

Compositio Mathematica **125:** 31–37, 2001. © 2001 Kluwer Academic Publishers. Printed in the Netherlands.

Syzygies of Veronese Embeddings

GIORGIO OTTAVIANI¹ and RAFFAELLA PAOLETTI²*

 ¹Dipartimento di Matematica 'U. Dini', Università di Firenze, viale Morgagni 67/A, I 50134 Firenze, Italy. e-mail: ottavian@math.unifi.it
 ²Dipartimento di Matematica ed Applicazioni per l'Architettura, Università di Firenze, Piazza Ghiberti 27, I 50122 Firenze, Italy. e-mail: raffy@math.unifi.it

(Received: 17 November 1998; accepted: 15 December 1999)

Abstract. We prove that the Veronese embedding $\varphi_{\mathcal{O}_{\mathbb{P}^n}(d)}$: $\mathbb{P}^n \hookrightarrow \mathbb{P}^N$ with $n \ge 2$, $d \ge 3$ does not satisfy property N_p (according to Green and Lazarsfeld) if $p \ge 3d - 2$. We make the conjecture that also the converse holds. This is true for n = 2 and for n = d = 3.

Mathematics Subject Classifications (2000): 14M20, 14F17.

Key words: Veronese embedding, free resolution, syzygy.

Introduction

Let \mathbb{P}^n be the projective *n*-space over an algebraically closed field of characteristic zero and let $\varphi_{\mathcal{O}_{\mathbb{P}^n}(d)} \colon \mathbb{P}^n \hookrightarrow \mathbb{P}^N$ be the Veronese embedding associated to the complete linear system $|\mathcal{O}_{\mathbb{P}^n}(d)|$. In order to understand the homogeneous ideal \mathcal{I} of \mathbb{P}^n in \mathbb{P}^N as well as its syzygies, it is useful to study some properties about the minimal free resolution of \mathcal{I} .

M. Green and R. Lazarsfeld ([G2], [GL]) introduced the property N_p (Definition 1.3) for a complete projective nonsingular variety $X \hookrightarrow \mathbb{P}^N$ embedded in \mathbb{P}^N with an ample line bundle *L*. When property N_p holds for every integer *p*, the resolution of \mathcal{I} is 'as nice as possible'. M. Green proved in [G2], Theorem 2.2, that $\varphi_{\mathcal{O}_{\mathbb{P}^n}(d)}$ satisfies N_p if $p \leq d$. L. Manivel ([M]) has generalized this result to flag manifolds. The rational normal curves (which are the Veronese embeddings of \mathbb{P}^1) satisfy $N_p \forall p$. C. Ciliberto showed us that the results of [G1] imply that $\varphi_{\mathcal{O}_{\mathbb{P}^2}(d)}$ with $d \geq 3$ satisfies N_p if $p \leq 3d - 3$. This sufficient condition has been found also by C. Birkenhake in [B1] as a corollary of a more general result. Here we prove that this condition is also necessary (Theorem 3.1) and we formulate (for $n \geq 2$) the following conjecture:

^{*} Both authors were partially supported by GNSAGA and by Progetto Strategico 'Calcolo Simbolico' of CNR.

CONJECTURE.

$$\varphi_{\mathcal{O}_{\mathbb{P}^n}(d)} \text{ satisfies } N_p \Longleftrightarrow \begin{cases} n = 2, d = 2, \forall p, \\ n \ge 3, d = 2, p \le 5, \\ n \ge 2, d \ge 3, p \le 3d - 3. \end{cases}$$

Our precise result is the following:

THEOREM. The implication ' \Longrightarrow ' of the previous conjecture is true.

Moreover, we remark that the implication ' \Leftarrow ' of the previous conjecture is true in the cases n = 2 ([G1]), n = d = 3 ([G1]), d = 2 ([JPW]). This solves the Problem 4.5 of [EL] (raised by Fulton) in the first cases given by the projective plane and by the cubic embedding of the projective three-dimensional space.

