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Curvature of K-contact Semi-Riemannian
Manifolds

Domenico Perrone

Abstract. In this paper we characterize K-contact semi-Riemannian manifolds and Sasakian semi-
Riemannian manifolds in terms of curvature. Moreover, we show that any conformally flat K-contact
semi-Riemannian manifold is Sasakian and of constant sectional curvature x = ¢, where ¢ = =+1
denotes the causal character of the Reeb vector field. Finally, we give some results about the curvature
of a K-contact Lorentzian manifold.

1 Introduction

Contact Riemannian manifolds, in particular K-contact and Sasakian manifolds,
have been intensively studied. The recent monographs [2, 5] give a wide and de-
tailed overview of the results obtained in this framework. Contact semi-Riemannian
structures (7, ¢), also called contact pseudo-metric structures, where 7 is a contact
1-form and g a semi-Riemannian metric associated to it, are a natural generaliza-
tion of contact Riemannian structures also called contact metric structures. Contact
Lorentzian structures are particular contact semi-Riemannian structures. The rele-
vance of contact semi-Riemannian structures for physics was pointed out in [1, 9].
Contact structures equipped with semi-Riemannian metrics were first introduced
and studied by Takahashi [16], who focused on the Sasakian case. However, in the
semi-Riemannian case, even for Sasakian and K-contact manifolds, there are few re-
sults. Recently, in [6] (see also [7, 8]) we introduced a systematic study of contact
structures with semi-Riemannian associated metrics. In this paper we continue this
study, turning our attention to the case of K-contact semi-Riemannian manifolds,
emphasizing analogies and differences with respect to the Riemannian case. The
paper is organized in the following way. In Section 2 we report some basic infor-
mation for contact pseudo-metric manifolds. In Section 3 we characterize K-contact
and Sasakian, semi-Riemannian manifolds in terms of curvature (see Theorems 3.1,
3.3). Note that, in the Riemannian case, Theorem 3.1(i) holds in a stronger form (cf.
Remark 3.2). Then, in Section 4 we show that any conformally flat K-contact semi-
Riemannian manifold is Sasakian and of constant sectional curvature k = &, where
¢ = =£1 denotes the causal character of the Reeb vector field. Section 5 contains some
results about the curvature of a K-contact Lorentzian manifold. In particular, a sim-
ply connected 7n-Einstein Lorentzian-Sasaki manifold of dimension 2n + 1 > 3, with
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scalar curvature r;, < 2, admits a transverse homothety whose resulting Lorentzian-
Sasaki manifold (M, gz ) is Einstein, and thus it is a spin manifold. In dimension three,
the Lie groups SU (2), S~L(2, R), and a special non-unimodular Lie group, are the only
simply connected manifolds that admit a Lorentzian-Sasaki structure with constant
scalar curvature r;, # 2. In particular, the unimodular Lie group SL(2,R) and a
special non-unimodular Lie group are the only simply connected three-manifolds
that admit a left invariant Lorentzian-Sasaki structure of constant sectional curva-
ture kK = —1.

2 Preliminaries on Contact Semi-Riemannian Manifolds

In this section, we collect some basic facts about contact semi-Riemannian manifolds
[6]. All manifolds are assumed to be connected and smooth. A (27 + 1)-dimensional
manifold M is said to be a contact manifold if it admits a global 1-form 7 such that
n A (dn)" # 0. Given 7, there exists a unique vector field &, called the characteristic
vector field or the Reeb vector field, such that n(§) = 1and dn(&, - ) = 0. Furthermore,
a semi Riemannian metric g is said to be an associated metric if there exists a tensor ¢
of type (1, 1) such that

77253(57')7 dn(a):g(7§0)7 902:_I+77®£7

wheree = £1, and so g(§, &) = ¢ (the light-like case cannot occur for the Reeb vector
field). In particular, the signature of an associated metric is either (2p + 1,2n —
2p) or (2p,2n — 2p — 1), according to whether ¢ is space-like or time-like. Then
(n,g,&, ), or (n,g), is called a contact semi Riemannian structure, or contact pseudo
metric structure, and (M, n, g, &, ) a contact semi-Riemannian manifold or a contact
pseudo metric manifold. We denote by V the Levi-Civita connection and by R the
corresponding Riemann curvature tensor given by

Rxy = Vixy) — [Vx, Vy].

