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THE COHEN-MACAULAYNESS OF THE REES ALGEBRAS
OF LOCAL RINGS
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§0. Introduction
Let (A, m, k) be a Noetherian local ring. We define

R(4) = @ m”

n20

and call it the Rees algebra of A. Let X be an indeterminate over A,
then R(A) can be identified with the A-subalgebra A[{aX |a € m}] of A[X].
Note that the associated graded ring

G(A) — @ mn/mn+1

n20

of A is isomorphic to R(A)/mR(A).

The purpose of this paper is to give a criterion for R(A) to be Cohen-
Macaulay. For this purpose we may assume that the residue field £ = A/m
is infinite. In fact, if & is finite we replace A by A[T],.r; = A(T), where
T is an indeterminate over A. Then A(T) is faithfully flat over A and is
a local ring with maximal ideal mA(T). Hence

R(A(T)) —=> R(A) ®, A(T)

and this is Cohen-Macaulay if and only if R(A) is Cohen-Macaulay. There-
fore in this paper all local rings are assumed to have infinite residue field.

Since A/m is infinite there exist a,, a,, - - -, @, € m such that m* = (a, a,, - - -,
aym™ ! for some positive integer n, where d = dim A (cf. [6]), and q =
(a,, ---,a,) is called a minimal reduction of m.

Now we state our criterion.

TaEOREM (0.1). Let (A, m, k) be a Noetherian local ring of dimension
d>0,q=(a, - --,a;) a minimal reduction of m and PR = G(A),. Then
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the following conditions are equivalent.
1) R(A) is Cohen-Macaulay.
2) a) A is Buchsbaum,
b) fori<d

H(4) (n=-1)

i (G(A _
CICO R

and
c) mé = qmél
In this case G(A)y is Buchsbaum.

Y. Shimoda proved a slightly more complicated but essentially the
same result for dim A = 3 and he communicated it to me informally. I
have also learned that S. Goto independently obtained the implication 1)
= 2).

Our theorem generalizes a result due to S. Goto and Y. Shimoda which
says that when A is Cohen-Macaulay, R(A) is Cohen-Macaulay if and only

if G(A) is Cohen-Macaulay and there exist a,, - - -, @, € m such that m?¢ =
(a, -+, ap)m? ! (cf. [2]). Our proof of the condition c) is the same as that
of [2].

The theory of Buchsbaum rings has been rapidly developed in recent
years as a generalization of that of Cohen-Macaulay rings. It is remarka-
ble that the theory of Buchsbaum rings can be related to the Cohen-
Macaulayness of the Rees algebra as our result shows.

In section 1 we recall the definition of Buchsbaum rings and their
basic properties which we need in this paper. Section 2 is devoted to the
proof of Theorem (0.1). The idea of the proof was inspired by the tech-
niques of S. Goto. The proof is carried out by detailed computations of
local cohomology modules. In section 3 we give an example of a Buchsbaum
ring which is not Cohen-Macaulay and whose Rees algebra is Cohen-
Macaulay.

All rings in this paper are commutative with identity.

Before closing this section the author would like to thank S. Goto
and J. Watanabe for helpful advices and inspiring discussions.

§1. Buchsbaum rings

Recall the definition of Buchsbaum rings. Let (4, 11, k) be a Noetherian_
local ring and M a finitely generated A-module. An ideal of A is called
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a parameter ideal of M if it is generated by a system of parameters of M.

We say that M is a Buchsbaum A-module if for any parameter ideal
q of M the difference 1,(M/qM) — e,(q) is an invariant of M which does
not depend on the choice of the parameter ideal q of M, where 1,()
denotes the length of A-module and e,(q) is the multiplicity of q with
respect to M. We denote this invariant of M by I(M). A Noetherian
local ring is Buchsbaum if it is a Buchsbaum module over itself.

