SOME INEQUALITIES INVOLVING (r!t)v-
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In a recent investigation of a conjecture on an upper bound for permanents
of (0, 1)-matrices (2) we obtained some inequalities involving the function
(rYY* which are of interest in themselves. Probably the most interesting of
them, and certainly the hardest to prove, is the inequality

ro(r+ 1)) —(r—=Dd@®)/d(r—=D>1, v, )

where ¢(r) = (r!)'/". In the present paper we prove (1) and other inequalities
involving the function ¢(r).

Theorem 1. If r is a positive integer and ¢(r) = (r)!/", then

L<@(r+ D/p(ry<(r+ D)/r.

Proof. The lower bound is obtained immediately:
PUr+1)[¢(r) = ((r+ 1) [r)/TFD>1,
Since log (1+1/r)>1/r—1/2r? and log (,/(2rr))> 1, it follows that
rlog (1+1/r)+r~" log (\/2nr))~1>0.

Therefore
r~!log (\/@2nr)(r/e)")>1log (r)—rlog (1 +1/r)
= (r+1)log (r)—rlog (r+1),
ie., WQ@rr)(rle)Y >t (r+1).
But r1>./Qnr)(rle)
and thus DM >t e+ 1),
e+ DD <@k 1),
rr+1(r+ l)!/(r!)(r+ 1)/r<(r+ 1)r+ 1’
_ rr i@+ D/gE) < (r+ 1),
ie., .
O(r+D/o(r)<(r+D)r.
Corollary 1. The functions ¢(r), L and ri(r'-l—) are strictly increasing.
o(r) o(r)
Corollary 2.
r<r ——————-¢(r+1) <r+1.
#(r)
We now proceed to prove inequality (1). The method is to prove that the
function
1/(x+1)
h(x)= x _(_r(_xi%))—_
T(x+ 1)Y=

is strictly concave. The inequality (1) will follow.
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Lemma 1. If x>1, then
O<log (T(x)—{(x—Plog (x)—x+1 log 2n)}<1/x<]1.
Proof. We have, by a classical result due to Binet (1) (page 21),
log (I'(x)) = (x —%) log (x) —x+ % log (27)+ 4(x)
where

8(x) = 'ro {3- 7 (e =) e " e
o

It suffices to prove that, for >0,
O<{3—t" 4= <] e ¥)
We first show that f{(t) = te'+t+2—2e' is positive for t>0. Now,
f'(t)=tef—e'+1
and f"(t) = te’>0for t>0. Thereforef’(f)>f'(0) = 0 and thus {£)>f(0) = 0
for t>0. Hence, for t>0,
G-t"t+E' =)t = f()))2t3(e’ - 1)>0.
In order to prove the upper bound of (2) note that for £>0
20 +t+2<t*+383 4212+ 142,
= (2 —t+2)(1+t+11%),
<(Q2t* —t+2)e".
Therefore
tle' —1) 42t -2(e* —1)<2t3(e’ — 1),
G+ =)= <.
Lemma 2. If x>1, then
I ()
x TI(x)
Proof. We have, by another result due to Binet (1) (page 18),
I'(x)/T(x) = log (x)+¢(x) for x>1,

ie.,
1
—log(x)< - — <O.
2x

where
&(x) = fm {tt' =1 —e") " }e "4t
0

To prove the lemma we show that for positive ¢
—l<tr (= ) g =4 s 3)
Clearly for >0 we have (t+1)e”*<1. Therefore
t—1+e '<t—te”*
and thus
(l—e D) 1=t =(t—14+e" H(t—te" ) <.
To prove the upper bound of (3) note that for £>0

=D+ +2)e '>0;
therefore

2t—-2+2 '>t—te”!

(I—e )1 =t7t =(t—14+e Yt—te”) ' >4.

and so
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Let ¥(x) = (log (T(x))) = I'"(x)/T'(x). Then, since
log (T(x+1)) = log (x)+10g (T(X)), «vvvrvreererrvererenens @)
we have Y+ = 1/x+P(xX).  covvniniiiinie, )
Lemma 3. [If x>1, then
P> 1/x.

