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ABSTRACT. We investigate limitations of the one-dimensional elastic-beam model to
detect grounding line and thickness of an ice shelf from a differential interferogram. Spatial
limitations due to grounding-line curvature and variable ice thickness are analyzed by com-
parison with two-dimensional plate flexure. Temporal limitations from the tide-dependent
shift of the grounding line are analyzed by superpositions of four tidal flexure profiles rep-
resenting differential interferograms. (i) At scales greater than one ice thickness, seaward
protrusions of the grounding line are well represented by the elastic-beam model, while
landward embayments of the same scale produce significant misplacements >10% of the
ice thickness. (i1) For reasonable spatial variations of shelf thickness, the elastic-beam model
gives reliable estimates of grounding-line position and unfractured mean ice thickness near
the grounding line. (ii1) For about 20% of superpositions of four tidal flexure profiles, the
resulting grounding-line misplacements exceed the physical tidal shift of the grounding line
by factors >2. For differential tide levels <10% of'a I m tide dynamics, a physical shift of the
grounding line of 0.3 km per metre of tide can lever misplacements of >2 km. Examples of

real interferometric profiles from West Antarctic ice shelves corroborate our results.

INTRODUCTION

The location of the grounding line on a tidewater glacier or
ice shelf is immediately sensitive to changes in ice thickness
and sea level (Hughes, 1977; Thomas, 1979). At constant sea
level, repeat measurements of the grounding-line position
can be used to monitor variations of ice flux or local mass-
balance processes such as bottom melting. The grounding
line is most accurately detected with an elastic ice model.
This requires measurements of tidal uplift on a large spatial
scale and on a long-term basis that became possible with
space-borne synthetic aperture radar (SAR) interferometry
(Goldstein and others, 1993; Rignot, 1998b). Besides other
contributions such as topography, an interferogram of two
SAR phase images acquired at different times measures sur-
face motion towards the SAR sensor (Goldstein and others,
1993; Hartl and others, 1994). The ocean tides contribute a
net vertical motion to the interferogram because they are
generally incommensurable with the 24 hour repeat inter-
val of available SAR satellites such as European Remote-
sensing Satellite (ERS) or RADARSAT. Goldstein and
others (1993) fitted the interferometrically measured tidal
uplift along a profile perpendicular to the grounding line
with the vertical displacement

w(m) = Wnsl
+ wo{l - eiﬁ(zizg’l)[cos ﬂ(ﬂj - xgl) + sinﬂ(x - xgl)]} )
T > Tyl (1)

of an infinitely long beam, free floating on sea water and
locked to bedrock beyond the grounding-line position' Tyl
Here, wyq 1s the displacement corresponding to mean sea
level, wy is the tide level, z is the distance along the profile,
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and [ is the flexural parameter that depends on ice rheology
and thickness. Rignot (1998a, b) extended this method to the
difference of two interferograms. He showed that the actual
grounding line 4 could be detected reliably to better than
40 m if the grounding line was reasonably straight to justify
the one-dimensional (1-D) treatment. The difference between
detected and mean sea-level grounding line was estimated to
be <300 m for his studied profiles.

In the present paper, we discuss the shortcomings of
Equation (1) in a systematic and quantitative way. We distin-
guish between spatial (i) and temporal (ii) limitations of
the 1-D model. The first are due to a non-zero curvature of
the grounding line or a thickness variation along the profile.
The second are due to the ephemeral migration of the
grounding line as a function of the actual tide level. This
migration effect is amplified in the difference interferogram,
which contains a combination of four separate states of tidal
uplift. For case (i) we calculate the flexure of a thin elastic
plate for a specified grounding-line geometry, ice-thickness
distribution and tide level. Equation (1), valid for a profile
across a straight grounding line and constant ice thickness,
1s then used to recover the input values. Deviations from the
input values are studied as a function of grounding-line cur-
vature and ice-thickness distribution. For reasonable vari-
ations of ice thickness, these deviations are found to be
small. Furthermore we show that profiles across convex sec-

'In reality x4 is the position of the surface equivalent of the
grounding line, the so-called hinge line, which differs
slightly from the former as a function of ice thickness and
maximum tidal uplift.
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tions of the grounding line are generally much better repre-
sented by the 1-D model than profiles across concave sec-
tions of comparable curvature.

For case (ii) we use Equation (1) to calculate a series of
four tide profiles corresponding to individual tide levels.
The grounding-line position xg for the profiles is assumed
to vary linearly with tide level. The quadruple difference of
the profiles is used to simulate the representation of 1-D tidal
flexure in a difference interferogram. The simulations are
compared to examples of tidal uplift interferometrically
measured at Pine Island and Thwaites Glaciers, West Ant-
arctica. We show that for certain tidal combinations true
and modelled grounding-line locations differ by up to
several kilometres. Explicit knowledge of the tide levels
(e.g. from a tide model) can be used to correct this effect.

TIDAL FORCING OF FLOATING AND GROUNDED
ICE

Tidal forcing varies on hourly time-scales with amplitudes
that are much smaller than the typical thicknesses of ice
shelves and ice streams. Under these conditions, ice should
behave as an elastic plate (e.g. Anandakrishnan and Alley,
1997, appendix A) that is buoyantly supported by ocean
water below the grounding line and rests on bedrock or sub-
glacial sediment above it. An immediate effect of the tidal
forcing is vertical flexure of the floating ice as a so-called
Kirchhoff plate clamped along the grounding line. This
generalizes the flexure of an elastic beam to two dimensions
and variable ice thickness.

