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ABSTRACT. Predicting calving in glacier models is challenging, as observa- 

tions of diverse calving styles appear to contradict a universal calving law. 

Here, we generalize and apply the analytical Horizontal Force-Balance (HFB) 

fracture model from ice shelves to land- and marine-terminating glaciers. We 

consider different combinations of “crack configurations” including surface 

crevasses with or without meltwater above saltwater- or meltwater-filled basal 

crevasses. Our generalized crevasse-depth model analytically reveals that, in 

the absence of meltwater, the calving criterion depends on two dimension- 

less variables: buttressing B and dimensionless water level λ. Using a calv- 

ing regime diagram, we quantitatively demonstrate that glaciers are generally 

more prone to calving with reduced buttressing B and lower water level λ. For 

a specified set of B, λ and crack configuration, an analytical calving law can 

be derived. For example, the calving law for an ice shelf, land-, or marine- 

terminating glacier with a dry surface crevasse above a saltwater basal crevasse 

reduces to a state with no buttressing (B “ 0). With climate warming, glaciers 

are expected to become more vulnerable to calving due to meltwater-driven 

surface and basal crevassing. Our findings provide a framework to understand 

diverse calving styles. 
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Fig. 1. Schematic of the three cases considered in this paper: crevasses on an ice shelf, a marine-terminating 

glacier, and a land-terminating glacier. Surface crevasses are considered in all three cases. Basal crevasse depth 

depends on whether it is filled with ocean saltwater or subglacial meltwater. Calving occurs when the surface crack 

and basal crack depths (ds, db) fully occupy ice’s thickness, ds ` db “ H which gives various calving laws derived in 

this paper. 

 

1 INTRODUCTION 

 
Recent reviews of ice calving and stability (Alley and others, 2023; Bassis and others, 2024) elucidate 

how glacial retreat can transition across different calving regimes, e.g., from ice shelves to deep water 

glaciers to shallow water glaciers (Fig. 1). Assessing the impact of the marine ice cliff instability (MICI) 

(Pollard and others, 2015; DeConto and Pollard, 2016; Bassis and Walker, 2012) on sea level rise via ice 

sheet models is challenging due to the incomplete parametrization of calving rates (Morlighem and others, 

2024) that are poorly constrained by observations. The recent Intergovernmental Panel on Climate Change 

(IPCC) assessment shows that MICI contributes to a highly uncertain high-end scenario, which can result 

in about one meter of global sea-level rise by 2100 (Pollard and others, 2015; DeConto and Pollard, 2016; 

Fox-Kemper and others, 2021). 

Despite its importance, some of the most fundamental questions surrounding ice crevassing remain 

unanswered, including a predictive calving criterion. Various calving laws have been developed to model 

either the retreat rate (e.g., the von Mises law (Morlighem and others, 2016), eigencalving law (Levermann 

and others, 2012)) or position (e.g., the crevasse-depth law (Nye, 1955; Benn and others, 2007a; Nick and 

others, 2010)) of the calving front. Despite its wide use, it has been shown (Buck, 2023; Coffey and others, 

2024) that in the Zero-Stress approximation (Nye, 1955; Benn and others, 2007a; Nick and others, 2010) 

the depth-integrated force at the crevassed and non-crevassed location are unbalanced.  This has led to 
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a modified crevasse-depth model for constant-thickness ice shelves that satisfies Horizontal Force Balance 

(HFB) (Buck, 2023). Importantly, HFB analytically predicts that the tensile stress required for calving 

is only half of that in the Zero-Stress approximation, which may substantially underestimate a glacier’s 

vulnerability to calving. HFB provides reasonable agreement with observed ice shelf rift locations and yields 

a calving threshold that is insensitive to the vertical temperature profile (Coffey and others, 2024). Since 

analytical theories serve as foundational cases for developing physical understanding and benchmarking 

numerical methods that can simulate more complicated phenomena, it is crucial to develop physically self- 

consistent fracture models that can apply across diverse glacial environments, from ice shelves (IS) and 

marine-terminating glaciers (MTG) to land-terminating glaciers (LTG). This is the goal of the paper. 

In this paper, we generalize the HFB approach of Buck (2023) and Coffey and others (2024) from 

constant-thickness ice shelves to land- and marine-terminating glaciers (Fig. 1). We consider six “crack 

configurations” involving different combinations of dry or meltwater surface and saltwater- or meltwater- 

filled basal crevasses (Fig. 3). Section 2 lays out the general formulation of HFB and the driving and 

resisting mechanisms for calving. Applying the general HFB formulation gives the analytical crack depths 

and calving criteria predictions for IS, MTG, and LTG in section 2.1, 2.2, and 2.3, respectively. We 

hypothesize that the variety of observed calving styles may arise from different dominant balances in our 

force-balance equation, between sources of buttressing and drivers of calving, as discussed in section 3. 

 

2 A FORCE-BALANCE FRAMEWORK (HFB) TO PREDICT CREVASSE 

DEPTHS 

 

We begin this section by outlining the general steps to use the Horizontal Force-Balance approach (HFB) 

to determine crevasse depths, depicted in Fig. 2. This approach is then applied to a variety of cases, from 

ice shelves (section 2.1, Fig. 5) to land- (section 2.2, Fig. 7) and marine-terminating glaciers (section 2.3, 

Fig. 2). 

Assuming no acceleration, all of the forces F acting on a body must balance such that their sum is zero, 

ΣF “ 0. This paper focuses on using the ΣF “ 0 constraint to determine the crack depths and calving 

criteria. 

