ABOUT A PROBLEM OF HERMITE AND BIEHLER

TODOR STOYANOV

(Received 17 July 2000; revised 2 February 2001)

Communicated by P. C. Fenton

Abstract

A point of departure for this paper is the famous theorem of Hermite and Biehler: If f(z) is a polynomial with complex coefficients a_k and its zeros z_k satisfy $\text{Im } z_k > 0$, then the polynomials with coefficients Re a_k and Im a_k have only real zeros.

We generalize this theorem for some entire functions. The entire functions in Theorem 2 and Theorem 3 are of first and second genus respectively.

2000 Mathematics subject classification: primary 30D20.

THEOREM 1. Let $f(z) = cz^n \prod_{k=1}^{\infty} (1 - z/z_k)$ be an entire function, where $c, z_k \in \mathbb{C}$, $\operatorname{Im} z_k > 0$. Assume that $\lim_{k \to \infty} |z_k| = \infty$ and the Maclaurin series of f is $f(z) = \sum_{k=0}^{\infty} a_k z^k$, where $a_k = \alpha_k + i\beta_k$, $\alpha_k, \beta_k \in \mathbb{R}$, and $u(z) = \sum_{k=0}^{\infty} \alpha_k z^k$, $v(z) = \sum_{k=0}^{\infty} \beta_k z^k$. Then all roots of u(z) and v(z) are real.

PROOF. The proof is analogous to that for algebraic polynomials.

THEOREM 2. Let $f(z) = cz^n \prod_{k=1}^{\infty} (1 - z/z_k) \exp(z/z_k)$ be an entire function, where $c, z_k \in \mathbb{C}$, $\arg(z_k) \in (0, \varphi)$, where $0 < \varphi < \pi/2$. Assume that $\lim_{k\to\infty} |z_k| = \infty$ and the Maclaurin series of f is $f(z) = \sum_{k=0}^{\infty} a_k z^k$, where $a_k = \alpha_k + i\beta_k$, α_k , $\beta_k \in \mathbb{R}$, and $u(z) = \sum_{k=0}^{\infty} \alpha_k z^k$, $v(z) = \sum_{k=0}^{\infty} \beta_k z^k$. Then all roots of u(z) and v(z) satisfy $\arg(z) \notin (\varphi + \pi/2, \pi)$.

PROOF. We have $f(z) = u(z) + iv(z) = cz^n \prod_{k=1}^{\infty} (1 - z/z_k) \exp(z/z_k)$. Let z_0 be such that $v(z_0) = 0$ or $u(z_0) = 0$. Then

$$u(z_0) + iv(z_0) = u(z_0) - iv(z_0)$$
 or $u(z_0) + iv(z_0) = -(u(z_0) - iv(z_0))$,

^{© 2002} Australian Mathematical Society 0263-6115/2002 \$A2.00 + 0.00

that is,

88

(1)
$$cz_0^n \prod_{k=1}^{\infty} (1 - z_0/z_k) \exp(z_0/z_k) = \pm \bar{c} z_0^n \prod_{k=1}^{\infty} (1 - z_0/\bar{z}_k) \exp(z_0/\bar{z}_k).$$

Suppose that $\arg(z_0) \in (\varphi + \pi/2, \pi)$; then we prove that

$$\left|\left(1-\frac{z_0}{z_k}\right)\exp\left(\frac{z_0}{z_k}\right)\right| > \left|\left(1-\frac{z_0}{\bar{z}_k}\right)\exp\left(\frac{z_0}{\bar{z}_k}\right)\right|,$$

that is,

$$\left|\exp\left(\frac{z_0}{z_k}-\frac{z_0}{\bar{z}_k}\right)\right|>\left|\frac{z_0-\bar{z}_k}{z_0-z_k}\right|.$$

If we let $z_0 = a + ib$, $z_k = x_k + iy_k$ and $\overline{z}_k = x_k - iy_k$, where $a, b, x_k, y_k \in \mathbb{R}$, b > 0, $y_k > 0$, then we have

$$\left| \exp\left(\frac{z_0}{z_k} - \frac{z_0}{\bar{z}_k}\right) \right| = \exp\left[\operatorname{Re}\left(\frac{z_0}{z_k} - \frac{z_0}{\bar{z}_k}\right) \right] = \exp\left[\frac{2by_k}{x_k^2 + y_k^2}\right] \quad \text{and} \quad \left| \frac{z_0 - \bar{z}_k}{z_0 - z_k} \right| = \sqrt{1 + \frac{4by_k}{(a - x_k)^2 + (b - y_k)^2}}.$$

Obviously, we have that

$$\left|\exp\left(\frac{z_0}{z_k}-\frac{z_0}{\bar{z}_k}\right)\right|^2 = \exp\left[\frac{4by_k}{x_k^2+y_k^2}\right] > 1 + \frac{4by_k}{x_k^2+y_k^2}$$

