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Abstract. The damping of standing slow mode oscillations in hot (T > 6 MK) coronal loops is
described in the linear limit. The effects of energy dissipation by thermal conduction, viscosity,
and radiative losses and gains are examined for both stratified and nonstratified loops. We
find that thermal conduction acts on the way of increasing the period of the oscillations over
the sound crossing time, whereas the decay times are mostly determined by viscous dissipation.
Thermal conduction alone results in slower damping of the density and velocity waves compared
to the observations. Only when viscosity is added do these waves damp out at the same rate
of the observed SUMER loop oscillations. In the linear limit, the periods and decay times are
barely affected by gravity.
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1. Introduction
Coronal loop oscillations may occur as a result of both standing and propagating waves.

In particular, far-ultraviolet observations with the aid of the SUMER spectrometer have
revealed strongly damped, large Doppler shift oscillations in hot (T > 6 MK) coronal
loops (Kliem et al. 2002; Wang et al. 2002a, 2002b, 2003a, Banerjee et al. 2007). Such
oscillations were interpreted in terms of standing slow waves (Ofman & Wang 2002;
Wang et al. 2003b, 2005) and have periods in the range of 8.6 to 32.3 minutes and decay
times between 3.1 and 42.3 minutes (Wang et al. 2005). Most recent studies of hot loop
oscillations have relied either on linear perturbation analyses or numerical simulations of
the one-dimensional (1D) acoustic wave. In particular, Ofman & Wang (2002) simulated
numerically the damping of standing slow waves for typical solar coronal conditions.
They found that thermal conduction is the dominant dissipation mechanism based on
the realization that only the conductive timescale is of the same order of the observed
decay times.

The influence of gravitational stratification on the decay of standing slow modes was
considered by Mendoza-Briceño, Erdélyi, & Sigalotti (2004). They found that the wave
periods remain almost unaffected by gravity, while the damping times are reduced by
∼ 10%–20% compared to the nonstratified loops because of enhanced viscous dissipation
induced by gravity. Based on linearized solutions to the Klein-Gordon wave equation,
Roberts (2006) showed that stratification introduces an effective loop length which is by
far larger than the observed lengths of SUMER hot loops, implying that in the linear
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limit the effects of stratification on the period of slow modes are small. Whereas all the
above results apply to isothermal loops, Taroyan et al. (2005) considered the additional
effect of temperature inhomogeneities along the loop on standing slow wave dissipation,
including the thermal conduction and optically thin radiative losses as the only sinks of
energy. Recently, Taroyan et al. (2007) investigated longitudinal loop oscillations with
predicted observables, like EUV line profiles, as response to a microflare.

In this paper, we reconsider the dissipation of standing slow MHD waves in isothermal,
hot (T > 6 MK) coronal loop models, including the effects of gravitational stratification,
thermal conduction, viscosity, heating, and optically thin radiation losses. The implica-
tions of each of these mechanisms on wave damping are examined by solving the linearized
1D coupled system of loop equations, using an approach similar in spirit to that presented
by De Moortel & Hood (2003, 2004).

2. Loop Models
Since the plasma dynamics in a coronal loop is dominated by the geometry of the

magnetic field, we assume that both plasma motion and heat conduction (due to electron
diffusion) inside the loop are essentially guided along the magnetic field lines. Hence, to
a good approximation, the loop can be represented by a 1D semicircular magnetic flux
tube of constant cross-sectional area with footpoints fixed in the chromosphere. With
these assumptions, the governing loop equations have the form of the 1D hydrodynamic
conservation laws. We consider the effects of solar gravity, heat conduction, viscosity, and
optically thin radiation. We consider two sets of loop model calculations. One set deals
with perfectly homogeneous loops, in which the initial density and pressure are constant,
while the other set corresponds to stratified loop models. In both cases, the temperature
is taken to be uniform along the loop.

For the present models we vary three parameters, namely the initial loop temperature
(6.3 � T0 � 10 MK), the loop length (50 � L � 400 Mm), and the initial velocity
amplitude (20 � v0 � 200 km s−1).

Following De Moortel & Hood (2003, 2004), the effects of compressive viscosity, heat
conduction, and radiative losses/gains can be quantified in terms of the dimensionless
parameters, namely the Reynolds number R, ε = η/(ρLcs) = 1/R, the thermal ratio
d = 1/γ[τs/τcond ], which is the ratio of the sound travel time and the thermal conduction
timescale, and the radiation ratio r = τs/τrad , which is the ratio of the sound travel time
and the radiation timescale.

