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Abstract. We analyse the sensitivity of cosmic shear 2-point statistics to the cosmological
parameters, by using Monte Carlo Markov Chain (MCMC) methods. In particular, we investigate
degeneracies among parameters and compare them to the CMB ones. Specializing on a Canada
France Hawaii Telescope Legacy Survey (CFHTLS) type lensing survey and WMAP-1 year
and CBI CMB data, we find cosmic shear information improves CMB cosmological parameters
constraints by a factor of 1.5 – 2.5.

1. Introduction
Propagation of galaxy light beams across large scale mass inhomogeneities produces

distorted and magnified galaxy images (for reviews see Bartelmann & Schneider (2001),
Van Waerbeke & Mellier (2003), see also Schneider contribution to these proceedings).

The exploration of these weak gravitational distortions (the cosmic shear) over fields
of view as large as the CFHTLS-Wide has an enormous potential for cosmology. Past
experiences based on first generation cosmic shear surveys (see for example a review in
van Waerbeke contribution to this volume), have demonstrated they can constrain
the dark matter properties (σ8, Ωm and the shape of the dark matter power spectrum)
from a careful investigation of the ellipticity induced by weak gravitational shear on
distant galaxies. Second generation cosmic shear surveys, being more sensitive to the
cosmological parameters, will allow not only to ameliorate these constraints, but also to
take into account a broader range of cosmological parameters and consequentely to more
thoroughly investigate different cosmological models, like the inclusion of dark energy
evolution (Benabed & van Waerbeke (2003)) or of alternative primordial power spectra
(Ishak et al. (2004)).

The full scientific outcome of cosmic shear data will only be complete if all information
contained in the cosmic shear signal is used, including higher order statistics (Takada
& Jain (2004), see also Kilbinger, these proceedings) and 3-dimensional information
(Bacon et al. (2004), see also King, these proceedings) and if a joint analysis with other
data sets is done (Contaldi et al. (2003)).

The focus of this talk is on this last issue : our goal is to map the parameter space that
describes cosmological models in order to extract series of parameter combinations that
minimise intersections of CMB and cosmic shear degeneracy tracks. For the complete
details of our analysis refer to Tereno et al. (2004), of which this talk is an abridged
version.

2. Mapping the parameters’ space
In order to map the parameters’ space, we need essentially to define a cosmic shear

or CMB fiducial model, to put error bars on it and then assign a likelihood to each
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cosmological model in the parameters’ space with respect to these cosmic shear or CMB
data.

2.1. Fiducial model

We parameterize a cosmological model with a set of 13 parameters,
(ωb, ωc,Ωv, fν , h;σ8, ns, αs, r, nt; τ ;w; zs), whose fiducial values are shown in Table 1.

ωb = 0.022 ωc = 0.114 Ωv = 0.73 fν = 0 Ωk = 0 h = 0.71
ns = 0.93 αs = −0.04 r = 0 w = −1 τ = 0.17 σ8 = 0.9 zs = 0.8

Table 1. Fiducial cosmological model.

The primordial scalar power spectrum,

Pi(k) = As

(
k

k0

)ns (k)−1

, (2.1)

is allowed to have a scale dependent index, which is Taylor expanded around
k0 = 0.05hMpc−1: ns(k) = ns + 1/2αs ln(k/k0).

From the primordial power spectrum and for a given matter/energy budget, consist-
ing of baryons (ωb), cold dark matter (ωc), neutrinos (fν) and a cosmological constant
(Ωv ; w = −1), the liner matter power spectrum, Plin(k, z) = [D(+)

1 (z)]2 Plin(k), is com-
puted for an epoch z, using camb (Lewis et al. (2000)). The linear matter power spectrum
is then renormalized with σ8 and a non-linear power spectrum is evaluated from the linear
one using the halofit prescription of Smith et al. (2003).

The (dark) matter large scale distribution represented by this power spectrum is re-
sponsible for the cosmic shear on the source galaxies images, assuming other causes for
shear correlations, like intrinsic alignments, are irrelevant. The shear correlations are then
encoded in the power spectrum of the mass of the 2-dimensional projected gravitational
potential of the lenses: the power spectrum of the convergence κ. This is computed from
the contribution of all the lenses (the dark matter fluctuations) along the line of sight,
by integrating the power spectrum along the radial coordinate (w) between observer and
source, multiplied by a lensing efficiency factor which depends on the angular diameter
distances of the system source-lens-observer :
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9
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P

(
s

fK(w)
;w

)
. (2.2)

Notice the source galaxies are all at the same redshift zs(ws) and s is the angular scale,
k = s/fK(w)H0/c [h/Mpc].