Before recalling the basic properties of Buchsbaum rings we introduce
some notation. Let R be a Noetherian ring, M a finitely generated R-module
and N a proper submodule of M. Let Assh, (M/N) = {p € Suppr (M/N)|
dim R/p = dim M/N}. Let N = M,cassnz r/m N(p) be a primary decompo-
sition of N in M, where N(p) is a p-primary submodule of M. Then we
define

UN)= N N@).

pEAsshg (M/N)

Note that U(N) does not depend on the primary decomposition chosen
since every p e Assh, (M/N) is minimal in Supp; (M|N).

Let R be as above and a an ideal of R. For any R-module M we
define

Hi{(M) = lim Ext?, (R/a™, M)
™

and call it the i-th local cohomology module of M with support in Spec R/a.
The functor Hi( ) is the i-th derived functor of HY ). If R = ®,,, R, is
a graded ring, a a homogeneous ideal of R and M = &®,., M, a graded
R-module, then H{(M) has a natural structure of graded R-module. We
denote the homogeneous part of degree n of Hi(M) by [H{(M)],.

Now let us recall the basic properties of Buchsbaum rings.

ProrositioN (1.1). Let (A, m, k) be a Noetherian local ring of dimension
d > 0. Then the following conditions are equivalent.

1) A is Buchsbaum.

2) For any system of parameters a,, a,, - --,a, of A, we have

mU((ala Ayy ** vy ai)) c (al’ Qyy -+ - vy ai) fOT’ 0 < i < d.
Proof. See [10].

CoroLLARY (1.2). Let (A, m, k) be a Buchsbaum ring of dimension
d > 0. Then,
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1) for any a e m such that dim A/aA < dim A, A/aA is Buchsbaum,
2) for any system of parameters of A,
U((U((an Ay -+ vy ai)), ai+l)) = U((al’ Agy 0y ai+l)) for 0 g l S d -2 ’
3) A/U((0)) is Buchsbaum, and
4) U((al, Agy * 0y ai)) = (ab Agy * " °y ai): Q;4q for 0 S i < d-
Proof. See [10].

ProposITION (1.3). Let (A, m, k) be a Noetherian local ring and A the
completion of A. Then A is Buchsbaum if and only if A is Buchsbaum.

Proof. See [9].

ProrositioN (1.4). Let (A, m, k) be a Buchsbaum ring of dimension
d > 0. Then,
1) mHi(A) = (0) for 0 < i <d, and

2 14 =-x5("7
of k-vector space.

Proof. See [8] or [3].

)dimk Hi(A), where dim, denotes the dimension

ProrosiTiON (1.5). Let (A, m, k) be a Noetherian local ring and M a
finitely generated A-module of dimension d > 0. Assume that the canonical
homomorphism

é.: Exti (k, M) —> Hi(M) = lim Ext}, (A/m", M)
_)

is surjective for 0 < i < d. Then M is a Buchsbaum A-module. Furthermore
if A is regular the converse is true.

Proof. See [11].

ProPoSITION (1.6). Let k be a field, G = @,., G, a Noetherian graded
ring with G, = k and f = G,. Suppose that there is an integer n such
that for 0<i<d=dimG and m #+n

HyD)] = (0 .
Then Gy is Buchsbaum.
Proof. See [8].

The following result is crucial in section 2.
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PropositioN (1.7). Let (A, m, k) be a Buchsbaum ring of dimension
d>0, G=G(A) and P =G,. If Gyis Buchsbaum and I(A) = I(Gy), then
for any minimal reduction q = (a,, @,, - - -, @;) of m we have

d
(@', a?, - -, @g) N m" = 2, affm"~™

for all positive integers n,, n,, - - -, ny, n, where m’ = A if j <0.