The values of the above parameters and timescales for varying loop lengths and tem-
peratures are listed in Table 1 for the homogeneous loops. The same values also hold
for the stratified models, where the reference density (ρ0) and pressure (p0) now refer to
the footpoint values. Note that ε and d increase with the loop temperature and decrease
with the loop length, while the converse occurs for the radiation ratio r. We see that τs
and τcond are of the same order and become fairly comparable in long loops. Moreover,
τvisc ≈ 37.54τcond in all cases, implying that for typical conditions of the hot solar corona
the conductive timescale is much shorter than the viscous time. The radiation timescales
are not shown in Table 1 because they are by far much longer than the other times,
taking values from ∼ 1.8 × 104 minutes (for T = 6.3 MK) to about 7.4 × 104 minutes
(for T = 10 MK). Also, the conductive times are well within the range of observed de-
cay times of standing slow waves, suggesting that wave dissipation takes place over the
thermal conduction timescale.
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Table 1. Parameters and characteristic times as functions of the loop length (L) and tempera-
ture (T ). The dimensionless numbers ε, d, and r quantify the importance of viscosity, thermal
conduction, and radiation respectively, while τs is the sound crossing time, τvisc is the viscous
time, and τcond is the heat-conduction time

L ε d r τs τvisc τcond
(Mm) (min) (min) (min)

T = 6.3 MK
50 7.97(-2) 2.39 1.18(-4) 2.1847 20.56 0.55

100 3.98(-2) 1.20 2.37(-4) 4.3693 82.24 2.19
200 1.99(-2) 0.60 4.73(-4) 8.7386 328.96 8.76
300 1.33(-2) 0.40 7.10(-4) 13.1080 740.17 19.72
400 9.96(-3) 0.30 9.46(-4) 17.4773 1315.86 35.05

T = 8 MK
50 0.16 4.90 5.13(-5) 1.9387 8.91 0.24

100 8.16(-2) 2.45 1.03(-4) 3.8774 35.64 0.95
200 4.08(-2) 1.23 2.05(-4) 7.7548 142.57 3.80
300 2.72(-2) 0.82 3.08(-4) 11.6322 320.78 8.55
400 2.04(-2) 0.61 4.10(-4) 15.5096 570.28 15.19

T = 10 MK
50 0.32 9.57 2.35(-5) 1.7340 4.08 0.11

100 0.16 4.79 4.70(-5) 3.4680 16.32 0.43
200 7.97(-2) 2.39 9.39(-5) 6.9361 65.29 1.74
300 5.31(-2) 1.60 1.41(-4) 10.4041 146.90 3.91
400 3.98(-2) 1.20 1.88(-4) 13.8722 261.16 6.96

3. Linear Perturbation Analysis
The governing equations are linearized under the assumption that the unperturbed

state consists of a stationary (v0 = 0) plasma in equilibrium at uniform temperature T0 .
For a homogeneous loop, the unperturbed state is independent of position, while in the
stratified case the stationary loop is in hydrostatic equilibrium. The resulting set of linear
equations are solved by expressing the spatial dependence of the perturbed variables in
terms of a Fourier series expansion, where the expansion coefficients depend only on time
and denote the Fourier mode amplitudes. Decoupling of the spatial dependence from time
allows exact evaluation of the spatial derivatives and transforms the linearized equations
into a set of 6n ordinary differential equations for the time rate of change of the 6n
perturbation amplitudes, where n is an integer mode number. The time integration is
performed using a predictor-corrector solver so that the evolution is temporally second-
order accurate.

3.1. Linear Wave Dissipation

We first consider the effects of wave dissipation on homogeneous loops and then extend
the analysis to the case of stratified loops.

3.1.1. Homogeneous Loops

Since the effects of radiation losses and gains on wave dissipation are negligible, we
shall focus our discussion in terms of the dimensionless ratios ε and d only.

