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Abstract

In this paper we extend results of Inoan and Kolumban on pseudomonotone set-valued
mappings to topological vector spaces. An application is made to a variational inequality
problem.
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1. Introduction

Different notions of pseudomonotonicity are used in functional analysis in the
context of nonlinear operators. They are important in the theory of variational
inequalities, in optimization, and equilibrium problems (see [1, 2, 6]). In
many applications concerning elastic–plastic torsion problems, contact problems,
heat conduction, thermoelasticity and economic theory there appear nonmonotone,
possibly multivalued maps (see for instance [9, 10]).

In 1968, Brezis [2] introduced one type of pseudomonotone operator which
was named by many authors as a topological pseudomonotone operator. Another
type of pseudomonotone operator was introduced by Karamardian [8] in 1976
in the single-valued case. This pseudomonotonicity notion is sometimes called
algebraic. These two pseudomonotonicity concepts are different (see [7]). Inoan
and Kolumban [7] studied three types of pseudomonotone set-valued mappings
in a topological vector spaces setting. Two of them are generalizations of the
classical notions mentioned above. The third generalization, which they called
C-pseudomonotonicity, is a weaker notion and common generalization of the algebraic
and topological pseudomonotonicity for set-valued maps. This paper is inspired and

1Department of Mathematics, Razi University, Kermanshah, 67149, Iran; e-mail: faraj1348@yahoo.com,
ali-ff@sci.razi.ac.ir.
c© Australian Mathematical Society 2009, Serial-fee code 1446-1811/2009 $16.00

258

https://doi.org/10.1017/S144618110900008X Published online by Cambridge University Press

https://doi.org/10.1017/S144618110900008X


[2] On pseudomonotone set-valued mappings in topological vector spaces 259

motivated by [7]. In this paper we generalize the main results of [7] to the topological
vector spaces.

2. Pseudomonotone set-valued mappings

Throughout the paper, let X and Y be two real Hausdorff topological vector spaces,
T : X→ 2Y be a set-valued mapping, and 〈·, ·〉 : X × Y → R be a bilinear continuous
function.

DEFINITION 2.1 (Inoan and Kolumban [7]). The mapping T is called A-pseudomo-
notone if, for every x, x ′ ∈ X ,

sup
f ∈T (x)

〈x ′ − x, f 〉 ≥ 0 implies sup
f ∈T (x ′)

〈x ′ − x, f 〉 ≥ 0.

Definition 2.1 generalizes the notion of algebraic pseudomonotonicity, which was
introduced by Karamardian [8], for set-valued mappings. The following definition
generalizes the notion of topological pseudomonotonicity introduced by Brezis.

DEFINITION 2.2 (Inoan and Kolumban [7]). The mapping T is called B-pseudomon-
otone if, for every x ∈ X and for every net {xi }i∈I in X with xi → x , fi ∈ T (xi ), and
lim infi 〈x − xi , fi 〉 ≥ 0, implies that for every y ∈ X there exists f (y) ∈ T (x) such
that

lim sup
i
〈y − xi , fi 〉 ≤ 〈y − x, f (y)〉.

DEFINITION 2.3 (Inoan and Kolumban [7]). We say that T is C-pseudomonotone if,
for every x, y ∈ X and every net {xi } in X with xi → x ,

sup
f ∈T (xi )

〈(1− t)x + t y − xi , f 〉 ≥ 0, ∀t ∈ [0, 1], ∀i ∈ I,

⇒ sup
f ∈T (x)

〈y − x, f 〉 ≥ 0.

REMARK 2.4. We make the following remarks.

(a) There are some examples of applications which are C-pseudomonotone but are
neither A-pseudomonotone nor B-pseudomonotone (see [7, Example 5]).

(b) We can define the above definitions on a nonempty convex subset of X .
(c) The expression C-psedudomonotone set-valued mapping in the framework of

variational inequalities is due to Inoan and Kolumban [7].

Let X be a topological vector space, K be a nonempty convex subset of X ,
and X∗ the topological dual of X . A set-valued mapping T : K → 2X∗ is called
0-segmentary closed (C-pseudomonotone in the sense of Definition 2.3) if the function
h : K × K → R defined by

h(x, y)=− sup
y∗∈T (y)

〈y∗, x − y〉
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is 0-segmentary closed (see [5, 7]). In [7], the authors obtained some examples of this
kind of mapping.