The force balance ΣF “ 0 can be expressed with a volume integral of the Stokes equation within a 

control volume V , 
¡ 

∇ ̈  σ ̀  ρig
‰

 dV “ 0. (1) 
“ 

https://doi.org/10.1017/jog.2025.10068 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2025.10068


Coffey and Lai: Horizontal force-balance calving laws 4 
 

 
 

Table 1. Mathematical Symbols Glossary. 

 

Symbol Definition Value Units 

b pxq Ice Base Elevation (relative to the sea level) rs ´ H, 0s m 

B Dimensionless Buttressing Number Variable 1 

B˚ Calving Threshold Variable 1 

BF Crack Formation Threshold Variable 1 

D̃ Dimensionless Total Crack Depth d̃ ` d̃ 
s b 1 

dHF B , dZS Crack Depth: HFB or Zero-Stress Variable m 

db Basal Crack Depth r0, H ´ dss m 

ds Surface Crack Depth r0, H ´ dbs m 

d̃  , h̃  , z̃ 
s,b w h Dimensionless Crack Depths, Meltwater Depth, Head Height ds,b{H pxcq , hw {Hpxcq, zh{Hpxcq 1 

g, ́ gẑ Gravitational Acceleration Vector ´9.8ẑ m s´2 

H pxq Ice Thickness Variable m 

HM Ice Mélange Thickness r0, Hs m 

hcut Vertical Length of Undercut/Buoyant Foot r0, ́ b pxtqs m 

hw Surface Meltwater Depth r0, dss m 

I Identity Tensor diagp1, 1, 1q 1 

l Ice Ligament Length r0, H ´ ds ´ dbs m 

L Ice Length xt ´ xc m 

λ Dimensionless Water Level ´ρw b{ pρiHq 1 

n Outwards-Pointing Unit Normal Vector Vector of length 1 1 

∇ Differential Operator x̂Bx ̀  ŷBy ̀  ẑBz m´1 

p Pressure, i.e. the Isotropic Component of σ -tr
`
σ

˘ 
{3 Pa 

pl Lithostatic  Pressure ρig ps pxq ́  zq Pa 

R Resistive Stress Tensor o ̀  plI Pa 

ρi, ρm, ρw Ice, Meltwater, Saltwater Density 917, 1000, 1028 kg m´3 

s pxq Ice Surface Elevation (relative to the sea level) r0, H ̀  bs m 

σ Cauchy Stress Tensor Variable Pa 

τ Deviatoric Stress Tensor o ̀  pI Pa 

θ Angle of Undercut/Buoyant Foot 
“
" ́  π , ! π 

‰
 

2 2 
Radians 

x, y, z Down Glacier, Across Glacier, Vertical Coordinates m 

xc, xt, yR, yL Crack Location, Ice Front, Right & Left Boundary Variable m 

∆y, ∆yM Glacier Width, Mélange Width Variable m 

zh Subglacial Water Head Height r0, Hs m 
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In (1), ∇ is the vector differential operator, σ is the ice shelf Cauchy stress tensor, ρi is the ice density, 

and g is the gravitational acceleration vector. Applying Gauss’s theorem to (1), we obtain 

 

£ ¡ 

o ¨ ndS ` ρigdV “ 0. (2) 
 
 

The horizontal component (perpendicular to gravity) of (2) per unit width (into the page) can be written 

in terms of the surface forces or traction t “ σ ̈  n (e.g., Malvern, 1969; Dahlen and Tromp, 1998; Rudnicki, 

2014), 

 
£ 

px̂q : 

£ 

x̂ ̈  σ ̈  ndS “ x̂ ̈  tdS “ ΣFx “ 0. (3) 

 

This equation is the horizontal force balance per unit width. All that we need to know is the traction along 

the boundaries of our domain, or the sum of the forces acting on our body. This idea of integrating the 

momentum equation over a control volume is commonly used in many problems, such as with the Betti 

reciprocal relation (e.g., Dahlen and Tromp, 1998) and the Boundary Element Method (e.g., Crouch, 1976; 

Crouch and Starfield, 1983; Zarrinderakht and others, 2022). We use the glaciology convention (e.g., Van 

Der Veen and Whillans, 1989; Cuffey and Paterson, 2010) and define the resistive stress R such that 

 
σ “ ́ plI ` R, (4) 

 

or written in terms of the j, k components of the stress tensor, σjk “ ́ δjk pl ` Rjk , where pl ” ρigps ́  zq 

is the lithostatic pressure (scalar), δjk is the Kronecker delta function, s is the surface elevation, and the 

vertical coordiante z is zero at the sea level, increasing upwards. 

