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1. Introduction

The study of torsion-free covers began in [3], where it was proved that any module over
an integral domain has a torsion-free cover with respect to the usual torsion theory. Later,
other authors studied this type of problem in more general situations. For example, Teply
extended this result to the case of torsion-free covers relative to arbitrary hereditary
torsion theories (see [11,14–16]).

Covers have been studied for arbitrary classes of modules (see [5]) with the class of flat
modules and the class of submodules of flat modules being two of the most important
such classes. Gómez and Torrecillas [12] study the existence of covers by submodules of
flat modules. In [17] Xu proved that any module over a commutative noetherian ring
of finite Krull dimension has a flat cover (see also [18, Theorem 4.3.5]). We note that
the existence of flat covers over any ring was conjectured by Enochs [5, p. 196], and this
conjecture has recently been positively settled by Bican et al . [2].

Wakamatsu’s Lemma [18, Lemma 2.1.1] implies that kernels of flat covers are cotorsion.
So cotorsion modules are important in the study of flat covers. The structure of flat
cotorsion modules over commutative noetherian rings is known [18, Theorem 4.1.15]. In
this paper we give a complete structure theorem for finitely generated cotorsion modules
(Corollary 2.5). Section 3 is devoted to the study of covering morphisms.

The notion of a covering morphism was introduced in [9] and those morphisms were
studied in [10] and [8]. They are useful in developing a categorical theory analogous to
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the Galois theory of fields. In this paper we use our structure results to characterize
covering morphisms between finitely generated modules over commutative noetherian
rings.

Most of the results we give in the paper will make use of the techniques exposed by Xu
in [18, § 4.1]. These techniques are valid when the base ring is commutative noetherian,
therefore, and for convenience, throughout this paper R will be a non-zero commutative
noetherian ring and all modules will be unital R-modules (unless otherwise stated).

We recall that a module C is said to be cotorsion if Ext1(F,C) = 0 for all flat modules
F . For a module M , PE(M) will denote its pure injective envelope. The symbol Ω will
mean the set of all maximal ideals of R, while Spec(R) will be the set of all prime ideals
of R. If M is any module, we let rad(M) denote the Jacobson radical of M .

Given R, we will consider the ring R̂ =
∏

η∈Ω R̂η. This is the completion of R with
respect to the topology having all finite products η1η2 · · · ηs (η1, . . . , ηs ∈ Ω, s > 1) as
a fundamental system of neighbourhoods of zero. R̂ will be noetherian if and only if
Ω is finite. We recall that PE(R) = R̂ [18, Corollary 4.2.4]. If Ω′ ⊆ Ω, we will identify∏

η∈Ω′ R̂η with a subset of R̂ =
∏

η∈Ω R̂η in the obvious manner.
Given a class of modules F , and a module M , an F-cover is a module F ∈ F together

with a morphism ϕ : F → M such that

(i) for any F ′ ∈ F and any f : F ′ → M , there exists g : F ′ → F with ϕ ◦ g = f ; and

(ii) for any g : F → F with ϕ ◦ g = ϕ, g is an automorphism.

When F and ϕ are such that (i) holds and perhaps (ii) does not, then ϕ : F → M is
an F-precover.

We note that F-covers are unique up to isomorphism. Also, if ψ : G → M is an F-
precover and ϕ : F → M an F-cover, then any f : F → G such that ψf = ϕ maps
F isomorphically onto a direct summand of G. And any g : G → F with ϕg = ψ is
surjective and ker g is a direct summand of G.

A flat cover is an F-cover, where F is the class of flat modules. We will follow this
convention in terminology for other such classes F . For example, if F is the class of
projective modules, an F-cover is a projective cover.

2. The main theorem

This section is devoted to the study of the structure of finitely generated cotorsion mod-
ules.