We also remark that our conjecture could be overcome by the knowledge of the minimal resolution of the Veronese variety. This is stated as an open problem in [G2] (remark of Section 2). Our results can be seen as a step towards this problem.

The paper is organized as follows: in Section 1 we recall some definitions we will need later and we improve a known cohomological criterion for the property N_p . In Section 2 we prove our main results and in Section 3 we fit our results into the literature.

1. Notations and Preliminaries

Let *V* be a vector space of dimension n + 1 over an algebraically closed field \mathbb{K} of characteristic 0 and let $\mathbb{P}^n = \mathbb{P}(V^*)$ the projective space associated to the dual space of *V*. Note that $H^0(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(d)) \cong S^d V \quad \forall d \ge 0$.

For any vector bundle *E* over \mathbb{P}^n we will denote by $H^i(E)$ the *i*th cohomology group of *E* over \mathbb{P}^n and by E(t) the tensor product $E \otimes \mathcal{O}_{\mathbb{P}^n}(t)$

The following bundles will play a fundamental role in this paper:

DEFINITION 1.1. For any positive integer d, the line bundle $\mathcal{O}_{\mathbb{P}^n}(d)$ is generated by global sections $H^0(\mathcal{O}_{\mathbb{P}^n}(d)) \cong S^d V$ so that the evaluation map $ev: S^d V \otimes \mathcal{O}_{\mathbb{P}^n} \to \mathcal{O}_{\mathbb{P}^n}(d)$ is surjective. Call E_d the kernel. Thus, the vector bundle E_d is defined by the exact sequence

$$0 \longrightarrow E_d \longrightarrow S^d V \otimes \mathcal{O}_{\mathbb{P}^n} \xrightarrow{e_V} \mathcal{O}_{\mathbb{P}^n}(d) \longrightarrow 0.$$
(1.2)

It follows immediately from the definition that the bundle E_d has rank $N := rk_{E_d} = \binom{n+d}{n} - 1$ and first Chern class $c_1(E_d) = -d$.

Note that, if d = 1, (1.2) is the dualized Euler sequence so that

$$E_1 \cong \Omega^1_{\mathbb{P}^n}(1)$$
 and $\bigwedge^q E_1 \cong \Omega^q_{\mathbb{P}^n}(q).$

32

For any integer $d \ge 0$, we will denote by $\varphi_{\mathcal{O}_{\mathbb{P}^n}(d)}$ the Veronese embedding $\varphi_{\mathcal{O}_{\mathbb{P}^n}(d)}$: $\mathbb{P}^n \hookrightarrow \mathbb{P}^N$ associated to the complete linear system $|\mathcal{O}_{\mathbb{P}^n}(d)|$ of dimension $N + 1 := \binom{n+d}{n}$. Recall that if $[x_0 : \cdots : x_n]$ is a system of homogeneous coordinates on \mathbb{P}^n and $[y_0 : \cdots : y_N]$ on $\mathbb{P}^N = \mathbb{P}(H^0(\mathcal{O}_{\mathbb{P}^n}(d))^*)$, then $\varphi_{\mathcal{O}_{\mathbb{P}^n}(d)}$ is the embedding:

$$[x_0:\cdots:x_n] \hookrightarrow [x_0^d:x_0^{d-1}x_1:\cdots:x_n^d].$$

With the above notation, let $S := \bigoplus_{k \ge 0} S^k(H^0(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(d)))$ be the homogeneous coordinate ring of \mathbb{P}^N and define the graded *S*-module $R := \bigoplus_{k \ge 0} H^0(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(kd))$. Let

 $0 \to \oplus_j S(-j)^{b_{rj}} \to \cdots \to \oplus_j S(-j)^{b_{0j}} \to R \to 0$

be a minimal free resolution of R with graded Betti numbers b_{ij} .