We now consider two states: unfractured and fractured states (e.g., before and after crevassing). In the 

unfractured state, we may write (3) for a control volume delineated by the yellow dashed lines in Fig. 2 as 

ż yL 
ż s  

x̂̈ σ0 px “ xcq¨ndzdy “ 

 
Surface 
ĳ  

x̂¨σ0¨ndS` 

 
Base 
ĳ  

x̂¨σ0¨ndS` 

 
Front 
ĳ  

x̂¨σ0¨ndS` 

 
Left 
ĳ  

x̂¨σ0¨ndS` 

 
Right 
ĳ  

x̂¨σ0¨ndS, 
yR b 

(5) 

where the superscript 0 denote the stress without crack formation. In the fractured state at x “ xc, the 
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σ0 

σ0 

 

stresses at the cracked location differ from the unfractured state and (3) becomes 

 

ż yL 
ż s  

x̂¨σ px “ xcq¨ndzdy “ 

Surface 
ĳ  

x̂¨σ¨ndS` 

Base 
ĳ  

x̂¨σ¨ndS` 

Front 
ĳ  

x̂¨σ¨ndS` 

Left 
ĳ  

x̂¨σ¨ndS` 

Right 
ĳ  

x̂¨σ¨ndS.  (6) 
yR b 

 

Since the terms on the right-hand side of both equations are associated with horizontal forces acting on the 

control volume boundaries excluding the crevassing plane, which do not change between the fractured and 

the unfractured states, the right-hand sides of both equations are the same. Thus, with negligible vertical 

shear stress or approximately vertical cracks at x “ xc, the horizontal force balance for a control volume 

can be reduced to a local equation 

 

ż yL 
ż s 

xx px “ xcq dzdy “ 

ż yL 
ż s 

σxx px “ xcq dzdy. (7) 
yR b yR b 

 

For convenience, the stresses are width-averaged in the rest of the paper. The local horizontal force-balance 
 

equation thus becomes  

ż s 

xx px “ xcq dz “ 
b 

 

ż s 

σxx px “ xcq dz. (8) 
b 

 

The horizontal force balances in (3) and (8) applied to glacier crevassing have been extensively discussed 

in Buck (2023) and Coffey and others (2024). In this paper, we will use the local force balance (8) for 

each case considered in Fig. 1, from ice shelves through marine-terminating glaciers to land-terminating 

glaciers. 

Fig. 2 shows an example of the forces acting on a control volume aligned with tensile, vertical crevasses 

on a marine-terminating glacier that can be described with (3). The driver of calving (red arrows) in our 

static framework is the hydrostatic water pressure in surface and basal crevasses. The forces that inhibit 

calving (green arrows), via reducing the tensile glaciological stresses around the crevasses and introducing 

buttressing, are basal drag (Vallot and others, 2018), lateral drag (Dupont and Alley, 2005), sea ice or ice 

mélange force (Amundson and others, 2010; Meng and others, 2025), the ice ligament force beneath the 

surface crevasse (Buck, 2023; Coffey and others, 2024), and the hydrostatic force from the ocean imposed 

at the calving front. 

It will be shown below that the outcome of the crack depths and calving criteria will depend on the 
 

net buttressing  

B px, tq “ BMlange ptq ̀  BDrags pxq . (9) 
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Fig. 2. Schematic of the forces that drive calving (red) or inhibit calving (green), with force balance conceptualized 

atop the cartoon. See Table 1 for descriptions of symbols. Throughout this paper, saltwater and meltwater are shown 

in blue and light green, respectively. 
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R
B“0 

   

xx 

xx 

ρ 

s 

2 

 

BMlange and BDrags result from mélange and lateral or basal drag forces, respectively, which contribute 

positively to buttressing. In practice, it could be challenging to quantify each term in (9) due to the poorly 

known functional forms of these buttressing forces (see section 2.4). However, buttressing can be calculated 

if the glacial stress states are known. Ice shelf buttressing can be quantified using a similar line integral 

to (3) (Sergienko, 2025). For our modeling convenience we define the local dimensionless buttressing Bpxq 

(see Appendix D for more details) as 
0 

B ” 1 ́  
Rxx

 

xx 

, (10) 

where R
0

 

 

is the depth- and width-averaged resistive stress (defined in (4)) in the unfractured state (Buck 

and Lai, 2021) and R
B“0 

is the depth- and width-averaged resistive force of a glacier with no buttressing 

(BMlange “ BDrags “ 0), defined as 

 

R
B“0 1 

ˆ
  ρi     2

˙
 

xx ” 
2 

1 ́  λ 
w 

ρigH, (11) 

 

where λ ” ́  
ρw  b

 is the dimensionless water level relative to flotation ρiH{ρw , and b is the bed elevation 
ρi H 

relative to the sea level. For ice shelves λ “ 1, and the buttressing definition in (10) converges to that of 

Gudmundsson (2013) at the grounding line. Each symbol in (11) is defined in Table 1 and Fig. 2. Thus, 

the horizontal force per unit width at x “ xc in the unfractured state can be written in terms of B as 

ż  

σ0
 0 1 2 B“0 1 2 

xx px “ xcq dz ” HRxx ́  ρigH 
b “ p1 ́  Bq HRxx ´ 

2 
ρigH 

. (12) 

We will find after solving for crack depths that there is a range of B where cracks can exist, from crack 

formation BF to calving B˚, such that crack-depth solutions are valid within these bounds B˚ ď B ď BF . 

