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RIGHT QUOTIENT RINGS OF A RIGHT LCM DOMAIN 

RAYMOND A. BEAUREGARD 

In this paper we continue our investigation of the class of right L C M domains 
which was introduced in [2]. A right L C M domain is an (not necessarily commuta­
tive) integral domain with uni ty in which the intersection of any two principal 
right ideals is again principal. In this note we s tudy the right quot ient rings of 
such a ring. In Section 1 we describe some of the characteristic properties of 
right quot ient monoids with respect to which quotient rings are formed. Three 
part icular types of quot ient rings are described in Section 2. In Section 3 we 
relate the right ideals of a ring to those of its quotient ring. T h e right J9-chain 
which is constructed for a principal right ideal domain in [1] is described in a 
more general context in Section 4. Each ring below is assumed to be a ring with 
uni ty having no proper divisors of zero. 

1. R i g h t q u o t i e n t m o n o i d s . Let S be a submonoid of the monoid R* of 
nonzero elements of a ring R. I t is well known tha t if 

(1) aR^bS 9*0 for each a £ S,b G R 

then K = RS~l = \ba~l\b Ç R, a Ç S} is a ring under operations t ha t extend 
those of R. Addition and multiplication are carried out in K by using the fact 
t ha t for each a Ç S a n d 6 £ R,arlb = b'{a')~l for ab' = ba' G aR Pi bS (see [4]). 

A submonoid S of R* satisfying (1) is a right Ore system inR. UR* is a right Ore 
system in R then R is a right Ore domain. A submonoid S of R* is saturated if for 
all a,b e R, 

ab £ S implies a £ S and b Ç S. 

We shall deal mainly with saturated right Ore systems ; these are called right 
quotient monoids in R. If S is a right Ore system in R with K = RS~* then 5 is 
contained in the group of units UK of K ; furthermore, UK C\ R = S if and only 
if S is sa turated. For example, the group of units UR of R is a right quot ient 
monoid in R. If R is a right Ore domain then R* is a right quotient monoid in R 
and K = RÇR*)-1 is the r ight quotient field of R. 

For two nonzero elements a, b in a ring R the greatest common left divisor 
(geld) of a and b is denoted by (a, b)i and the least common right multiple 
(lcrm) is denoted by [a, b]r; (a, b)T and [a, b]i have analogous meanings. If two 
elements a, b G R have a nonzero common right multiple, say ab' = ba' ^ 0, 
and if [a, b]r exists, then it is easy to show tha t (a', b')r also exists and satisfies 

(2) ab' = ba' = [a, b]r(a', b')T. 
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This is the case, for example, in a right LCM domain where [a, b]r is a generator 
of aR C\ bR if this intersection is nonzero. Similar remarks hold with * "right" 
replaced by "left" ; the analogue of (2) is 

abf = ba' = (a,b)l[a',b']l 

(see [2, Lemma 1]). If S is a right quotient monoid in R and if a, b G S have a 
lcrm then it is also a member of 5 since we have a relation (2) with a' G S. Of 
course, (a, b)i G 5 if it exists. Similarly the lclm and gcrd of two elements in 5 
are again in S. 

For two elements a, a' G R we define a tr a' if there is a relation aft' = 6a' which 
is both left and right coprime, that is, for which (a, b)i = (a', bf)r = 1. In view 
of (2) we have a tr a' if and only if there exist a', b' £R such that a&' = &a' = [a, è]r 

and (a,b)i = 1 ; if we require, in addition, that (a, 6) j be a (right) linear combina­
tion of a and 6 then a and a' are similar (see [4]). 

A submonoid 5 of R* is said to be tr-closed if whenever a tr a! and a G 5 then 
a' G «5 ; if a G S if and only if a' G 5 we say that 5 is rtr-closed. The following 
theorem gives a useful characterization of right quotient monoids for a large 
class of right LCM domains. 

THEOREM 1. Let R be a right LCM domain in which each pair of elements 
having a nonzero common right multiple has a hclf. Let S be a saturated submonoid 
of R*. Then S is a right quotient monoid in R if and only if 

(i) each element a of S is (right) large, that is, aR C\ bR 9^ 0 for each b G R*, 
(ii) S is tr-closed. 