One should mention that an elastic description of tidal
flexure may not be generally valid. Lingle and others (1981)
used a 1-D viscoelastic model to explain the tidal flexure
across a lateral (i.e. flow-parallel) grounding line of Jakobs-
havn Isbre, Greenland, that takes into account a suggested
visco-plastic flexure of the bottom ice. In this paper we do
not go beyond elastic flexure. We show, however, that devia-
tions from the elastic-heam model observed for the Pine
Island and Thwaites Glacier grounding zones, which can
be explained with our model, cannot alternatively be
explained with the viscoelastic model. We thus conclude that
visco-plastic tidal flexure is not of importance there, but
should be kept in mind when transferring our results to other
grounding zones. Another important argument of Lingle and
others (1981) is that flexure analysis, elastic or visco-plastic,
must be restricted to the unfractured thickness of ice. Due to
severe transverse crevassing, the equivalent elastic thickness
of Jakobshavn Isbra is <20% of the measured thickness.
Using the same elastic parameters, we find a corresponding
value of about 60% for Pine Island Glacier. In this paper, the
terms “ice thickness” or “mean ice thickness” therefore always
refer to the unfractured part of the ice column.

Besides vertical flexure, a possible second effect of the tidal
forcing is damped waves of horizontal motion change that
spread inland of the grounding line by a coupling of the ice
to a layer of viscous basal till (Anandakrishnan and Alley,
1997). Such waves with a velocity of about 16ms ' were
traced indirectly from seismicity time series on Ice Stream
C up to 85 km from the grounding line. Besides till deform-
ation, there are two other accepted mechanisms of fast ice
motion, basal sliding and deformation of soft basal ice
(Smith, 1997). While tidal forcing seems to have no effect
where ice motion is dominated by the latter mechanism,
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forced variations of basal water pressure could theoretically
give rise to similar waves of sliding variation (Echelmeyer
and Harrison, 1989).

A central issue is whether these horizontal motion changes
can be misinterpreted as vertical flexure in an interferogram,
therefore contaminating the information on the location of
the grounding line. Because Ice Stream C is almost stagnant,
maximum horizontal motion changes in the vicinity of the
grounding line are only around 1mm dfl, which is clearly
irrelevant for interferograms with short temporal baseline.
Newer results on fast-moving Ice Stream D (personal commu-
nication from S. Anandakrishan, 2001) suggest, however, con-
siderably larger tidal velocity variations up to several tens of
centimetres per day. The interferometric contribution will be
significantly reduced due to generally similar tides for the two
SAR acquisitions, separated by a multiple of 24 hours. Maxi-
mum contributions consequently should be <10 cm (~1 fringe
for ERS tandem). The spatial characteristics of motion change
on Ice Stream C suggest that the net effect on the
interferometric representation of the ice-shelf grounding zone
1s the addition of an almost linear phase ramp. This is because
the observed wave velocity translates into a wavelength of
70 km, which is much longer than the width of the grounding
zone (a few kilometres). Thus, we rule out temporal variations
of horizontal motion as a source of error.

The vertical flexure w(x,y) of an ice shelf is described by
the fourth-order partial differential equation (Kirchhoft, 1850),

KDCK"w + pygw =0, (2)
with
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being the elasticity matrix of an isotropic material, the flex-
ural rigidity and the curvature differential operator, respect-
vely; py 1s the density of sea water, and gis the Earth gravity
acceleration. The flexural rigidity depends on thickness h, as
well as elastic properties, Young’s modulus E and Poisson
ratio v. The respective boundary conditions at the ground-
ing line (gl) and at infinite seaward distance from the
grounding line (co) are
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gl 00

ow
_ay‘gl_“" —w. (3)
The boundary condition at the grounding line corresponds to
zero vertical flexure of all grounded ice. Tor the subglacial
conditions of bed deformation or sliding discussed before,
there is the theoretical possibility of incomplete locking of
the grounded ice landward of the grounding line. In this case,
the corresponding boundary conditions would not require a
zero derivative of tidal flexure at the grounding line as in
Equation (3), and we would get a damped extension of verti-
cal tidal flexure up-glacier of the grounding line. This exten-
sion is not described by Equation (1) even for a straight
grounding line and constant ice thickness. As opposed to the
tidally forced waves of horizontal motion change discussed
before, the vertical flexure of grounded ice creates a volume-
conservation problem that can only be solved by large-scale
redistribution of sea water and/or till between subglacial
areas above the grounding line on the time-scale of hours
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(see also discussion in Anandakrishnan and Alley, 1997). The
physical feasibility of such a mechanism is unlikely and we do
not address potential limitations due to this type of modified
boundary condition in the paper.

SPATTAL LIMITATIONS OF THE ELASTIC-BEAM
MODEL

Equation (2) describes vertical flexure for the general two-
dimensional (2-D)case for non-constant D, i.e. the grounding
line can be arbitrarily curved and thickness and/or elastic
properties of the ice shelf can be spatially variable. In this
paper, we investigate several special cases of Equation (2) that
are tabulated in Table 1 together with their corresponding
numerical solution methods. The flexural parameter § is
defined in the table; 37! defines a characteristic scale for the
horizontal coordinates; in most of the analysis we consequently
use dimensionless coordinates such as Gz, By. Dimensionless
coordinate values can be read directly in kilometres for an ice
thickness of about 700 m because 3 &~ 1km in this case.

