ANZIAM J. 50(2008), 75-86
doi:10.1017/S1446181108000278

HYPER-WIENER INDEX OF ZIGZAG POLYHEX
NANOTUBES

MEHDI ELIAST! and BIJN TAERI®?2

(Received 18 April, 2007; revised 20 April, 2008)

Abstract

The hyper-Wiener index of a connected graph G is defined as WW(G) =
/D) 3 myevc)xv(G) (d(u, v) +d(u, v)2), where V (G) is the set of all vertices of
G and d(u, v) is the distance between the vertices u, v € V(G). In this paper we find
an exact expression for the hyper-Wiener index of TU H Cs[2p, q], the zigzag polyhex
nanotube.
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1. Introduction

Topological indices are one of the descriptors of molecules that play an important
role in structure property and structure activity studies, particularly when multivariate
regression analysis, artificial neural networks, and pattern recognition are used as
statistical tools. The Wiener index was the first topological index that was introduced
in 1947 by Harold Wiener. He published a series of papers [27-31] showing that there
are excellent correlations between the Wiener index and a variety of physicochemical
properties of organic compounds. For a nice survey on this topic we encourage the
reader to consult [13, 14].

Let G be an undirected connected graph without loops or multiple edges. The set of
vertices and edges of G are denoted by V (G) and E(G), respectively. For vertices x
and y in V(G), we denote by d(x, y) (or dg(x, y) when we deal with more than one
graph) the topological distance, that is, the number of edges on a shortest path, joining
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FIGURE 1. A TU HCg[2p, gq] nanotube.

two vertices of G. The Wiener index of a graph G is the half sum of all distances in
the graph G:

1
W(G) = - Z d(u, v).
(u,v)eV(G)xV(G)

The hyper-Wiener index is one of the recently conceived distance-based graph
invariants, used as a structure-descriptor for predicting physicochemical properties of
organic compounds (often significant for pharmacology, agriculture and environmental
protection). Randi¢ in [26] introduced an extension of the Wiener index for trees,
and this has come to be known as the hyper-Wiener index. Klein et al. [25] generalized
this extension to cyclic structures as

1 1
WW(G) = 5W(G) + - Z d(u, v)*.
(u,v)eV(G)xV(G)

The hyper-Wiener index W W (G) has seen widespread use in correlations; references
may be found in [4] and also in [24]. In [5, 6], Diudea has treated both W(G) and
WW(G) in a common matrix framework.

In a series of papers, Diudea and coauthors [7-12, 23] computed the Wiener index
of some nanotubes as did the present authors in [15-22].

In this paper we find an exact expression for the hyper-Wiener index of the
zigzag polyhex nanotubes of circumference 2p and length ¢, denoted by G :=
TUHCg[2p, gq]. (An example is shown in Figure 1.) For this purpose we choose
coordinate labels for vertices of G as shown in Figure 2. In [15] we have included a
MATHEMATICA [32] program to produce the graph of TU HCg[2p, q]. With this
program we can compute the hyper-Wiener indices of the graphs under consideration.

We note that G is a bipartite graph which means that its vertices can be coloured
with white and black so that adjacent vertices have different color, or equivalently, that
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X02 Xo4 X06 X038 X010 X012 X014 X016

FIGURE 2. A TU HCg[2p, gq] lattice with p =8 and ¢ = 6.

every cycle has even length (see [18, Theorem 2.4]). Obviously the number of vertices
and the number of edges of G is n =|V(G)| =2pq and m = |E(G)| =3pq — p,
respectively.

2. Computing the hyper-Wiener index of zigzag polyhex nanotubes

In this section we derive an exact formula for the hyper-Wiener index of
G :=TUHCg[2p, q]. For u € V(G) we define

dwy= Y dwv), d'w= Y dwv)?’ ddw= Y [dw) +d W)

veV(G) veV(G) ueV(G)

(If necessary, we show these quantities by dg (u), d /G(u) and ddg (1), respectively.)
Then

WW(G):% > d(u)—i-‘—ll > d/(u)zi > dd).

ueV(G) ueV(G) ueV(G)
Also, for u, v € V(G), we define the hyper distance dd(u, v) (or ddg (u, v)) as
dd(u, v) = d(u, v) + d(u, v)*.
In the following lemma we find a formula for the hyper distances of one white

(black) vertex of level zero of the graph TU HCg[2p, ¢q] to all vertices on the level
k < g (see Figure 1).
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LEMMA 2.1. In the graph TU HC¢[2p, q] we have

Wwy = Z dd(xon, x)

x€ level k

= D dd(o,x)

xe level k

Wk +2p3 + 5k +2K2p + 2kp + p> + 2kp> + 3k + ip ifO<k<p

2pQ2k + 1)2 ifp<k
and
bby = Z dd(xo1, x)
xe level k
= Y dd(xo, x)
x€ level k

_ D3+ 3p3 — 3k + 2k p + 2kp + p? +2kp* — 2k + ip if0<k<p
8k*p if p<k.