Proof. It is known (1) (page 22) that
V)= Y (xtm 2

=0
Now, > (x+n)’2>f (x+1)"2dt = 1/x.
n=0 0
1/(x+1)
Let g(x) = %— and A(x) = xg(x). We prove now that for

x26 the function A(x) is concave. The result undoubtedly holds also for
smaller values of x but the assumption x=6 simplifies our proof and the
result is still sufficiently strong to establish our main theorems.
Theorem 2. The function h(x) is strictly concave for x=6.
Proof. We prove that for x=>6 the second derivative of A(x) is negative.
A straightforward, though lengthy, computation using (4) and (5) yields
, 1 Y(x+1) 2x+1 log (x+1)
x) = g(x - log (T(x+1))— ———>%,
9'x) = o ){(x+1)2 x(x+1)  x*(x+1)? g (TGx+1) (x+1)?
h'(x) = g(x)+xg'(x),
1
— g1+ 2x+12 lﬂ(x+1)+ X i X og(x-l;l)}.
x(x+1) x+1 (x+1 (x+1)
Differentiating again and simplifying we obtain
h"(x) = gO){F(x)(1 +xF(x))+ H(x)}

log (T(x+1))—

where
. 2x+1 _Y(x+1) 1 log(x+1)
F) T x¥(x+1)? log (T(x+1)) x(x+1) +(x+1)2 (x+1)?
and
3x+1 4x*4+3x+1
H(x) = — T
() = o VO D= S T los (TG 1)

_Yx+1)  2x—1 + x—1
x+1 (x+1)°%  (x+1)
It remains to prove that F(x)+ x(F(x))*+ H(x) is negative. We find suitable
upper bounds for F(x)+ H(x) and for x(F(x))>. A simple computation gives
(x+ D*{Fx)+ H(x)} = —2log (I'(x+ 1)+ 2(x+ DY(x+1)—(x—2)
—2log (x+ 1) —(x+1)>¢'(x+1),
= =2{(x+P log (x+1)—(x+1)+4 log 2n)+(x+ 1)}
+2(x+ Ditog (x+ D +e(x+1)}
—(x—=2)=2log (x+ D) —(x+1)*y'(x+1),
= —log (x+ 1)+ x+4—log 2n) —26(x+1)
+2(x+ De(x+ D—(x+ D2y’ (x+ 1),

- log (x+1).
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where & and ¢ are the functions defined in the proofs of Lemmas 1 and 2.
Applying Lemmas 1, 2 and 3 we obtain
(x+ 1*{F(x) + H(x)} < —log (x+ 1)+ x+4 ~log 2n) —1 —(x +1).

Therefore

F(x)+ H(x)<(2 —log (2m) —log (x+ 1))/(x+1)>. .ervrrrennaen. 6)
We now show that for x=6 the function F(x) takes negative values and find
a lower bound for it. This gives us an upper bound for x(F(x))2.
xA(x+1PFx) = x4+ Dx+1) log (T(x+ 1)) —x(x+ 1)*yY(x+1)

—x3(x+ 1D log (x+ 1)+ x*(x+1).
Therefore

xA(x+12F(x) = x4+ D{(x+4) log (x+1) —(x+1)+14 log (2n) + 8(x+ 1)}
‘ —x(x+1){log (x+ 1)+ &(x+ 1)} —x? log (x + 1)+ x?,
= (x+3) log (x+1)~x2 -3 —log 2n))x + 4 log (2n)
—14+2x+1)d(x+ 1) —x(x + 1e(x +1).
Now, by Lemmas 1 and 2,

dx+1D<1/(x+1) and e(x+1)> —1/(x+1),
and thus
xX(x+1)?* F(x)<(x+3) log (x + 1) —x* —(3 —log (2n))x +  log (27)
2x+1
x+

-1+ +Xx,

= (x+3) log (x+1) —x? —(2 —log (2m)x +4 log (2n) + —i -
\ x
<(x+1) log (x+1)~-x2+2,
which is negative for x= 3.

