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Abstract

A finite element Galerkin method for a diffusion equation with constrained energy
and nonlinear boundary condition is analysed and optimal error estimates in L? and
L*-norms are derived. These results improve upon previously derived estimates
by Cannon et al. [4].

1. Introduction

In this paper, we consider a finite element Galerkin approximation for the
following diffusion equation with constrained energy and nonlinear boundary
conditions:

Problem A. Find u = u(x, ¢) such that

Up = Uy, (x,0) eI x (0, T], I=(,1), ey
u(x, 0) = uo(x), x el 2)
u,(1,8) =g, u(l, 1)), 0<t<T, (3

b
M(t)=/ u(x,t)ydx, 0<b<l. )
0

Problem A models various physical phenomena. For example, in a heat
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conduction problem, u denotes the temperature distribution in an horizontal bar
of unit length (say) and M (¢) represents an average temperature of the region
0 < x < b attime t. We note that (2) is the initial temperature in the bar and the
condition (3) at the end of the bar may be of Fourier-Boltzman type (i.e. heat
transfer through radiation is allowed at the end x = 1).

For the case g = g(¢) and for sufficiently smooth uy, g and M, the ex-
istence of a smooth solution u is proved using an equivalent Volterra integral
formulation and fixed point arguments, (cf. Cannon [1]). In case the function
g = g(t,u(l, 1)) satisfies (even locally) Lipschitz continuity condition with
respect to u, their analysis can be easily extended to prove the existence of a
unique local solution.

Recently, Cannon et al. [4] have discussed both continuous and discrete time
Galerkin approximations for Problem A with ¢ = g(), and have obtained
only a priori error estimates in L*(0, T; L2(I)), which is not optimal. In
the present paper, we not only consider Problem A with nonlinear boundary
conditions, but also obtain improved error estimates in L>®(0, T'; L?(I))-norm.
Further, we derive optimal rates of convergence in L0, T; L*°(])) and in
L>°(0, T; H'(I))-norms. Finally, the discrete-time Galerkin method is analysed
by using a dual quadrature rule for the integral in the temporal variable ¢ in the
right-hand side of (8). For a similar analysis, one may refer to Sloan and Thomée
[5].

Here we make several assumptions on the smoothness of u, the initial datum
uo and on the boundary function g.

Assumptions B. (i) There is a unique smooth solution u to the Problem A such
that forr > 1

u € W0, T; L) N W20, T; W)

or
ue W2, T; L®) N WL, T; wrthe),
Further, the solution u is bounded by some constant (say) K, in the above-
mentioned spaces.
(ii) For simplicity, we assume that the boundary function g is smooth and
bounded with derivatives by a constant (say) K.
(iii) The initial fuction ug is smooth as required by the analysis.

REMARK. Since we prove error estimates in L*(L°)—norm, the present analysis
will still work for locally Lipschitz continous g (Thomée and Wahlbin [6] or
Thomée [7]).
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In the sequel, we shall use the following spaces. The space W™P(I),1 <
p < oo is the usual Sopbolev space and its norm is written as ||. || », ,. For p =2,
we write H™ instead of W™? and denote its norm by ||.||l.. By LP(H™), we
mean the spaces L?(0, T; H™(I)).

The paper is organised as follows: In Section 2, a weak formulation and
Galerkin procedures are derived for Problem A. Section 3 is devoted to an
auxiliary projection, and related approximations. For continuous-time Galerkin
approximation, optimal estimates in L® (L), L*(L?) and L*(H')-norms are
derived in Section 4. Further, in Section 5, a priori error estimates for discrete
in time Galerkin methods are presented.