For each case of Table 1 we fit Equation (1) to the calcu-
lated tidal flexure to obtain the dimensionless grounding-
line misplacement, ice-thickness bias, and tide-level bias of
the elastic-beam model. Two sources contribute to the error
budget of these parameters. The first is the error from the
numerical integration of the appropriate differential equa-
tion. The second error source results from the fit process.
Using the fit statistics, this latter error was evaluated to be
<10°? for all experiments presented in the paper. For the 1-
D numerical solution methods (cases II-IV in Table 1) the
first error source is several orders of magnitude smaller than
the second. Thus the overall error is estimated to be 10 * in
this case. 1o estimate the overall error for the finite-element
case (VinTable 1) we compared the calculated dimensionless
parameters for a grounding line with zero or constant curva-
ture, with the corresponding parameters calculated for the 1-
D cases. These tests showed that the overall error is better
than 107 for the finite-element case.
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1-D flexure with constant ice thickness (I): effects of
profile misalignment

As shown in Table 1, Equation (1) already is the proper
solution. However, this simple case allows one to investigate
the effects of fitting Equation (1) to a flexure profile that is not
perpendicular to the grounding line but is misaligned by an
angle a. This 1s relevant to real data, where choosing profiles
perpendicular to an (a priori unknown) grounding line will
always introduce directional errors up to some 10°. The sensi-
tivity of the fit parameters wp, 3 and &) is analytically evalu-
ated by noting that the distance along such a misaligned
profile is given by s = xz(cos oz)_l. Replacing by scosa in
Equation (1) immediately shows that wy and x4 = s4 cos «
are unaffected, while (3 is replaced by 5 cosa. We conclude
that for a reasonably straight grounding line, ice thickness h
obtained by fitting Equation (1) is overestimated by a factor
(cos a)_3/4. For a misalignment of o = 10° this positive bias
is <5%; for a = 20° it is about 11%.

1-D flexure with variable ice thickness (II)

Most ice shelves show a seaward reduction of ice thickness,
controlled by the spatial distributions of local mass balance
and ice velocity on the shelf (Paterson, 1994, p. 300, equation
42). To our knowledge, there is no agreed mathematical
shape of a typical shelf-ice thickness profile. Published
profiles (e.g. Crabtree and Doake, 1982; Allen and others,
1997) usually show a monotonic decrease of the absolute
value of the ice-thickness gradient with distance from the
grounding line. This characteristic is approximated by a
simple exponential thickness profile

= i 1-— i - . 4
(- Rew(-25). @

Here, Ry is the ratio of minimum ice thickness at the shelf edge
to maximum ice thickness hg) at the grounding line; Zgec 1s a
characteristic length that determines the ice-thickness gradi-

Table 1. Special cases of Equation (2): descriptions, differential equations and solution schemes

Case Grounding line Ice thickness h Dufferential equation Solution
< . . 81 4 . .
I Straight along y axis constant ﬁu) +48'w=0 Analytical: Equation (1)
I
II  Straight al i iabl L& n? 02w+4ﬂ4w 0 Numerical: R Kutt
rai c n axis arle 2 5 e = Aumerical: nge ye
aight along y axis variable 2ot o umerical: Runge—Kutta
III  Constant ture (circle) tant 82+18 a2+1a w+ 46" =0 N ical: R Kutt
onstant curvature (circle onstan —+t-—=llz=+-5 = Numerical: Runge— a
S curvature (circle cons a2 v \am T umeric unge—Ku
IV Constant ture (circle) iabl ! 62+18 R? 62+18w Numerical: R Kutt
onstant curvature (circle variable — |25 +-% =+ Numerical: Runge—Kutta
h3 \or* " ror or?  ror s
v—1(0h3 0w
- - 43w =0
W (&« 87“) +afu
A% Curved constant AAw + 43w =0 Numerical: 2-D finite element
Definitions:

Parameter values:

flexural parameter:
Laplacian (Cartesian coordinates):

polar coordinates:

1 1, -3

B=[3(1—v")pug| E-ihy
0? 0?
“o? o

r=yz2+yt, o= tan’l(%)

A

pw = 1000kgm % p; =900kgm > g=98ms % E=9x10°Nm % v =033
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Fig. 1. Flexure of a 1-D beam with variable thickness (solid
line) compared to the Equation (1) best fit (dotted line). Also
shown are the variable thickness parameterized by Ry = 0.2,
Bxdec = 1 (dash-dotted line ), as well as the constant thickness
BBt/ gy = 0.58 ( dashed line) and the resulting grounding-line
misplacement ﬂ(xglt — &g) = 0.16 (cross symbol) of the fit.

ent. Equation (4) is used in the following to quantify the effect
of variable ice thickness on the profile of tidal flexure.

Figure 1 shows a concrete example with Rg = 0.2 and
Bxgec = 1. For hg = 700 m these parameters correspond to
an ice shelf whose ice thickness drops to less than half within
lkm of the grounding line. Thickness gradients of this size
are not what is typically observed. However, even for this
extreme case the flexure profile does not deviate substantially

a B'Xgl b

dw/dwg - 1 c

from the simple flexible-beam model. For hy = 700 m the
resulting fit corresponds to an equivalent constant ice thick-
ness b = 406 m calculated from the fitted flexural param-
cter /6. The grounding line is misplaced seaward by
160 m due to the reduced flexure near the grounding line,
where the ice is thicker than h'"*. The biases of the parameters
fitted with Equation (1) are presented in Figure 2 for a wide
range of Ry and 52 4ec values. Figure 2a shows the grounding-
line misplacement ﬁ(x;‘f — xg1), Figure 2b shows the tide-
level bias wi /wy — 1, and Figure 2c shows the corresponding
bias of the (constant) ice thickness Af"/h,, — 1. The latter is
calculated relative to an average ice thickness h,y, that is
representative of the belt of strong tidal flexure between the
grounding line and the “forebulge” of the flexure profile,
where dw/0x = 0. We calculate h,y by averaging Equation
() over the interval [0, 7(3%) "] The misplacement of the
grounding line is generally smaller than 0237}, and the fitted
tide level is accurate to within 1%; fitted and average ice
thickness agrees to within 10%.