Pure injective modules are cotorsion and so give a supply of cotorsion modules. If E
is any injective R-module, HomR(M,E) is pure injective for any module M . If S 6 N is
pure, M ⊗ S → M ⊗N is an injection. Hence Hom(M ⊗N,E) → Hom(M ⊗ S,E) and
so Hom(N,Hom(M,E)) → Hom(S,Hom(M,E)) are surjective. Also ifR → R′ is any ring
homomorphism, then any pure injective R′-module is pure injective as an R-module. If
p ∈ Spec(R), then R̂p is a flat R-module, hence any pure injective R̂p-module is pure
injective as an R-module. In particular, if M is a finitely generated R̂p-module, then M
is Matlis reflexive as an R̂p-module and so has the form HomR̂p

(N,ER̂p
(k(p))), where
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k(p) is the residue field of R̂p and N is some R̂p-module. Hence M is pure injective as
an R̂p-module and so as an R-module. More generally, any finitely generated module
over R̂p1 × · · · × R̂ps for p1, . . . , ps ∈ Spec(R) is pure injective as an R-module, and so
cotorsion as an R-module.

We note that if F is flat then F is pure injective if and only if F is cotorsion. For pure
injective implies cotorsion for any module. Now suppose F is flat and cotorsion. Since
F 6 PE(F ) is pure and PE(F ) is flat by [18, Lemma 3.1.6], we have that PE(F )/F is flat
(also by [18, Lemma 3.1.6]). But F is cotorsion, so 0 → F → PE(F ) → PE(F )/F → 0
splits and then F , as a direct summand of PE(F ), is pure injective (so in fact F = PE(F )).

Proposition 2.1. Let M be an R-module. If M is finitely generated, then a linear
R → M has at most one extension R̂ → M . If M (whether finitely generated or not) is
such that every linear R → M has a unique extension R̂ → M , then M can be made into
an R̂-module with the scalar multiplication extending the original scalar multiplication
in a unique fashion.

Proof. If M is finitely generated and some R → M has two distinct extensions
R̂ → M , then there would exist a non-zero map R̂/R → M and so there is an exact
R̂/R → N → 0 with N 6 M , N 6= 0. Note also that η̄N 6= N for some η̄ ∈ Ω. Now

η̄R̂ = η̄
∏

R̂η =
∏

η̄R̂η = η̄R̂η̄ ×
∏
η 6=η̄

R̂η.

Hence η̄R̂+R = R̂ (recall thatR/η → R̂η/ηR̂η is an isomorphism) and so η̄(R̂/R) = R̂/R.
But this is not compatible with the above.

Now assume M is arbitrary and that every R → M has a unique extension R̂ → M .
Given any r ∈ R̂ and any x ∈ M , we define rx as follows: we consider the R-homo-

morphism R
·x−→ M , and we extend it to R̂ → M . So rx is the image of r by the last

map. Then if r, s ∈ R̂ and x ∈ M we consider the situation

R̂
·s−→ R̂

·r−→ R̂
·x−→ M.

If we compose the last three homomorphisms in the two possible ways, and we apply
both compositions to 1 ∈ R̂, we get the equality (rs)x = r(sx). The rest of the module
axioms are trivial. �

Proposition 2.2. IfM is an R̂-module that is finitely generated as an R-module, then
(
∏

η∈Ω′ R̂η)M = 0 for some Ω′ ⊆ Ω with Ω \Ω′ finite, and M is a cotorsion R-module.

Proof. We first argue that if M is an R̂-module that is finitely generated as an R-
module and if (⊕η∈ΩR̂η)M = 0, then M = 0.

For if M 6= 0 there is an η̄ ∈ Ω such that η̄M 6= M . Since

η̄R̂ = η̄
∏
η∈Ω

R̂η =
∏
η∈Ω

η̄R̂η = η̄R̂η̄ ×
∏
η 6=η̄

R̂η,
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we see that η̄(R̂/ ⊕η∈Ω R̂η) = R̂/ ⊕η∈Ω R̂η. But if (⊕η∈ΩR̂η)M = 0, then M is an
(R̂/⊕η∈Ω R̂η)-module, which is impossible.

Therefore, if M is an R̂-module which is finitely generated as an R-module, then
(⊕η∈ΩR̂η)M = M by applying the above to N = M/(⊕η∈ΩR̂ηM).