PROOF. We compute by. It is sufficient to consider x¢o;. For other black vertices, the
argument is similar. At first note that the lattice is symmetric (with respect to the line

joining xop to x11). We distinguish between three cases.

Case 1: k> p and k is even. In this case, forall 1 < j < p 4+ 1,

2k —1 if jiseven

d(xo1, xij) =
e P if j is odd.

By considering these vertices and their symmetric vertices we obtain p vertices having
distance 2k — 1 from xq;, and p vertices having 2k distance from xg;. So

> [dxor, u) + d(xor, u)*]
ue level k

= Z [d(xo1, x i) + d(xo1, x1)*] + Z [d(x01, xji) + d(xo1, xi)*]
J is even jis odd

= pl(2k — 1) + 2k — 1] + p[(2k) + (2k)*] = 8k*p.
Case 2: k> p and k is odd. In this case, forall 1 < j < p +1,

2k if j is even

d ) i) =
(01T =00p 1 it is odd,
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Now by considering these vertices and their symmetric vertices we obtain p vertices
having distance 2k — 1 from x¢1, and p vertices having 2k distance from xg;. So

> ld (o, u) + d(xor, u)]

ue level k

= Y [dGor, xji) +dCor, x;)* 1+ Y [d(xor, xji) +d(xo1, xi)°]

J is even jis odd

= pl(2k) + k)] + p[(2k — D] + (2k — 1)*] = 8k?p.

Case3:k<p—1.Forallp+1<jandj>k+1,
d(xo1, xij) =k +j — 1.

Thus, the summation of the distances between xo; and xi; (for all j such that
p+1<jand j >k + 1) and their symmetric vertices is

p
$1=2 Y [k+j-D+k+j—DT+[k+p+1-D+Gk+p+1-17
j=k+2

:%(p_1—k)(p2+4pk+p+7k2+5k)—|—(k+p)+(k+p)2
=2kp + 1p +2pk* +2p%k — Tk* — Tk + p* — i + 3p°.

Also, if 1 < j <k + 1, then

2k if k — j is odd

d(xo1, xxj) =
(xo1, X)) 2k —1 ifk — jiseven.

Arguing as before we obtain k 4 1 vertices having distance 2k and k vertices having
distance 2k — 1 from xq;, respectively. Therefore, the summation of the distances
between xo; and xy; (for all j such that 1 < j <k + 1) and their symmetric vertices is

Sy = (k + D[(2k) + (k)] + k[(2k — 1) + (2k — 1)?].

Hence,
bb, = S1+ S
=2kp + tp +2pk> +2p%k — Tk* — Tk + p? — B 4+ 2)p3
+ (k+ D[(2k) + 26)*] + k[(2k — 1) + 2k — 1)?]
= 083 + 2p3 — 3k% + 2k%p + 2kp + p* + 2kp* — 1k + 1p.
In a similar manner we can compute wy. O
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COROLLARY 2.2. We have:
(@) dd(x02) =dd(xp4) = - - - =dd(x02p) = wwo + wwy + -+ -+ Wwy—1;
(b) dd(x01) =dd(xp3) = - - =dd(x0,2p—1) = bbo + bby + - - - + bby_.

PROOF. By Lemma 2.1 we have

dd(xp) = Y ddw.xp)+ Y dd,xe)+ -+ Y dd(u, xp)

ue level 0 ue level 1 ue level g—1
= wwo + Wwp + - - -+ Wy

and so Zi\(xm) =21\(x03) = =2(x0,2p2) =Zo —I—Zl + - —I—Zq_l. The proof of (b)
is similar. O

LEMMA 2.3. If0 < j <q — 1 is an odd number, then

(@) ddg(xj1) =ddg(xj3)=---=ddg(xj2p-1)
=wwp +wwy + -+ wwy—(j4+1) +bby +-- -+ bbj;

(b) ddg(xj2) =ddg(xjs)=---=dds(xj2p)
=bbo + bbi + - - - + bby_(j+1) + wwi + - - - + ww;.