Our analysis applies qualitatively to spatial thickness
variations more general than Equation (4). For a profile
across a real ice shelf we expect Equation (1) to produce an
accurate measurement of tide level, as well as an estimate
(on the 10% level) of mean ice thickness averaged over the
belt of strong tidal flexure. At the same time, grounding-line
location is misplaced (seaward for negative, and landward
for positive ice-thickness gradient) on the order of 10% of
the ice thickness.

2-D flexure with constant ice thickness and circular
grounding line (III)

Next, we discuss the 2-D flexure of an ice shelf for the special
case that the grounding line is a circle of radius 7). By intro-
ducing polar coordinates (see Table 1) Equation (2) reduces to
an ordinary differential equation with the independent vari-

hii/hay - 1

0.9 0.02 1 0.9}

0.8f

Rfi

-0.005

0.6k

T

0y

B Xdec

B Xdec

B Xdec

Fig. 2. Parameters fitted with Equation (1) for shelf-ice thickness distributions described by Equation (4). Shown are (a) ground-
ing-line misplacement, (b) fractional difference between fitted and input tidal amplitudes, and (¢ ) fractional difference between

fitted and average ice thickness. Here, the average hay is taken from the grounding line (x =0) out to x = m(3™)
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Fig. 3. The two sub-cases of 2-D flexure of an ice sheet over a circular grounding line. Sketch maps: the ice cover over the hatched
areas is grounded; over the white areas it is floating. Graph: Corresponding to the sketch maps we show examples of flexure profiles
Jor convex ( positive curvature) and concave ( negative curvature ) grounding line withry = +00 (dotted line ), 2.53" (dashed

line ), 0.05371 ( solid line ).

able 7. Figure 3 shows that there are two qualitatively differ-
ent sub-cases with convex <+T;11) and concave (—7’;11) curva-
ture, respectively. Sub-case (a) represents an ice shelf resting
on a disc-shaped island, while (b) represents an ice sheet
grounded everywhere except where it overlays a circular
water-filled depression (e.g. a subglacial lake subject to fluc-
tuations of its water level). A comparison of the characteris-
tics of the two sub-cases is important for understanding the
flexure across a grounding line of more general shape consist-
ing of sections of (variable) positive and negative curvature
(case V, discussed later). Sub-case (a) is similar to cases I
and II, in that the second of the boundary conditions in
Equation (2) is analogously

()

This gives a so-called outer solution of the differential equa-
tion of case III. Corresponding flexure profiles for different
radii of curvature are shown in Figure 3 (right side). With

w(r — 00) = wy .

decreasing 7y the flexure gradient in the vicinity of the
grounding line increases. On the other hand, the character-
istic forebulge of the flexure profile shows a decrease in
height as well as a seaward shift in location.

For sub-case (b) we must look for an inner solution of the
differential equation that reaches from r =rg to r = 0.
Here, the corresponding second boundary condition is

@(7‘—%})20.

6

- (6)
For small 75 on the order of $~' we generally find
w(r = 0) # wy for the flexure at the centre of the circle, i.e.
the ice sheet does not reach complete isostatic balance there.
This effect is seen for the flexure profiles shown on the left
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side of Figure 3. Case V will show that on a small scale, land-
ward embayments of the grounding line correspond to the
inner solution of sub-case (b), while seaward protrusions of
the grounding line correspond to sub-case (a). With increas-
ing distance from the grounding line, these small-scale solu-
tions merge into a large-scale solution, which always
resembles an outer solution of the type of case I. As a conse-
quence, landward embayments, which require the merging
of qualitatively different small- and large-scale solutions,
are poorly described by the flexible-beam model.

For sub-case (a), grounding-line misplacement ﬂ(rgf —Tq1),
ice-thickness bias A1*/h—1, and tide-level wi/wy—1 for a
range of curvature (r;') are shown in Figure 4. Ground-
ing-line misplacemento is always landwards; for curvatures
in the range 10-200 it reaches maximum negative values
around —0.253 L. Ice-thickness and tide-level biases reach
corresponding positive maxima of 5% and 15%, respective-
ly. The enhanced flexure for a curved grounding line should
lead to a negative ice-thickness bias. The observed positive
bias can be explained by an overcompensation by the other
two fit parameters. Figure 4b shows a negative ice-thickness
deviation up to —10% if grounding-line location and tide
level are kept fixed at their exact values.