Proof. If 5 is a right quotient monoid in R then each element of S is large 
because of (1). Suppose atra' so that ab' = ba' — [a, b]r with (a,b)i = 1. 
Choose ai G 5 and 61 G R such that ab± = ba,\. Thusai = a'x for some x G R, and 
af is then in 5 since S is saturated. Conversely, if 5 is a saturated submonoid of R* 
satisfying (i) and (ii) then for a G S and b G R we may choose 0 9^ ab' = ba! ^aRC\ 
bR. If (a, b)i = d and [a, b]r = m then a = dau b = db1} axb

f = b±af = [aiy bi]r, 
and (au bi)i = 1. Consequently a x t r a ' ; moreover ax G 5 and therefore a' G 5 
and, this establishes (1). 

2. Three particular types of right quotient rings. We begin this section 
with a general theorem that applies to all right LCM domains. Recall that an 
element a of a ring R is (right) large if aR is a large right ideal, that is, 
aRC\xR ^ 0 for each x G R*. 

THEOREM 2. Let R be a right LCM domain. 
(i) The set LR of all elements of R that are (right) large is a right quotient monoid 

in R. 
(ii) R has a right quotient ring K such that LK = UK, namely, K = R(LR)~l. 

Proof. The setL^ is not empty since each unit is large. If ab G LR then a G LR 

since abR C aR, Also, for any x G R* we have abR C\ axR ^ 0 which shows 
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b G LR. On the other hand if both a, b £ LR and x G R* then we have 
ax' = xa ' ^ 0, bx" = x'fr' ^ 0 and therefore abx" = x(a'b') ^ 0 so tha t ab G LR. 
Finally, let a G LR, b £ R with [a, 6] r = ab' = bo!. For any x G i£*, 
aRC\bR~2>aRC\ bxR ^ 0 so tha t aRC\bRC\ bxR •£ 0, t ha t is, èa'i? H 6xft ^ 0 
and this shows a' G Z#. T h u s LR is a right quotient monoid in R. T o prove the 
second par t let z G LK where K = R(LR)~l ; we assume, without loss in generality, 
t ha t z G R. For any x G R* we have zi£ H xK ^ 0, say zbidi'1 = xb2a2~

l. If 
a ia2 ' = a 2 a / ( i n L ^ ) t h e n ^ i a 2

r = xb2ai so t ha t s is also large in i?. Consequently 
z is a uni t in K. 

We turn to right L C M domains R t ha t satisfy the following condition: 

(3) [x, yz]T = [x, y]r, (x, yx)i = (x, 3>)z implies s is a unit . 

I t is shown in [2, Theorem 2] t ha t for such rings, the factorization of an element 
into primes (nonunits t ha t have no proper factors) is unique up to order of factors 
and projective factors. In general, two elements a, a' G R are {right) projective 
(a pr ar) if there is a sequence a = ai, a2,. . . , an = a' in R such t ha t either at t r ai+1 

or ai+itrai for each i. In a ring i?, the (right) dimension, dim (a), of a may be 
defined to be the supremum of the lengths of all maximal chains in the poset 
J£(aR) of all principal right ideals of R containing aR. In a right L C M domain 
t ha t satisfies (3), dim(a) is just the number of prime factors in any factorization 
of a if a is the product of primes, and oo otherwise. 

If R is a right L C M domain in which each pair of elements having a nonzero 
common right multiple has a hclf then for each z G R* the poset J^(zR) is a 
lattice ; the sup of aR and bR in J£(zR) is (a, b) iR and the inf of aR and bR is the 
intersection [a, b]rR of aR and bR. If, in addition, R satisfies (3) then it is easy to 
check t ha t each lattice J£(zR)(z G R*) is modular ; in fact, (3) is equivalent to 
the modular law [2, Theorem 1]. In such a ring, if a t r a ' then the modular 
lattices J£(aR) and S£(a'R) are transposes and consequently isomorphic; in 
particular, dim (a) = dim (a ') . Our remarks together with Theorem 2 indicate 
t ha t the set 

R' = {a G L^|dim(a) < oo } 

is a sa tura ted submonoid of LR which is tr-closed, and rtr-closed if each element 
of R* is large. We summarize with the following 

T H E O R E M 3. Let R be a right L C M domain satisfying (3) in which each pair 
of elements having a nonzero common right multiple has a hclf. The set Rf of all 
large finite-dimensional elements of R is a right quotient monoid in R which is 
rtr-closed if R is a right Ore domain. 

T h e right quot ient ring associated with R' in Theorem 3 will be considered 
more closely in Section 4. 