Proof. Let h, (1 <i < d) be the initial form of @, in G. Then A,

hy, - -+, hy is a system of parameters of Gy. By the definition of Buchsbaum
rings, we have

1(G/(hy k2, - - -, BgD)) — eq((hi, B3, - - -, hG?))
= 1A(A/(a71“’ a, - -, azd)) - eA((a;“9 a, -, agd))

for all positive integers n,, n,, - - -, n,.
So we have

1G(G/(h;}19 h;‘te, AR} hgd)) = 1A(A/(a71“a a;L2’ ) aZd))

because

ei(hy, - - -, g?) = nn, - - - ngeg((hy, - - -, b))

and

e(at, -+, a39) = nn, - - - ne ay, -+, )

by [1] and because
el -+, 1) = e(@ -+, a2) -
On the other hand,
LGl -, Hg) = 3 Lu((m /35 g 4 meet)
and
1.(A/@™, - - -, ai) = 1;:) L@, - - -, @) N m® 4+ mY).
But
fia?‘m"-ni + m"t C(af, -+, 059 N om” + me

for all n > 0. Hence,
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4
2, armr T 4 met = (af, - - -, 639 N m® + m!
i=1

for all positive integers n, n,, - - -, ng n.

Therefore
d
Z; a::'»imn- ny — (a;u, cee, aﬁ“) n me
=

for all positive integers n,, n,, - - -, ngy, n.

CoRrOLLARY (1.8). Under the same hypothesis as in (1.7) we have
(@, - ap) N e = 3 ayme
j=1

for 1< i< d and for all positive integers n,, n, - - -, n,, n.

Proof.

(a?’ Tty a?i) nm: = (ICDO (a{“’ ) a?: a§+1, ] as)) m m”
= koo((ai“, <o, ay, a?+l: Tty (l'&) N mn)
i
= koo (Z; arqun-n/’ (afﬂ’ ) aZ)mn_k)
=

i
= Y, aym" ",
j=

§2. Proof of Theorem (0.1)

Let (A, m, k) be a Noetherian local ring of dimension d > 0, R = R(A)
and G = G(A). Let X be an indeterminate over A. We identify R with
the graded A-subalgebra A[{aX|aem}] of A[X]. Then the homogeneous
component of degree n of R is given by [R], = m"X" for n > 0 and [R],
= (0) for n <0. Let R, = ®,-,[R], and let

h: R—> A = R|R,

be the canonical projection. Let E be an A-module. We denote E by ,E
if E is considered as an R-module via hA. Furthermore ,E is considered
as a graded R-module whose grading is given by [,E], = E and [,E], =
() for n 0. Let M be the unique maximal homogeneous ideal of R,

then
HL,(.E) = H(E) for all i >0 (cf. [4]).
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Now recall that dim R = dim R, = d + 1 (cf. [12]). Let q=(a;, @, - - -,

a;) be a minimal reduction of m and we set
Q=(@,0—aX -, 0, —a,..X a,X) .

Lemma (2.1). QR, is a minimal reduction of MR,. In particular a,
a, — aX, -+, a, — a,..X, a,X is a system of parameters of R,.

Proof. Let P = (a,a, ---,a: a.X, a,X, ---,a,X) and n a positive
integer such that m” = qm*~'. Then,

M" = PM™* .
But it is easy to see that P* = @P. Hence
Mn+1 — PZMn—x — QP n-1 QMn .

LEmmA (2.2). R is Cohen-Macaulay if and only if a,, a, — a. X, -- -, a,

— a,_.X, a,X is an R,-sequence.

Proof. By [5] R is Cohen-Macaulay if and only if R, is Cohen-
Macaulay. Hence (2.2) follows from (2.1).

We first prove 1) = 2).

Suppose R is Cohen-Macaulay. Then a,, ¢, — ¢ X, - -, a; — a4_.X,
a,X is an R,-sequence by (2.2). In particular e, is a non-zero divisor on
A. For any xem?,

a,xX? = a,xX¢!
= g,xX%*

= a.xX
=0mod (e, — ¢, X, ---,a;, — a¢,_ X, a;,X) .

Hence we can find g€ R not contained in M such that
) g(xX) = (a, — a. X)f, + -+ + (a; — @4 X)f oy + 0 XS,

for some f,, f;, ---,f;€ R. Comparing the coefficients of X¢ in the equation
(#), we have x € qm?-! since the constant term of g is a unit of A. Thus
m? = qm?~! and this shows ¢). The above method of the proof is the same

as that of [2].
We need an easy lemma to prove a) and b).