2-D flexure with variable ice thickness and circular
grounding line (IV)

As for case III, we use polar coordinates. We assume a thick-
ness variation with radial symmetry described by Equation
(4) with the independent variable 7 instead of z. Radial
profiles of 1-D flexure are found by solving the resulting
ordinary differential equation in Table 1. The biases of
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Fig. 4. Parameters filted with Equation (1) for case Illa as a function of grounding-line curvature. Shown are deviations with respect
to the exact values; grounding-line position (solid line ), tide level (dashed line), ice thickness (dotted line). (a) All parameters are

Sutted; (b) only ice thickness is fitted, while grounding-line position and tide level are fixed at their respective exact values.

grounding-line position, ice thickness and tide level will be a
combination of those of cases II and III. We only discuss the
sub-case of a convex grounding line (rgfll > (). We assume the
combined biases to be small for this case, and consequently do
not calculate them for the entire parameter ranges of Tg_ll, Ry,
Tdec taken from Figures 2 and 4. Instead we choose only two
combinations (ﬂrgll, R, Brae) = (2.0, 0.5,1.0) and (10.0, 0.2,
0.5), with moderate and extreme values, respectively, to check
our assumption. The grounding-line misplacement for the
first combination is ﬁ(rgf — 1g1) = —0.01, which compares to
individual misplacements of +0.11 and —0.17 for cases II and
ITI, respectively. For the second combination we find +0.09,
which compares to +0.16 and —0.26 for the individual mis-
placements. The combined ice-thickness bias is very similar
to that of case II. We conclude that misplacement of a convex
grounding line is partially compensated by a seaward
decrease of shelf-ice thickness.

2-D flexure with constant thickness and grounding line
of arbitrary curvature (V)

Equation (2) for constant ice thickness is solved with the
finite-element method on a 2-D zy domain bounded by the
grounding line on the left side (Fig. 5a and b). The accuracy
of the method was verified by using a straight grounding line
along the y axis and comparing the solution with Equation
(1). As an example of a grounding line with variable curva-
ture we use a Gaussian shape that merges into the y axis on
the upper and lower side to allow for boundary conditions
corresponding to a straight grounding line there. We investi-
gate two sub-cases: (1) a “Gaussian protrusion”, where curva-
ture changes symmetrically from a central positive
maximum to a smaller negative minimum and back to zero,
and (ii) a Gaussian embayment with the sign of curvature
reversed everywhere. For sub-case (i), Figure 5a and b show
the calculated tidal flexure displayed as interferometric
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fringe patterns for two concrete examples of small and large
shelf thickness. In contrast to the previous analysis, we use
dimensional coordinates for case V.

As in cases II-TV, we find the effective grounding-line
position and ice thickness corresponding to the elastic-beam
model by fitting profiles of 2-D flexure perpendicular to the
(true) grounding line. For sub-case (i), Figure 5c shows the
effective grounding line for different ice thickness; Figure 5d
shows corresponding results for sub-case (ii). For ice thick-
ness much smaller than the radius of curvature, detected
and true grounding line agree. For thicker ice, the effective
grounding line becomes a diffused image of the true
grounding line in sub-case (i). The corresponding ground-
ing-line misplacement is systematic and predictable. In
sub-case (i1), the result is very different. Here, the ground-
ing-line misplacement is generally larger and of more com-
plicated shape even for comparatively small ice thickness.
For very large ice thickness both sub-cases are alike again.
The detected grounding line becomes straight, bridging
the “embayment”-, and cutting off the “protrusion”-type
excursion of the true grounding line, respectively.

In Figure 6 we plot By against dimensionless grounding-
line misplacement, ice-thickness bias and tide-level bias of
sub-case (1). The results show that case III can be generalized
to a grounding line of variable curvature. As expected from
the discussion of case III, the grounding-line misplacement
varies with curvature and is over-proportionally large at the
flanks of the protrusion, where the curvature is negative. As
for case I11, ice-thickness counter-intuitively is overestimated
for positive curvature due to the compensating influence of
grounding-line misplacement. In summary, embayments of
the grounding line whose spatial scales are comparable to
the ice thickness or smaller cannot be fitted reliably with
Equation (1). In contrast, protrusions of the same scale pro-
duce comparatively small grounding-line misplacement that
can be corrected approximately.
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Gaussian protrusion (Fig. 5a) fitted with Equation

(1). Shown are: grounding-line displacement ( solid line),
beta (dashed line ) and tide level ( dash dotted line ).

TEMPORAL LIMITATIONS OF THE ELASTIC-BEAM
MODEL

For straight to moderately convex stretches of the grounding
line, absolute biases of grounding-line location are small
(typically <100 m) and they will largely cancel during the
evaluation of relative grounding-line changes. Nevertheless,
the corresponding phase contribution of tidal motion in a
differential interferogram can deviate significantly from
Equation (1). The reason is the temporal superposition of
four individual patterns of tidal flexure. These patterns are
shifted relative to each other because the actual grounding-
line location fluctuates with the tide level (Rignot, 1998b).
In regions that show ephemeral fluctuations on the order of
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a few hundred metres per metre of tide, the grounding line
detected with Equation (1) can be misplaced by several kilo-
metres. The resulting misplacement depends on the particu-
lar combination of tide levels. The effect is important to
consider since it is exactly these regions, where the ground-
ing line is sensitive to tide level, or alternatively to small
changes in shelf-ice thickness, that are interesting to monitor
from a climatological and ice-dynamical standpoint. In this
section, we model quadruple-difference profiles of tidal flex-
ure for a straight grounding line and compare the results to
real data from Thwaites and Pine Island Glaciers.

In the following, Sy and Sy denote the difference opera-
tors describing the formation of single and differential inter-
ferograms, respectively. Applying Sy to Equation (1) yields

Sy(w;) = (w1 — wa) — (w3 — wy) (7)
= Si[Aw;(1 - e~ Alr—ama) off Aw; {cos[B(z — Tmst — fAW;)
+sin(B(z — s — fAw;)]})] x> max(fAw;) .