Moreover, we denote by Ric the Ricci tensor of type (0,2), by Q the corresponding
endomorphism field and by r the scalar curvature. The tensor h = %Lgap, where £
denotes the Lie derivative, is symmetric and satisfies

(2.1) V&= —cp—ph, Vep=0, hp=—ph, h{=0.
If {Ey,...,Ey1} is an arbitrary local pseudo-orthonormal basis on M and ¢; =
g(Ei, E;), then
2n+1
(2.2) trVo = Z €i(Vgp)E; = 2n€,
i=1
(2.3) Ric(£,€) = 2n — tr 2.

A contact semi-Riemannian manifold is said to be n-Einstein if the Ricci operator Q
is of the form Q = al + by ® &, where a, b are smooth functions. A contact semi-
Riemannian manifold is said to be a K-contact manifold if £ is a Killing vector field,
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or equivalently, i = 0. Moreover, a contact semi-Riemannian structure (£, 7, ¢, g) is
said to be Sasakian if it is normal, that is [, @] + 2dn ® £ = 0. This last condition is
equivalent to

(2.4) (Vxp)Y = g(X,Y)§ —en(Y)X.

Any Sasakian manifold is K-contact and the converse also holds when n = 1, that is,
for three-dimensional spaces. It is worthwhile to remark here a difference between
the Riemannian case and the general semi-Riemannian one. In fact, in both cases,
tr h? = 0 implies Ric(&, £) = 2n. Moreover, it is well known that K-contact Rieman-
nian manifolds are characterized by the condition Ric(£, &) = 2n, since it implies
trh* = 0, and so h = 0, because k is diagonalizable. On the other hand, there exist
contact pseudo-metric manifolds for which trh?> = 0 but & # 0, as we showed in
[6] (see also [7, Example 1.1]). For a contact semi-Riemannian manifold (M, n, g),
h? = 0 does not imply & = 0. We refer to [6-8] for more information about contact
pseudo metric geometry.

3 K-contact and Sasakian Semi-Riemannian Manifolds

Theorem 3.1 Let (M,n,g,&, p) be a K-contact semi-Riemannian manifold. Then

(1) & is an eigenvector of the Ricci operator Q: Q€ = 2neé;
(i1) M is Sasakian if and only if the curvature tensor R satisfies

(3.1) R(X,Y)E = n(X)Y — n(Y)X.

Proof (i) Since ¢ is a Killing vector field, then it is affine and hence satisfies
R(X,8)Y = =VxVy&+ Vy,vés

moreover, by (2.1), V&€ = —ep. Then

(3.2) R(X, €)Y = eVxpY —epVxY = e(Vxp)Y.

Consequently, if E; is a local pseudo-orthonormal basis, we have

2n+1 2n+1

Q¢ =) aR(E,OF =Y &(Vep)E =etr V.

i=1 i=1
Since, by (2.2), tr Vip = 2n€, we get Q€ = 2neé.
(ii) If M is Sasakian, by (2.4), we have

(3.3) (Vxp)Y = g(X,Y)§ — en(Y)X.

Moreover, M is K-contact and thus holds (3.2). Using (3.2) and (3.3) we get (3.1).
Conversely, if (3.1) holds, we have R(X, £)¢ = ©*X. On the other hand, ¢ is Killing,
that is, V€ = —ey. Thus holds (3.2). Consequently, using (3.1) and (3.2), we obtain

eg((Vxp)Y, Z) = g(R(X, )Y, Z) = —g(R(Y, Z2)¢, X)
=—g0(Y)Z —n(2)Y,X)
=g(=n(Y)X,Z) — eg(X,Y)g(&, Z).
Therefore, we get (2.4) and thus M is Sasakian. [ |
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Remark 3.2 A contact semi-Riemannian manifold (M, 7, g, &, ¢) is K-contact if
and only if the tensor h = %Lgcp vanishes. In the Riemannian case, Theorem 3.1(i)
holds in a stronger form; that is, M is K-contact if and only if Q¢ = 2n¢ (cf. [2,
Theorem 7.1 and Proposition 7.2]). In fact Q¢ = 2n¢ implies trh> = 0,and so h = 0,
because h is diagonalizable. When M is semi-Riemannian, the condition Q¢ = 2neé
implies, by using (2.3), trh? = 0, but as we showed in [6] (see also [7, Example 1.1])
in general trh* = 0 does not imply h # 0. In the Riemannian case, Theorem 3.1(ii)
holds in the same form (cf. [2, Proposition 7.6]).