LemMA (2.3). Let aem be a non-zero divisor on A. Then we have the
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following exact sequences of graded R-modules

0—> G(—1) —> R/aR — R/(a, aX)R —> 0
0—> ,A—> R/aXR—> R/(a,aX)R—>0.

Proof. Consider the exact sequences of graded R-modules
0 —> (a, aX)R/aR —> R/aR —> R/(a, aX)R —> 0
0 —> (¢, aX)R/aXR —> R[aXR —> R/(a, aX)R — 0.
But we have the isomorphisms of graded R-modules
(a, aX)R/aR ~~> aXR/aX(aR: aX) —> R/(aR: aX)(— 1)
(a, aX)R[aXR ~~> aR[a(aXR: a) —> R[(aX: a) .
Since a is a non-zero divisor we have (aR: aX) = mR and (aXR:a) = R,.
Therefore we have the exact sequences of graded R-modules
0 —> G(— 1) —> R/aR —> R/(a,aX)R —> 0
0—> ,A— R/aXR —> R/(a,aX)R—> 0.

Let @ = a, and let R’ = R/(a, aX)R. Then we have the exact sequences
of graded R-modules

(=) 0—>G(—1) R/aR —> R’ >0
(%) 0—>,A—>R/aXR—> R —>0
from (2.3).

Since a is a non-zero divisor on A R/aR and R/aXR are Cohen-
Macaulay rings of dimension d. From the exact sequences (x) and (xx)
we have the isomorphisms of graded R-modules,

H(R) 5> Hi(GX— 1) and  HY(R) —=> HE'(A) = Hi(A)
for all i <d.
But by [5]

‘WG = Hy(G) for all i, where £ = G, .
Thus, we have for i < d

Hi(A) (n=-1)
) n+-1).
Therefore Gy is Buchsbaum by (1.6). This shows b).

[H(G)], = {
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To prove a) we may assume A is complete by (1.3). Let (B, n, k) be
a regular local ring such that A is a homomorphic image of it. Let X,
X,, - -+, X, be indeterminates over B, where v = emb A, the embedding
dimension of A, and we set S = B[X,, X,, ---, X,]. We give S a structure
of graded B-algebra by lettingdeg X, =1(1<i<v). Let N=(, X, ---,X,)
be the unique maximal homogeneous ideal of S. We can choose a4, - - -,
a,em so that m = (a,, - -+, @y, @y, - -+, @,) by [6]. We define a surjective
homomorphism of graded B-algebra a«: S— R by a(X) = a, X A1 <i < v).
Since G = R/mR and A = R/R, both G and A are homomorphic images
of S. By the definition of Buchsbaum rings G, (resp. A) is Buchsbaum
if and only if Gy (resp. A) is a Buchsbaum S,-module. Let T = S, and
a = NSy. Then, from the exact sequences (x) and (x*) we get the follow-
ing commutative diagrams of T-modules

Exti™ (k, Ry) ——> Exti(k, Gy)
¢i—ll Wl
H(Ry) —> HYGy)

and

Exti (k, R)) —> Exti. (&, A)

¢ml 511

H(Ry) —> HYA)

2

where { < dand ¢,_,, ¥, and & are the canonical homomorphisms. Since
T is regular local and Gy is Buchsbaum +, is surjective for i < d by (1.5).
Hence &, is surjective for i < d by the commutative diagrams above.
Therefore A is Buchsbaum by (1.5). This completes the proof of 1) => 2).
Conversely, assume that 2) holds.
First we set for 0 <i < d

9, = (au o "az’) )
Ai = A/ U(Qi) »
R, = R(A)

and
Gi = G(Az) ’

where g, = (0). Let i, j be integers. Then we set [i,j] = {rne Z|i < n < j}.
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LemmA (24). Let h, (1 <i < d) be the initial form of a, in G. Then,
for 0<i<dand 0<j<d—1i we have
[HiG/(hy - -, B, = (0)  for ne[—1,i—1].