Now we see that sinceM is finitely generated,M = (⊕s
i=1R̂ηi)M for some finite number

of distinct η1, η2, . . . , ηs ∈ Ω. Let e ∈ ⊕s
i=1R̂ηi

be (1, 1, . . . , 1). Then ex = x for all x ∈ M

and then (1−e)x = 0 ∀x ∈ M . Thus, (
∏

η∈Ω′ R̂η)M = 0, where Ω \Ω′ = {η1, η2, . . . , ηs}.
It is easy to observe that M is a finitely generated

R̂

/ ∏
η∈Ω′

R̂η
∼= R̂η1 × · · · × R̂ηs

-module;

so M is a cotorsion R-module. �

We now collect our results in the next theorem.

Theorem 2.3. Let M be a finitely generated R-module. Then M is cotorsion if and
only if every linear R → M has an R-linear extension R̂ → M . Also M is cotorsion if
and only if M is an R̂-module with the scalar multiplication extending the original scalar
multiplication by R. When this is the case, the R̂-module structure is unique and for some
Ω′ ⊆ Ω with Ω \Ω′ finite, (

∏
η∈Ω′ R̂η)M = 0 and so M is an R̂η1 × · · · × R̂ηs -module

with Ω \Ω′ = {η1, . . . , ηs} and where the ηi are distinct.

Proof. If M is cotorsion, any R → M has an R-linear extension R̂ → M (since R̂/R
is flat), which is unique by Proposition 2.1. Then, also by Proposition 2.1, M is uniquely
an R̂-module with scalar multiplication extending the original scalar multiplication. By
Proposition 2.2 we get the Ω′ ⊆ Ω with Ω \Ω′ finite and such that (

∏
η∈Ω′ R̂η)M = 0.

Conversely, if every R → M has an extension R̂ → M , this extension is unique
(Proposition 2.1), and soM is an R̂-module, also by Proposition 2.1. Then Proposition 2.2
shows thatM is cotorsion. If we assume already thatM is an R̂-module (again with scalar
multiplication extending that by R), Proposition 2.2 gives that M is cotorsion. �

Corollary 2.4. Let C → M → 0 be exact, where C is cotorsion and M is finitely
generated. Then M is cotorsion.

Proof. Any linear R → M lifts to R → C. Such an R → C has an extension R̂ → C

which gives an extension R̂ → C → M of R → M . �

Corollary 2.5. LetM be any finitely generated cotorsion R-module. ThenM = M1×
· · · ×Ms uniquely, where Mi is a finitely generated R̂ηi-module for ηi ∈ Ω, i = 1, . . . , s,
and ηi 6= ηj whenever i 6= j.

Proof. The proof follows immediately from Theorem 2.3. �

Lemma 2.6. Let M be an R-module such that every R → M has a unique extension
R̂ → M (so M is an R̂-module by Proposition 2.1). Then if N is an R̂-module and if
f : N → M is R-linear, then f is R̂-linear.
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Proof. Let y ∈ N . Consider the map R̂ → M , namely r 7→ f(ry) − rf(y). This map
is zero on R, so by hypothesis is zero on R̂. Hence f is R̂-linear. �

We now consider closure operations for the class of finitely generated cotorsion modules.

Proposition 2.7. Let M be a finitely generated R-module. If S 6 M is a submodule,
then M is cotorsion if and only if S and M/S are cotorsion.

Proof. If S and M/S are cotorsion, we have the exact

0 = Ext1(F, S) → Ext1(F,M) → Ext1(F,M/S) = 0

when F is flat. So Ext1(F,M) = 0 for all flat F and so M is cotorsion.
Conversely, suppose M is cotorsion. By Corollary 2.4, M/S is cotorsion, and then by

Theorem 2.3 and Lemma 2.6 M and M/S are R̂-modules and M → M/S is R̂-linear.
Hence S is an R̂-submodule of M and so, again by Theorem 2.3, is cotorsion. �

If we let t(M) = {x ∈ M ; Rx is cotorsion}, we immediately see that t(M) is a submod-
ule of M , and so it is a finitely generated submodule. Therefore, t(M) = Rx1 + · · ·+Rxn

for some x1, . . . , xn ∈ M , and Rxi are all cotorsion. Then, using the fact that quotients
and finite direct sums of cotorsion modules are cotorsion, we get that t(M) is a cotorsion
submodule of M . In fact, it is clear that it is the largest cotorsion submodule of M . If
we now observe that t(M/t(M)) = 0, we see that t defines a left exact radial and hence
we have an associated torsion theory [13]. With rx ∼= R/I and I = Ann(x), we ask: for
which ideals I 6 R is R/I cotorsion?