One of the 2-point functions that is usually evaluated from shear measurements is the
variance of the shear in a top-hat filter of radius θ. This quantity relates to the power
spectrum of the convergence through,

〈γ2(θ)〉 =
2
π

∫ ∞

0

ds sPκ(s)
[
J1(s θ)

s θ

]2

. (2.3)

We evaluated Eq. (2.3) for the fiducial cosmological model, obtaining thus a fiducial
variance of the shear. This was done for 20 scale points, between 0.6′ and 120′. This
range allows to probe both the non-linear and the linear regimes, the transition being at
around 10′ or k = 0.3h/Mpc.
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2.2. Error bars

Having obtained a reference shear variance, we must assign error bars to those 20 points.
In order to do this we consider the estimator of the shear variance from observed, PSF cor-
rected, galaxies ellipticities and compute its variance-covariance matrix, following Schnei-
der et al. (2002). The result, valid for a Gaussian shear field, depends on the size of the
field, on the density of galaxies and on their intrinsic ellipticity dispersion, as well as
on the fiducial shear correlation functions. For these survey specifications we use the
predicted features of the CFHTLS-Wide Legacy Survey †, which are,
(A = 170 deg2 ; ng = 20 arcmin−2 ; σε = 0.4).

2.3. Likelihood evaluation

In order to map the parameters’ space, we need to evaluate the likelihood of a great
number of models with respect to the fiducial model and its covariance matrix. For each
one of those models, the corresponding shear variance 〈γ2〉i must be computed and its
likelihood is given by,

−2 ln Li =
(
〈γ2〉i − 〈γ2〉fid

)T
C−1

(
〈γ2〉i − 〈γ2〉fid

)
. (2.4)

The models where the likelihood is to be computed are not pre-determined on a grid,
but are Monte Carlo generated, using the Metropolis-Hastings algorithm (Christensen et
al. (2001)), which produces a chain of models. Following this method, a first likelihood
is evaluated for a randomly chosen model. Then, a second model is defined at a ran-
domly chosen distance vector from the first one. The method is optimized if there is an
approximative knowledge of the covariance matrix in the parameters’ space. In that case
the orientation of the distance vector may be chosen to follow an eigendirection of that
covariance matrix, and its size may be taken to be a function of the corresponding eigen-
value. The crucial step of the algorithm is to compare the likelihood of the two models.
If the likelihood of the second is greater than the likelihood of the first times a random
number between 0 and 1 (to allow for movement in the “uphill” direction), then the
second item on the chain of models will be the second model, i.e., the model is accepted
to be part of the chain. If, on the contrary, the second model do not pass the criterium,
then it is rejected and the next element of the chain is the first model. The iterative
repetition of this procedure produces a chain of models whose density, after convergence,
is a good estimator of the probability distribution function in the parameters’ space.

We produced 3 types of chains :
• Cosmic shear — Use the shear variance fiducial model as “data”. Parameters’

space explored in 7 dimensions (ωb, ωc, h, ns,Ωv, αs, σ8). Likelihood computed with the
CFHTLS-Wide type covariance matrix, no extra priors imposed.
• CMB — Use the WMAP 1 year data TT and TE power spectra and the CBI mosaic

odd binning TT. References to these data are Hinshaw et al. (2003), Kogut et al. (2003)
and Pearson et al. (2003). 7 parameters were allowed to vary (ωb, ωc, h, ns, αs, As, τ). In
the likelihood evaluation we made use of the WMAP likelihood code (Verde et al. (2003))
and imposed flatness.
• Cosmic shear + CMB — Use both sets of data. Parameters explored and priors used

are the same as in the CMB case. The chains were produced computing the likelihoods
with respect to both experiments.

† http://www.cfht.hawaii.edu/Science/CFHTLS/
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3. Results
We will now extract information, regarding the determination of the cosmological

parameters, from the obtained samples of the posterior PDF (the chains).

3.1. Cosmic shear

First of all, by computing the standard deviations of the chain models, we obtain the
approximative 1σ precision level that CFHTLS-Wide can attain. These are shown in
Table 2.

ωb ωc h ns Ωv αs σ8

1σ 0.020 0.047 0.129 0.176 0.155 0.073 0.104

Table 2. Prospective CFHTLS 1σ precisions on individual parameters.

The statistical structure of the cosmological parameter space may be further explored
by searching for degeneracies between parameters. For this we derive the 7-dimensional
eigenvectors of the parameters’ scaled covariance matrix (Cij/ < pi >< pj >), (shown
in Table 3).

pc 1σ Ωb Ωm h ns Ωv αs σ8

Y1 0.007 0.009 0.404 -0.040 -0.070 0.207 0.000 0.887
Y2 0.022 -0.082 0.167 0.388 0.889 -0.143 0.027 0.046
Y3 0.103 0.084 -0.490 -0.287 0.088 -0.714 0.068 0.384
Y4 0.193 0.124 -0.231 0.872 -0.357 0.141 0.003 0.148
Y5 0.302 0.175 -0.677 -0.031 0.246 0.634 0.124 0.176
Y6 0.811 -0.904 -0.235 0.041 -0.044 0.055 -0.332 0.102
Y7 1.936 0.350 -0.038 -0.025 0.080 0.007 -0.932 0.176

Table 3. Principal components of the statistical distribution of cosmological parameters as
probed by cosmic shear.