Viscosity is found to result in a reduction of the wave frequency and hence in an
increase of the period. In order to see this in quantitative terms, let us consider the
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Figure 1. Wave period (P : left panels) and decay time (τd : right panels) as functions of length
L in oscillating homogeneous loops for varying temperatures and choices of the parameters ε
and d. In the middle and lower-right panels, the short-dashed curve (for ε = 0 and d > 0) falls
outside the boxes and so it is not shown.

velocity wave equation when only compressive viscosity is present

∂2v′

∂t̃2
− ∂2v′

∂s̃2 =
4
3
ε

∂

∂t̃

(
∂2v′

∂s̃2

)
. (3.1)

Setting v′ = ṽ0 exp[i(ωt̃−ks̃+π/2)] and replacing this solution into Equation (3.1) yields
the dispersion relation ω2 − i 4

3 εk2ω − k2 = 0, which can be solved to give the complex
frequency

ω = 2π

(
1 − 16π2ε2

9

)1/2

+ i
8π2ε

3
, (3.2)

where we have set k = 2π and chosen the positive root. If ε = 0, the imaginary part
vanishes and ω = 2π. Since Im(ω) > 0, compressive viscosity causes the amplitude of
the velocity perturbation to decrease at the rate exp(−8π2εt̃/3). The actual frequency
of oscillation is given by Re(ω) so that the period [P = 2π/Re(ω)] of the second spatial
harmonic is modified according to

P = τs

(
1 − 16π2ε2

9

)−1/2

. (3.3)

https://doi.org/10.1017/S1743921308015007 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921308015007


Standing slow acoustic waves 307

The quantity 1 − 16π2ε2/9 is positive for all values of ε quoted in Table 1, with the
exception of ε ≈ 0.32, which corresponds to a loop model with T = 10 MK and L = 50
Mm. In this case, 1 − 16π2ε2/9 < 0 and the frequency becomes imaginary. This leads
to an enhanced damping rate, which is consistent with the fact that for this model the
oscillations undergo aperiodic critical damping. It is clear from Equation (3.3) that, in
general, viscous dissipation results in an increase of the wave period. This effect is larger
in short loops (L = 50 Mm), where the period increases from about 6% when T = 6.3
MK to ∼ 37% when T = 8 MK. For comparison, in long loops (L = 400 Mm) the
increase is from less than 0.1% (T = 6.3 MK) to ∼ 1.4% (T = 10 MK). The decay
time (defined as the timescale over which the wave amplitude decreases by a factor of
e) is given by τd = 3τs/(8π2ε) and takes values in the range between ≈ 0.45 and ≈ 66.7
minutes. Wave damping slows down at low temperatures and large lengths, suggesting
that viscous dissipation is more effective in short and hot loops. We note that these
damping times are much shorter than the viscous timescales (see Table 1) and compare
fairly well with the observed decay times of standing slow waves.

When thermal conduction is added the wave period and the decay time also increase.
The numerical solution of the set of dimesionless linearized equations for ε = 0 and
d > 0 indicates that thermal conduction increases the period and decay time by a much
larger amount than does compressive viscosity. The left panels of Figure 1 depict the
dependence of the first oscillation period on loop length for different temperatures. Each
plot displays four curves, corresponding to model sequences with all sinks of energy
switched on (ε > 0, d > 0; solid lines), with either only compressive viscosity (ε > 0,
d = 0; long-dashed lines) or thermal conduction (ε = 0, d > 0; short-dashed lines)
allowed, and with dissipation turned off (ε = 0, d = 0; dotted lines). In general, the wave
period increases with increasing loop length and decreases with increasing temperature.
In particular, for T = 6.3 MK the period rises almost linearly from ≈ 2.69 minutes
(L = 50 Mm) to ≈ 21.34 minutes (L = 400 Mm), when all sinks of energy are switched
on (solid line). At higher temperatures, however, the linear behavior changes slope at
L = 100 Mm (T = 8 MK) and at L = 200 Mm (T = 10 MK) because of the overwhelming
viscous effects in short loops, which induce similar changes of slope at such lengths (long-
dashed lines). Compared to the undamped waves (dotted lines), thermal conduction
(short-dashed lines) increases the periods by about 30% regardless of the loop length and
temperature. The closeness between the short-dashed and the solid lines indicates that
the periods of damped standing slow waves are mostly affected by thermal conduction.