To solve for only the surface crack depth, the force balance (8) is sufficient, since it yields an explicit 

relationship between crack depth, buttressing B, and dimensionless water level λ, e.g. (57). To solve for 

dual crack depths (surface cracks atop basal cracks), both the force balance (8) and crevasse-depth relation 

(13), i.e. the explicit dependence of the basal crack depth db on the surface crack depth ds, are needed; 

otherwise, the system is underdetermined. In this paper, we will solve for both surface and dual cracks, as 

we generalize the previous HFB model (Buck, 2023; Coffey and others, 2024) to six “crack configurations” 

illustrated in Fig. 3, each with their relevant setting, i.e., ice shelves (IS), marine-terminating (MTG), and 

land-terminating glaciers (LTG). As discussed in Buck (2023); Coffey and others (2024), two conditions 
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Fig. 3. The six tensile crack configurations considered in this paper. The boxes in the top left corners of each 

case denote which of the three scenariosice shelves (IS), marine-terminating glaciers (MTG), or land-terminating 

glaciers (LTG)is being considered. Throughout this paper, saltwater and meltwater are shown in blue and light 

green, respectively. The parameters used to generate these crack depths are B “ 0.1, λ “ 0.75, h̃w “ 0.1, z̃h “ 0.7. 
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are used to determine the surface and basal crack-depth relation: first, stress is continuous at crack tips 

(Buck and Lai, 2021); second, the ice has zero material strength. In the case of a surface crevasse and a 

basal crevasse with constant ice and saltwater densities ρi and ρw , this yields a crack depth relation of the 

form 

d̃ “ f 
`
d̃ , ρ , ρ , ...

˘ 
(13) 

b s i w 

 

where the dimensionless basal and surface crack depths d̃ , d̃ are defined as the basal and surface crevasse 
b s 

depths normalized by ice thickness, i.e. ˜ 
b,s ” db,s {H.  An example of (13) is (17).  Solving (8) and (13) 

analytically yields simple expressions for tensile crevasse-induced calving laws that can be used to predict 

calving in numerical ice sheet models. In summary, our recipe for solving for crack depths in this paper is 

to solve 

1. (8) for horizontal force balance (HFB), and 

 
2. (13), if there are dual crevasses, which is obtained in this paper with the assumptions of zero material 

strength (Nye, 1955; Jezek, 1984; Benn and others, 2007a; Nick and others, 2010; Buck, 2023; Coffey 

and others, 2024) and continuity of stress at crack tips (Buck and Lai, 2021). Finite ice strength can be 

added, but is not within the scope of this paper. 

In the Zero-Stress approximation, the horizontal force balance (8) is not satisfied (Buck, 2023; Coffey 

and others, 2024). (13) alone is used to solve for crack depths with a background stress state defined 

in the absence of fractures (Nye, 1955; Benn and others, 2007a). Fig. 4 demonstrates the issue through 

an example with a prescribed buttressing B “ 1 ́  x{L: the Zero-Stress approximation underpredicts the 

crevasse depths, resulting in the calving stress threshold under the Zero-Stress approximation being twice 

as large as that predicted by the horizontal force-balance framework (HFB; (8)) (Buck, 2023; Coffey and 

others, 2024), for a dry surface crevasse and a saltwater basal crevasse. In this paper, we derive the HFB- 

crack depths of six plausible crack configurations in Fig. 3 for ice shelves through marine-terminating 

glaciers to land-terminating glaciers. 

 

2.1 Ice shelf 

 
2.1.1 Dry surface crevasse atop a saltwater basal crevasse (DS+SB) 

 
The simplest dual crack solution exists for a freely floating ice shelf, and was originally derived in Buck 

(2023). Here, we restate the derivation for completeness, and see in Appendix D that the solution with 

d 
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Fig. 4. Comparing the crack depths predicted using the Horizontal Force Balance (HFB) and the Zero-Stress 

approximation for dry surface crevasses and saltwater basal crevasses (DS+SB) given an idealized dimensionless 

buttressing number of B “ 1 ´ x{L.  In HFB, crack depths are deeper than that predicted from the Zero-Stress 

approximation. Importantly, all HFB cases have calving occur at the ice front where B “ 0, while the Zero-Stress 

approximation does not predict calving. According to HFB, instead of a critical stress criteria, zero buttressing 

B “ 0 is the common calving criteria among the ice-shelf, marine-terminating and land-terminating glacier cases 

(for a dry surface crevasse and potentially saltwater-filled basal crevasse in the absence of basal melting and material 

strength). The crack-depth envelopes are plotted as smooth curves, while the jaggedness is plotted to convey that 

these envelopes represent crack tip depth. Crack spacing is arbitrary in these plots. 

 

 

 
Fig. 5. Equivalent version of Fig. 2 for an ice shelf (IS) with meltwater in a surface crevasse and saltwater in a 

basal crevasse. 
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’’ 

’ 
% 

 

variable thickness and isostasy is the same.  We begin by determining the stress state of the unbroken 

ice ligament, l, defined in Fig.  5.  In an unfractured state, the stress in the unbroken ligament is σxx “ 

´ρigps ́  zq ̀  Rxx. In a fractured state, the longitudinal stress at the crevassed location x “ xc satisfying 

the conditions of continuity of stress at the crack tips and zero material strength can be written in a 

piecewise expression (see derivation in Buck and Lai (2021); Buck (2023); Coffey and others (2024)) 

 

 
σxx pxc, zq “ 

$ 
’’ 0, s ́  ds ď z ď s (surface crevasse) 
& 

´ρig ps ´ zq ` cRxx,   b ` db ď z ď s ´ ds (unbroken ice ligament) 
’ 
’’ 

ρw gz, b ď z ď b ̀  db (basal crevasse) 

 
 
 

(14) 

 
Here, cRxxpxc, zq parameterizes the sum of the crevasse-induced compressive stress in the unbroken 

ice ligament and Rxx “ 2τxx ` τyy is the background resistive stress in the unfractured state (see Table 