Proof. For i = 0, there is nothing to prove. We proceed by induction
on i. Assume i > 0. Since Gy is Buchsbaum we have the following exact
sequence of graded G-modules

0 —> HY(Gl(hy, -+, B_s)) —> HY(Gl(hy, - - -, 7))
—> H{*'(G(hyy - -+, By ))(— 1) —> 0

for 0 <j<d—1i. By the induction hypothesis
[H{G[(hy - - -5 by )] = (0)

for0<j<d—iand ne[—1,i —2].
Hence we have

[H{G/(hs, - -+, h)]. = (0)
for0<j<d—iand ne[—1,i—1].
Lemma (25). U@@) Nm"=qm** for 0<i<dand n>i.
Proof. By (2.4)
[Hy(G)]. = (0)
for n + — 1. Hence
%(G) = (0) .
Since Gy is Buchsbaum this means
(0): h)s = ((0): B)e = (0)
for 1 <i<d. Hence
(m*: q) = m**

for 1<i< dand n>0. By (1.2) Gg/(h,, - - -, h;)Gy is Buchsbaum for 1 <
i < d. Therefore

%(G/(hn oy b)) = by - R Rl (B, -, ByY)
for 0<i<d. By (2.4)
[HY(G[(hy, - -, B = (0)
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for ne[— 1,7 — 1], and this implies
((qm™ + m"*%): a;,) N m" C gm"™ + m™!

for n >i. On the other hand, by b) and (1.4) I(Gy) = I(A). Hence by
(1.8) g, N m™ = g;m""* for n > 0. Therefore

((@: N m™): @) N M™ C gm™ + m"™*!

for n >i. By what we have just proved above (m"*': a,,,) = m* for n > 0.
Thus we have

U(g) N m* = g™t + mm*!
for n > i. This yields

U(g) N m* = gm"!
for n > i.

CoRrOLLARY (2.6). U(a;,,A,) N m"A, = a,,,m"'A, for 0 <i< d— 2 and
n>1i-+ 1.

Proof. It is sufficient to prove that
((U(a), a;):m) N (m*, UQ)) = g™ + U(aqy)
for n>1i+ 1.
But this follows from (1.2) and (2.5).
LemmA (2.7). We have the exact sequence of graded R-modules
WHi(U(2;114,)) —> Hi(R,/a,.XR,)) —> H{(R;.))
for0<i<d—1andj>0.

Proof. There exist canonical surjective homomorphisms of graded R-
modules u,: R,/a,,.XR, - R,,,. Let K, = Ker u,. Since 4,,, = A,/U(a,..,A))
by (1.2)

R, — ® m"A,/U(a,.,A) N m"A, .
n20

Hence [K], = U(a,.,4,) and [K}], = U(a,;.,4,) N m"4,/a;,,m" A, for n > 0.
But A, is Buchsbaum by (1.2), so mU(a;,,4,) C @,..A4, by (1.1). Therefore
1,(IK,],) < o for n> 0 and [K,], = (0) for n > i + 1 by (2.6). It follows
that
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K, = ) (K],
is a graded R-module of dimension 0. Hence from the exact sequence

0 > K., > K, > U@, A) —> 0,

we get the isomorphism of graded R-modules
Hj(K) —> ,Hi(U(a,..A))
for j > 0. On the other hand, from the exact sequence
0—K,—> R,/a,,XR, —> R,,, —>0,
we get the exact sequence of graded R-modules
Hj(K,) —> H}(R./a,..XR,)) —> Hj(R,.,)
for j > 0, and this completes the proof of (2.7).
LEMMmA (2.8). We have the exact sequence of graded R-modules
Hi(G)(— 1) —> Hj(R,/a,.,,R) —> H(R,.,)
for0<i<d—2andj>0.

Proof. Let v,: R,/a,,,R,—> R,,, be the canonical surjective homo-
morphism and L, = Ker v,. Then [L,], = U(a,.,,A,)Nm"4A,/a,,, m"A, for n > 0.
On the other hand,

[a;s1 @, X)R;[a;,\R], = a,,,m""A,/a;,,;m"A,
for n > 0. Hence we have an exact sequence of graded R-modules

0 —> (@, ., X)R,/a, ., R, > L, > L; >0,

where
L, =® U(a;.,A) N m"A,jJa,,,m" A, .
n20
By (2.6) dim L, = 0. Since a;,, is a non-zero divisor on A, we have an

isomorphism (a;.,, @,,.X)R,/a;,.R, = G(—1). Hence we have the exact
sequences of graded R-modules

0—>G(—1) > L, >L;—>0

and
0—>L,—R)/a,,,R,—> R,,,—>0.