The decay time of the velocity perturbation for models with d > 0, defined by

τd =
P

ln
(

v0
v1

) , (3.4)

is plotted in the right panels of Figure 1. In these plots, the solid lines describe the
dependence of the decay time on loop length when both ε > 0 and d > 0, while the
long-dashed and short-dashed curves correspond to the cases when either only viscous
or thermal conductive effects are included, respectively. In the above relation, P denotes
the first period of oscillation, while v0 and v1 are, respectively, the velocity amplitudes
at the beginning and after completion of the first period. In the presence of viscous and
conductive sources of dissipation (i.e., ε > 0 and d > 0), the damping time increases with
the loop length and decreases with the temperature. In the T = 6.3 MK loops, the linear
analysis predicts that the decay time rises from ≈ 1.02 minutes when L = 50 Mm to
≈ 27.62 minutes when L = 400 Mm. Since both ε and d vary as ∼ T 2 , wave dissipation
is more rapid at higher temperatures. However, viscous dissipation (long-dashed lines)
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Figure 2. Temporal evolution of the density, velocity, and temperature oscillations at s̃ = 0.35
in a loop of length L = 400 Mm. The initial velocity wave amplitude is 86.6 km s−1 . The
solid, long-dashed, and short-dashed curves apply to loop temperatures of 6.3, 8, and 10 MK,
respectively. The left panels depict the evolution when both ε > 0 and d > 0, while the central
and right panels display the wave evolution when d = 0 (no thermal conduction) and ε = 0 (no
viscosity), respectively.

produces a much rapid decay of the velocity wave than does thermal conduction (short-
dashed lines). In particular, the decay times obtained from thermal conduction alone are
between ≈ 44 – 49 minutes when T = 6.3 MK and ≈ 139 – 141 minutes when T = 10
MK. In contrast, the decay times obtained from compressive viscosity are between ≈ 1.04
– 67 minutes for T = 6.3 MK and ≈ 0.83 – 13.3 minutes for T = 10 MK. Moreover, the
closeness between the solid and long-dashed curves at small lengths for T = 6.3 MK and,
in general, at all lengths for T � 8 MK indicates that, unlike the period, the damping time
is shaped by the effects of compressive viscosity. Only at low temperatures, of the order
of 6.3 MK or less, do the concurrent effects of thermal conduction affect the damping
time in long (L > 300 Mm) loops. In passing, we note that in the linear limit both the
period and the decay time are independent of the size of the initial velocity perturbation
amplitude v0 .

3.1.2. Stratified Loops
In a recent paper, Roberts (2006) demonstrated that slow wave behavior can be ex-

tracted from the MHD equations and separated from the fast magnetoacoustic wave.
For the special case of a uniform and vertical magnetic field embedded in a vertically
stratified medium, where g = −g�z, he found that the slow mode is entirely described
by the Klein-Gordon equation. Application of his analysis to standing slow waves in hot
SUMER loops predicts a reduction of the wave period due to stratification by the amount
[1 + (L/Lc)2 ]1/2 for the principal n = 1 mode, where Lc ∼ 2πH0 is an effective length
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Figure 3. Temporal evolution of the density, velocity, and temperature waves at s̃ = 0.35 in a
loop of length L = 400 Mm for ε > 0, d > 0, and an initial wave-velocity amplitude of 86.6 km
s−1 . The wave evolution in a stratified loop is compared to that in a nonstratified loop for varying
temperatures. The solid (T = 6.3 MK), long-dashed (T = 8 MK), and short-dashed (T = 10
MK) curves apply to nonstratified loops, while the dotted (T = 6.3 MK), dot-long–dashed
(T = 8 MK), and dot-short–dashed (T = 10 MK) curves apply to stratified loops.

introduced by stratification and H0 = c2
s /(γg�). In general, for hot coronal loops L/Lc

is a small factor, implying that the effects of gravitational stratification on wave period
are also small.

When only gravity is taking into account the eigenfrequencies are given by

ωn = nπ

[
1 +

1
(2nπH̃0)2

]1/2

, (3.5)

If we identify 2πH̃0 with the dimensionless effective loop length Lc/L and set n =
1, we recover the results found by Roberts (2006). Since for our hot loop parameters
5 � Lc/L � 64, gravitational stratification produces only a small increase of the wave
frequency and therefore a small reduction of the wave period. In particular, for the second
spatial harmonic (n = 2), the modified period is

P = τs

[
1 +

1
(4πH̃0)2

]−1/2

. (3.6)

For n = 2 the dimensionless effective length is twice as large, implying that the magnitude
of (L/Lc)2 is one-fourth smaller than for n = 1.