Let R be a ring satisfying the hypotheses in Theorem 3. For a set / of primes 
in R} let 5 7 be the set of all elements of Rf whose prime factors are projective to 
primes in / . In particular, if p is a prime in R and if / is the set of all primes in R 
not projective to p, we write Sp for ST. Now ST is a saturated submonoid of Rf 
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because of the uniqueness of prime factorizations. In addit ion, if atra' and 
a = pi . . . pn is a pr ime factorization of a then there exist primes p i , . . . , pn' 
in R such t h a t a' = pi . . . pn' and pttrp/ ; this follows immediately from 
[2, Theorem 5 (par t i)]. Therefore 5 7 is tr-closed. We have established the 
following 

T H E O R E M 4. Let R be a right L C M domain satisfying (3) in which each pair 
of elements having a nonzero common right multiple has a hclf. If I is a set of 
primes in R then 5 7 is a right quotient monoid in R. In particular, for any prime p 
in R, R has a right quotient ring at p, namely Kv = R(SP)~1. 

We remark t h a t our results apply to the free associative algebra R = D[X] 
over a commuta t ive unique factorization domain D. Each J^(zR) (for z G R*) is 
a finite-dimensional modular latt ice [3, Theorem 8] so t h a t R satisfies the 
hypotheses of Theorem 4. In this example we have Rr = LR. 

3. T h e c losure of a r i g h t ideal . Let S be a r ight quot ient monoid in a 
ringR w i t h i n = RS~\ If A is a r ight ideal of R then AS-1 = {as-^a G A, s G S} 
is a r ight ideal of K and ^45 - 1 C\ R is a r ight ideal of R containing A. We define 
the S-closure of A by cl(A) = AS'1 H R. A right ideal A of R is S-closed if 
c\(A) = A. I t is not difficult to prove t h a t the poset of closed r ight ideals of R 
is a lattice which is isomorphic to the lattice of all r ight ideals of K; the iso­
morphism is given by A —> AS~r with the inverse given by B —» B Pi R. 

An element b £ Ris S-closed if 6i£ is a closed r ight ideal. In this case b is Wg/^ 
prime to S, t h a t is, b has no nonuni t r ight factor t h a t belongs to S. For, if b = b^ai 
w i t h a i G S then since ai is a uni t in K we have cl(6i?) = bK C\ R = bxKC\R = 
c\(bxR) from which we deduce bR = biR. T h u s a is a uni t in R. T h e converse, 
which may be established in a special case, is included in the following. 

T H E O R E M 5. Let R be a right L C M domain in which each pair of elements having 
a nonzero common right multiple has a hclf. Let S be a right quotient monoid in R 
which is r tr-closed and let K = RS~X. 

(i) An element b £ R is S-closed if and only if b is right prime to S. Further­
more, if R has the ace for principal right ideals then 

(ii) the S-closure of each principal right idea of R is also a principal right ideal, 
(iii) each element z G R has a unique factorization z = ba where a G S and b is 

right prime to S. 

Proof. Let b G R be r ight prime to S. Now bR C c\(bR) ; to establish the 
reverse inclusion let z = brs~x G c\(bR) with m = [z, b]r, d = (z, b) L. Then 
z = dzx, b = dbi, m = dmi and (zi, bi) i = 1, [zi, bi]T = m^ If mi = zj?i = biZi 
then bi trbi. Since zs = br we have zs = mx for some x G R. T h u s s = bîx and 
b\ G 5 since 5 is sa tura ted ; consequently b\ G 5 because 5 is rtr-closed. Since b 
is r ight prime to S, b\ mus t be a unit . Therefore b = (z, friands G bR as desired. 
This shows t ha t if b is r ight prime to 5 then b is 5-closed. T h e converse follows 
by our remarks preceding the theorem. 
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For each z £ R\etDz = {bR\z = ba for some a £ S}. Using the ace for principal 
right ideals we may choose bR maximal in Dz. Thus z = ba where a Ç S and b 
is right prime to S. Since a £ S, zK = bK so that cl(zR) = cl(bR) = bR. This 
establishes (ii) ; the third part follows from the first two. 

LetR be a right LCM domain such that each pair of elements having a nonzero 
common right multiple has a hclf. If 5 is a saturated right quotient monoid in R 
then the poset J£(zR)r of closed right ideals in the lattice J£(zR) is a sublattice 
of &(zR). The mapping <p : <£{?K)' -> &(*K) defined by <p(bR) = bK is easily 
seen to be an order preserving injection. Also, if bK £ J£(zK), then under the 
hypotheses of Theorem 5 we may assume b is right prime to 5 so that bR is 
5-closed ; thus <p is also a surjection in this case. We summarize our remarks as 
follows. 