2. Weak formulation and Galerkin approximations

For a weak formulation of Problem A, we multiply both the sides of (1) by
v € H! and integrate by parts with respect to x to obtain

(s, v) + (us, vx) = g(¢, u(1))v(1) — u. (0, Hv(0). )

For the term u, at x = 0, we differentiate (4) with respect to ¢ and apply (1) to
have

u(0,1) = uy(b, 1) — M(1). (6)

As in Cannon et al. [4], we use a representation formula for the solution u to
have a viable form for u, (b, t), namely,

U, (b, t) =20(b, Hug(0) — {0 —1,1) +68(b + 1, )} ue(l)
+ [ (O — &, 1)+ 6(b + £, 1)) o (§) dE
0

—2[ BB, t — DU, 1) — 0(b—1,t — u(l, 1)} dz, (7)
0

where 8(x, 1) = Y2 k(x +2j,¢) and

1
2/t

For simplicity, write D(¢) as the sum of the first three terms in the right-hand
side of (7). On substitution of (6) and (7) in (5), we obtain

(ur, v) + (s, vx) = g (¢, u(1))v(1) + (M'(t) — D())v(0)

%2
k(x,t) = exp(—z), fort > 0.
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'

—2v(0)/ {0::(b, t—7)u(0, ) — 0, (b—1,1—7)u(l, 7)} d7, (8)
0

with u(x, 0) = uy(x).

Galerkin Approximations. Let S,,0 < & < 1, be a family of finite dimensional
subspaces of H' with the following properties:

(I) APPROXIMATION PROPERTY: For v € W™?(I), (p = 2 or 0o) there is a con-
stant Ky such thatfor j =0, landl <m<r+1

inf [[v— @llwir < Koh™ ™ ||v]lwms.
PES,

(11) INVERSE PROPERTY: For ¢ € S,

Il < Koh™ 2|1l L.

Now a continuous-time Galerkin approximation is defined as:
‘Find U : [0, ] — S, such that

W, V)+ (U, V) =g, UN)V(A)+ (M'(t) — D(1))V (0)
— 2V(0)/ {6 (b, t—T)U 0, 17) — 0,,(b—-1,t—7)U(1, 1)} dr,
0

VesS t>0 ®
U(x,0) = Quuo(x),

where Q, is an appropriate projection of uy on to S, to be defined later.”

Note that (9) is a system of nonlinear integrodifferential equations. So for
a Lipschitz continuous g and a given initial function, the solution U exists
at least locally. Since an a priori estimate in L>(0, T; L®) is followed as a
consequence of the error estimates, the solution U can be bounded independent
of h for bounded « and hence U is uniquely continued up to T'.

For a fully discrete scheme related to (9), we discretise the temporal variable
inthe following way. LetN € Z,k = At =T/N,t, = nk,forn=0,1,..., N
and #,,1 = (n + 3)k. Further let ¢, = ¢(1,),

a n — ¥n- 1
o, = ?k# and ¢n+l/2 = E(¢n+l + én).

For a backward Euler’s method, we now apply a quadrature rule for the
integral in the right-hand side of (9). For the integral fo'" ¢ (s)ds, we consider
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the following quadrature rule

1 n—~1
/ d(s)ds ~ anﬂbj,
0 j=0

where w,; are quadrature weights. The simplest quadrature rule which is con-
sistent with O (k) accuracy for the backward Euler’s scheme is the rectangle
quadrature rule in which the weights w,; = k, for 0 < j < n. But as in Sloan
and Thomée [5] we use a dual quadrature rule, i.e. on the larger part of the
time interval we use a higher-order quadrature rule like the trapezoidal rule with
large time steps and in the remaining part we use the rectangle rule with time
step k. The effect is quite significant in the sense that this discretisation for
the integral term, while being consistent with the backward Euler method, is
increasingly sparse as the time step k converges to zero. In this way both the
memory requirements and the computational effort can be greatly reduced. Let
I(n) denote the largest nonzero integer such that lk; < nk. The choice of k,
will be made later. Now split the interval [0, nk] in to [0, Ik;] U [lk,, nk] and
approximate the integral over the first interval by a trapezoidal rule with step
length &, and that in the remaining part by a rectangle rule with step length k.
Then

t, 1
/ d(s)ds >~k [549(0) +ok) +...+ (- l)kn)]
0

+ (%k1 + k) P (k) + k[pUki + k) + ...+ ¢((n — DK)].
When I = 0, the trapezoidal rule is omitted. For sufficiently regular ¢, the
truncation error is O(k,2 + kik) as t, < T < oco. The required consistency is
achieved if k; = O(k'/?). For a given j and sufficiently large n, the weights
w,; are independent of n and are bounded by a quantity which is independent
of n, that is Z'.'“(; wnj < (2T + 1). Therefore, the integrals appearing in the

