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OF THE SECOND KIND

LIN QUN

(Received 2 September 1980)

(Revised 14 November 1980)

Abstract

A deferred correction procedure for the approximate solution of the second-kind
equation is introduced, compared with an extrapolation procedure, and illustrated for
integral and differential equations.

1. Degenerate kernel method

Consider the second-kind equation

y=r,+k, (1
where f and y belong to a Banach space F, and k is a compact linear operator in
E. Itis assumed that 1 is not an eigenvalue of k, in which case a unique solution
y exists for any f € E. An example of such an equation is the integral equation

ORFORY | 'K(t, s)y(s) ds @)

considered in the Banach space C of continuous functions.
The exact equation (1) is approximated by
Yn = Pof + Pukoyns 3)
where k, is a bounded linear operator in E, and p, is a bounded linear
projection, with the property ||k — p,k,|| = 0 as n — 0. It then follows that the
inverse (I — p,k,)”! exists as a bounded linear operator in E if n is sufficiently
large. Moreover

1y = yall < O(lky = pakyll + 1L = PaflD)-
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An example of (3) is the degenerate kernel method
n n 1 .
yn(ti) = f(ti) + 2 yll(t_[) 2 K(’i’ tk)f ekej dy’ 1= 0, cees (4)
Jj=0 k=0 0

where t; = i/n, the basis ¢, is a piecewise linear function which equals one at ¢,
and zero at ¢; (j # i), and

()= 3 f)e(t), k()= [' S K e ds. ()
i=0 0 k=0

Then, if K € C* we have

Ik = pk,ll = O(n7?), (I = p)(k — k)l = O(n™®). (6)
We consider here the natural iteration
In =T+ kp, (7

which has been observed in [4] and has the property p,y, = y, as in [2], [3], [8].
Then introduce a correction term x, defined from y, by

Xy = Puln + PakpXps Py =Ky, + ky, +2f = 2y, ®
It should be emphasized that for the degenerate kernel operator, (5),

ki) = kf() + S S K1, 1,) [ 'K pes) s [ o9, as.

k=0 j=0

Direct calculation leads to

THeOREM 1. If y,, y, and x,, satisfy (3), (7) and (8), then
(I = Pk )y = 7p — %) = (k = p,k )y = »,) + (I = p )k = k),

COROLLARY 2. for the degenerate kernel method (4) of integral equation (2) we
have, if K € C*,

1y = 7n = xll Oy = yall)-

It is worth stating the following extrapolation result, which can be shown by a
direct calculation.

THEOREM 3. If y, satisfies (7), then
+ (k - kn)(y2n - yn) + (3k - 4k2n + kn)yZn‘

COROLLARY 4. For the degenerate kernel method (4) we have, if K(1, s)y(s) €
c*,

”3y - 4)7211 + fn“c < 0(”4).
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We remark that the general theory for the corrections and extrapolations due
to Stetter [9], Pereyra [6] and Baker [1] are based on the asymptotic expansion
argument which requires higher regularity on K and y.

2. Projection-type method

The usual projection-type method takes k, = k in (3). Then the theorems 1
and 3 reduce to

THEOREM 5. If
In = Pf + PV, V=S by, %
Xy = Puk(Vp = ¥,) + PukX,, (10)
then
(I = pak)y = 7w = x,) = (I = p)k(y = »,).
THEOREM 6 [5). If y, and y, satisfy (9), then (I — k)(3y — 4y,, + y,) =
k(I = p)k(y2, — ya) + k(I = 4py, + p,)ys,

We call y, the iterated projection solution, which has been studied extensively
and in depth in Sloan [7], Chandler [2], Chatelin [3], and particularly in [8].
To illustrate the applications of Theorems 5 and 6 we consider here the
problem
> =f+ @, (11)
y(0) = y(1) = 0. (12)
Let S°',, be the piecewise linear function space satisfying (12) and y, be the
finite element solution in S, defined by

(W) = (f+ ay,, w) forwes, (13)
Direct calculation shows

2w = ['3is)(1 = ) as = [ ds = [3(5)G (1 5) .

The Green function G(t, s) of (11) and (12) at nodes ¢, (i =0,...,n) form a
basis in S‘,,. Then (13) is equivalent to

)= [ (f + a3,)G(1, 5) ds (14)
or (9), with

o= 'a(s)G(t, s)y(s) ds

and p, the interpolatory projection.
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Let y, be the iterated finite element solution defined by

Vi =ft+a, 5,0 =y,()=0. (15)

It follows from (14) that

in(ti) = yn(ti)'

Let x, be the correction term defined from y, by (10), or equivalently let x, be
the piecewise linear function that satisfies

(x, w) = (a(5, — y,) + ax,,w) forwe S, (16)

Then Theorems 5 and 6 lead to

COROLLARY 7. If y,, ¥, and x, satisfy (13), (15) and (16), then

1y = Fa = xall < O(n721y = pull).

COROLLARY 8. If y, and y, satisfy (13) and (15), andy € C*, then

{1
2]
3]
(4]
(3]
(6]
7]
(8]
19

13y — 475, + 7,1l < O(n™).

References

C. T. H. Baker, The numerical treatment of integral equations (Clarendon press, Oxford, 1978),
Chapter 4.

G. A. Chandler, Superconvergence of numerical solutions to second kind integral equations, (Ph.
D. Thesis, ANU, Canberra, 1979).

F. Chatelin, Linear spectral approximation in Banach spaces (in press), Chapter 3.

Lin Qun, “Approximate method for operator equations”, Acta Math. Sinica 9 (1959), 414.

Lin Qun and Liu Jiaquan, “Extrapolation method for Fredholm integral equations with
non-smooth kernels”, to appear in Numer. Math.

V. L. Pereyra, “On improving an approximate solution of a functional equation by deferred
corrections”, Numer. Math. 8 (1966), 376-391.

I. H. Sloan, “Error analysis for a class of degenerate kernel methods”, Numer. Math. 25
(1976), 231-238.

I. H. Sloan, E. Noussair and B. J. Burn, “Projection method for equations of the second
kind”, J. Math. Anal. Appl. 69 (1979), 84-103.

H. J. Stetter, “Asymptotic expansions for the error of discretization algorithms for nonlinear
functional equations”, Numer. Math. 7 (1965), 18-31.

Institute of Systems Science
Academia Sinica

Beijing

China

https://doi.org/10.1017/50334270000002794 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000002794