THEOREM 6. Let R be a right LCM domain in which each pair of elements 
having a nonzero common right multiple has a hclf, and assume R has the ace for 
principal right ideals. Let S be a right quotient monoid in R which is rtr-closed 
and let K = RS~X. The poset J£{zK) of principal right ideals of K containing zK 
and the lattice J£(zR)' of closed principal right ideals of R containing zR are 
lattice isomorphic. In particular, K is also a right LCM domain satisfying the ace 
for principal right ideals in which each pair of elements having a nonzero common 
right multiple has a hclf. 

4. The right Z>-chain. Throughout this section R will denote a ring 
satisfying the ace for principal right ideals such that each pair of nonzero 
elements has a lcrm and hclf satisfying (3). Such a ring may be characterized as 
a right Ore right LCM domain R such that for each z G R*, J£(zR) is a modular 
lattice satisfying the ace. Thus if 5 is a right quotient monoid in R which is 
rtr-closed then K = RS~l is a ring of the same kind as R by Theorem 6. 

Since each element of R* is large we see by Theorem 3 that the set Rr of finite 
dimensional elements of R is a right quotient monoid in R which is rtr-closed. 
Since K = R(R')~l must be a ring of the same kind as R we may consider K' and 
iterate this procedure. This leads to the right Z)-chain for R which we shall 
describe presently. The construction which was first described in [1] for the 
particular case of a principal right ideal domain depends on the following. 

LEMMA. If K = R(Rf)~1 then K' C\ R is a right quotient monoid in R which is 
rtr-closed. 

Proof. Clearly ab£KT\Rii and only if a, b G K' C\ R. If a tr a' in R then a tr a' 
in K ; for if aRC\bR = bafR and (a, b) l = 1 then clearly ba'K = (aR H bR)S~1 = 
aK C\ bK. Suppose aK C dK and bK C dK where d G R. Since R 
has the ace for principal right ideals we may assume d is right prime to S. Thus 
aRC aK HR CdK r\R = dR; similarly bR C dR so that d is a unit since 
(a, b)i = 1 in R. Thus (a, b)i = 1 in K and a t r a ' in K. Therefore K' C\ R is 
rtr-closed and the conclusion of the lemma follows from Theorem 1. 
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Using transfinite induction we construct the right D-chain {R(a)\0 ^ a ^ 5} 
of right quot ient monoids in R together with the associated chain {Ka = 
R(RW)-i\o S a ^ 0} of r ight quot ient rings of R as follows. Let Rw = [ / «and 
Ko = R. Let a > 0 be any ordinal ; if f} < a assume R{l3) has been defined and is 
a r ight quot ient monoid in R which is rtr-closed and let K$ = R{R(0))~1. We 
define R(a) by 

TD{O) — / ( ^ « - i ) ' ^ ^ , if « is a nonlimit ordinal 
\Up<aRw\ if a is a limit ordinal. 

Our induction is valid by the lemma. Clearly R((i) C R(a) and Kp C Ka if /3 ^ a. 
Alsoi? ( a ) = R(a+1) for some ordinal a ; if ô is the least such ordinal theni? ( ô ) = R* 
so t h a t K8 is the r ight quot ient field of R. 

One of the impor tan t uses of the right Z)-chain is in describing the unique 
factorization proper ty in R to which we now turn . By using Theorem 5 (iii) and 
finite induction we see t h a t each element a G R* may be wri t ten uniquely 
(up to un i t factors) as 

where at are nonlimit ordinals such t ha t a0 ^ c*i > . . . > ak, za%• G R(ai) and is 
r ight prime t o i ^ ( a i - 1 ) , and u is a uni t i n i^ (see [1, Theorem 2]). Each zai may be 
characterized as follows. An element x G R* is an a-prime if xR is maximal in 
{xR\ x G R(a)\R(a~1)} (a > 0 a nonlimit ordinal). Note t ha t 1-primes are the usual 
primes in R; if a > 1, a-primes have infinite dimension in R and are prime in 
Ka-i. Each zai above is a product of a - p r i m e s which is unique up to order of 
factors and projective factors in Kai_i. Since the proofs are substant ial ly the 
same as those in [1] we shall not repeat them here. We summarize in the 
following 

T H E O R E M 7. Let R be a ring satisfying the ace for principal right ideals in 
which each pair of nonzero elements has a lcrm and hclf satisfying (3). Let 
{R{a)\0 tk OL S à} be the right D-chain in R with {Ka\0 ^ a ^ 3} the associated 
chain of right quotient rings of R. Each element a G R* has a unique {up to unit 
factors) factorization a = zai . . . zaku where a0 ^ OL\ > . . . > ak, each zai is a 
product of oii-primes in R {which is unique up to order of factors and projective 
factors in Kai-i) and u is a unit in R. 
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