J=

right-hand side of (9) can be replaced by

1, n—1
2[ 0x(b, t, — YU, 1)dt >~ 2 E wnjbix (b, t, — 1;)U;(0),
0

j=0

and

(. n—1
2f (b — 1,6, = VUL, T)dT =2 wyjfs (b — 1,1, — ) U;(1).
0 j=0
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The fully-discrete Galerkin approximation U,, n = 1,2,..., N is defined
as a solution in S, of the following equation

OUn, V) + (Unx» Vi) = gtw, UV (1) = VO)(M' () — D(t))
n—1

— V(0) Y 04j[0u (b, ta—1))U;(0) = 6, (b—1, 1,—1))U;(1)]. (10)
j=0

In order to achieve higher-order accuracy, we can formulate the following
variant of the Crank-Nicolson scheme. Discretise the problem (9) at ¢ = fa-}
and use the following quadrature rule

t"_i n-1
f P(s)ds = Y wnd;.

Let I(n) be the largest nonnegative integer such that 2/k; < nk. Then split
the interval into [0, 21k,] U [2lk,, (n — )k] U [(n — 1)k, (n — 1/2)k]. On the
first interval with larger step length k,, we use Simpson’s rule which is of O (k}),
and the trapezoidal rule for the second, while on the third use the rectangle rule
with step length k/2.

Finally, we obtain

-} 1
/ Pp(s)ds ~ 3 (¢(0) +4¢ ki) +2¢(2ki) + ...+ ¢((2 — 1)ki)]
0

+(%k. + %k) O Qlky) + k[pQlky+ k) + ... + ¢ ((n—DK)].

As nk is bounded above by T < oo, the truncation error is of order O (k] +
k\k? + k?), for a smooth function ¢. Thus to maintain second-order accuracy, k,
should be of order O (k!/2). In this way the discrete-time Galerkin approximation
is defined by

(étUm V) + (Un~%.x9 Vx) = g(tn—%a Un—%)v(l) - V(O)(Ml(t —%) - D(t —%))
n—1
—2V(0) Y @4j[0ux(b, 1,y —1)U;(0) — Oex (b—1, to_y —1)U;(D)].
j=0

(1n

This yields a system of nonlinear algebraic equations, and for given initial
datum it has at least a unique solution for small k. Since nonlinearity occurs
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due to the presence of the boundary function g in (11) at each time level, a
linearised modification for g can be achieved by replacing U, _ y through EU,,
where EU, = 3U,_, — ;U,_,. Although it preserves the second-order accuracy,
one needs to evaluate U,. One possible way to achieve this is to use a predictor-
corrector method (c.f. Thomée [7]).

3. Auxiliary projection and error estimates

Define an auxiliary projection &# € S, of u through the following form:
((u—u), Vo) +A(u—u,V)=0, Ves, (12)

and for some fixed positive number A. The existence of a unique & € S, follows
directly from the Lax-Milgram Lemma.

Let £ be a one-dimensional elliptic operator associated with (12) and be
defined by

Lo = —¢u + 10
Now for € H®, s > 0, the following problem:
Lo=1, ¢:(0) = ¢:(1) =0,
has a unique solution ¢ € H**? which satisfies the regularity condition
lollsr2 < Kall¥r s

Let n = u — u be the error involved in the auxiliary projection (12). The
estimates of n and 7, in different norms are now quite standard. These estimates
involve the use of the Aubin-Nitsche duality argument.

Here, we only state the estimates without proof (Thomée [7]).

LEMMA 3.1. There is a constant K3 = K;3(Kg, K, K3; A) such that for p = 2
or 0o

Inllwis + Inllwis < K3h™, Jj=-101; t<m<r+1

Further, we need the following estimates of n at the end points x = 0, 1 for
our future use.
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LEMMA 3.2. There is a constant K3 (say) such that for x = 0, 1
In(x)| < K3h*™7D, l<m<(r+1).
Here K is a generic constant.

PROOF. We examine only the case x = 0. The other case follows similarly.
Now consider an auxiliary fuction ¢ such that

Lo =0, xel,
¢:(0) =1, ¢.(1) =0.
Multiply by 7 and integrate to obtain

—n(0) = (nx, @) + A(n, ¢)
=(nx’¢x_Xx)+)‘-(n,¢_X)’ X € Si.