1 for definitions of resistive and deviatoric stresses). The constant c allows the stress in the unbroken ice 

ligament to update between the fractured and unfractured states, and will be determined shortly. Note 

that the Zero-Stress approximation corresponds to c “ 1, i.e. not allowing the unbroken ice ligament 

stress state to differ between the unfractured and fractured ice states. For further discussion of cRxx and 

the inconsistency of the Zero-Stress approximation, see section 2.3 and Appendix E of Coffey and others 

(2024). The continuity of stress between the crevasse and the unbroken ligament in (14) gives 
 
 

´ρig ps ´ ps ´ dsqq ` cRxx “ 0 at z pxcq “ s pxcq ́  ds (15) 

at the surface crack tip and 

´ρig ps ́  pb ̀  dbqq ̀  cRxx “ ρw g pb ̀  dbq at z pxcq “ b pxcq ̀  db (16) 

 

at the basal crack tip. The pair of (15) and (16) removes the unknown c and gives the following crack-depth 

relation (13), written in dimensionless form as 

 

d̃ “ d̃ 
ρi 

, (17) 
b s 

ρw ´ ρi 

 

where d̃ ” d{H is the dimensionless crevasse depth and H is the ice thickness at x “ xc in the unfractured 

state (Fig.  5).  Note that this crevasse-depth relation (17) assumes isothermal ice.  A vertically varying 
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2 

1 ́  

ρ 

ρi 

s b 

“ s 

0 

 

temperature profile would modify the crevasse relation as shown in Coffey and others (2024). 

For an ice shelf, we write the horizontal force balance of (8) in its dimensionless form, normalized by 
 

 

HRxx, as ´ 
`
1 ́  d̃ ´ d̃ ` d̃ 

´
d̃ ´ 2 ρi 

¯
 

s b

˘ 
b 

ρw 
b 

  ρi ρw   

ρi 

ρw 

 ρi {ρw   

“ ´B ´ ρi 
. (18) 

ρw 
 

As in (8), the forces on the left-hand side and right-hand side represent the horizontal forces at x “ xc in 

the fractured and unfractured ice states, respectively. Analytically solving (17) with (18), the crack-depth 

solutions for an ice shelf that is floating under Archimedean buoyancy everywhere are 

 
Surface crack depth: 

ˆ  ˙ ́  
˜ 1 ́  

w 

? ¯ 

1 ́  B 

 
, (19) 

 
 

 
Basal crack depth: ˜ ρi 

b “ 
ρw

 

´
1 ´ 

?
B

¯ 
. (20) 

 

We plot these crack depths in Fig. 6a,b. The total fraction of ice that is fractured, D̃ , can be written 

in terms of B, 

D̃ ” d̃ ` d̃ 
? 

“ 1 ´ B. (21) 

 

These algebraic equations provide several insights. First, calving of a varying thickness ice shelf occurs 

(D̃ “ 1) if there is no buttressing, setting the lower bound on buttressing B˚ as 

 
B˚ “ 0, (22) 

 

which is the same calving criterion as that for constant thickness ice shelves as reported in (Buck, 2023; 

Coffey and others, 2024). 

Second, the upper bound of buttressing BF for there to be no fractures (fractures of zero depth) and 

thus no tension at the ice surface is 

BF “ 1. (23) 

Thus, for isostatic ice shelves with varying thicknesses, the nondimensional buttressing (9) must be 

0 ď B ď 1 to permit the formation of dry surface crevasses and saltwater-filled basal crevasses. The 

calving criterion is B “ 0, as shown by the crack depths in Figs. 6a and 4. Throughout this paper, the 

lower bound of buttressing B˚ occurs when crack(s) penetrate the entire ice thickness (D̃ “ 1), and thus 

1 ́  

d 

d 

https://doi.org/10.1017/jog.2025.10068 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2025.10068


Coffey and Lai: Horizontal force-balance calving laws 14 
 

’
’ 

’
’ 

’ 

’
’ 

 

is our calving criteria. In general, there will be bounds on the amount of buttressing from full thickness 

fracture to no fracture, B˚ ď B ď BF , summarized along with crack-depth formulas in Tables 2, 3, and 4. 

According to our HFB model, unbuttressed ice shelves with B pxq “ 0, i.e. ice tongues, are vulnerable 

to calving as the predicted surface and basal crevasses meet at the sea level everywhere (Fig. 6a). The 

existence of un-calved ice tongues can be attributable to non-zero material strength (e.g.  Wells-Moran 

and others (2025)), non-zero buttressing such as sea ice (Gomez-Fell and others, 2022; Christie and others, 

2022), and a positive mass balance (Bassis and Ma, 2015; Lawrence and others, 2023). This version of 

HFB does not consider more complicated 3D effects such as basal melt channels and their associated ice 

shelf flexure (Indrigo and others, 2021) or suture zones (Khazendar and others, 2011; Jansen and others, 

2013; McGrath and others, 2014; Kulessa and others, 2014). 

In the following sections, we apply the same procedure to obtain crevasse depths and calving criteria 

for various crack configurations. 

 
2.1.2 Meltwater-containing surface crevasse atop a saltwater basal crevasse (MS+SB) 

In warmer regions, meltwater on the ice shelf surface can enter into surface crevasses, and has been im- 

plicated in the breakup of ice shelves. Here we extend the HFB framework to consider surface crevasse 

deepening via hydrofracture (Scambos and others, 2009); the effects of surface loading of a lake on the ice 

shelf surface as in MacAyeal and Sergienko (2013); Banwell and others (2013) are left for future research. 