Proposition 2.8. If R is of finite Krull dimension and I 6 R is an ideal, then R/I is
a cotorsion R-module if and only if R/I is a complete semilocal ring.

Proof. Let R/I be a cotorsion R-module. Then R/I is an R̂-module and so an
(R̂/IR̂)-module. But clearly R̂/IR̂ = R̂/I; so, by Theorem 2.3, R/I is a cotorsion R/I-
module. Since R/I is a flat R/I-module, R/I is also a pure injective R/I-module, so
R/I = PER/I(R/I). But by [18, Corollary 4.2.4], PER/I(R/I) =

∏
(R̂/I)η/I with the

product over the maximal ideals η/I of R/I. Since R/I is noetherian, we see that there
are only a finite number of such maximal ideals η/I (because otherwise ⊕(R̂/I)η/I is not
finitely generated). Hence R/I is a complete semilocal ring.

Conversely, if R/I is a complete semilocal ring, then R/I = PER/I(R/I) and so R/I
is a pure injective, hence cotorsion, R/I-module. But then by [18, Proposition 3.3.3],
R/I is a cotorsion R-module. �

3. Covers and coverings by flat modules

Let F be a class of modules. A homomorphism of R-modules f : M1 → M2 is said to
be an F-covering morphism if, whenever we take arbitrary F-covers ϕ1 : F1 → M1 and
ϕ2 : F2 → M2 of M1 and M2, respectively, every induced morphism g : F1 → F2 with
ϕ2 ◦ g = f ◦ ϕ1 is an isomorphism. We note that every such g is an isomorphism if and
only if one of them is (see [9] for details about covering morphisms). In this section we
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will give several characterizations of F-covering morphisms between finitely generated
modules by restricting ourselves to the case in which F is the class of all flat modules.

Covering morphisms (with respect to the class of flat modules) of finitely generated
modules over a principal ideal domain have been characterized in [9] as those epimor-
phism whose kernel is superfluous.

Proposition 3.1. Let M be a finitely generated cotorsion module. Let η1, . . . , ηs be
distinct maximal ideals of R such that (

∏
η∈Ω′ R̂η)M = 0, whereΩ′ = Ω \ {η1, . . . , ηs}; so

M is an R̂η1 × · · · × R̂ηs -module. Let M = M1 × · · · ×Ms be the corresponding decom-
position of M (so Mi is a finitely generated R̂ηi

-module). If R̂ni
ηi

→ Mi is a projective
cover of Mi as an R̂ηi-module, then ϕ : F = R̂n1

η1
× · · · × R̂ns

ηs
→ M1 × · · · ×Ms = M is

a flat cover of M as an R-module.

Proof. F is a flat R-module and ϕ is surjective. If K = kerϕ = K1 × · · · ×Ks, then
Ki is a finitely generated R̂ηi

-module. Then Ki is a cotorsion R-module and so also is
K = K1 × · · · × Ks. Therefore, if G is flat we have that Hom(G,F ) → Hom(G,M) →
Ext1(G,K) = 0 is exact and then ϕ : F → M is a flat precover.

The fact that it is a flat cover results from the fact that any R-linear R̂ni
ηi

→ R̂ni
ηi

is
also R̂ηi-linear and that R̂ni

ηi
→ Mi is a projective cover as R̂ηi-modules. �

Theorem 3.2. Any finitely generated R-module has a flat and cotorsion cover.

Proof. Let M be a finitely generated R-module. We consider t(M) ⊆ M the sum of
all cotorsion submodules ofM and F → t(M) a flat cover. Then F is flat and cotorsion [6,
p. 182, Corollary]. We prove that F → t(M) ↪→ M is the flat and cotorsion cover of M .

