ε̃ = ε = 1, we get

(∇L
Xϕ)Y −

(
gL(X,Y )ξ + η(Y )X

)
= (∇̃Xϕ)Y −

(
g̃(X,Y )ξ̃ − η̃(Y )X

)
,

where ∇L is the Levi-Civita connection of gL. This formula, using (2.4), gives that
(η, gL) is Sasakian if and only if (η, g) is (see also [6, Theorem 3.1]).

Remark 5.2 The Ricci tensor of an arbitrary η-Einstein semi-Riemannian contact
manifold is given by

Ric = α g + β η ⊗ η,

where α =
(

r
2n + ε( tr h2

2n − 1)
)

and β = −
(
ε r

2n + (2n + 1)( tr h2

2n − 1)
)

. In particular,
the Ricci tensor of the η-Einstein K-contact structure (η, g) is given by

Ric =
( r

2n
− 1
)

g +
(
− r

2n
+ 2n + 1

)
η ⊗ η,

where the scalar curvature r is a constant when n > 1, and g is Einstein if and only
if r = 2n(2n + 1). Then, from (5.2) and (5.3), the Ricci tensor of the corresponding
Lorentzian K-contact structure (η, gL) is given by

(5.6) RicL = Ric +4g − 4η ⊗ η =
( rL

2n
+ 1
)

gL +
( rL

2n
+ 2n + 1

)
η ⊗ η,

where the scalar curvature rL = r + 4n is a constant when n > 1, and gL is Einstein if
and only if rL = −2n(2n + 1). In dimension three, every K-contact structure (η, g) is
automatically Sasakian and η-Einstein, and thus by (5.6) every K-contact Lorentzian
structure (η, gL) is also automatically Sasakian and η-Einstein. Moreover, for a K-
contact Lorentzian 3-manifold, the scalar curvature rL and the ϕ-sectional curvature
HL are related by rL = 2HL − 4.

A Lorentzian Sasakian manifold (M, g, η) is Einsteinian if and only if the cone
C(M) is Ricci-flat [1]. Moreover, geometries of this type are interesting because
they provide examples of twistor spinors on Lorentzian manifolds (see, for example,
[1, 4]). In particular, [1, Proposition 6.2] gives a twistorial characterization of Ein-
stein Lorentzian-Sasaki manifolds. Now, we see as the η-Einstein Lorentzian-Sasaki
structures are related to the Einstein Lorentzian-Sasaki structures. Let (η, gL) be a

https://doi.org/10.4153/CMB-2013-016-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2013-016-7


410 D. Perrone

K-contact Lorentzian structure on M with ξ time-like and dim M = 2n + 1 > 3. For
the new K-contact Lorentzian structure

η̃ = tη, ξ̃ =
1

t
ξ, ϕ̃ = ϕ, g̃L = tgL − t(t − 1)η ⊗ η, t > 0,

from (5.2) and (5.3) we have

R̃icL = RicL +2(t − 1)gL + 2(t − 1)(nt + n + 1)η ⊗ η, r̃L =
rL − 2n

t
+ 2n.

Then, if (η, gL) is η-Einstein, the Ricci tensor of the new K-contact Lorentzian struc-
ture (η̃, g̃L) is given by

R̃ic =
( rL

2n
+ 2t − 1

)
gL +

( rL

2n
+ 2n + 1 + 2(t − 1)(nt + n + 1)

)
η ⊗ η,

=
( r̃L

2n
+ 1
)

g̃L +
( r̃L

2n
+ 2n + 1

)
η̃ ⊗ η̃.

So for any t > 0 the K-contact Lorentzian structure (η̃, g̃L) is η̃-Einstein. If the scalar
curvature rL of the η-Einstein K-contact Lorentzian manifold (η, gL) satisfies rL < 2n,
then the K-contact Lorentzian structure (η̃, g̃) obtained in correspondence to

t =
2n− rL

4n(n + 1)
> 0.

is Einstein. If rL ≥ 2n, the contact Riemannian structure (η, g) that corresponds
to the η-Einstein K-contact Lorentzian structure (gL, η) is η-Einstein K-contact with
scalar curvature r ≥ −2n, and thus, when M is compact, by a result of Boyer and
Galicki (cf. [5, p. 418]) the structure is Sasakian. Summing up, we get the following
proposition.

Proposition 5.3 Let (M, η, gL) be a η-Einstein K-contact Lorentzian manifold of di-
mension 2n + 1 > 3. If the scalar curvature satisfies rL < 2n, then there exists a trans-
verse homothety whose resulting structure (η̃, g̃L) is Einstein K-contact Lorentzian struc-
ture. Moreover, if rL ≥ 2n, and M is compact, then the structure (η, gL) is η-Einstein
Lorentzian-Sasaki.