PROOF. First suppose that j = 1. We consider the tube that can be built up from two
halves collapsing at level one. The bottom part is the graph G| = TU HCg[2p, g — 1]
and we can consider x1; as one of the white edges in the first row of the graph G;.
According to Corollary 2.2,

ddg,(x11) =ddg,(x13) =- - - =ddg, (X1,2p—1) = wwp + wWw + - - - + Wwy—2.

The top part is the graph TU HCg[2p, 2] = 6\1,/1\evel one of graph G is the first
its row and xj; is, as such, a black vertex of G;. Therefore, by Corollary 2.2,
dda*l (x11) = bbo + bby and

ddg,; (x11) =ddg, (x13) = - - - =ddg; (x12p-1)) = bbo + bb;.

Since wwg = bbg and ddg(x11) =ddg, (x11) + a’dgl (x11) — bbg, we have ddg(x11)
=wwg + - - - + wwy_» + bby and, similarly,

ddg(x11) =ddg(x13) = - - =ddg(x1,2p-1) =wwp + - - - + wwy_2 + bby.
Similarly, for xj we can see that
ddg(x12) =ddg(x14) = - - - =ddg(x12p) =bbo + - - - + bby—2 + wwy.

By repetition of this argument, we obtain the result. O
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LEMMA 2.4. If0 < j <q — 1 is an even number, then

(@) ddg(xj1) =ddg(xj3)=---=ddc(xj2p-1)
=bby + bby + - - - +bby_(j+1) + wwy + - - - +wwj;

(b) ddg(xj2) =ddg(xja) =---=ddc(xj2p)
= wwo + wwy + - -+ wwy_¢j41) +bby + - - -+ bb;.

PROOF. First suppose that j = 2. We consider the tube can be built up from two halves
collapsing at level two. The bottom part is the graph G, = TU HCg[2p, g — 2], level
two of G is the first level of G, and we can consider x7; as one of the black edges in
the first row of graph G,. According to Corollary 2.2,

ddg,(x21) =ddg,(x23) =- - - = dng(XZ,Zp—l) =bby+bby +---+ bbq_3.

The top part is the graph TU HCe[2p, 3] = @ level two of graph G is the first level
of G and x31 is, as such, a white vertex of G,. Therefore, by Corollary 2.2,

dd(;\z(xm) = wwo + wwi + wwy
and
ddg; (x21) =ddg;(x23) = - - - =ddg; (x22p—1) = wwo + Ww + Wwy.
Since wwg = bbg and ddg (x21) = ddg,(x21) + dd@(xﬂ) — ww, then
ddg(x21) =bby + - - - + bby_3 + wwy + wwy

and, similarly,

ddg(x21) =ddg(x23) = - - - =ddg(x22p—1) =bbo + - - - + bby_3 + ww; + ww,.
We can repeat the process in a similar way for x; and see that
ddg(xp) =ddg(x24) = - - - =ddg(x22p) = wwo + - - - + wwy_3 + bby + bbs.
By repetition of this argument we obtain the result. U

Forall0 < j <g — 1, put
f)=wwo+wwy + -+ wwg—j+1) +bb1 +---+b; and
g(j) =Dbbo +bby + - - - + bby_(j+1) + wwi + - - - + wWw;.
We are now in a position to prove the main result of the paper.

THEOREM 2.5. The hyper-Wiener index, WW(G), of G :=TUHCg[2p, q] nano-
tubes is given by

P
1—;1(4102612 +4p>q —4p? +2¢* —2¢% + 4pg® —4p — q +6p*q + ¢° +2pq?),

2
P
15247 —6pq — P’ + p+38¢" —2p" +6p°q +2p* + 847 — 6g +4p’q),

respectively, according to whether p > q or p < q.
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PROOF. Let

Ar={i|1<i<2p,ieven}, Ar={i|1<i<2p,iodd},
Bi={jl0<j<q—1,jeven}, By={j|0=<j=<qg—1,jodd}.
Then WW(G) is equal to

4—1‘ Z dd(xj,-)
Xj,'GV(G)
= ;L[Z doddxi)+ Y D ddx)+ Y Y dd(xji)
j€B| iEA] j€B| iEA2 jEBQ iGA]
+ ) dd(xj,-)}
JjEBy i€Ay
=}1 PIDINIOED DI OED DI OED DY f(j)]
-jeB i€A JjEB1 i€A; jeEByieA jEBy i€eAy
:}1 IO IO ES IO ED IS f(j)]
-JEB) i€A) JEBL i€A) jEBy i€A JEBy icAy
=i PIFIODIEDIODISEDIFIHDI
-j€B] i€A] jeB; i€Ay jeB, i€A
O 1]
jEBz ieAz