Therefore,
n(0)| < K(Ko, Ki; R PNullmllpllm

and this completes the proof.

4. Error estimates for continuous case

Define the projection Q, by
((uo — Qntto)x, Vi) + Aug — Qnuo, V) =0, V € S

Clearly U(x,0) = u(x,0). For our error estimates we need the following

inequalities:
(i) Fora,b > 0and e > 0,
PgP b 1 1
ab§€a+——, —4+-=1, 1 <p<oo.
P €lq P q

(i) For ¢ € H'(I), supy, < 16 (X)| < lloll1-

(iii) For¢ € H'(I) and for0 < x < 1, |9 (x)] < gl +2ll¢llz 18]
(iv) For a fuction y on the time interval [0,t],

/ (f |w(s)|2ds) dr < zfln/f(s)|2ds.
0 0 0

Leté =U —tdande = u— U, then e = n — ¢. Below we derive some
estimates for £.
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THEOREM 4.1. There exists a constant K, such that

g HLocezy + NS W2y < Kah™,

holds for r > 2. Here K, is a generic constant depending on Ky, K|, K;, K3, A
and also on the bounds of 6.

PROOF. From (8), (9) and (12), it follows that
G V) + G Vo) = G V) = A, V) + V(DIg(E, U(D) — (2, u(1)]
—2v(0) fo [8usb, 1 — D) () — n(O)
0 (=1, 1=D)(E (1) — n()} dz. (13)

Choose V = ¢ in (13) to obtain

1d
EEIICII2 1802 < Amell=r 4+ Mnll-D0E h + K (K 16, lle=)1E (0)]

t
Xf O + 1D+ nO)] + In(D)]) dz
0
=1+ D,
forl = b, b — 1. For I,, use of inequality (i) yields

L) < €llg I} + (lmell-i + A2linll-1)/ Qe).

To estimate I, apply the inequalities (i)—(iv) to obtain
t
11| < K(Ki, A, T, € 10, )l =) (In (D +f (In© + In(DI?) dz
0

t
+3elEI? + KKy, T, € 190, i) / T
0

These estimates now yield
d
EIIZII2 + 2015117 < 8ellZ Il + K (K1, A, Ts € 116 (L, )lliw)
t
X |:(l|§||2 +/ 1213 do)llme N2, + Inli2, + (D))
0

+ /0 (In(O)I2+In(1)I2)dr]-
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Integrating with respect to ¢ and using inequality (iv), it follows that

I|§(1)||2+(2—86)A||€(t)llf <K(Ki, A, T, € 16 (1, ')"L"")/ IZ(@)|I*dz
0
+K (K, A T, €5 105 )l i)

xfo(nn,ui. + 2, + MO + [n(HP) dx.

Choose ¢ = 1/8 and apply Gronwall’s Lemma to obtain

12 12 + /0 Iz 12 dr
< KKy, T, A 18, ) /0 (2, + 112, + O F + ()P dx.

Now the estimates in Lemma 3.1 and in Lemma 3.2 complete the proof.

From the inverse property and the Theorem 4.1, we obtain the following
estimates for £.

COROLLARY 4.2. The following estimates
1S lLeoqrooy < K and NSl o1y < K4h™?

hold for r > 2. Here K, is a generic constant.

We now make use of the triangle inequality and Theorem 4.1 to obtain the
following estimates for e.

THEOREM 4.3. Let u and U be respectively the solutions of (8) and (9). Then
the following estimates in the errore = u — U

lell Loz + llellzn + lellimpey < Kah™!,

and
el o1y < Ksh*?

hold forr > 2.
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REMARKS. In case only an L*®(L?) estimate for the error e is needed, one may
even consider piecewise-linear finite element spaces i.e., r > 1. Note that in
Theorem 4.1, one may use the estimateé ||, ||[|¢|| for the term (n,, ¢) instead of
the estimate ||, |- I {|;-

Below we shall examine the rate of convergence for the error e in the H'-
norm.

THEOREM 4.4. There is a constant, again say K4, such that
1
el 2y + llell oy < Kah™
holds forr > 1.