The following is a characterization of K-contact semi-Riemannian manifolds in
the class of all semi-Riemannian manifolds. In the Riemannian case, the correspond-
ing result was given in [11].

Theorem 3.3 A semi-Riemannian manifold (M, g) is K-contact if and only if M ad-
mits a Killing vector field &, with g(&,€) = &, such that the sectional curvature of all
nondegenerate plane sections containing & equals €.

Proof Let p be a point of M. We recall that a plane section span(X,,Y}) is nonde-
generate if A(X,,Y,) = g(X,,X,)g(Y,,Y,) — g(X,,Y,)? # 0. Suppose first that
(&, ¢,m,g) is a K-contact structure on M. For a contact semi-Riemannian manifold,
by (2.1), one gets

(3.4) R(-,6)¢ = —pVeh+ o + .

Since ¢ is Killing, ie, h = 0, for a nondegenerate plane section span(&,, X,),
8(&,,X,) = 0, from (3.4) we have

7g(R(Xp7§p)£p7Xp) _ 7g(g02XP7XP) —
eg(Xp, Xp) eg(X,, X,)

Conversely, suppose that ¢ is a Killing vector field with g(£, £) = ¢ = %1, and define
1 and ¢ by

K(fanp) =

n=c¢eg, ), ©=—eV¢

Since g(&,£) = ¢, the nondegenerate plane sections containing £ are nondegenerate
for any vector field X € Kern,, which is either space-like or time-like. Let p be a
point of M. Then

g(R(Xpa gp)f[ﬂ Xp)
eg(Xp, Xp)

e=K(¢,X,) = — thatis g(R(X,,&,)¢ +X,,X,) =0,

for any X, € Kern,, with X, either space-like or time-like. Now, if Y, € Kernisa
null vector, that is, span(§,,Y),) is degenerate, by [14, Lemma 40, p. 78], the vector Y,
is limit of nonull vectors X, of Ker ;. Since g(R(X,, ;)¢ + X;, X;,) is a continuous
function of X, we get

gR(X,,&)Ey +X,,X,) =0, forany X, € Kern,.
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Then, since the endomorphism S(X,) := R(X,, §,)¢, + X, is self-adjoint, we have
(3.5) R(X,,&p)¢, = —X,, forany X, cKern, and pec M.
Moreover, since € is Killing with g(&, £) = const, we have

pf ==Vl =0, g(pX,Y) = —g(X, ¢Y)

and

(3.6) R(X,6)€ = —=VxV€ + Vy,e = Vyel = 9°X.

So from (3.5) and (3.6), we get ¢*X = —X for any X € Kern. This gives ¢*X =
—X + n(X)€ for arbitrary X. Moreover,

26(dn)(X,Y) = Xg(&,Y) — Yg(£,X) — g(&, [X, Y]) = g(Vx&,Y) — (X, Vré)
= —5g(<pX, Y)+ Eg(X7 wY)
= 2eg(X, Y).

This implies that 7 is a contact 1-form, & the associated Reeb vector field, and g an
associated metric. Since ¢ is Killing, the structure (7, g, £, ) is K-contact. ]

4 Conformally Flat K-contact Semi-Riemannian Manifolds

Generalizing a result of Okumura [13], Tanno [17] proved that a conformally flat
K-contact Riemannian manifold is of constant sectional curvature +1. In this section,
we show the corresponding result in the semi-Riemannian case.

Theorem 4.1 Let M = (M,n,g,&, ) be a conformally flat K-contact semi-Rieman-
nian manifold. Then M is Sasakian and of constant sectional curvature Kk = € =

g(&, ).

Proof We first consider M of dimension 21 + 1 > 3. We recall that a semi-Rieman-
nian (2n + 1)-manifold, n > 1, is conformally flat if and only if

(4.1) 2n — DR(X,Y)Z = g(Z, X)QY +¢(QZ,X)Y — g(Z,Y)QX — g(QY, 2)X

r
= 5. (82,07 = g(Z,V)X).
In particular, for Z = £, we have
(42)  (2n—DRX,Y)E = g(&§, X)QY +g(QE, X)Y — g(£,Y)QX — g(QY, §)X
er
=5, (XY —n(¥)X).