In order to obtain a lower bound for F(x) we use again the two lemmas
which state that >0 and £<0 and obtain

xA(x+1)2F(x)>(x+3) log (x+ 1) —x2 —(3 —log (2n))x + 1 log (2n) —1,
> —x?—2x—1,
the last inequality holding since (x+1%) log (x+ 1) is positive while
(3 -log 2n))x —2x
is negative. We have therefore
Fx)> —1/x?
(F()*<1fx* for x23. coovrreeiiieeriiiieeeeeenans )

It remains to prove that F(x)+ H(x)+x(F(x))? is negative for x=6. Now,
we have, from (6) and (7),

F(x)+ H(x)+ x(F(x))* < (2 —log (2n) —log (x + 1))/(x+ 1)> + 1/x3,
= {x’(3—log 2n) —log (x + 1))+ 3x> + 3x+ 1}/x3(x+1)?,

and thus
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and for x= 6
x*(3—log (2n) —log (x + 1)) +3x2 +3x+ 1 £ x3(3 —log (14n)) +3x* +3x+ 1< 0.
Hence h"(x)<O0 for x=6 and h(x) is strictly concave.
Theorem 3. If r is an integer greater than 1 and ¢(m) = (m)*'™ then
POOED 1y 0O i, @®
o(r) P(r—1)

Proof. The function A(x) of Theorem 2 is concave for x=6. Therefore
h(x+1)+h(x —1)<2h(x) for all x=7. In particular, for an integer r=7,

h(r+ 1)+ h(r - 1) <2h(r),
h(r+1)—h(r)<h(r) ~h(r-1),

and so

le.,

anBCED S+ bt o 90
P(r+1) o(r) #(r) o(r—1)
In other words, the function

6y = r BEED () _80)

é(r) é(r—1)
is strictly decreasing for r=7. But clearly
lim G(r) =1
and therefore e
G(N>1

for all r>7.
For r<7 we obtain (8) by direct computation. The approximate values
of G(2), G(3), G(4), G(5), G(6) are 1-156, 1-084, 1-055, 1-036, 1-028, respectively.
Theorem 4. If ry, ..., r, are integers greater than 1, c<r,, t =1, ..., ¢,
and §(r,) = (r D", then
§ L] _#@
=1 ¢(r,—1) =1 d(r,—1)
with equality if and only if c = r{ = ... =r,.
Proof. We prove that
< 1 S oo(r;—1)
fry, .., r) = 4
R e L
is a strictly decreasing function of each r;, i.e. that
R=f(ry, ..y Focy, P+ DIfry, oo e, r)<1.

For simplicity, let r. be denoted by r. Then

_ (¢(n)* K+1/¢(r)
dr—Do(r+1) K+1/d(r—1)
where K = CZ 1/¢(r,—1).
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Since, by Corollary 1 to Theorem 1, 1/¢(r) is a strictly decreasing function,
the second fraction in (10) is a proper fraction with a positive numerator and
a positive denominator. Thus, for a fixed r, R increases with K. Now, by
the same corollary,

c—1 < r—1

K =
oc—1) "~ $(r—1)

IIA

since r,=c. Therefore
(r=1/¢(r—D+1/$(r) 2
R= D (¢(r))7,
- %0 1))
" e+ 1){”(’ g ¢(r—1>} !
o9 rér+1)
ré(r+1) ¢(r) °
=1.

It follows immediately that f(r,, ..., r.) achieves its maximum value when
ry, .--, r. have their minimum permissible value, i.e., for ¢=2, if and only if

by Theorem 3,

ry =..=r,=c Then
Sy oy P = — (¢(c_1))c SN CChnd)) M Gl LY
VT ge-D\ ¢ (40 ot
and (9) is an equality. If ¢ = 1, then (9) becomes
1 _ 40

$(r—1) = ¢(r—1)

‘which is always strict.
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