PROOF. Choose V = ¢, in (13) and rewrite the resulting equation as

, 1d id .,
g 1* + EEIICHI =< [(nns’r) —A(n, &)+ EEIICH ]

+&()(g(t, UQ)) — g(t, u(1))
~2¢,(0) f |66, 1= D) @ —n(@)
4]
(b1, 1-7)E (D) =n(1)|dv
= 11 + 12 + 13.

For I,, an use of inequality (i) yields

/ Li(r)dt
0

To estimate /,, apply inverse property and the inequalities (1)}—(iv) to obtain

f L(t)dr
0

Finally for the term /5, we apply inverse property and the inequalities (i)—(iii) to
have

t
/ I3d‘l'
0

<K®;e€) [||;(z)||2+ /0 (l|n,||2+||n||2)dr]+e f 1% d.
0

< K (Ko, K1; )h™" /0 UEI2 + In(DP) dr + € f e dr.
0

< K(Ko, T, € 10 (L, )l=)h™ f (@) + In(P + (15113 d=
0

!
+2¢ / &2 dz.
0
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Altogether we obtain with € = 1/8,
t
f ISP de + 1212 < K (Ko, Kuu A T 182xl, i)
1]
F4
x [uuﬁ + / Ul + Il de
0

+h [ USIE + 1InO) + In(DI*) dr] ~
0

Application of Lemmas 3.1, 3.2 and Theorem 4.1 now completes the proof.

REMARKS. From Theorem 4.3 the optimal error estimate for the error e in
L*®(L*®)-norm is obtained for C°- polynomial spline spaces of degree r with
r > 2. This is due to the fact that the superconvergent result for ¢ in L®(L?)—
norm is used along with the inverse property. In order to obtain an optimal rate
of convergence even for piecewise-linear finite element spaces. i.e. for r > 1,
we modify the proof of Theorem 4.4 in the following way: first we obtain a
superconvergence for £ in H'-norm and then use inequality (ii) as well as the
triangle inequality to complete the proof. Now to estimate 7, we note

g, U()) —g(t,u(1)) = —g.(n(1) — ¢ (1)),
where g, = -Z—i—(u(l) —&e(1)), 0 <& <1, and rewrite I, as

1d - ~
L= EE(CZ(I))&; — &(1gun(l).

On integration by parts with respect to ¢, it follows that
I 1 . t ~
/ Ldt = [59*2(1) - C(l)n(l)] 8u +f ¢Mn(1)g.dr
0 0

T ) )
_/0 [54(1) - n(l)] £(1) Bur + Buuuts — £€))) dt
and hence using inequalities (i)~(iii) it yields

/ Ii(r)dr
0

< KK o) [IEO + (D] + el @113

+K (K, IIC:IILZ(Lw);e)/ W13 + ImDP + In()P) de.
0
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Here one may assume temporarily that |, || 2=, < 1, for sufficiently small
h. This is in fact not a restriction, since using the inverse property,

Wl 2oy < Koh™ ' 2NE 22

and the latter estimate is O (h"*'). Similarly, the estimate for the term /5 can be
obtained with only a change in the dependence of the constant. This time the
constant may depend on ||0;,,(l, )||.=, I = b, b — 1. The estimate of |n,(1)]| is
an easy consequence of Lemma 3.3. Now the rest of the analysis follows from
Theorem 4.4. Hence we obtain

N Hiowuny < Kqh™', r>1.

Finally, the optimal error estimate for e in L*(L*) is obtained using the in-
equality (ii) and the triangle inequality.

5. Error estimates for fully discrete scheme

We shall begin with the backward Euler-Galerkin scheme (10). Note that for
a given initial function U,, (10) is a nonlinear system of algebraic equations and
it has a unique solution for small k. Let e, = u(z,) — U, be the error at the time
level t,. Then we have the following error estimates.

THEOREM 5.1. Under the regularity conditions (i,) in the Assumptions B, the
estimates

leall + k) llej I} < Ka(h " + k2,
j=0

hold for r > 1 and for small k.