Given h : G → M with G flat cotorsion, then h(G) is cotorsion so h(G) ⊆ t(M). Hence,
there exists g : G → F such that

G

	

g
?
h

F -t(M)

is commutative. So F → M is a precover.
Finally, let d : F → F be a map such that the triangle

F

	
d

?
F -M

is commutative. Then it is easy to see that the triangle
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F

	
d

?
F -t(M)

is commutative too and so d is an automorphism. �

Corollary 3.3. The flat and cotorsion cover of a finitely generated module M is a
map of the form R̂n1

η1
× · · · × R̂ns

ηs
→ M for some natural numbers n1, . . . , ns and maximal

ideals η1, . . . , ηs.

Proof. Since M is finitely generated, t(M) is finitely generated too, so it has a decom-
position t(M) = A1 × · · · ×As, where Ai is a finitely generated R̂ηi-module and ηi is a
maximal ideal of R for each i (Corollary 2.5). Then, by Proposition 3.1 we have that
R̂ni

ηi
→ Ai is a flat cover of Ai as an R-module (recall that every finitely generated

R̂ηi
-module has a projective cover which is free, so it is of the form R̂ni

ηi
→ Ai). Hence,

R̂ni
ηi

× · · · × R̂ns
ηs

→ t(M) is a flat cover (as R-modules) and, by the proof of Theorem 3.2,
R̂ni

ηi
× · · · × R̂ns

ηs
→ t(M) ↪→ M is a flat and cotorsion cover (as R-modules). �

Remark 3.4. Since the class of flat and cotorsion modules is not closed under arbi-
trary direct sums it is clear that there are modules without flat and cotorsion covers.
For example, take (R, η) a non-complete local ring and consider G = ⊕NR̂ a countable
direct sum of copies of the completion of R with respect to the η-adic topology. Then
G is flat but it is not cotorsion (it is not pure-injective). If G had a flat and cotorsion
cover F → G then the canonical injections R̂ → G would factorize through F . So by
the universal property of the direct sum we would find a map G → F such that the
composition G → F → G is the identity. So F → G would split and so G would be
cotorsion, a contradiction.

We will now study covering morphisms M1 → M2 between finitely generated R-
modules.

Proposition 3.5. If f : M1 → M2 is a covering homomorphism, where M1 is finitely
generated, then f is surjective and ker f is cotorsion.

Proof. If ϕi : Fi → Mi is a flat cover for i = 1, 2, then each ϕi is surjective (any
R → Mi can be factored R → Fi → Mi). By hypothesis there is a commutative diagram

F1
g−−−−→ F2

ϕ1

y ϕ2

y
M1

f−−−−→ M2

with F1
g→ F2 an isomorphism. Hence f must be a surjection. But we also have a sur-

jection g−1(kerϕ2) → ker f that agrees with ϕ1, and kerϕ2 is cotorsion by Wakamatsu’s
Lemma. Therefore, since g−1(kerϕ2) ∼= kerϕ2, we get, by Corollary 2.4, that ker f is
cotorsion. �

https://doi.org/10.1017/S0013091599000590 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091599000590


150 E. E. Enochs, J. R. Garćıa Rozas and L. Oyonarte

The fact that ker f is cotorsion also follows from a more general fact proved in [9,
Theorem 2.7].

Proposition 3.6. Let M be a finitely generated R-module. If N is a submodule of M
and the projection M → M/N is a covering morphism, then for any submodule K 6 N

the projections M → M/K and M/K → M/N are both covering morphisms.

Proof. If M → M/N is covering, we know that N is cotorsion, and since it is finitely
generated, any K 6 N is also cotorsion by Proposition 2.7. Suppose now that G → M/K,
F → M/N and F → M are flat covers and consider the induced commutative diagram

F −−−−→ G −−−−→ Fy y y
M −−−−→ M/K −−−−→ M/N

Since M → M/N is covering, F → G → F is an isomorphism and then F → G is
a monomorphism, so we can suppose F 6 G. Now, from the properties of a cover, it is
easy to see that if the restriction of a flat cover G → M/K to a flat F 6 G gives a flat
precover F → M/K, then F = G. And it is not hard to prove that F → M → M/K is a
flat precover since K is cotorsion, so we have that the original F → G is an isomorphism.
Thus, M → M/K is covering.