DEFINITION 2.5. The set-valued mapping T is called upper semi-continuous at x ∈ X
if for each open set V containing T (x) there is an open set U containing x such that
for each t ∈U , T (t)⊆ V . We say that T is upper semi-continuous on X if it is upper
semi-continuous at all x ∈ X .

LEMMA 2.6 (Tan [12]). Assume that for any x ∈ X, T (x) is compact. Then T is upper
semi-continuous on X if and only if for any net {xα} ⊂ X such that xα→ x and for
every yα ∈ T (xα), there exist y ∈ T (x) and a subnet {yβ} of {yα} such that yβ→ y.

DEFINITION 2.7 (Zhou and Tian [13]). Let X be a nonempty set, Y a topological
space, and T : X→ 2Y a set-valued map. Then, T is called transfer closed-valued
if, for every x, y ∈ K and y 6∈ T (x), there exists x ′ ∈ X such that y 6∈ cl T (x ′), where
cl T (x ′) denotes the topological closure of T (x ′).

REMARK 2.8. It is clear that, T : X→ 2Y is transfer closed-valued if and only if⋂
x∈X

T (x)=
⋂
x∈X

cl T (x).

Theorem 7 of [7] shows that the mapping T : X→ 2Y is C-pseudomonotone if and
only if, for each x, y ∈ X ,

cl
( ⋂

z∈[x,y]

F(z)

)
∩ [x, y] =

( ⋂
z∈[x,y]

F(z)

)
∩ [x, y], (2.1)

where F(z)= {x ∈ X | sup f ∈T (x)〈z − x, f 〉 ≥ 0}.
From the inclusion

clX

( ⋂
z∈[x,y]

F(z)

)
∩ [x, y] ⊆

⋂
z∈[x,y]

clX (F(z)) ∩ [x, y],

and the relation (2.1) through Remark 2.8 we infer that if for each x, y ∈ K the
restriction F to the set [x, y], that is F |[x,y] : [x, y] → 2X defined by

F |[x,y](z)=
{
w ∈ X : sup

f ∈T (w)
〈z − w, f 〉 ≥ 0

}
is a transfer-closed valued mapping, then T is C-pseudomonotone.

The following theorem improves [7, Theorem 9].

THEOREM 2.9. Let S : X × X→ 2Y be a set-valued mapping. Let T : X→ 2Y be
defined by T (x)= S(x, x). If S|4×4 (the restriction of S to the set 4×4=
{(x, x) : x ∈ X}) is upper semi-continuous with nonempty compact values, then T is
C-pseudomonotone.

PROOF. Let x, y ∈ X, {xi } in X be such that xi → x and

sup
f ∈S(xi ,xi )

〈(1− t)x + t y − xi , f 〉 ≥ 0 ∀t ∈ [0, 1], ∀i ∈ I. (2.2)
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Since S|4×4 has nonempty compact values and the bilinear mapping 〈·, ·〉 is
continuous then, for each i and for t = 1, there is fi ∈ S(xi , xi ) such that

〈y − xi , fi 〉 = sup
f ∈S(xi ,xi )

〈y − xi , f 〉. (2.3)

Now by applying Lemma 2.6 there exist a subnet { f j } of { fi } and g ∈ T (x)=
S(x, x) such that f j → g. Hence, the continuity of the bilinear mapping 〈·, ·〉, (2.3),
and (2.2) imply that 〈y − x, g〉 ≥ 0. Consequently sup f ∈T (x)〈y − x, f 〉 ≥ 0. This
completes the proof. 2

The next result improves [7, Corollary 11].

COROLLARY 2.10. If T : X→ 2Y is an upper semi-continuous set-valued mapping
with nonempty compact values, then T is C-pseudomonotone.

PROOF. Let S(x, y)= T (x) and apply Theorem 2.9. 2

For the next result we need the following lemma which is due to Blum and Oettli [1].

LEMMA 2.11. Let D be a convex, compact set and let K be a convex set. Let
f : D × K → R be concave and upper semi-continuous in the first variable, and
convex in the second variable. Assume that

max
x∈D

f (x, y)≥ 0 ∀y ∈ K .

Then there exists x̄ ∈ D such that f (x̄, y)≥ 0 for all y ∈ K .

Now we have the following generalization of [7, Theorem 13] in the setting of
topological vector spaces.

THEOREM 2.12. If:
(a) T is B-pseudomonotone;
(b) T (x) is nonempty convex and compact for each x ∈ K ;

then T is C-pseudomonotone.