On the other hand, by Theorem 3.1, for a K-contact manifold we have Q¢ = 2neé,
and hence (4.2) implies

(4.3)  2n(2n — DR(X, ¢ = 2n(4nn(X)€ — eQX — 2nX) — er(n(X)€ — X).
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But, in the K-contact case, R(X, £)§ = ©*X = —X + n(X)&. Then (4.3) implies

-2 2n(2n+ 1)e —
r n5X+ n2n+1)e

(4.4) Qx="— = nx)e.

From (4.2) and (4.4) we get R(X,Y)¢ = n(X)Y — n(Y)X. Then since ¢ is Killing, by
Theorem 3.1, M is Sasakian.

Next, we consider the x-scalar curvature r* of a contact pseudo-metric manifold
(M, n, g) by contracting the curvature tensor by ¢ insteaded of by the metric. Pre-

cisely,
2n+1
r* = trRic* = Z sjeig(R(Ej,Ei)goEj, cpEi)
ij=1
where {Ey, ..., Ey41 } is a pseudo-orthonormal basis. Then we get
1
(4.5) r* —r+4n’e :5trh2+5(||V<p||2 — 4ne)

(see [6, Lemma 4.6]). By using (4.1), a direct calculation gives

2n+1
(4.6) "= cjeig(R(E;, E)E), oF;) =
ij=1

r—4ne + 2ctr 2
2n —1 '

From (4.5) and (4.6), one gets
(4.7) 4(n—1)(—r+2n2n+ 1)) =2e2n—3)trh* + 2n — 1)(||V||* — 4ne).

Since M is Sasakian, h = 0, and by (2.4) we easily find (||Vp||* — 4ne) = 0. Then
(4.7) and n > 1 give r = 2n(2n + 1), and by (4.4) we get QX = 2neX. Thus
M is a conformally flat, Einstein semi-Riemannian manifold. Then formula (4.1),
QX = 2neX, and r = 2n(2n + 1)e give

RIX,Y)Z =¢(g(Z,X)Y —g(Z,Y)X),

namely M has constant sectional curvature k = €.

Now, let (M, 7, ¢) be a three-dimensional conformally flat K-contact semi-Rie-
mannian manifold. In this case a pseudo-orthonormal p-basis {&, E, 9E} of Ker,
satisties g(pE, pE) = g(E,E) = +g(&,&) = £e. Moreover, in dimension three, any
K-contact semi-Riemannian manifold is automatically Sasakian and n-Einstein (see
Remark 5.2), thus

(4.8) Ric=oag+pfn®mn, where az(%—e) and 62(3—52).

Since £ is Killing, it leaves Ric invariant, that is £¢ Ric = 0. This and (4.8) imply

(4.9) (VeRic) (E, 9E) = 0.
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Recall that a semi-Riemannian 3-manifold is conformally flat if and only if
(4.10) (VxRic)(Y,Z) — (VyRic) (X,2) = (1/4)(g(Y,2)X(r) — (X, 2)Y (r))
From (4.10) and (4.8), we have
(VeRic) (E, ¢E) = (VgRic) (&, ¢E) = — Ric(VgE, @E) — Ric(é, V@E)
= e Ric(@E, pE) — Ric(§, VEpE)
=+’ — ag(&, VipE) — Bn(&)n(VepE)
=xaF aF fe=F fe.

Therefore, (4.9) gives § = 0; that is, M is Einstein with r = 6¢, namely M has
constant sectional curvature kK = €. |

Corollary 4.2 Any conformally flat K-contact Lorentzian manifold is Lorentzian-
Sasaki and of constant sectional curvature k = ¢ = g(€, §).

Besides, as a consequence of Theorems 4.1 and 3.3 we get the following corollary.

Corollary 4.3 Let (M,g) be a conformally flat semi-Riemannian manifold. If M
admits a Killing vector field £ with g(€,&) = &, such that the sectional curvature of all
nondegenerate plane sections containing £ equals €, then M admits a Sasakian semi-
Riemannian structure (1, g) of constant sectional curvature k = .