When viscosity and gravity is considered together for n = 2 the modified period due
to the effects of stratification and viscous dissipation is

P = τs

{
1 +

1
(4πH̃0)2

− (4πε)2

9

[
1 − 1

2(2πH̃0)2

]2
}−1/2

, (3.7)

while the decay time becomes

τd =
3τs

ε
(
8π2 − 1

H̃2
0

) . (3.8)

In particular, Equation (3.7) predicts periods that are ∼ 0.01% (L = 50 Mm) to ∼ 0.5%
(L = 400 Mm) smaller compared to Equation (3.3) when T = 6.3 MK. For hotter
loops the reduction becomes even smaller. Conversely, stratification increases the decay
times due to compressive viscosity by negligible amounts in the short loops, while for the
L = 400 Mm loops the decay times are ∼ 0.8% (T = 10 MK) to ∼ 2% (T = 6.3 MK)
longer compared to the nonstratified case.
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The effects of thermal conduction are next analyzed. As for the homogeneous case,
thermal conduction is seen to increase the period and decay time by a much larger
amount compared to Equations (3.7) and (3.8). Essentially, the same trends depicted
in Figure 1 are reproduced for the stratified loops. Perhaps the most significant point
here is that under gravity, thermal conduction leads to an additional increase of both the
period and decay time compared to the homogeneous loops. To explain the increase of
the wave period let us consider the velocity wave equation when also thermal conduction
is switched on

∂2v′

∂t̃2
− ∂2v′

∂s̃2 = − 1
H̃

[
∂v′

∂s̃
− v′

γH̃
dH̃
ds̃

]
+

4
3
ε

∂

∂t̃

(
∂2v′

∂s̃2

)
+ d

(
1
H̃

∂2T ′

∂s̃2 − ∂3T ′

∂s̃3

)
.(3.9)

We see that the term (d/H̃)(∂2T ′/∂s̃2) couples the gravitational field to the effects of
thermal conduction. Note that it vanishes in the absence of gravity (H̃ → ∞). This term
is in fact responsible for the additional increase of wave period due to stratification when
thermal conduction is included.

The effects of stratification on wave damping are shown in Figure 3 (at s̃ = 0.35)
for different temperatures in a 400 Mm loop model with v0 = 86.6 km s−1 . At low
temperatures, of the order of 6.3 MK, the density and velocity perturbations exhibit
slightly larger amplitudes and longer periods (dotted lines) compared to the homogeneous
case (solid lines). The difference between these waves become much smaller at higher
temperatures. At T = 10 MK, they become almost undistinguishable on the scale of the
plot. On the other hand, the temperature wave is essentially unaffected by stratification.
Compared to the homogeneous case, stratification results in an increment of the decay
time of ≈ 0.4% (for L = 50 Mm) to ≈ 13.4% (for L = 400 Mm) in the cool (T = 6.3 MK)
loops. In the hotter (T � 8 MK) loops, however, the oscillations damp out faster because
of the larger effects of thermal conduction and compressive viscosity. In particular, for
T = 10 MK the above increments range from ≈ 0.05% (L = 50 Mm) to ≈ 2.4% (L = 400
Mm). While the present analysis applies to the linear limit, we recall that nonlinear
effects may modify some of the above results.

4. Conclusions
In this work we have found that the major sources of wave damping are the combined

effect of thermal conduction and compressive viscosity.
Thermal conduction is mostly responsible for damping of the temperature wave, while

compressive viscosity is the primary source of damping of the density and velocity os-
cillations. We also find that thermal conduction is necessary to reproduce the observed
periods, while compressive viscosity determines the observed decay times. This main
result contrasts with the conclusions of previous analyses that pointed to thermal con-
duction as the primary mechanism for wave damping based on the realization that the
viscous timescale is an order of magnitude longer than both the conductive time and
the observed decay times. On the other hand, the effects of gravitational stratification
are negligible, in agreement with a recent linear analysis by Roberts (2006). We also
find that under stratification, thermal conduction leads to an additional increase of both
the period and decay time compared to the homogeneous loops because of an inherent
coupling between the gravitational field and the effects of thermal conduction.
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