The result of this proposition is peculiar to the Lorentzian case. From our Propo-
sition 5.3 and [1, Proposition 6.2], we get the following theorem.

Theorem 5.4 Let (M, η, gL, ξ) be a simply connected η-Einstein Lorentzian-Sasaki
manifold of dimension 2n + 1 > 3. If the scalar curvature satisfies rL < 2n, then
there exists a transverse homothety whose resulting Lorentzian manifold (M, g̃L) is a
spin manifold. Moreover, there exists a twistor spinor ϕ that is an imaginary Killing

spinor such that the associated vector field Vϕ (the Dirac current) is ξ̃.

We note that any connected sum of S2 × S3 admits a Einstein Lorentzian-Sasaki
structure [10]. In [8, p. 19] we proved that if a compact contact Lorentzian mani-
fold (M, η, ξ, g, ϕ) is a contact Ricci soliton, then it is a Einstein Lorentzian-Sasaki
manifold. Now, we give the following
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Example 5.5 Consider a simply connected bounded domain Ω in Cn, equipped
with the Kaehler structure (G, J) of constant holomorphic sectional curvature
κ < −3. Let ω be the Kaehler form; such form is closed and thus ω = dϑ. Let
π : M = Ω × R → Ω the natural projection, and t the coordinate on R. We con-
struct a Lorentzian-Sasaki structure on M like the Riemannian case (cf. [2, Ch.7]).
We define the tensor

η = π∗ϑ + dt, ξ = ∂/∂t, gL = π∗G− η ⊗ η.

Moreover, we define the tensor ϕ such that to be the horizontal lift of the com-
plex structure J and zero in the vertical direction. Then (η, gL, ϕ, ξ) is a η-Einstein
Lorentzian-Sasaki structure with ξ time-like. The scalar curvature is given by

rL =
(

n(2n + 1)(κ + 3) + n(κ + 7)
)
/2.

Since rL − 2n = n(n + 1)(κ + 3) < 0, for t = −κ+3
4 the resulting structure (η̃, g̃L) is

Einstein Lorentzian-Sasaki.

In the 3-dimensional case, Proposition 5.3 does not hold. However, a Lorentzian
K-contact 3-manifold (M, η, gL) is automatically Sasakian and η-Einstein. If, in addi-
tion, we assume that the scalar curvature is constant, then the corresponding K-con-
tact Riemannian manifold (M, η, g) is a locallyϕ-symmetric space, and so it is locally
homogeneous (see [3]). Equivalently, a 3-dimensional Lorentzian Sasakian space
with constant scalar curvature is locally homogeneous. Then from the classification
of 3-dimensional homogeneous Lorentzian contact manifolds given in [6] (which is
a consequence of [15, Theorem 3.1]), we deduce the following proposition.

Proposition 5.6 A simply connected Lorentzian-Sasaki three-manifold with constant
scalar curvature, is a Lie group G equipped with a left-invariant contact Lorentzian-
Sasaki structure (ϕ, ξ, η, gL). More precisely, one of the following cases occurs. If G is
unimodular, then it is

(i) the Heisenberg group H3 when rL = 2;
(ii) the 3-sphere group SU (2) when rL > 2;
(iii) S̃L(2,R) when rL < 2.

If G is non-unimodular, then its Lie algebra is given by

[e1, e2] = αe2 + 2ξ, [e1, ξ] = [e2, ξ] = 0,(5.7)

where α is a constant 6= 0. In this case, rL = −2α2 + 2 < 2.

When rL < 2, the K-contact Lorentzian structure (η̃, g̃) obtained in correspon-
dence to t = 2−rL

8 is Einstein, and so of constant sectional curvature −1. Therefore,
we get the following corollary, which does not have a Riemannian counterpart.

Corollary 5.7 The unimodular Lie group S̃L(2,R) and the non-unimodular Lie group
with Lie algebra defined by (5.7) are the only simply connected three-manifolds that ad-
mit a left invariant Lorentzian-Sasaki structure of constant sectional curvature κ = −1.
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In the paper [12], the authors considered the problem of classifying 3-dimensional
complete Lorentzian manifold of constant sectional curvature.

Another consequence of Proposition 5.6 is the following corollary.

Corollary 5.8 The Heisenberg group H3 is the only simply connected three-manifold
that admits a left invariant Lorentzian-Sasaki structure of constant scalar curvature
rL = 2.
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Mathematics, 203, Birkhäuser Boston, Boston, MA, 2010.
[3] D. E. Blair and L. Vanhecke, Symmetries and ϕ-symmetric spaces. Tôhoku Math. J. 39(1987), no. 3,
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