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Abstract. We prove that theVeronese embedding jOPn �d�:P
n,!PN with nX 2, dX 3 does not

satisfy property Np (according to Green and Lazarsfeld) if pX 3d ÿ 2.We make the conjecture
that also the converse holds. This is true for n � 2 and for n � d � 3.
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Introduction

Let Pn be the projective n-space over an algebraically closed ¢eld of characteristic
zero and let jOPn �d�:P

n,!PN be the Veronese embedding associated to the complete
linear system jOPn�d�j. In order to understand the homogeneous ideal I of Pn in PN

as well as its syzygies, it is useful to study some properties about the minimal free
resolution of I :

M. Green and R. Lazarsfeld ([G2], [GL]) introduced the property Np (De¢nition
1.3) for a complete projective nonsingular variety X ,!PN embedded in PN with
an ample line bundle L. When property Np holds for every integer p, the resolution
of I is `as nice as possible'. M. Green proved in [G2], Theorem 2.2, that jOPn �d�
satis¢es Np if pW d. L. Manivel ([M]) has generalized this result to £ag manifolds.
The rational normal curves (which are the Veronese embeddings of P1� satisfy
Np 8p. C. Ciliberto showed us that the results of [G1] imply that jOP2 �d� with
dX 3 satis¢es Np if pW 3d ÿ 3. This suf¢cient condition has been found also by
C. Birkenhake in [B1] as a corollary of a more general result. Here we prove that
this condition is also necessary (Theorem 3.1) and we formulate (for nX 2) the
following conjecture:
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CONJECTURE.

jOPn �d� satisfies Np()
n � 2; d � 2; 8p;
nX 3; d � 2; pW 5;
nX 2; dX 3; pW 3dÿ 3:

8<:
Our precise result is the following:

THEOREM. The implication `�)' of the previous conjecture is true.

Moreover, we remark that the implication `(�' of the previous conjecture is true
in the cases n � 2 ([G1]), n � d � 3 ([G1]), d � 2 ([JPW]). This solves the Problem
4.5 of [EL] (raised by Fulton) in the ¢rst cases given by the projective plane and
by the cubic embedding of the projective three-dimensional space.

We also remark that our conjecture could be overcome by the knowledge of the
minimal resolution of the Veronese variety. This is stated as an open problem in
[G2] (remark of Section 2). Our results can be seen as a step towards this problem.

The paper is organized as follows: in Section 1 we recall some de¢nitions we will
need later and we improve a known cohomological criterion for the property
Np. In Section 2 we prove our main results and in Section 3 we ¢t our results into
the literature.

1. Notations and Preliminaries

Let V be a vector space of dimension n� 1 over an algebraically closed ¢eld K of
characteristic 0 and let Pn � P�V�� the projective space associated to the dual space
of V . Note that H0�Pn;OPn�d�� � SdV 8dX 0.

For any vector bundle E over Pn we will denote by Hi�E� the ith cohomology
group of E over Pn and by E�t� the tensor product E 
OPn �t�

The following bundles will play a fundamental role in this paper:

DEFINITION 1.1. For any positive integer d, the line bundleOPn �d� is generated by
global sections H0�OPn �d�� � SdV so that the evaluation map
ev:SdV 
OPn !OPn�d� is surjective. Call Ed the kernel. Thus, the vector bundle
Ed is de¢ned by the exact sequence

0ÿ!Ed ÿ!SdV 
OPn ÿ!ev OPn �d� ÿ!0: �1:2�

It follows immediately from the de¢nition that the bundle Ed has rank
N :� rkEd � n�d

n

ÿ �ÿ 1 and ¢rst Chern class c1�Ed� � ÿd.
Note that, if d � 1, (1.2) is the dualized Euler sequence so that

E1 � O1
Pn�1� and

q̂

E1 � Oq
Pn�q�:
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For any integer dX 0, we will denote by jOPn �d� the Veronese embedding jOPn �d�:
Pn,!PN associated to the complete linear system jOPn�d�j of dimension
N � 1 :� n�d

n

ÿ �
: Recall that if �x0 : � � � : xn� is a system of homogeneous coordinates

on Pn and �y0 : � � � : yN � on PN � P�H0�OPn �d����, then jOPn �d� is the embedding:

�x0 : � � � : xn�,!�xd0 : xdÿ10 x1 : � � � : xdn �:

With the above notation, let S :�LkX 0 S
k�H0�Pn;OPn�d��� be the homogeneous

coordinate ring of PN and de¢ne the graded S-module
R :�LkX 0 H

0�Pn;OPn �kd��. Let

0!�jS�ÿj�brj ! � � � ! �jS�ÿj�b0j ! R! 0

be a minimal free resolution of R with graded Betti numbers bij.