The first difference between a meltwater-containing surface crevasse from the previous dry surface 

crevasse model is the crack-depth relation of (17), since this must now depend on the meltwater depth hw 

in the surface crevasse. The stress profile at xc in the fractured state also differs from (14) due to meltwater 

in the surface crevasse, 
 

 
 

σxx pxc, zq “ 

$ 
’’ 0, s ́  ds ` hw ď z ď s (air in surface crevasse) 
’ 
’& ´ρmg ps ́  ds ` hw ´ zq ,   s ́  ds ď z ď s ́  ds ` hw (meltwater in surface crevasse) 

’’ ́ ρig ps ́  zq ̀  cRxx, b ̀  db ď z ď s ́  ds (unbroken ice ligament) 
’% ρw gz, b ď z ď b ̀  db (basal crevasse) 

 
At the surface crevasse tip z “ s ́  ds, we have 

(24) 

 
 

´ρmg ps ́  ds ̀  hw ́  ps ́  dsqq “ ́ ρig ps ́  ps ́  dsqq ̀  cRxx, (25) 
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Fig. 6. Ice tongues do not form with horizontal force balance unless there is a non-zero material strength, positive 

mass balance, or non-zero buttressing. We demonstrate the case of buttressing with the HFB solutions of (19) and 

(20) with zero buttressing in panel a and small buttressing in panel b. The ice thickness profile is the analytical 

solution of Van der Veen (1986). Crack spacing is arbitrary in these plots. Panel c shows the EPSG:3031 projection 

of the Drygalski Ice Tongue, Scott Coast, East Antarctica from Sentinel-2 on 7 March 2020 with Highlight Optimized 

Natural Color (European Space Agency (ESA), 2024). Long, bright and dark shadow surface features perpendicular 

to flow may represent surface depressions atop basal crevasses (Luckman and others, 2012). 
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ρ  
h ρ 

1 ́  

h 

d 

m ´ i  m  w ̃  
ρ 

d 

m ´ i  m  w ̃  
ρ 

ρ 

m ´ i  m  w ̃  
ρ 

˙ 

ρ 

i 

i 

i 

i 

 

where ρm is the density of meltwater. Similarly, at the basal crevasse tip z “ b ̀  db, we have that 

ρw g pb ̀  dbq “ ́ ρig ps ́  pb ̀  dbqq ̀  cRxx. (26) 

Combining (25) and (26) while noting that s “ 
´
1 ́  

ρi 

¯ 
H and b “ ́  

ρi H for a freely floating ice shelf, 

we determine the crack-depth relation 

ρw ρw 

 

   
ˆ 

ρw ˜ ˜    
˜ ρm ̃  
s “ w ` 

i 
´ 1   db, for 0 ď hw 

i 

ρi 
ď , (27) 

m 

 

where h̃w ” hw {H and its upper bound that permits a dual crack solution will be explained in (37). Note 

that when h̃w “ 0, (17) and (27) are the same. 

Next, the force balance in (18) must change to account for the both the hydrostatic meltwater pressure 

in the surface crevasse and the subsequent change in the stress in the unbroken ligament, resulting in 

ρm ̃ 2 
`
 ˜ ˜ 

˘2 ρm ̃   `
 ˜ ˜ 

˘
 ˜ ρw 

´ 
˜  ρi  

¯
 

´ ρi 
hw ´ 1 ́  ds ´ db ´ 2 ρi 

hw 1 ́  ds ´ db ` db ρi
 db ´ 2 ρw

 ρi{ρw 

ρi 

ρw 

 

In the limiting case of h̃w “ 0, (18) and (28) would be identical. 

Solving (27) and (28), we find that 

“ ´B ´ ρi 
. (28) 

ρw 

 

 
Surface crack depth: 

 
˜ ρm ̃  “ 

ˆ 
ρi

 
` 1 ́  

˜  ¸ 
ρ ρ  ρ  ρ 1 ́  B ` h2 

 
for 0 ď h̃ ď  

ρi 
, 

s 
ρi 

w 
ρw

 ρw ´ ρi 
2 w

 w 
ρm

 

(29) 
 

 
 

Basal crack depth: 

 

˜ ρi “ 

˜  ¸ 
ρ ρ  ρ  ρ 1 ́  B ` h2 

 
for 0 ď h̃ 

 
ρi ď . (30) 

b 
ρw

 ρw ´ ρi 
2 w

 w 
ρm

 

 

We now construct bounds for buttressing B˚ ď B ď BF as before. The minimum stress or maximum 

buttressing to permit basal crack formation is 

 

BF “ 1 ́  
ρm ´ ρi ρmρw 

h̃2 for 0 ď h̃ ρi ď . (31) 
ρw ´ ρi 

2 w
 w 

ρm
 

 

Summing (29) and (30) gives 

 
D̃ “ 

ρm 
h̃ 
 
` 1 ́  

   d 
ρ ρ ρ  ρ 

B ` h2 , (32) 

ρi 
w ρw ´ ρi 

2 w
 

d 

1 ́  

d 

˙ 

d 
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ρ 

´ h  ´ s ρi 
s 

b 

1 ́  

ρ 
˜ 

ρ 
1 

h 

s 

h 

w 

w 

   d 

˜ 
w ρ 

˜ 

 

thus calving or D̃ “ 1 occurs when 

 
ρw ́  ρm ρm 

h̃2  ρi   

B˚ “ 
ρw ´ ρi   ρi 

w for 0 ď h̃w ď 
m 

. (33) 

 

Comparing (33) with (22), we see that adding meltwater allows calving to occur in buttressed regions of 

the ice shelf. Comparing (31) with (33), we see that BF decreases with h̃2 , whereas B˚ increases with h̃2 . 
w w 

This buttressing range B˚ ď B ď BF permits the dual crack configuration to still obey the force balance 

constraint. Continuously adding surface meltwater h̃w will either cause calving or provide enough pressure 

to close the basal crevasse. In the latter case, BF ď B˚, and a transition to a new crack configuration, i.e. 

a meltwater-containing surface crevasse without a basal crevasse (MS), must occur. By adding meltwater 

to highly buttressed ice shelf regions, calving is reached by a meltwater-containing surface crevasse alone. 