Here, x4 is the grounding-line location at mean sea level
wWpsl; without loss of generality we set &y, = Wy = 0 1n sub-
sequent calculations. By Aw; we denote the four tide levels at
the acquisition times of the individual SAR scenes, and we
have introduced the rate f = Az, /Aw of grounding-line
shift Az with tide level Aw. According to Rignot (1998b),

1
f= ; 8
@~ /) )
with as and oy, being surface and bed slope, respectively.
Equation (7) is valid for > max(fAw;) when all four
SAR scenes cover floating ice. For x < min(fAw;) there is
no tidal contribution to the differential interferogram

because the ice is grounded in all scenes. In the range
min(fAw;) < z < max(fAw;) we pass the sequence of
actual grounding lines in the order of the respective tide
levels of the SAR scenes. Here, the tidal phase contribution
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1s formed by the superposition of three, then two, and finally

only one, individual flexure profile. The resulting deviation

of the interferometric profile from Equation (7) close to the

mean sea-level grounding line x,,q is demonstrated later.
Equation (7) can be rearranged as

Sy(wi) = Sa(Aw;)[1 - e (A cos Bz + Bsin Bz)] (9)

with

A= m Sy [Awie_ﬂfA'l”" (cos Bf Aw; + sin ﬁwai)]
B= m Sy [Awie’ﬁmw" (cos BfAw; — sin ﬂwai)] .

(10)

For cases where the expression SfAw; is small, Equations
(10) can be linearly approximated according to
S4(Aw2)
B=1+4+28f—7—<. 11
+26f S, (Buwy) (11)
Finally, Equation (9) can be recast into the form of Equation
(I) by introducing

A=1,

B
1 -
A2 1+ p2
Az = — arctan — 4 , wo = Sy(Aw;) . )
8 148 2
A
(12)

as grounding-line misplacement Ay = Xy — Tl and tidal
amplitude, respectively. A profile in a differential interfero-
gram consequently has the same shape as a single tidal
profile but 1s shifted and stretched according to Equations
(12). Reliable detection of the grounding-line location in dif-
ferential interferograms with Equation (1) generally requires
A =~ B. Otherwise, grounding-line misplacements of up to
(m/2) 37! are possible. For an ice shelf about 1000 m thick
(8 =06km ') maximum misplacement is about 2.5 km.

In the following we evaluate the conditions and statistical
probability for large values of Az to occur in a differential
interferogram. We use FES952 (Le Provost and others,
1998), a global finite-element hydrodynamic model improved
by TOPEX/POSEIDON altimeter data, to create a time ser-
ies of quadruple tidal differences Sy (w;). We apply the model
to a location near Thwaites Glacier over a time-span of
2 years (I March 1996 to 1 March 1998). The simulated differ-
ences of acquisition time for the single interferograms were
lday (ERS tandem mission). For the time difference between
two single interferograms that form a differential interfero-
gram we used 35days (one repeat cycle). Individual tide
levels of the time series range between —0.2 and 0.97 m.

The statistical frequency distribution for double Ss(w;)
and quadruple Sy(w;) tidal differences is shown in Figure 7a
and b, respectively. The corresponding grounding-line mis-
placement Az, from Equations (12) is shown in Figure 7c.
For the simulation we have chosen f= 06km ' and f =
300. In Figure 7d the simulated grounding-line misplace-
ments and quadruple differences are plotted against each
other. The latter plot shows that Sy(w;) < 0.1 m is a necessary
condition for large Ax,1. From Figure 7c we find a 20% prob-
ability for Az to exceed the expected range of grounding-
line shift with tide level by factors larger than two.

Tests show that, for the given geographic region, FES95.2
fails to reproduce particular quadruple tidal differences meas-
ured in differential interferograms. However, our analysis is
not sensitive to these individual prediction errors. The only
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necessary assumption is that the internal statistics of the
simulated time series of individual tide levels is realistic. The
dynamics of the simulated tide series is considered a lower
bound to realistic tide-level variations. Channel effects caused
by the geometry of the coastline as well as the bathymetry in
the vicinity of the grounding line are known to amplify the
tide dynamics considerably (Kertz, 1992). Direct measure-
ments of tide dynamics from other ice-shelf areas of Antarcti-
ca (e.g. 6m at Ronne Ice Shelf (Doake, 1992) and 1.8 m at
Schirmacheroasen (Metzig, 1997)) also suggest that our simu-
lation may underestimate the tide dynamics. A more realistic
modelled tide dynamics would produce more data points with
substantial misplacement A for large Sy(w;).

The profiles with very large Az on the order of several
kilometres all show strong deviations with respect to the flexure
of an elastic beam locked at the true grounding line. There are,
however, two subjective categories of large Az, depending on
whether it is nevertheless possible to identify the approximate
location of the true grounding line by eye or not. In Figure 8 the
two categories are illustrated with examples of real data, from
Pine Island and Thwaites Glaciers, respectively.