Example 4.4 (Sasakian semi-Riemannian manifolds of constant curvature) Con-
sider (R3"*2, ¢) the pseudo-Euclidean space with the standard indefinite Kiler metric.
The pseudosphere and the pseudohyperbolic space are defined by

1) = {x € R 1 g(x,x) = 1} and H3™(—1) = {x € RY"?* : g(x,x) = —1}.

They are hyperquadrics of ]R(%;”Z, both of dimension (2n+1), of index 2s and (2s— 1),
and of constant sectional curvature 1 and —1 respectively. Moreover, they have a
canonical Sasakian semi-Riemannian structure, with characteristic vector field space-
like and time-like respectively [16].

5 Some Remarks on Contact Lorentzian Manifolds

It is easy to see that a smooth manifold admits a Lorentzian metric if and only if it
admits a nowhere vanishing vector field. So contact semi-Riemannian geometry is
quite natural in the Lorentzian setting. Lorentzian Sasaki structures are related to
the Kaehler structures by the following (cf. [1, p. 46]): M has a Lorentzian Sasakian
structure (gr,7) if and only if the cone C(M) = (M x R, gc = t?g; — dt ® dt) hasa
(semi-Riemannian) Kaehler structure. In this section we give some results about the
curvature of a contact Lorentzian manifold.

Let (M, n, g) be a contact semi-Riemannian manifold of dimension 2n + 1, with
g(&,&) = €. Then it is easy to check that for any real constant ¢ # 0 the tensors

- ~ 1 ~
(5.1) n=tn, £=;£, p=¢, g=tgtett—1n®n
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describe another contact semi-Riemannian structure on M, having the same contact
distribution Ker7; = Kern, called a D-homothetic deformation (or a transverse ho-
mothety) of (¢, &,n, g). Clearly, (5.1) is the natural semi-Riemannian generalization
of D-homothetic deformations of a contact Riemannian structure, where one has
g(§ &) = 1 and needs to assume ¢ > 0 so that g is still Riemannian [18]. Notice that
g(§ X) = en(X). In particular, € = g(§ f) = g(&,€) = ¢, that is, D-homothetic
deformation preserves the causal character of the Reeb vector field. For ¢ < 0, if g
is of signature (2p + 1,2n — 2p), then g is of signature (2n — 2p + 1,2p). The Ricci
tensors, the scalar curvatures, and the sectional curvatures satisfy

(5.2) Ric = Ric —2¢(t — D)g+2(t — D(nt +n+ )n @1

+ %g(e(vfh)cp 20,

(5.3) r= %7 —€ Rlc(f §) — 2ne i 1)2
(54) K(gax) - ﬁK(g’X) +e 2 +2 2 g(X X) )

-1 - 1 g(hX, X)* + g(phX, X)?
12 g(X, X)? ’

(5.5) K(X,¢X) = %K(X, ©X) — 3¢t

for all X € Kern = Ker 7, either space-like or time-like (see [6, Section 3]).

Recall that there is a canonical way to associate a contact Riemannian structure
with a contact Lorentzian structure (and conversely). Let (¢, &, 7, gr) be a contact
Lorentzian structure on a smooth manifold M, where the Reeb vector field ¢ is time-
like. Then

g=a+2n®n

is a Riemannian metric, and is still compatible with the same contact structure

(¢,&,m). Moreover, in such case g(&,&) = —gi(&,€) = +1. Hence, (p,&,n,8) is
a contact Riemannian structure on M. We remark that g = —g_;, where

g-1=—¢+2n®n

is obtained by the D-homothetic deformation of g for t = —1. Consequently, the
Levi-Civita connection and curvature of g; can be easily deduced from the formu-
lae valid for a general D-homothetic deformation. Taking into account that in the
Lorentzian case the tensor / is diagonalizable, for a unit vector field X € Kern,
hX = MX, from (5.3)—(5.5) we have the following formulae (see also [6, Proposi-
tion 3.9]):

rL=r+4n+2 trh* > r+4n,
KL(€7X) - _K(§7X) +4)‘7
Ki (X, pX) = K(X, 0X) +2(3 — \?).

So we obtain the following proposition.
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Proposition 5.1 Let (M,n,g.) be a contact Lorentzian manifold. If the eigenvalues
of h are constant, then the scalar curvature, respectively the vertical sectional curvature
and the holomorphic sectional curvature, of (M, n, g) is constant if and only if the cor-
responding curvature of (M, n,g) is constant. Moreover, 1, = r + 4n if and only if
(M, n, gr) is K-contact Lorentzian.