 
2.1.3 Meltwater-containing surface crevasse without a basal crevasse (MS) 

 
As in the previous section, the stress balance at the surface crevasse tip (25) is identical, but there is no 

basal crevasse and thus no need for (26). The force-balance equation 

ρm ̃ 2 
ρi     w 

`
1 ́  d̃ 

˘2
 ´ 2 ρm h̃w 

`
1 ́  d̃ 

˘
 
 

ρi{ρw 

ρi 

ρw 

 

differs from (28) in that the basal crevasse does not exist d̃ 

“ ´B ́   ρi 

ρw 

 

“ 0. The analytical solution to (34) is 

(34) 

 

ˆ  ˙    ˆ 
ρ

 
˙ 

˜   ˜ 

Surface crack depth: 
ρm 

s “ 1 ` hw ´ 
i 

ρi 

B 1 ́  
w 

ρi 

` 
ρw

 

ρm 

` 
ρi

 

m 
´ 2 for 

ρi
 

i m 
ď hw ď 1. 

(35) 

Calving occurs when d̃ “ 1, and we may substitute this into (35) to solve for the calving threshold, 
 

 
B˚ “ 

 ρi   

´ ρw 
` 

1 

ρm ˜2 
ρi  w 
ρi 

 
for 

ρi 

ρ 
ď hw ď 1. (36) 

´ 
ρw 

m 

 

Calving is possible at higher levels of buttressing due to larger amounts of meltwater h̃w . To determine 

the transition from dual crevasses to a meltwater-containing surface crevasse without a basal crevasse (MS), 

we must set (31) and (33) equal to solve for meltwater depth h̃T
 at the limit of B˚ “ BF .  This gives 

the buttressing BT  and water depth h̃T
 at the transition from calving by dual crevasses to calving by a 

1 ́  

d 
ρ 
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w 

w 

 
 

 
 

Fig. 7. Equivalent version of Fig. 2 for a land-terminating glacier (LTG) with meltwater in crevasses. The ocean 

force and floating ice mélange are removed, and subsequently ice front shape effects do not alter the force balance 

due to the assumed traction-free boundary condition with air. 

 
meltwater-containing surface crevasse. 

 

BT “ 

ρw 

ρm 
´

 ρw 

1 
, and h̃T “ 

ρi 
. (37) 

ρi   
´ 1 ρm 

 

Thus, in HFB, the meltwater-containing surface crevasse without a basal crevasse (MS) case on an 

ice shelf exists for BT  ď B˚ ď B, defined in (37) and (36).  For calving to occur, the lowest amount of 

meltwater in this configuration is h̃T
 “ ρi{ρm « 0.917, showing that more than 90% of the ice thickness 

must be filled with meltwater in a surface crevasse to cause calving from a meltwater-containing surface 

crevasse without a basal crevasse (MS) on an ice shelf. This is consistent with the previously reported 

results using Linear Elastic Fracture Mechanics (LEFM) (Lai and others, 2020). 

 

2.2 Land-terminating glacier 

 
Land-terminating glaciers are defined here in the absence of water at the ice front (Figs. 1 and 7). As such, 

no saltwater basal crevasses can form. Note that in reality, land-terminating glaciers (LTG) often terminate 
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b s 

s 

 

in a toe or snout instead of an idealized vertical cliff as in Fig. 7. Additionally, basal crevasses on land- 

terminating glaciers forced by basal meltwater is a hypothetical scenario and may be challenging to observe. 

However, the derivation of these hypothetical cases in this subsection offers a useful theoretical comparison 

with marine-terminating glaciers (MTG), which we explore in the next subsection. Specifically, assuming a 

flat bed and constant thickness, the land-terminating glacier is equivalent to the marine-terminating glacier 

with λ “ 0, and (11) becomes 

R
B“0 1 

xx pλ “ 0q “ 
2 

ρigH. (38) 

Distinct from the previous ice shelf cases, the scenarios considered for land-terminating glaciers are dry 

surface crevasses (DS), meltwater-containing surface crevasses (MS), and a combination of either of those 

surface crevasses with a meltwater basal crevasse (DS+MB/MS+MB). We now elaborate each case. 

 
2.2.1 Dry surface crevasse without a basal crevasse (DS) 

 
The case of a dry tensile surface crevasse on a land-terminating glacier represents a simple starting point 

for considering stability to fracture. Since we do not have a basal crevasse, there is no relation between 

crack depths (13). Instead of having two equations, (13) and (8), with two unknowns, d̃ and d̃ given B, 

we have one equation (8) with one unknown d̃ given B. 
 