Figure 8a and b show corresponding profiles measured in
two differential interferograms of the eastern tongue of
Thwaites Glacier. The profile location and the measured
quadruple tidal amplitude along the profile are shown in the
left and right sub-panels of the figure, respectively. The profile
with the larger quadruple tidal difference of 0.4 m (Fig. 8a) is
matched accurately by Equation (1). The fitted grounding-line
position Zy, = 33km and the flexural parameter (=
0.63 x 10 °km ", can be taken as proxies of the actual values.
Fitting the elastic-beam model to the profile of Figure 8b with
a quadruple tidal amplitude of 0.03 m produces xg = 4.5 km.
The resulting misplacement of Az, = 1.2 km cannot be eas-
ily recognized by eye without comparing to Figure 8a.

Figure 8c and d show corresponding profiles measured in
two differential interferograms of the central part of Pine
Island Glacier. Both of these interferograms were part of a
study by Rignot (1998a). The profile of Figure 8c with a large
quadruple tidal amplitude (—0.32 m) is again fitted well with
the elastic-beam model. The grounding line is detected at
Zgl = 3.2 km. In contrast, the Figure 8d profile with a quad-
ruple tidal amplitude of 0.085 m shows a peculiar hump-
shaped forebulge that cannot be explained by the elastic-
beam model. In terms of Equations (12), the grounding line
in this case is even more severely misplaced than in Figure
8b, with the elastic-beam model describing only the outer
part of the profile seaward of the top of the forebulge (the cor-
responding tidal amplitude is inverted with respect to the
true one). In terms of interactive grounding-line detection,
this category of misplacement is, however, less critical than
that of Figure 8b. Despite the anomalous shape, the zone of
concentrated flexure starts close to the true grounding line,
and fitting Equation (1) there avoids the gross misplacement
(this has been done in Figure 8d). The anomalous shape will
nevertheless compromise the accuracy of the fit parameters
xg1 and (. Yor Figure 8¢ and d we additionally show curves
of the viscoelastic-beam model (Lingle and others, 1981). The
observed profile shapes cannot be explained with this model.

In the following we analyze the range of tidal combina-
tions and tidal sensitivities of the grounding line that can
explain the profiles of Figure 8b and d. As mentioned before,
the observed deviations from the elastic-beam model in the
vicinity of the true grounding line are due to less than four
SAR scenes contributing to the tidal phase contribution in this


https://doi.org/10.3189/172756502781831197

Double differences

300 —— . I ]
I a
o ]
o i
S ]
C 4
(] -
S )
w -
m -
0.0 0.2 0.4 0.6 0.8
Metres
Grounding line shift
50 ;l T | TrTr T | Tr T l T ‘ Trrrrrorrr l_
c :
40F .
o :
(o)) r ]
8 30f 3
[ F ]
[} r ]
o ; ]
[ 1
a ]
O:.,..l....l....n..... b3
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Kilometres

Rabus and Lang: Ice-shelf grounding zones in SAR interferograms

Quadruple differences

AQF T T T T T T T T T

Percentage

P RS S T U U SO U (U U SO U U YT SO0 SN W N O W U WA A OO0 SO U W 0 W W S S A W

._‘
[

Grounding line shift (km)

PR VO S T SN WA VT SO AN VU VT WY WA NN SN U0 SO W NN ST S0 W S U ST Y Y

N
o

Quadruple tidal amplitude (m)

Fig. 7. Simulation with FES95.2 model tide values of a 2 year period. Shown are corresponding histograms of double (a) and
quadruple (b) tidal differences, as well as absolute value of grounding-line shift (¢ . Parameters used in the simulation are 3 =
0.6 km ' and f = 300. The actual distribution of grounding line with quadruple tidal difference is shown in (d).

range. In the analysis we use a generalized version of Equation
(7) that takes this effect into account. We assume the mean sea-
level grounding line at Zy,g = 3.3 and 3.2 km, respectively. A
general tide-quadruple [Awy, Aws, Aws, Aw,] can be par-
ameterized as

Aw1 a 1
Awy | ad c| —1
Aws | | —ad HZ B (13)
Awy —a 1
with

. Aw, — Awy B Awy — Aws
a 2 ’ - Aw1 — A’LU4 ’

¢ = Awy — Awy — Aws — Awy, (14)

Awy + Awsy + Awsz + Awy
S = .

4
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An additional free parameter is f, which leads to an overall
five-dimensional parameterization of Equation (7). Two of
the parameters, the quadruple tidal amplitude ¢ measured
between g and infinity and the mean tide level s, are deter-
mined by the boundary conditions. From the interferometric
profiles we find ¢ = 0.0195 m and s - f = 0.12 km for the case
of Figure 8b. For Figure 8d we analogously find ¢ = 0.083 m
and s - f =123 km. The quantity s - f describes the shift of
the grounding line at mean tide level s with respect to @pg;
it is fixed by using x4 from Figure 8a and c as proxy values for
ZTmsl. 10 find a solution for the remaining three parameters,
we vary a and d within reasonable limits on a regular grid
(a € [-1.8m,1.8m], d € [03,0.99]) and then fit Equation (7)
with respect to f. Figure 9 shows the degenerated parameter
solutions for the best fit of Equation (7) to the interferometric
profiles in Figure 8b and d (dashed lines there). The left
panels of the figure show how d is related to a; the corres-
ponding values of f are shown in the right panels. For realis-
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Fig. 8 (opposite). Differential interferometric profiles across the tidal flexing zones of Thwaztes east (a, b) and Pine Island (¢, d)
Glaciers. The left side of each sub-figure shows the location of the chosen profile marked as a black bar in the corresponding differential
interferogram. The right side shows measured phase data along the profile in metres. (a) and (c¢) show examples with large tidal
amplitudes that allow correct derivation of 3 and Ty = Tmg (dotted vertical line ). Best fits with the elastic-beam model are super-
imposed. In contrast, (b) and (d) have small tidal amplitudes and anomalous shapes. Apparent grounding-line shifts derived from
Sitting Equation (1) are Axg = 1.2 and 5.0 km, respectively. Best fits for quadruple tidal profiles with Equation (7) are super-
imposed. Vertical dash-dotted line: apparent grounding-line position. For Pine Island Glacier (¢, d), fit curves are shown_for both
elastic- and viscoelastic-beam model using [3 found from the elastic-beam best fit in (¢ ). For Thwaites east Glacier, grounding lines
detected continuously with Equation (1) in differential interferograms (a) and (b) are marked as white lines in interferogram (a).
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Fig. 9. Valid parameterizations ( Equation (13) ) for the best-fit quadruple tidal profiles shown as dashed curves in Figure 8b and d. For
both the Pine Island and the T hwaztes ( east) Glacier example we show plots of parameters a vs d (left side ) as well as avs f (right side ).