Since the operator by = %ngo = h does not depend on the metric, we have (1, g.)

is K-contact if and only if (1), ¢) is. Moreover, since § := g = —g, 1 = —1,§ = =&,
and€ = ¢ = 1, we get

(Vi)Y — (X, V)E+1(Y)X) = (Vxp)Y — (X, Y)E - 7(Y)X),

where V? is the Levi-Civita connection of g;. This formula, using (2.4), gives that
(n, g1) is Sasakian if and only if (n, ) is (see also [6, Theorem 3.1]).

Remark 5.2 The Ricci tensor of an arbitrary n-Einstein semi-Riemannian contact
manifold is given by

Ric=ag+fnemn,

where o = (ﬁ +5(% - 1)) and § = —(gﬁ + (2n + 1)(% - 1)) . In particular,
the Ricci tensor of the n-Einstein K-contact structure (7, g) is given by

r r
Ric = (—71) +<f—+2 +1>
1C n 8 o " nemn,
where the scalar curvature r is a constant when # > 1, and g is Einstein if and only
if r = 2n(2n + 1). Then, from (5.2) and (5.3), the Ricci tensor of the corresponding
Lorentzian K-contact structure (7, g,) is given by

(5.6) RicL:Ric+4g—4n®77:(;—L+1)gL+(2r—L+2n+l)77®n,
n n

where the scalar curvature r;, = r + 4n is a constant when n > 1, and g is Einstein if
and only if r; = —2n(2n+ 1). In dimension three, every K-contact structure (7, g) is
automatically Sasakian and n-Einstein, and thus by (5.6) every K-contact Lorentzian
structure (7, g) is also automatically Sasakian and n-Einstein. Moreover, for a K-
contact Lorentzian 3-manifold, the scalar curvature r; and the y-sectional curvature
Hi are related by r, = 2H| — 4.

A Lorentzian Sasakian manifold (M, g, n) is Einsteinian if and only if the cone
C(M) is Ricci-flat [1]. Moreover, geometries of this type are interesting because
they provide examples of twistor spinors on Lorentzian manifolds (see, for example,
[1,4]). In particular, [1, Proposition 6.2] gives a twistorial characterization of Ein-
stein Lorentzian-Sasaki manifolds. Now, we see as the 7-Einstein Lorentzian-Sasaki
structures are related to the Einstein Lorentzian-Sasaki structures. Let (1, g.) be a
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K-contact Lorentzian structure on M with £ time-like and dim M = 2n+ 1 > 3. For
the new K-contact Lorentzian structure

_ ~ 1 _ _
n = tn, §=;§, o=¢, g=tg—tt—1n®n, t>0,

from (5.2) and (5.3) we have

~ . - rp—2n
Ricy = Ricy +2(t — 1)gr +2(t — D(nt+n+1)n®@mn, 1= — + 2n.
Then, if (1, g) is n-Einstein, the Ricci tensor of the new K-contact Lorentzian struc-

ture (77, g1) is given by

Ric = (;—L+2t—1)gL+(;—L+2n+1+2(t—1)(nt+n+1))n®n,
n n

(E +1)~ +(7L +2 +1>~®~
=(= — +2n .
2n & 2n e

So for any t > 0 the K-contact Lorentzian structure (7, gz) is 77-Einstein. If the scalar
curvature ry, of the n-Einstein K-contact Lorentzian manifold (7, g.) satisfies rp, < 2n,
then the K-contact Lorentzian structure (7, ) obtained in correspondence to

2n—rg
t=————>0.
4n(n+1)

is Einstein. If r, > 2n, the contact Riemannian structure (7, g) that corresponds
to the n-Einstein K-contact Lorentzian structure (g, 7) is n-Einstein K-contact with
scalar curvature r > —2n, and thus, when M is compact, by a result of Boyer and
Galicki (cf. [5, p. 418]) the structure is Sasakian. Summing up, we get the following
proposition.

Proposition 5.3 Let (M,n,g.) be a n-Einstein K-contact Lorentzian manifold of di-
mension 2n + 1 > 3. If the scalar curvature satisfies r, < 2n, then there exists a trans-
verse homothety whose resulting structure (1, g ) is Einstein K-contact Lorentzian struc-
ture. Moreover, if rp > 2n, and M is compact, then the structure (1, g) is n-Einstein
Lorentzian-Sasaki.