We fix x_k and y_k . Since $\arg(z_0) \in (\varphi + \pi/2, \pi)$ and $\arg(z_k) \in (0, \varphi)$ we have

$$(a - x_k)^2 + (b - y_k)^2 > x_k^2 + y_k^2.$$

Thus we have

$$1 + \frac{4by_k}{x_k^2 + y_k^2} > 1 + \frac{4by_k}{(a - x_k)^2 + (b - y_k)^2}$$

which means that $|\exp(z_0/z_k - z_0/\bar{z}_k)|^2 > |(z_0 - \bar{z}_k)/(z_0 - z_k)|^2$ and the assertion is proved. Hence

$$\left|cz_0^n\prod_{k=1}^{\infty}\left(1-\frac{z_0}{z_k}\right)\exp\left(\frac{z_0}{z_k}\right)\right|>\left|\bar{c}z_0^n\prod_{k=1}^{\infty}\left(1-\frac{z_0}{\bar{z}_k}\right)\exp\left(\frac{z_0}{\bar{z}_k}\right)\right|,$$

which is impossible in view of (1).

THEOREM 3. Let $f(z) = cz^n \prod_{k=1}^{\infty} (1 - z/z_k) \exp[z/z_k + (z/z_k)^2/2]$ be an entire function, where $c, z_k \in \mathbb{C}$, $\arg(z_k) \in (\varphi + \pi/3, \pi/2)$, $0 < \varphi < \pi/6$. Let $\lim_{k\to\infty} |z_k| = \infty$ and let the Maclaurin series of f be $f(z) = \sum_{k=0}^{\infty} a_k z^k$, where $a_k = \alpha_k + i\beta_k$, $\alpha_k, \beta_k \in \mathbb{R}$ and $u(z) = \sum_{k=0}^{\infty} \alpha_k z^k$, $v(z) = \sum_{k=0}^{\infty} \beta_k z^k$. Then all roots of u(z) and v(z) satisfy $\arg(z) \notin (0, \varphi)$.

PROOF. We have

$$f(z) = u(z) + iv(z) = cz^n \prod_{k=1}^{\infty} \left(1 - \frac{z}{z_k}\right) \exp\left[\frac{z}{z_k} + \frac{1}{2}\left(\frac{z}{z_k}\right)^2\right].$$

Let z_0 be such that $v(z_0) = 0$ or $u(z_0) = 0$. Then $u(z_0) + iv(z_0) = u(z_0) - iv(z_0)$ or $u(z_0) + iv(z_0) = -(u(z_0) - iv(z_0))$, that is,

(2)
$$cz_0^n \prod_{k=1}^{\infty} \left(1 - \frac{z_0}{z_k}\right) \exp\left[\frac{z_0}{z_k} + \frac{1}{2}\left(\frac{z_0}{z_k}\right)^2\right]$$
$$= \pm \bar{c} z_0^n \prod_{k=1}^{\infty} \left(1 - \frac{z_0}{\bar{z}_k}\right) \exp\left[\frac{z_0}{\bar{z}_k} + \frac{1}{2}\left(\frac{z_0}{\bar{z}_k}\right)^2\right]$$

Arguing by contradiction, let us suppose that $\arg(z_0) \in (0, \varphi)$. Then we show that

(*)
$$\left| \left(1 - \frac{z_0}{z_k} \right) \exp \left[\frac{z_0}{z_k} + \frac{1}{2} \left(\frac{z_0}{z_k} \right)^2 \right] \right| > \left| \left(1 - \frac{z_0}{\overline{z}_k} \right) \exp \left[\frac{z_0}{\overline{z}_k} + \frac{1}{2} \left(\frac{z_0}{\overline{z}_k} \right)^2 \right] \right|,$$

that is,

$$\left|\exp\left[\frac{z_0}{z_k}-\frac{z_0}{\bar{z}_k}+\frac{1}{2}\left(\frac{z_0}{z_k}\right)^2-\frac{1}{2}\left(\frac{z_0}{\bar{z}_k}\right)^2\right]\right|>\left|\frac{z_0-\bar{z}_k}{z_0-z_k}\right|.$$

If we put $z_0 = a + ib$, $z_k = x_k + iy_k$ and $\overline{z}_k = x_k - iy_k$, where $a, b, x_k, y_k \in \mathbb{R}$, a > 0, b > 0, $x_k > 0$, $y_k > 0$, then we obtain that

$$\left| \exp\left[\frac{z_0}{z_k} - \frac{z_0}{\bar{z}_k} + \frac{1}{2} \left(\frac{z_0}{z_k} \right)^2 - \frac{1}{2} \left(\frac{z_0}{\bar{z}_k} \right)^2 \right] \right|$$

= $\exp\left\{ \operatorname{Re}\left[\frac{z_0}{z_k} - \frac{z_0}{\bar{z}_k} + \frac{1}{2} \left(\frac{z_0}{z_k} \right)^2 - \frac{1}{2} \left(\frac{z_0}{\bar{z}_k} \right)^2 \right] \right\} = \exp\left[\frac{2by_k}{x_k^2 + y_k^2} + \frac{4abx_ky_k}{(x_k^2 + y_k^2)^2} \right]$

and

$$\left|\frac{z_0 - \bar{z}_k}{z_0 - z_k}\right| = \sqrt{1 + \frac{4by_k}{(a - x_k)^2 + (b - y_k)^2}}.$$