DEFINITION 1.3. For any integer $p \ge 0$ the embedding $\varphi_{\mathcal{O}_{\mathbb{P}^n}(d)} : \mathbb{P}^n \hookrightarrow \mathbb{P}^N$ is said to satisfy *property* N_p if

$$b_{0j} = \begin{cases} 1 & \text{if } j = 0 \\ 0 & \text{otherwise} \end{cases} \text{ and } b_{ij} = 0 \text{ for } j \neq i+1, \text{ when } 1 \leq i \leq p.$$

Thus, N_0 means that $\varphi_{\mathcal{O}_{\mathbb{P}^n}(d)}(\mathbb{P}^n)$ is projectively normal in \mathbb{P}^N ; N_1 means that N_0 holds and the ideal I of $\mathbb{P}^n \hookrightarrow \mathbb{P}^N$ is generated by quadrics; N_2 means that, moreover, the module of syzygies among quadratic generators $Q_i \in I$ is spanned by the relations of the form $\sum L_i Q_i = 0$ where the L_i are *linear* polynomials; and so on.

Remark 1.4. Let $\mathcal{C} \hookrightarrow \mathbb{P}^d$ be the rational normal curve (of degree *d*) in \mathbb{P}^d . If *V* is a vector space of dimension 2, then $\mathcal{C} \cong \mathbb{P}(V^*) \hookrightarrow \mathbb{P}^d = \mathbb{P}(S^d V^*)$ is the image of the Veronese embedding $\varphi_{\mathcal{O}_{\mathbb{P}^d}}$: $\mathbb{P}^1 \hookrightarrow \mathbb{P}^d$.

It is well known (e.g. by using the Eagon–Northcott complex) that the sheaf ideal \mathcal{I} of \mathcal{C} in $\mathcal{O}_{\mathbb{P}^d}$ has the following resolution:

$$0 \to \mathcal{O}_{\mathbb{P}^d}(-d)^{\oplus b_d} \to \mathcal{O}_{\mathbb{P}^d}(-d+1)^{\oplus b_{d-1}} \to \dots \to \mathcal{O}_{\mathbb{P}^d}(-2)^{\oplus b_2} \to \mathcal{I} \to 0,$$

where $b_k := (k-1)\binom{d}{k}$. So the Veronese embeddings of \mathbb{P}^1 satisfy $N_p \quad \forall p$.

From [B2], Remark 2.7, and [G1] we have the following cohomological criterion:

PROPOSITION 1.5. The Veronese embedding $\varphi_{\mathcal{O}_{\mathbb{P}^n}(d)}$ satisfies property N_p if and only if

$$H^1\left(\bigwedge^q E_d(jd)\right) = 0, \quad for \ 1 \leq q \leq p+1 \quad and \quad \forall j \geq 1.$$

We have the following cohomological criterion, which slightly improves the previous one (in fact $H^2(\bigwedge^q E_d) \simeq H^1(\bigwedge^{q-1} E_d(d))$). THEOREM 1.6. The Veronese embedding $\varphi_{\mathcal{O}_{\mathbb{P}^n}(d)}$ satisfies property N_p if and only if $H^2(\bigwedge^q E_d) = 0$ for $1 \leq q \leq p+2$.

The proof of Theorem 1.6 relies on the following proposition:

PROPOSITION 1.7. If $H^2(\bigwedge^q E_d) = 0$ for $1 \le q \le k$, then $H^2(\bigwedge^q E_d(t)) = 0$ for $1 \le q \le k$ and $\forall t \ge 0$.