PROOF. As before, we write e, = 1, — &, withn, = u,, — 4, and g, = U, — u,,
where i1, is the auxiliary projection defined by the equation (12) at the time level
t = t,. Since the estimates for n at 1 = ¢, are known from Lemmas 3.1 and 3.2,
it therefore remains to estimate £,. Now from (8), (12) at ¢ = ¢, and (10), it
follows that

(a};, V) + ((&)es Vi) =
B, V) — A, V) + (02, V)
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n—1
—2V(0) Z @nj [0rx (b, 1, — 1)(&;(0) — 0j(0)6,x (b—1, 1, — 1;)(&;(1) — n;(1))]

j=0

In n—1
—2V(0) [ f Oex (b, tn— TIUO, TV AT Y 30, (b, 1, — z,.)u,.(())]
0 j=0

ty n—1
+2V(O) [/ exx(b - 1, th— t)u(O, T) dt anjexx(b_ lv b, — tj)uj(l)]
0 j=0

+V (1) [gtn, Un(1)) — g(tn, ux(1))]
= (@10, V) = A0, V) + (0, VY + I+ 2+ 1 4+ 17,
(14)

where o, = u,(t,) — d,u,. Choose V = ¢, in (14) and note that

(3&ns En) = Gall* = 18zt 1)/ (2K).

For the term I]', we have

n—1

117 < K(Ky, T; 160, -)Ile)ICn(O)IZ[ICJ(O)I + 18 (D] + ;0] + In;(DI],
0

forl=5b,b—1.

Further, each one of the two terms I3 and I} consists of two parts, the one
arising from the trapezoidal rule with steplength k,, and the other from the
rectangle rule. Therefore these two terms are bounded by

K (K, T5 [8uxx (U, o) [k} + Kik11 (O],

for ! = b or b — 1. Altogether, we obtain, on replacing [ (0)| < |{ ||, and using
inequality (iii) in Section 4 for | (1)| with Young’s inequality, the result

Nl = Namal®) + 204117
< Kk[13na1” + lnal® + Inn P + 1807 + o 1]

n—1

+KE Y [InjO)F + Iy (D + 1517 + 15 117] + Beklla 113,

where the constant K depends on Ky, A, T, [|61xx (I, -)||1»; € for I=b,b—1.
Summing up on » and using k 3 _, I <T Z;‘;(; @;, it follows for appro-
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priately chosen k and € that
n n—1 J
NZal24+ 5D g0 < Kk Y g 1%+ D 1zl
j=0 j=0 i=0

+KEY U807+ i 12+ 10, (DP+ 10, OV P+ oy I12)

j=0

An application of Gronwall’s Lemma along with the estimates for n yields
NEall? + k) NG 13 < KR+ + h* + k2,
i=0

and this completes the proof.

For H' error estimate, we choose V = kd,¢, in equation (14). Using Lemmas
3.1,3.2 and Theorem 5.1, it is easy to obtain the following resuits. As the method
of analysis is quite similar to the previous Theorem, we state only the estimates
without proof.

THEOREM 5.2. Let the assumptions B be satisfied with regularity condition (i,).
Then there is a constant (say) K¢ such that

kD 1317 + lleal? < Kelh” +K%,  n>1,

j=0

holds for r > 1 and for small k. Here K is a generic constant.

For second-order accuracy in time, we shall consider the Crank—Nicolson
Galerkin scheme (11). The analysis is similar in spirit to Theorems 5.1 and 5.2
with added regularity conditions (i,) and higher truncation errors. Therefore,
we only state the results without proof.

THEOREM 5.3. Let the solution u satisfy the regularity conditions (i,) in the
assumptions B.Then there is a constant K¢ such that for r > 1 and for small k

leall* + k) " llejezall} < Kelh?7+D + k%)
i~

and )
kY 131 + lleall? < Kelh” +k*]
=1

hold.
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REMARKS. In case we do not use the dual quadrature rules, we need only less
smoothness for the solution ¥ in the direction of ¢ both for backward Euler
scheme and Crank-Nicolson scheme.

The present analysis can be modified without any difficulty, for the problem
with nonhomogeneous right-hand side i.e.with a source term say f = f(x, 1)
and with b = b(t) (cf. Cannon and van der Hoek [4]). But we understand the
computational complexities while dealing with a variable domain of integration
and the double integral involving the function f.
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