Consider, for example, the vector Y2. From Table 3 we can read its coordinates in the
base formed by the 7 cosmological parameters and also, in the second column, its size.
This size is the precision with which a new parameter Y2, defined as a linear combination
of the base parameters, can be determined. It follows Y2 is a quantity well determined by
cosmic shear and its main contributions come from h and ns. On the other hand, there is
another h, ns dependent quantity, Y4, which is worse determined. Notice the projections
of Y2 and Y4 on the (h, ns) plane are approximately mutually orthogonal. This shows the
existence of a degeneracy in the (h, ns) plane.

Table 3 shows there are 2 quantities to each cosmic shear is particularly sensitive, Y1

and Y2. By finding linear combinations of the logarithms of the parameters, we may write
the 2 quantities and their corresponding 1σ CFHTLS-wide determinations as :

σ8 Ω0.52
m = 0.467 ± 0.008 (3.1)

and

n0.6
s Ωm h = 0.187 ± 0.037. (3.2)

The first one is the well-known σ8 − Ωm “banana shaped” degeneracy and the second
one shows a correlation between primordial and current power spectrum slopes.
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3.2. Cosmic shear + CMB

We turn now to the chains that include CMB information. The parameters’ standard
deviations obtained with the joint chains are smaller by the factors shown in Table 4,
than the standard deviations obtained with the CMB chains.

ωb ωc h ns αs σ8 Ωm

gain 1.4 3.6 1.9 1.7 1.7 2.5 2.8

Table 4. Gain in parameters’ precisions when cosmic shear information is included.

The appreciable gain brought by the cosmic shear arises because there is orthogonality
between some of cosmic shear degeneracies and CMB degeneracies: both experiments
are sensitive to different combinations of the cosmological parameters. In particular, the
cosmic shear best constrained directions, Y1 and Y2, define contours that are orthogonal
to their CMB counterparts. This is illustrated in Fig. 1. Notice also the orthogonality
in the ns − αs plane, which shows cosmic shear may complement CMB information
for the measurement of an eventual primordial power spectrum scale dependence, even
though cosmic shear by itself is not particularly sensitive to that parameter (αs). This
complementarity comes essentially from the non-linear small scale information brought
by the cosmic shear. Since as ns tilts the spectrum and αs bends it, the response of
the spectrum to a change in these parameters will be detected in opposite ways by two
experiments that are mainly sensitive to the larger scales of the spectrum (the CMB) or
to the smaller scales of the spectrum (the cosmic shear).

Figure 1. Marginalized 2-dimensional 68% and 95% contours from the three samples. These
are the most relevant plots to illustrate the large gains on the parameters precisions.
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4. Conclusion
We studied the determination of cosmological parameters by a cosmic shear CFHTLS-

wide type of experiment and found the best constrained parameters to be σ8 Ω0.52
m and

n0.6
s Ωm h. We then compared 2-dimensional cosmic shear degeneracies with CMB ones

and found some orthogonal cases, namely, (σ8,Ωm), (ns, h) and (ns, αs). This led us to
predict a gain in the parameters’ precisions when both experiments are combined, of the
order 1.5–2.5 for several parameters, including αs, which shows second generation cosmic
shear surveys may probe non-standard cosmologies.

The exact factors of gain attained by the CFHTLS-wide are subject to changes de-
pending on how well systematics (which were not included in this study) are handled.
In particular, an efficient PSF correction and complete removal of systematics residuals
that show up as B-mode contamination is crucial.

Besides the control of the systematics, other assumptions were made in this study
that we which to point out. Firstly, we assumed all CFHTLS-wide survey area is usable,
whereas the masking process may reduce by about 20% the total sky coverage of deep
surveys. Secondly, we assumed that the source redshift distribution was perfectly known.
In reality, there is an extra source of error coming from the marginalization over the
real sources redshift distribution. The same happens with the marginalization over other
cosmological parameters not taken into account in this study, such as the equation of state
of dark energy or the neutrinos density. Finally, the precision of the non-linear mapping
used in our calculations into deep non-linear regime is another source of uncertainty.

The uncertainties arising from these 3 issues would degrade the CFHTLS-wide deter-
minations by a factor of 1.9 and the factors of gain of the joint analysis by a factor of
1.3 (for details see Tereno et al. (2004)).

But most importantly, these issues do not change the degeneracies found, thus the
cosmic shear potential to complement CMB remains unaltered.
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