Proof. Consider the two exact sequences:

$$0 \to \bigwedge_{q}^{q} E_d(t-1) \to \bigwedge_{q}^{q} E_d(t) \to \bigwedge_{q}^{q} E_d(t)|_{\mathbb{P}^{n-1}} \to 0, \tag{*}$$

$$0 \to \bigwedge^{q} E_d(t-1) \to \bigwedge^{q} (S^d V) \otimes \mathcal{O}_{\mathbb{P}^n}(t-1) \to \bigwedge^{q-1} E_d(t+d-1) \to 0.$$
 (**)

The proof is by double induction on *n* and *k*. The statement is true for n = 2 (Serre duality) and for k = 1 (it follows immediately from (1.2)). From the cohomology sequence associated to (**) with t = 0 and the inductive hypothesis on *k* we get $H^3(\bigwedge^q E_d(-1)) = 0$ for $1 \le q \le k$. Since

$$E_{d|\mathbb{P}^{n-1}} \cong \tilde{E}_d \oplus \mathcal{O}_{\mathbb{P}^{n-1}}^{\oplus \binom{n+d-1}{n}},$$

where \tilde{E}_d is the vector bundle E_d over \mathbb{P}^{n-1} , the previous vanishing implies in the cohomology sequence associated to (*) with t = 0 that the hypothesis of the proposition are true on \mathbb{P}^{n-1} . Hence, by induction on n, $H^2(\mathbb{P}^{n-1}, \bigwedge^q E_d(t)_{|\mathbb{P}^{n-1}}) = 0$ for $1 \leq q \leq k$ and $\forall t \geq 0$. From the cohomology sequence associated to (*) with q = k we get that the map $H^2(\mathbb{P}^n, \bigwedge^k E_d(t-1)) \to H^2(\mathbb{P}^n, \bigwedge^k E_d(t))$ is surjective $\forall t \geq 0$ and the thesis follows easily.

Proof of Theorem 1.6. The implication ' \Longrightarrow ' is a consequence of Proposition 1.5. To prove the converse, we may apply Proposition 1.7 and then Proposition 1.5 again.

PROPOSITION 1.8. If $\varphi_{\mathcal{O}_{\mathbb{P}^n}(d)}$ satisfies N_p , then $\varphi_{\mathcal{O}_{\mathbb{P}^m}(d)}$ satisfies $N_p \quad \forall m \leq n$.

Proof. It follows by the remark of Section 2 of [G2] (which is an insight into representation theory). \Box

2. Necessary Conditions on Property N_p for the Veronese Embedding $\varphi_{\mathcal{O}_{\mathbb{P}}(d)}$

In this section we will prove the following theorem:

THEOREM 2.1. The Veronese embedding $\varphi_{\mathcal{O}_{\mathbb{P}^n}(d)}$ does not satisfy N_{3d-2} for $n \ge 2$, $d \ge 3$.

34

Proof. By Proposition 1.8, we can let n = 2. By Theorem 1.6 and Serre duality, it is enough to show that $H^0(\mathbb{P}^2, \bigwedge^K E_d(d-3)) \leq 0$ with K := d(d-3)/2. So the theorem will follow from the following lemma:

LEMMA 2.2. The bundle $\bigwedge^q E_d(t)$ has a nonzero global section for $1 \le q \le N$; $q+1 \le \binom{n+t}{n}$ and $t \ge 1$.

Proof. The exact sequence $0 \to \bigwedge^q E_d \to \bigwedge^q S^d V \otimes \mathcal{O}_{\mathbb{P}^n} \to \bigwedge^{q-1} E_d(d) \to 0$ implies that

$$H^0\left(\bigwedge^q E_d(t)\right) = \operatorname{Ker}\left(\bigwedge^q S^d V \otimes S^t V \xrightarrow{\alpha_t} \bigwedge^{q-1} S^d V \otimes S^{t+d} V\right).$$