= %[Z pf()+ Z pg(j) + Z pg(j) + Z pf(j)}

jeBy jeBy jeBy jeBy

gq—1
p . . . . P . .
= Z[Z FG +8GN+ Y (fG)+ gm)] =2 2 FD+80).
JEB) J€By Jj=0
First we prove the formula for the case p > ¢. Then, foreach0 <k <g — 1,
ww = 2k + 3 p* + 5k + 2k p + 2kp + p* + 2kp” + 3k + 1 p,
bby = Dk + 2p? — 3k% + 2k p + 2kp + p? + 2kp? — Lk + Lp.
So

g—1
WWG) =LY (F()+38()
=0

rq
= AP’ +4p’q —4p* + 29" = 2¢° +4pg® —4p —¢g
+6p%q +4° +2pg).
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Now we consider the case p < g. We break down this case into three subcases:
2p>gq,2p <qand2p=gq. Let
Ci={0=<j=p—-1[0=gq—j—-1=p—-1)
Cr={0=j=p-llp=qg—-j—-1=q-1
={p=j=q—-110=qg—-j—-1=p—-1}
Co={p=j=q—-1llp=q—-j—-1=q—-1}

We note that if C1 # @, then 2p > g. Also if C4 # @, then 2p < g. Therefore, first
suppose that C1 # . Then C4 = ¥ and 2p > q. Therefore, if j € C1, then

i (10 3,23 2 2 2 5 5 1
f= Y (58 +Zp° + 5K+ 2k%p + 2%kp + p* + 2kp* + Sk + —p
iz \3 3 3 3

(10 4 2 11

+ Z(—k3+—p3 —3k2+2k2p+2kp+p2+2kp2——k+—p),
o\ 3 3 3 3

if j € Cy, then

p—1
10 2 5.1
fi=> (—k3+—p3+5k2+2k2p+2kp+p2+2kp2+_k+_p>
o\ 3 3 3 3

/. /10 2 11
— K+ Zp3 — 3K+ 2k%p + 2k 24 2%kp? — —k+ =
+1;<3 T3’ AR A L T

g—j—1
+ ) 2pQk+1)%,
k=p

and if j € C3, then

< 3 2 2 5 1
fG) = Z( k> + p+5k + 2k%p + 2kp + p* + 2kp? +3k+3p)
k=0

(10 5 2 11
§ (—k3 + Zp3 = 3k2 4 2k% p + 2kp + p* + 2kp® — <k + _p)
o\ 3 3 3 3

J
+ ) 8kp.
k=p
Alsoif j € Cy, then

j—1
10 2 5 1
g =) (—k3+—p3+5k2+2k2p+2kp+p2+2kp2+_k+_p>
o\ 3 3 3 3

Lo, 2 R
> <—k3 + Zp3 —3k> +2k%p + 2kp + p* + 2kp* — —k + —p>,
o \3 3 3 3
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if j € C, then

J 2 5 1
g(j) 22( PP+ 5k2 + 262 p + 2kp + p* + 2kp? + k + - p)
P 3773
r-l 11
+ Z( Byl p 3k2+2k2p+2kp+p2+2kp2——k+—p)
k=1 3 3
q—j—1
+ > 8k%p,
k=p

and if j € Cz, then

’ /10 2 5 1
g(j) = Z(—k3 + 2P+ 5K2 4 2K p + 2kp + P+ 2kp* + Sk + —p)
izo\3 3 3 3

M

iy 103 2 5 ) ) , 1 1
—k 3 _3k2 4267 p + 2kp 4 p* 4 2kp* — <k + < p

= 3 3
J
+ 2p 2k + 1)2.
k=p
Therefore,
P
WW(G) = Z OEFI0)
j:
P . . . . . .
= Z(Z FG)+ 8D+ YLD+ gD+ Y IF()+ gm])
J€Ci JjeCa JjeCs
2
p
=12( 2g> —6pqg — p> + p+8q¢* —2p* +6p°q +2p* + 8¢ — 6¢
+4p%q),
and so the formula is true for the case p < ¢ and 2p > ¢. Using this method we can
handle other conditions. o
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