DEFINITION 1.3. For any integer pX 0 the embedding jOPn �d� : Pn,!PN is said to
satisfy property Np if

b0j � 1 if j � 0
0 otherwise

�
and bij � 0 for j 6� i � 1; when 1W iW p:

Thus, N0 means that jOPn �d��Pn� is projectively normal in PN ; N1 means that N0

holds and the ideal I ofPn,!PN is generated by quadrics;N2 means that, moreover,
the module of syzygies among quadratic generators Qi 2 I is spanned by the
relations of the form

P
LiQi � 0 where the Li are linear polynomials; and so on.

Remark 1.4. Let C,!Pd be the rational normal curve (of degree d) inPd . If V is a
vector space of dimension 2, then C � P�V��,!Pd � P�SdV�� is the image of the
Veronese embedding jOP1 �d�

:P1,!Pd .

It is well known (e.g. by using the Eagon^Northcott complex) that the sheaf ideal
I of C in OPd has the following resolution:

0!OPd �ÿd��bd !OPd �ÿd � 1��bdÿ1 ! � � � ! OPd �ÿ2��b2 ! I ! 0;

where bk :� �kÿ 1� d
k

ÿ �
. So the Veronese embeddings of P1 satisfy Np 8p.

From [B2], Remark 2.7, and [G1] we have the following cohomological criterion:

PROPOSITION 1.5. The Veronese embedding jOPn �d� satis¢es property Np if and
only if

H1
q̂

Ed �jd�
 !

� 0; for 1W qW p� 1 and 8jX 1: }

We have the following cohomological criterion, which slightly improves the pre-
vious one (in fact H2�Vq Ed� ' H1�Vqÿ1 Ed �d��).
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THEOREM 1.6. The Veronese embedding jOPn �d� satis¢es property Np if and only if
H2�Vq Ed� � 0 for 1W qW p� 2.

The proof of Theorem 1.6 relies on the following proposition:

PROPOSITION 1.7. If H2�Vq Ed� � 0 for 1W qW k, then H2�Vq Ed�t�� � 0 for
1W qW k and 8tX 0.

Proof. Consider the two exact sequences:

0!
q̂

Ed �tÿ 1� !
q̂

Ed �t� !
q̂

Ed �t�jPnÿ1 ! 0; ���

0!
q̂

Ed �tÿ 1� !
q̂

�SdV � 
 OPn �tÿ 1� !
q̂ÿ1

Ed�t� d ÿ 1� ! 0: ����

The proof is by double induction on n and k. The statement is true for n � 2 (Serre
duality) and for k � 1 (it follows immediately from (1.2)). From the cohomology
sequence associated to (��) with t � 0 and the inductive hypothesis on k we get
H3�Vq Ed�ÿ1�� � 0 for 1W qW k. Since

EdjPnÿ1 � ~Ed �O�
n�dÿ1

n� �
Pnÿ1 ;

where ~Ed is the vector bundle Ed over Pnÿ1, the previous vanishing implies in the
cohomology sequence associated to (�) with t � 0 that the hypothesis of the prop-
osition are true on Pnÿ1. Hence, by induction on n, H2�Pnÿ1;

Vq Ed�t�jPnÿ1 � � 0
for 1W qW k and 8tX 0. From the cohomology sequence associated to (�) with
q � k we get that the map H2�Pn;

Vk Ed�tÿ 1�� ! H2�Pn;
Vk Ed�t�� is surjective

8tX 0 and the thesis follows easily. &

Proof of Theorem 1.6. The implication `�)' is a consequence of Proposition 1.5.
To prove the converse, we may apply Proposition 1.7 and then Proposition 1.5 again.

PROPOSITION 1.8. If jOPn �d� satis¢es Np, then jOPm �d� satis¢es Np 8mW n.
Proof. It follows by the remark of Section 2 of [G2] (which is an insight into

representation theory). &

2. Necessary Conditions on Property Np for the Veronese Embedding jOP�d�
In this section we will prove the following theorem:

THEOREM 2.1. The Veronese embedding jOPn �d� does not satisfy N3dÿ2 for nX 2,
dX 3.
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Proof. By Proposition 1.8, we can let n � 2. By Theorem 1.6 and Serre duality, it
is enough to show that H0�P2;

VK Ed�d ÿ 3��W 0 with K : �d�d ÿ 3�=2. So the
theorem will follow from the following lemma:

LEMMA 2.2. The bundle
Vq Ed �t� has a nonzero global section for 1W qWN;

q� 1W n�t
n

ÿ �
and tX 1.

Proof. The exact sequence 0!Vq Ed !
Vq SdV 
OPn !Vqÿ1 Ed�d� ! 0

implies that

H0
q̂

Ed �t�
 !