Now there is a Koszul complex

$$\rightarrow \bigwedge^{q+1} S^d V \otimes \mathcal{O}(t-d) \rightarrow \bigwedge^q S^d V \otimes \mathcal{O}(t) \xrightarrow{a_t} \bigwedge^{q-1} S^d V \otimes \mathcal{O}(t+d) \rightarrow$$

with $\alpha_t = H^0(a_t)$. For $t \ge d$, global sections of $\bigwedge^{q+1} S^d V \otimes \mathcal{O}(t-d)$ will therefore give sections of $\bigwedge^q E_d(t)$. In particular, for d = t, we get that for each family s_0, \ldots, s_q of degree d polynomials,

$$\sum_{i=0}^{q} (-1)^{i} s_0 \wedge \cdots \wedge \hat{s}_i \wedge \cdots \wedge s_q \otimes s_i$$

is in the kernel of α_d . Now let $1 \le t < d$. If we can factor $s_i = uw_i$ with u of degree d - t, then

$$\sum_{i=0}^{q} (-1)^{i} s_{0} \wedge \cdots \wedge \hat{s}_{i} \wedge \cdots \wedge s_{q} \otimes w_{i}$$

must be in the kernel of α_t , and therefore defines a global section of $\bigwedge^q E_d(t)$. Thus, to get a nonzero section of $\bigwedge^q E_d(t)$, it suffices to find q+1 linearly independent polynomials of degree t, which is possible as soon as $q+1 \leq \binom{n+t}{n}$.

Remark 2.3. The bundles $\bigwedge^q E_d$ are semistable (see [P], Proposition 5.6), so $H^0(\bigwedge^q E_d(t)) = 0$ if $\mu(\bigwedge^q E_d(t)) = t - (qd/N) < 0$. In particular,

$$H^0\left(\bigwedge^q E_d(t)\right) = 0 \quad \forall t \leqslant 0.$$

3. Conclusions

In this section we will fit our results into the literature. In particular, we will prove the following theorem:

THEOREM 3.1. Let d be an integer s.t. $d \ge 3$. Then the Veronese embedding $\varphi_{\mathcal{O}_{\mathbb{P}^2}(d)} \colon \mathbb{P}^2 \hookrightarrow \mathbb{P}^N$ satisfies property N_p if and only if $0 \le p \le 3d - 3$. Moreover, if d = 2, the embedding $\varphi_{\mathcal{O}_{\mathbb{P}^2}(2)} \colon \mathbb{P}^2 \hookrightarrow \mathbb{P}^5$ satisfies $N_p \quad \forall p$.

We have the following proposition:

PROPOSITION 3.2 (M. Green, C. Birkenhake). Let $d \ge 2$ and $p = \begin{cases} \frac{3d-3}{2} & \text{if } \frac{d \ge 3}{d=2} \end{cases}$. Then the complete Veronese embedding $\varphi_{\mathcal{O}_{p^2}(d)} : \mathbb{P}^2 \hookrightarrow \mathbb{P}^N$ satisfies property N_p .

Proof. See [B1], Corollary 3.2. The result follows from also applying Theorem 3.*b*.7 of [G1] (which says that the minimal resolution of a Veronese variety restricts to the minimal resolution of its curve hyperplane section) and Theorem 4.*a*.1 of [G1] (which says that a line bundle of degree 2g + 1 + p on a curve of genus *g* satisfies N_p).

In the same way we get the following lemma:

LEMMA 3.3. The Veronese embedding $\varphi_{\mathcal{O}_{\mathbb{P}^3}(3)}$: $\mathbb{P}^3 \hookrightarrow \mathbb{P}^{19}$ satisfies N_6 .

Proof. The curve hyperplane section of the image of the cubic Veronese embedding of \mathbb{P}^3 is the space curve complete intersection of two cubics embedded by $|\mathcal{O}_{\mathbb{P}^3}(3)|$ and it has genus 10. The result follows again applying Theorem 3.*b*.7 and Theorem 4.*a*.1 of [G1].