Since dim L} = 0 we have a surjective homomorphism Hy(G)(— 1) — H3(L,)
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and an isomorphism H{(G,)(— 1) = H(L,) for j > 1. Therefore we have
the exact sequence of graded R-modules

Hi(G)— 1) —> H{(R/a;..R;) —> Hi(R,.,)
for j > 0.
LEmMMA (2.9). We have the isomorphism of graded R-modules
H{(G,)) —> Hi(G/(h, - - -, hy)
for0<i<d—2andj>0.

Proof. There is a surjective homomorphism w;: G/(h,, -- -, h;) — G,
with kernel N, = ®, ., U(g,) Nm"/qm™*! + U(g)Nm"*'. By (2.5), we have
dim N, = 0. Hence we have the isomorphism

Hi(Gl(hy, -+, h) > Hi{G)
for j > 0.
LEmma (2.10). [HY(R./a...R)], = (0) for 0 <i<d and nel0,i — 1].
Proof. By the definition of local cohomology, we have
HY(RiJa,..R) —> (@,..R;: M'R), Ja,..R,

for sufficiently large ¢t > 0.
Let n > i. Given any f,X"c(a;..R;: M'R),,, f, € m"A,, we have

foe(a, . m™A;: mA,) C (a4, mA) N (m"*A,: m'A) .
Suppose i < d — 2. Then
(a;.,A4;: m*A) = Ula,,,A) .

On the other hand,

(m™1A,: mtA) C (m™ A, abL,A) .
By (2.6),

f. e Ula;.,A) N (m"**"1A;: at,,A) = U(a,;,,A) N m"A, = a,,,m"A, .

Hence f,X" e a,.,R,. Therefore

[H3(R;/a; . R)]), = (0) for ne[0,i — 1] .

Suppose i = d — 1. Then we may choose ¢ so that (a;A,_,: M!A,_) = A,_,.
By C), Inn+t+114d‘1 — afl+1mnAd—1-
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Therefore
f.e(@*'m"A,_:a5A, ) = am"A, ;.
Hence f,X" e a,R;.,, Thus we have
[HY(R,/a,..R)]. = (0) for 0<i<dand ne[0,i —1].

Now we can complete the proof of Theorem (0.1) by the following
proposition.

ProposiTioN (2.11). [H{(R)]. =) for 0<i<d,1<j<d—1iand
nel0,i— 1].

In fact, for i = 0 we have R, = R. Since [0, —1] is empty (2.11) shows
that Hj(R) = (0) for 1<j<d. On the other hand, H}(R) = (0) since
depth A > 0. Hence R is Cohen-Macaulay as required.

Proof of Proposition (2.11). We prove this by descending induction
on i. Fori=d — 1, we know from (2.10) that

[Hgl(Rd-I/ade—l)]n = (0)

for ne[0,d — 2]. From the exact sequence

Qg

0 >R,_, R,_, >R, \Ja,R;., —> 0

we obtain the exact sequence

H3(Ry1[asRs ) —> Hi(Ro-) —>Hi(R,-) -
Hence a, is a non-zero divisor on [H%(R,. )], for n¢[0,d — 2]. For any
xe[Hy(R;. )], nel0,d — 2], there exist a positive integer ¢ such that
atx = 0. Hence x = 0. Thus [Hy(R;_.)], = (0) for ng[0,d — 2]. Fori <
d—1,

[H{(R;.D]. = (0) for1<i<d—i—1 and nel0,i]

by induction hypothesis. By (2.7)

Hi(U(e,.,A)) —> Hi(R,Ja, .. XR,) —> H{(R,.,)
is exact for j > 0. Hence
(%) [Hj{(Ri/aiﬂXRi)]n = (0) for1<j<d—i and nel[0,i].
By (2.8)

Hi(G)(— 1) —> Hj(R./a;..R) —> Hj(R,.,)
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is exact for j > 0. Hence, by (2.4) and (2.9)
(%) [Hi(R,/a;,.R)]. = (0) fori1<j<d-—i and nel0,i].
From the exact sequence

0—> R, %% R,—> Ria,,,R, —> 0

we get the exact sequence

H{(R,/a,,.R) —> Hi#\(R) 2 Hi(R,)

for j > 0.