� Ker
q̂

SdV 
 StV ÿ!at
q̂ÿ1

SdV 
 St�dV

 !
:

Now there is a Koszul complex

!
q̂�1

SdV 
O�tÿ d� !
q̂

SdV 
O�t� ÿ!at
q̂ÿ1

SdV 
O�t� d� !
with at � H0�at�. For tX d, global sections of

Vq�1 SdV 
O�tÿ d� will therefore
give sections of

Vq Ed �t�. In particular, for d � t, we get that for each family
s0; . . . ; sq of degree d polynomials,

Xq
i�0
�ÿ1�is0 ^ � � � ^ ŝi ^ � � � ^ sq 
 si

is in the kernel of ad . Now let 1W t < d. If we can factor si � uwi with u of degree
d ÿ t, then

Xq
i�0
�ÿ1�is0 ^ � � � ^ ŝi ^ � � � ^ sq 
 wi

must be in the kernel of at, and therefore de¢nes a global section of
Vq Ed�t�. Thus, to

get a nonzero section of
Vq Ed�t�, it suf¢ces to ¢nd q� 1 linearly independent

polynomials of degree t, which is possible as soon as q� 1W n�t
n

ÿ �
: &

Remark 2.3. The bundles
Vq Ed are semistable (see [P], Proposition 5.6), so

H0�Vq Ed�t�� � 0 if m�Vq Ed �t�� � tÿ �qd=N� < 0. In particular,

H0
q̂

Ed �t�
 !

� 0 8tW 0:

3. Conclusions

In this section we will ¢t our results into the literature. In particular, we will prove the
following theorem:
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THEOREM 3.1. Let d be an integer s.t. dX 3. Then the Veronese embedding
jOP2 �d�:P

2,!PN satis¢es property Np if and only if 0W pW 3d ÿ 3. Moreover, if
d � 2, the embedding jOP2 �2�:P

2,!P5 satis¢es Np 8p.

We have the following proposition:

PROPOSITION 3.2 (M. Green, C. Birkenhake). Let dX 2 and p � � 3dÿ3
2 if dX 3

d�2 .
Then the complete Veronese embedding jOP2 �d�:P

2,!PN satis¢es property Np.
Proof. See [B1], Corollary 3.2. The result follows from also applying Theorem

3.b.7 of [G1] (which says that the minimal resolution of a Veronese variety restricts
to the minimal resolution of its curve hyperplane section) and Theorem 4.a.1 of
[G1] (which says that a line bundle of degree 2g� 1� p on a curve of genus g satis¢es
Np). &

In the same way we get the following lemma:

LEMMA 3.3. The Veronese embedding jOP3 �3�:P
3,!P19 satis¢es N6.

Proof. The curve hyperplane section of the image of the cubic Veronese
embedding of P3 is the space curve complete intersection of two cubics embedded
by jOP3 �3�j and it has genus 10. The result follows again applying Theorem 3.b.7
and Theorem 4.a.1 of [G1]. &

LEMMA 3.4. The ideal I of jOP2 �2��P2� in P5 has the following resolution:

O! OP5 �ÿ4��3!OP5 �ÿ3��8 !OP5 �ÿ2��6! I ! 0:

In particular, the Veronese embedding jOP2 �2�:P
2,!P5 satis¢es Np 8p.

Proof. Easy computation. &

Proof of Theorem 3.1. By Proposition 3.2 and Lemma 3.4, we just need to show
that if dX 3, then property Np does not hold for pX 3d ÿ 2. But this is exactly
the bound coming from Theorem 2.1. &

When d � 2, the minimal free resolution of the quadratic Veronese variety is
known from the work of Joze¢ak, Pragacz and Weyman [JPW], in which they prove
a conjecture made by Lascoux. As a corollary of the above paper, we have the
following result (which agrees with our conjecture formulated in the introduction):

THEOREM 3.5. The quadratic Veronese embedding jOPn �2�:P
n,!PN satis¢es Np if

and only if pW 5 when nX 3 and 8p when n � 2. &

The following nice characterization, probably well known, was found during
discussions with E. Arrondo:
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THEOREM 3.6. The only (smooth) varieties inPn such that Np holds for every pX 0
are the quadrics, the rational normal scrolls and the Veronese surface in P5.

Proof. SupposeX is a variety satisfyingNp for every pX 0, thenHi�OX �t�� � 0 for
tX 0 and 1W iW dimX ÿ 1. Hence, from Theorem 3.b.7 in [G1], it follows that the
minimal free resolution of X restricts to the minimal resolution of its generic curve
section C. This implies that H1�OC� � 0 and C is linearly normal, hence C is a
rational normal curve. In particular, X has minimal degree and we get the result.&

We remark that the only Veronese varieties appearing in Theorem 3.6 are the
rational normal curves and the Veronese surface in P5.
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