LEMMA 3.4. The ideal \mathcal{I} of $\varphi_{\mathcal{O}_{\mathbb{D}^2}(2)}(\mathbb{P}^2)$ in \mathbb{P}^5 has the following resolution:

$$\mathcal{O} \to \mathcal{O}_{\mathbb{P}^5}(-4)^{\oplus 3} \to \mathcal{O}_{\mathbb{P}^5}(-3)^{\oplus 8} \to \mathcal{O}_{\mathbb{P}^5}(-2)^{\oplus 6} \to \mathcal{I} \to 0.$$

In particular, the Veronese embedding $\varphi_{\mathcal{O}_{\mathbb{P}^2}(2)} : \mathbb{P}^2 \hookrightarrow \mathbb{P}^5$ satisfies $N_p \quad \forall p$. *Proof.* Easy computation.

 \square

Proof of Theorem 3.1. By Proposition 3.2 and Lemma 3.4, we just need to show that if $d \ge 3$, then property N_p does not hold for $p \ge 3d - 2$. But this is exactly the bound coming from Theorem 2.1.

When d = 2, the minimal free resolution of the quadratic Veronese variety is known from the work of Jozefiak, Pragacz and Weyman [JPW], in which they prove a conjecture made by Lascoux. As a corollary of the above paper, we have the following result (which agrees with our conjecture formulated in the introduction):

THEOREM 3.5. The quadratic Veronese embedding $\varphi_{\mathcal{O}_{\mathbb{P}^n}(2)}$: $\mathbb{P}^n \hookrightarrow \mathbb{P}^N$ satisfies N_p if and only if $p \leq 5$ when $n \geq 3$ and $\forall p$ when n = 2.

The following nice characterization, probably well known, was found during discussions with E. Arrondo:

THEOREM 3.6. The only (smooth) varieties in \mathbb{P}^n such that N_p holds for every $p \ge 0$ are the quadrics, the rational normal scrolls and the Veronese surface in \mathbb{P}^5 .

Proof. Suppose X is a variety satisfying N_p for every $p \ge 0$, then $H^i(\mathcal{O}_X(t)) = 0$ for $t \ge 0$ and $1 \le i \le \dim X - 1$. Hence, from Theorem 3.b.7 in [G1], it follows that the minimal free resolution of X restricts to the minimal resolution of its generic curve section C. This implies that $H^1(\mathcal{O}_C) = 0$ and C is linearly normal, hence C is a rational normal curve. In particular, X has minimal degree and we get the result.

We remark that the only Veronese varieties appearing in Theorem 3.6 are the rational normal curves and the Veronese surface in \mathbb{P}^5 .

Acknowledgement

We thank the referee for the improvements suggested in the presentation of the paper.

References

- [B1] Birkenhake, C.: Linear systems on projective spaces, *Manuscripta Math.* 88 (1995), 177–184.
- [B2] Birkenhake, C.: Noncomplete linear systems on abelian varieties, *Trans. Amer. Math. Soc.* 348 (5) (1996), 1885–1908.
- [EL] Ein, L. and Lazarsfeld, R.: Syzygies and Koszul cohomology of smooth projective varieties of arbitrary dimension, *Invent. Math.* 111 (1993), 51–67.
- [G1] Green, M.: Koszul cohomology and the geometry of projective varieties, J. Differential Geom. 19 (1984), 125–171.
- [G2] Green, M.: Koszul cohomology and the geometry of projective varieties, II, J. Differential Geom. 20 (1984), 279–289.
- [GL] Green, M. and Lazarsfeld, R.: Some results on the syzygies of finite sets and algebraic curves. *Compositio Math.* 67 (1988), 301–314.
- [JPW] Jozefiak, T., Pragacz, P. and Weyman, J.: Resolutions of determinantal varieties and tensor complexes associated with symmetric and antisymmetric matrices, *Asterisque* 87–88 (1981), 109–189.
- [M] Manivel, L.: On the syzygies of flag manifolds, *Proc. Amer. Math. Soc.* **124** (1996), 2293–2299.
- [P] Paoletti, R.: Stability of a class of homogeneous vector bundles on \mathbb{P}^n , *Boll. U.M.I.* (7) 9-A (1995), 329–343.