The result of this proposition is peculiar to the Lorentzian case. From our Propo-
sition 5.3 and [1, Proposition 6.2], we get the following theorem.

Theorem 5.4 Let (M,n,g.,&) be a simply connected n-Einstein Lorentzian-Sasaki
manifold of dimension 2n + 1 > 3. If the scalar curvature satisfies r; < 2n, then
there exists a transverse homothety whose resulting Lorentzian manifold (M, gr) is a
spin manifold. Moreover, there exists a twistor spinor @ that is an imaginary Killing
spinor such that the associated vector field V., (the Dirac current) is E

We note that any connected sum of S* x S* admits a Einstein Lorentzian-Sasaki
structure [10]. In [8, p. 19] we proved that if a compact contact Lorentzian mani-
fold (M, n, &, g, ) is a contact Ricci soliton, then it is a Einstein Lorentzian-Sasaki
manifold. Now, we give the following
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Example 5.5 Consider a simply connected bounded domain €2 in C", equipped
with the Kaehler structure (G, J) of constant holomorphic sectional curvature
Kk < —3. Let w be the Kaehler form; such form is closed and thus w = dv. Let
m: M = Q x R — Q the natural projection, and ¢ the coordinate on R. We con-
struct a Lorentzian-Sasaki structure on M like the Riemannian case (¢f. [2, Ch.7]).
We define the tensor

n=n"d+dt, £€=09/0t, g=71"G—nen.

Moreover, we define the tensor ¢ such that to be the horizontal lift of the com-
plex structure J and zero in the vertical direction. Then (7, g, ¢, £) is a n-Einstein
Lorentzian-Sasaki structure with & time-like. The scalar curvature is given by

= (n(2n +1)(k+3)+n(k+ 7)) /2.

Sincer; —2n =n(n+1)(k+3) < 0,fort = —“T” the resulting structure (77, g7 ) is
Einstein Lorentzian-Sasaki.

In the 3-dimensional case, Proposition 5.3 does not hold. However, a Lorentzian
K-contact 3-manifold (M, 7, g1 ) is automatically Sasakian and 7-Einstein. If, in addi-
tion, we assume that the scalar curvature is constant, then the corresponding K-con-
tact Riemannian manifold (M, 1, ¢) is a locally p-symmetric space, and so it is locally
homogeneous (see [3]). Equivalently, a 3-dimensional Lorentzian Sasakian space
with constant scalar curvature is locally homogeneous. Then from the classification
of 3-dimensional homogeneous Lorentzian contact manifolds given in [6] (which is
a consequence of [15, Theorem 3.1]), we deduce the following proposition.

Proposition 5.6 A simply connected Lorentzian-Sasaki three-manifold with constant
scalar curvature, is a Lie group G equipped with a left-invariant contact Lorentzian-
Sasaki structure (@, &,n,g). More precisely, one of the following cases occurs. If G is
unimodular, then it is

(i)  the Heisenberg group H® when ry = 2;

(ii) the 3-sphere group SU (2) when r;, > 2;

(iii) SL(2,R) whenr, < 2.

If G is non-unimodular, then its Lie algebra is given by
(5.7) le1, 2] = cver +2€, [e1,€] = [e2,€] =0,

where « is a constant # 0. In this case, r, = —2a% +2 < 2.

When r; < 2, the K-contact Lorentzian structure (77, g) obtained in correspon-
dence to t = 2= is Einstein, and so of constant sectional curvature —1. Therefore,
we get the following corollary, which does not have a Riemannian counterpart.

Corollary 5.7 The unimodular Lie group SL(2, R) and the non-unimodular Lie group
with Lie algebra defined by (5.7) are the only simply connected three-manifolds that ad-
mit a left invariant Lorentzian-Sasaki structure of constant sectional curvature k = —1.
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In the paper [12], the authors considered the problem of classifying 3-dimensional
complete Lorentzian manifold of constant sectional curvature.
Another consequence of Proposition 5.6 is the following corollary.

Corollary 5.8 The Heisenberg group H is the only simply connected three-manifold
that admits a left invariant Lorentzian-Sasaki structure of constant scalar curvature

rp, = 2.
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