PROOF. Let x, y ∈ X and {xi } be a net in X with xi → x . Assume that

sup
f ∈T (xi )

〈(1− t)x + t y − xi , f 〉 ≥ 0 ∀t ∈ [0, 1], i ∈ I. (2.4)

Since the values of T are compact, then for t = 0 and for any i ∈ I , there exists
fi ∈ T (xi ) such that

〈y − xi , fi 〉 = sup
f ∈T (xi )

〈y − xi , f 〉 ≥ 0.

Hence, lim infi 〈x − xi , fi 〉 ≥ 0, and so by condition (a), there exists f (y) ∈ T (x) so
that

0≤ lim sup〈y − xi , fi 〉 ≤ 〈y − x, f (y)〉 (2.5)

(note that the inequality follows from (2.4) when t = 1).
Therefore, the conclusion follows from (2.5). 2
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3. Application

Our aim in this section is to establish an existence result for the following problem
which is called a variational inequality problem in the setting of topological vector
spaces.

Let X and Y be two Hausdorff topological vector spaces, let K be a nonempty,
convex subset of X , and T : K → 2Y be a set-valued mapping.

Find x ∈ K such that sup
f ∈T (x)

〈y − x, f 〉 ≥ 0 ∀y ∈ K . (VI)

Such variational inequalities occur, for example, in the study of optimality for
parametric variational problems of the form

min
u∈K

max
λ∈3

∫
�

G(λ, t, u(t), ∇u(t)) dt,

where K is a closed and convex set of the Sobolev space H1(�), 3 is a set of
parameters and � is a bounded subset of Rn (see for instance [7, 11]).

We denote the solution set of (VI) by S. The next theorem is needed later.
By checking the proof of Theorem 2.1 in [3, Page 113, lines 15–19], one can realize

that the authors, in fact, obtained the following generalization of the Fan–Knaster–
Kuratowski–Mazurkiewicz lemma [4].

THEOREM 3.1. Let X be a topological vector space and K be a nonempty convex
subset of X. Suppose that 0, 0̂ : K → 2K are two multivalued mappings such that:

(i) 0̂(x)⊆ 0(x), for all x ∈ K ;
(ii) 0̂ is a Knaster–Kuratowski–Mazurkiewicz (KKM) map;

(iii) for each finite subset A of K , 0 is transfer closed-valued on co A;
(iv) for each x, y ∈ K , clK (

⋂
z∈[x,y] 0(z)) ∩ [x, y] = (

⋂
z∈[x,y] 0(z)) ∩ [x, y];

(v) there is a nonempty compact convex set B ⊆ K such that clK (
⋂

x∈B 0(x)) is
compact.

Then,
⋂

x∈K 0(x) 6= ∅.

We remark that condition (iv) of Theorem 3.1 is equivalent to the C-pseudomon-
otonicity of the set-valued mapping T : X→ 2Y (see [7, Theorem 7]).

THEOREM 3.2. Let X and Y be two Hausdorff topological vector spaces, K a
nonempty convex subset of X, and T : K → 2Y be a set-valued mapping. Assume
that:

(a) T is C-pseudomonotone;
(b) for each finite subset A of K , T is upper semi-continuous on coA;
(c) there exist a compact, convex subset B ⊆ K and a compact set D ⊆ K such that

∀x ∈ K \ D and ∃y ∈ B such that sup
f ∈T (x)

〈y − x, f 〉< 0; and

(d) T (x) is nonempty compact, for all x ∈ K .
Then the solution set of (VI) is a nonempty, compact subset of B.
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PROOF. Define 0 = 0̂ : K → 2K by

0(y)=

{
x ∈ K : sup

f ∈T (x)
〈y − x, f 〉 ≥ 0

}
.

We now show that 0 fulfils all of the assumptions of Theorem 3.1. Note that
for each y ∈ K , 0(y) 6= ∅ since y ∈ 0(y). We first show that 0 is a KKM map.
Assume on the contrary that there exist A = {x1, x2, . . . , xn} ⊆ K , z ∈ coA and
z 6∈

⋃
i∈{1,2,...,n} 0(xi ). Then, by the definition of 0 and choosing a fixed element

f ∈ T (z), we have

〈xi − z, f 〉< 0 ∀i = 1, . . . , n.