Obviously,

$$\left| \exp\left[\frac{z_0}{z_k} - \frac{z_0}{\bar{z}_k} + \frac{1}{2} \left(\frac{z_0}{z_k} \right)^2 - \frac{1}{2} \left(\frac{z_0}{\bar{z}_k} \right)^2 \right] \right|^2$$

= $\exp\left[\frac{4by_k}{x_k^2 + y_k^2} + \frac{8abx_k y_k}{(x_k^2 + y_k^2)^2} \right] > 1 + \frac{4by_k}{x_k^2 + y_k^2} + \frac{8b^2 y_k^2}{(x_k^2 + y_k^2)^2} + \frac{8abx_k y_k}{(x_k^2 + y_k^2)^2} \right]$

We wish to prove that

$$1 + \frac{4by_k}{x_k^2 + y_k^2} + \frac{8b^2y_k^2}{(x_k^2 + y_k^2)^2} + \frac{8abx_ky_k}{(x_k^2 + y_k^2)^2} > 1 + \frac{4by_k}{(a - x_k)^2 + (b - y_k)^2}$$

which will be true if

$$\frac{1}{x_k^2 + y_k^2} + \frac{2by_k}{(x_k^2 + y_k^2)^2} + \frac{2ax_k}{(x_k^2 + y_k^2)^2} > \frac{1}{(a - x_k)^2 + (b - y_k)^2},$$

that is, $[(a - x_k)^2 + (b - y_k)^2](x_k^2 + y_k^2 + 2by_k + 2ax_k) > (x_k^2 + y_k^2)^2$ or $(a^2 + b^2)(x_k^2 + y_k^2 + 2by_k + 2ax_k) > (2by_k + 2ax_k)^2.$

$$(a^{2} + b^{2})(x_{k}^{2} + y_{k}^{2} + 2by_{k} + 2ax_{k}) > (2by_{k} + 2ax_{k})^{2}.$$

Hence,

$$(3a^2 - b^2)x_k^2 + (3b^2 - a^2)y_k^2 + 8abx_ky_k - (2by_k + 2ax_k)(a^2 + b^2) < 0.$$

The equation $(3a^2 - b^2)x^2 + (3b^2 - a^2)y^2 + 8abxy - (2by + 2ax)(a^2 + b^2) = 0$ is an equation of a hyperbola. Indeed, if we make the change of the variables

$$x = \frac{ax' - by'}{\sqrt{a^2 + b^2}}, \quad y = \frac{bx' + ay'}{\sqrt{a^2 + b^2}},$$

then we have $3x'^2 - y'^2 - 2x'/\sqrt{a^2 + b^2} = 0$. If the angle of rotation is ψ , then $\cos \psi = a/\sqrt{a^2 + b^2}$, that is, $\psi \in (0, \varphi)$. Hence

$$3\left(x'-\frac{1}{3\sqrt{a^2+b^2}}\right)^2-y'^2=\frac{1}{3(a^2+b^2)},$$

that is,

$$\frac{\left(x'-1/(3\sqrt{a^2+b^2})\right)^2}{1/\left(3\sqrt{a^2+b^2}\right)^2} - \frac{y'^2}{1/\left(\sqrt{3(a^2+b^2)}\right)^2} = 1.$$

After the change $X = x' - 1/3\sqrt{a^2 + b^2}$, Y = y', we obtain

$$\frac{X^2}{p^2} - \frac{Y^2}{q^2} = 1$$
, where $p = \frac{1}{3\sqrt{a^2 + b^2}}$, $q = \frac{1}{\sqrt{3(a^2 + b^2)}}$

Thus $q/p = \sqrt{3} = \tan(\pi/3)$ and all w = x + iy, with arg $w \in (\varphi + \pi/3, \pi/2)$ satisfy

$$(3a^{2} - b^{2})x^{2} + (3b^{2} - a^{2})y^{2} + 8abxy - (2by + 2ax)(a^{2} + b^{2}) < 0.$$

For example, z_k satisfy this condition, which confirms the assertion (*). Then we obtain

$$\left| cz_0^n \prod_{k=1}^{\infty} \left(1 - \frac{z_0}{z_k} \right) \exp\left[\frac{z_0}{z_k} + \frac{1}{2} \left(\frac{z_0}{z_k} \right)^2 \right] \right| > \left| \bar{c}z_0^n \prod_{k=1}^{\infty} \left(1 - \frac{z_0}{\bar{z}_k} \right) \exp\left[\frac{z_0}{\bar{z}_k} + \frac{1}{2} \left(\frac{z_0}{\bar{z}_k} \right)^2 \right] \right|.$$

which contradicts (2). The theorem is proved.

References

[1] G. Pólya and G. Szegö, Problems and theorems in analysis (Springer, Berlin, 1972).

[2] E. C. Titchmarsh, The theory of functions (Oxford Univ. Press, London, 1939).

Economic University Department of Mathematics bul. Knyaz Boris I 77 Varna 9002 Bulgaria e-mail: todstoyanov@yahoo.com, library@mail.ue-varna.bg