Hence [HY(R)]. = (0) for ne[0,i — 1] by (2.10). For j > 2, by (xx)
above
(%) [Hi(R)], =) for2<j<d—i and nel0,7].

From the exact sequence

aiﬂX

00— R(—1 —>R,—> R,/a,.,,XR,—>0
we have the following exact sequence
Hj(R//a,..XR)) —> Hif(R)(— 1) —> H{(R)
for j > 0. Hence, by (x) and (xxx)
[HiR)], =0 forl1<j<d—i and nel0,i—1].
This completes the proof of Proposition (2.11) and hence of Theorem (0.1).

CoROLLARY (2.12) (S. Goto and Y. Shimoda). Let (A, m, k) be a Cohen-
Macaulay local ring of dimension d > 0. Then R(A) is Cohen-Macaulay
if and only if G(A) is Cohen-Macaulay and m® = (a,, - - -, a,)m?-* for some
al, "‘,adem-

Proof. This follows from the fact that A is Cohen-Macaulay if and
only if Hi(A) = (0) for i < d.

Remark. We have shown depth A > 0 if R(A) is Cohen-Macaulay in
the proof of Theorem (0.1). But more can be said about depth A. In fact,
we can prove depth A > min {2, d} if R(A) is Cohen-Macaulay. A proof
can be found in [2], but here we give a proof based on our result.

Proof. We have the following exact sequence

0 — HY(G) —> HY(G[(h,)) —> HY(G)(— 1) —> 0.
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But HY(G) = (0) by b). Hence [H}G/(h,))], = H.(A) by the above exact
sequence and b). On the other hand, by the definition of local cohomology
we have [H%(G/(h))]l, = (0). Therefore H%(A) = (0) as required.

§3. Example

In this section we construct a Buchsbaum ring which is not Cohen-
Macaulay and whose Rees algebra is Cohen-Macaulay.

Let k be a field and d > 3 be an integer and let X, - - -, X, be inde-
terminates over k. We put S = E[[X,, ---, X,]]. Let

fa fa f

b8y Ly fge Py g g g

0—S

be the Koszul complex with respect to X, ---,X,. Let E=Imf,. Let
A = S X E be the idealization of E. Then, it is easy to see that

AKX, -, X (Y11 <0 < < d])a,

where Y;; (1 <i<j<d)is an indeterminate over S and a is the ideal
generated by

Xz‘lyiz‘ls - X12Y1113 + XisYiliz (1 < il < iz < is < d)
and
(Y11 <i<j<d))y.

Let x,, y;; be the canonical images of X, Y;, in A and m be the
maximal ideal of A. Then, by construction dim A = d and

B G=2

H(4) = {(0> i -2d).

Hence A is Buchsbaum by the following lemma.

LEmMMA 3.1. Let (A, m, k) be a Noetherian local ring of dimension d >
depth A = t. Suppose mH:(A) = (0) and H:(A) = (0) for i #t, d. Then
A is Buchsbaum.

Proof. See [11].
It is easy to see that m®>= (x, ---, x,)m. On the other hand, since
a is generated by homogeneous polynomials G(A) is isomorphic to

RIX,, - X0 (Y11 <0 <G < dYPO,
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where b is the ideal generated by the polynomials generating a. Hence
it is easy to check that for i < d

H,(4) (h=-1)

(0) (n+-1).

Hence R(A) is Cohen-Macaulay, but A is not Cohen-Macaulay.

[H(GA))], = {
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