This and z ∈ co A imply that 0= 〈z − z, f 〉< 0 which is a contradiction. Now we
prove that for each finite subset A of K , 0 is transfer closed-valued on co A. To see
this, applying Remark 2.8, we must show the following equality⋂

y∈co A

cl(0(y) ∩ co A)=
⋂

y∈co A

(0(y) ∩ co A),

for each finite subset A of K .
Let z ∈

⋂
y∈co A cl(0(y) ∩ co A). Hence, for each y ∈ co A, there exists a net {xi }

in 0(y) ∩ co A which converges to z. Thus, for all i ,

sup
f ∈T (xi )

〈y − xi , f 〉 ≥ 0.

Since, by condition (d), T (xi ) is compact, for all i , and the bilinear mapping 〈·, ·〉 is
continuous, there exists fi ∈ T (xi ) such that

〈y − xi , fi 〉 = sup
f ∈T (xi )

〈y − xi , f 〉 ≥ 0. (3.1)

Now by Lemma 2.6, there exist a subnet { f j } of { fi } and a g ∈ T (z) such that f j → g.
Hence, from (3.1) we obtain 〈y − z, g〉 ≥ 0, and so sup f ∈T (x)〈y − z, f 〉 ≥ 0. This
shows that z ∈ 0(y). Since xi → z, xi ∈ co A, and co A is compact (note that A is a
finite subset of K ) we have z ∈ co A. Consequently, z ∈ 0(y) ∩ co A. Therefore,⋂

y∈co A

cl(0(y) ∩ co A)⊆
⋂

y∈co A

(0(y) ∩ co A).

The reverse of the above inclusion is obvious. From condition (a) and [7,
Theorem 7] we obtain the following expression for each x, y ∈ K :

clK

( ⋂
z∈[x,y]

0(z)

)
∩ [x, y] =

( ⋂
z∈[x,y]

0(z)

)
∩ [x, y].
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From condition (d) we have that clK (
⋂

x∈B 0(x)) is compact. Therefore, 0 satisfies
conditions (i)–(v) of Theorem 3.1 and so there exists x̄ ∈ K such that x̄ ∈

⋂
y∈K 0(y).

Hence, we have
sup

f ∈T (x̄)
〈y − x̄, f 〉 ≥ 0 ∀y ∈ K .

Thus, x̄ is a solution of (VI), that is x̄ ∈ S, where S denotes the solution set of (VI),
and hence S is nonempty. From condition (c) we deduce that S is a subset of B and
so S = S ∩ B. Now since B is compact and S = S ∩ B we obtain that S is a compact
subset of B with respect to the induced topology from X on S. This completes the
proof. 2

REMARK 3.3. Let X be a normed space and let X∗ be the topological dual of X . Then
the coercivity condition (c) in Theorem 3.2 is weaker than the following condition
of [7, Theorem 15]:

there exists a weakly compact subset A ⊆ K and z0 ∈ K such that

sup
f ∈T (x)

〈z0 − x, f 〉< 0 for every y ∈ K \ A.

Indeed, let A be a weakly compact subset A ⊆ K . Then by the Mazur theorem,
co A is compact and convex. Let B = co A and D = {z0}. Since K \ co A ⊆ K \ A,
then from the above condition we obtain condition (c) in Theorem 3.2.

One can see that condition (c) of [7, Theorem 15] is a particular case of condition
(b) of Theorem 3.2. Hence, Theorem 3.2 generalizes and improves [7, Theorem 15].

The following corollary improves [7, Corollary 16].

COROLLARY 3.4. Let X and Y be two Hausdorff topological vector spaces, let K be
a nonempty convex subset of X, and let T : K → 2Y be a set-valued mapping. Let x̄
be a solution of (VI). Assume that T (x̄) is a compact, convex set. Then there exists
f ∈ T (x̄) such that 〈

y − x̄, f
〉
≥ 0 ∀y ∈ K .

PROOF. Define P : T (x̄)× K → R by P( f, y)= 〈y − x̄, f 〉, and put D = T (x̄). It
is clear that the mapping P is concave and upper semi-continuous in the first variable,
and convex in the second variable. Now since x̄ is a solution of (VI) and T (x̄) is
compact we have

max
f ∈T (x̄)

P( f, y)= max
f ∈T (x̄)

〈y − x̄, f 〉 = sup
f ∈T (x̄)

〈y − x̄, f 〉 ≥ 0.

Consequently P satisfies all of the assumptions of Lemma 2.11 and so there exists
f ∈ T (x̄) such that

P
(

f , y
)
=
〈
y − x̄, f

〉
≥ 0 ∀y ∈ K . 2
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