tic tide levels 0.3 m > |a| < 2.0 m we find —200 < f < 450 for
Figure 8b and —1600 < f < =650 for Figure 8d. Analyses of
other cases with large Azy sampled in Figure 7 show that the
presented results can be generalized.

In summary, the tidal phase contribution in a differen-
tial interferogram generally corresponds to a 1-D manifold
of possible quadruple combinations of single tide levels and
f values. For large Az, the tidal shift of the grounding line
f is relatively insensitive to a wide range of tide levels a.
Under this condition tide data with a relatively low degree
of accuracy would be sufficient to determine f and, if sur-
face slope 1s known, also the basal slope ap (Equation (8)).

DISCUSSION

For single interferograms, grounding-line detection is possible
only for regions of low ice-velocity gradient. Differential inter-
ferograms get rid of this limitation by removing the phase con-
tribution due to continuous horizontal motion (Rignot,
1998b). However, in the previous section we have shown that
this advantage comes at a price: for quadruple tide levels smal-
ler than about 10% of the tide dynamics, there is the possibility
of making a gross error when locating the grounding line with
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the elastic-beam model. Independent tide data, measured or
modelled, are necessary to correct this problem.

In the following we explain why grounding-line detec-
tion in a single interferogram, in regions of small ice-velocity
gradients where it can be accomplished, is more robust. The
parameterization of the tide couple [ Aw;, Aws] making up
a single interferogram

Aw1 ¢ 1
(A) =5 () + (15)
with
¢ = Aw; — Awy, :w (16)

has two parameters fewer than that of a differential interfero-
gram (Equations (13) and (14)). The superposition of tidal flex-
ure profiles is described by Equations (7-9) with Sy replacing
Sy everywhere. Again, the parameter ¢ is the tidal amplitude
in the interferogram. However, in contrast to the differential
case the parameter s- f can now be fitted unambiguously
without assuming the approximate location of the mean sea-
level grounding line x,,q. Fitting s - f fixes both xpg and the
shape of the fit simultaneously. If the profile in Figure 8b were
from a single interferogram, we would find s- f = 1.8km,
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which locates xy,q unambiguously at 3.3 km — 1.8 km = 1.5 km.
Turned around, single interferograms with small tidal phase
contribution are less likely to exhibit false grounding-line
shifts than corresponding differential interferograms.

This result supports Metzig and others’ (1997) derivation
of a significant 4.5 km tidal shift of the grounding line of
Schirmacheroasen ice shelf, Antarctica, by comparing two
single interferograms. It is not possible to produce both a
45km grounding-line misplacement and the observed
phase-profile shapes with Equations (15) and (16). For both
phase-profile shapes, f must be small, corresponding to steep
surface or bottom slope (Equation (8)). Apparently contrary
values of f > 3000 evaluated from an independently meas-
ured tide-level difference of 1.5 m must be due to an ice plain
in between the single interferometric grounding lines (repre-
senting high and low tide conditions, respectively). Due to the
complications described in the previous section, drawing the
same conclusions from two corresponding differential inter-
ferograms would be considerably less robust.

CONCLUSION

Grounding-line location detected with the elastic-beam
model is strictly valid only for a straight grounding line and
a homogencous ice shelf of constant thickness. The elastic-
beam model produces a good approximation of grounding-
line location (on the 100 m level) for seaward protrusions
(convex, positive curvature) of the grounding line down to
scales of one ice thickness or less. The same is true for any rea-
listic seaward decrease of shelf-ice thickness. On the other
hand, comparable negative curvatures present in embay-
ments of the grounding line lead to considerably larger
grounding-line misplacement. We conclude that, judged from
grounding-line geometry, studies of the shift of grounding-
line location over time may include regions of larger positive
curvature without requiring methods more sophisticated
than the elastic-beam model. Regions with larger negative
curvature of the grounding line should be excluded.

Tor differential interferograms, there is a non-vanishing
probability of making severe errors when locating the
grounding line with the elastic-beam model. The problem
is restricted to small quadruple tide levels®, which are
roughly below 10% of the dynamics of individual tide levels.
If this condition is met, grounding-line misplacements up to
several kilometres are possible. About 20% of all tidal com-
binations will produce such large misplacements. Ground-
ing-line detection in single interferograms, within their
reduced range of applicability (regions of small ice-velocity
gradient), does not show a comparable possibility of error.
This makes the interpretation of a single interferogram with
small tidal phase contribution less ambiguous than that of a
corresponding differential interferogram.
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