Of course if F → G → F and F → G are both isomorphisms, then G → F is also an
isomorphism and so M/K → M/N is covering. �

Theorem 3.7. Let M1, M2 be any two finitely generated modules and f : M1 → M2

any homomorphism of R-modules. The following statements are equivalent.

(1) f is covering.

(2) f is surjective, C = ker f is cotorsion and for any submodule D 6 C, the module
C/D does not contain non-zero direct summands of M1/D.

(3) f is surjective, C is cotorsion and for any maximal D 6 C, the module C/D is not
a direct summand of M1/D.

Proof. (1) ⇒ (2) We know that f is surjective and that C is cotorsion.
If D 6 C is any submodule, the induced morphism M1/D → M2 is covering by

Proposition 3.6, and [9, Proposition 2.8] says then that ker(M1/D → M2) = C/D

contains no non-zero direct summands of M1/D (we note that this is easy to argue
directly).

(2) ⇒ (3) Clear.
(3) ⇒ (1) Let φ : F → M2 be a flat cover. Since f is surjective and C is cotorsion, we

get a morphism ϕ : F → M1 such that fϕ = φ. Let us prove that ϕ is surjective. This is
clearly equivalent to the condition C ⊆ Imϕ. We consider F ′ = ϕ−1(C), and we want to
prove that ϕ′ = ϕ|F ′ : F ′ → C is surjective. But the latter is equivalent to proving that
the map F ′ ϕ′

−→ C → C/D is surjective for every maximal D 6 C. Suppose that this is
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not the case. Then there exists a maximal D such that the map F ′ ϕ′
−→ C → C/D is zero

(because C/D is simple), and then Imϕ′ ⊆ D. This implies that Im(ϕ) ∩ C ⊆ D, and it
is clear that Im(ϕ) + C = M1 since fϕ = φ is surjective. So we get that M1/D is the
direct sum of (Im(ϕ) +D)/D and C/D, which contradicts the hypothesis.

Let us prove now that ϕ : F → M1 is a flat precover. Suppose then that G is a flat
module and that h : G → M1 is any homomorphism. Since φ is a flat cover of M2, we
see that there exists a morphism g : G → F such that φg = fh. Consider now the map
h − ϕg : G → C. If we find a morphism t : G → F ′ such that ϕ′t = h − ϕg, we will see
that, if we let k : F ′ → F be the inclusion, then ϕkt = h − ϕg, and so ϕ(kt + g) = h,
where kt+ g : G → F . Therefore, we will have shown that ϕ : F → M1 is a flat precover.

Thus, we will prove that for any morphism G
α−→ C there exists a map G

β−→ F ′ such
that α = ϕ′β. It is clear that it suffices to argue that this is the case when α is a flat cover.
But C is finitely generated and cotorsion, so the flat cover of C is a finite direct sum of
R̂η for some maximal ideals η of R (Proposition 3.1). Hence we can suppose α : R̂η → C

for some η ∈ Ω.
We can also extend α : R̂η → C to an R-linear α : R̂ → C (letting the map be zero

on
∏

η′ 6=η R̂η′) and so we can suppose α : R̂ → C. We consider the restriction α|R.
Since ϕ is surjective, there is a β′ : R → F with ϕβ′ = α|R. Since fα = 0, we see that
Imβ′ ⊆ F ′ ⊆ kerφ. But kerφ is cotorsion, so there is an R-linear β : R̂ → F with Imβ ⊆
kerφ that agrees with β′ on R. Then (fϕβ)|R = (fα)|R = 0, and by Proposition 2.1 we
get that fϕβ = 0. This implies Imβ ⊆ F ′.

Now that we have that ϕ : F → M1 is a flat precover, it is easy to argue that it is in
fact a flat cover. Since if d : F → F is such that ϕd = ϕ, then fϕd = fϕ, but fϕ = φ; so
we have φd = φ, which implies that d is an automorphism (φ is a flat cover). Therefore
ϕ is a flat cover and our morphism f is covering. �
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8. E. Enochs, J. R. Garćıa Rozas and L. Oyonarte, Compact coGalois groups, Math.

Proc. Camb. Phil. Soc. 128 (2000), 233–244.
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