As before, we use continuity of stress at the surface crevasse tip given the zero-strength assumption to 

solve for the stress state in the unbroken ice. At the surface crack tip x “ xc, z pxcq “ s pxcq ́  ds, the stress 

balance is 

´ρig ps ́  ps ́  dsqq ̀  cRxx “ 0. (39) 

 
Solving for the constant c gives the stress profile in the ice 

σxx px “ xc, z ď s ´ dsq “ ´pl ` cRxx “ ´ρig ps ´ ds ´ zq . (40) 

Then we may write the force balance (8) in dimensional form as 

 
ρi g 2 B“0 ρigH2 

´ 
2  

pH ´ dsq 
“ p1 ́  Bq HRxx ´ 

2 
. (41) 
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w 

? 
s 

s 

 

(41) gives the nondimensional surface crevasse depth, 
 

 
Surface crack depth: ˜ “ 1 ´ B. (42) 

 
 

Thus, for the surface crack to form,  
BF “ 1, (43) 

 

and for calving, the buttressing is  
B˚ “ 0. (44) 

 

This equation shows that for a land-terminating glacier with zero material strength, a dry surface 

crevasse will reach the base of the glacier in the absence of any buttressing, e.g., no basal or lateral drag, 

B “ B˚ “ 0 (shown in purple in Fig.  4 and in Fig.  9i).  For there to be no cracks, i.e. ˜ “ 0, the 

buttressing must be B “ BF “ 1. These B˚, BF results are the same as the dual crack configuration for 

the ice shelves in (21). 

 
2.2.2 Meltwater-containing surface crevasse without a basal crevasse (MS) 

 
The addition of meltwater in a surface crevasse changes both the stress in the unbroken ice ligament (40) 

and adds a water pressure term to the force balance in (41). To satisfy continuity of stress at the crack 

tip, the analogous equation to the dry surface crevasse case (39) is 

 
´ρig ps ́  ps ́  dsqq ̀  cRxx “ ́ ρmghw . (45) 

 

Thus, the stress in the ice below the surface crevasse, analogous to (40), is 
 

 
σxx px “ xc, zq “ ́ ρig ps ́  ds ´ zq ́  ρmghw . (46) 

 

Similarly, the force-balance equation analogous to (41) now has two new terms from the water pressure 

and updated stress in the unbroken ligament, 

 

ρi g 2 ρmgh2 B“0 ρigH2 

´ 
2  

pH ´ dsq 
´ ρmghw pH ́  dsq ́  

2 
“ p1 ́  Bq HRxx ´ 

2 
. (47) 

d 

d 
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s 

ρ 
˜ ρ 

ρ 
1 

h 

s 

s 

d 

˜ 
w 

ρ 

ρ 

 

This quadratic equation can be simplified and solved for the dimensionless crack depth d̃ , 
 

      
ˆ 

ρ 
˙ 

˜ ˜
 

Surface crack depth: 
ρm ρm 

s “ 1 ̀  hw ´ B ̀  
i i 

m 
´ 2 for 0 ď hw 

i 

ď 1. (48) 

 

In the absence of meltwater or h̃w “ 0, this equation converges to the dry surface crevasse case (41). 

We now discuss the range of B˚ ď B ď BF that permits this crack-depth solution. 

First, the smallest crack depth in (48) is d̃ “ h̃ w . Using this equality, one can solve for the maximum 

buttressing that permits a meltwater hydrofracture, 

 ˆ 
ρm 

˙ 
˜ ˜ ˜ 

BF “ 1 ̀  ´ 1   hw 

`
2 ´ hw 

˘ 
for 0 ď hw ď 1. (49) 

i 

 

When h̃w “ 0 this equation converges to the dry surface crevasse case. However, when there is meltwater 

h̃w ą 0, the buttressing upper bound is larger, indicating that hydrofracture is less stable than dry fracture. 

Second, the case of calving is determined by setting d̃ “ 1 in (48), 

 
ρm ̃ 2 

B˚ “ hw for 0 ď h̃w  ď 1. (50) 
i 

 

Unlike the dry surface crevasse case, calving due to a meltwater surface crevasse can now occur in 

buttressed regions B  ą 0.   Ice becomes less stable with a larger density ratio ρm{ρi  and with more 

meltwater h̃w ” hw {H. 

 
2.2.3 Surface crevasse atop a meltwater basal crevasse (DS+MB/MS+MB) 

As seen in the previous section, the solution for the dry surface crevasse on a land-terminating glacier is a 

limiting case of the meltwater-containing surface crevasse when there is no meltwater, or h̃w “ 0. As such, 

we now derive the dual solution for a surface crevasse, dry or with meltwater, and a basal crevasse filled 

with subglacial meltwater. 

The stress in the unbroken ice ligament has the same form as (46). However, since we have two crevasses, 

we now seek a crack-depth relation as outlined in (13). Continuity of stress, as applied in (39) and (45) at 

the surface crevasse tip, is applied at the basal crack tip and gives the crack-depth relation 

 

d̃ “ 1 ́  d̃ ´ 
ρm `

z̃ ´ h̃ ´ d̃ 
˘ 

, (51) 

s b 
ρi 

h w b 

d 
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h2 d 

ρ 
˜ ρ ρ h h 

ρ h h 

b 

s b 

h 

˜ 

b 

ρ 

 

where z̃h ” zh{H and zh is the piezometric head height, i.e., the height to which the water would rise 

relative to the ice bed z “ b ă 0 in a borehole. Note that in dimensional form, the hydrostatic water 

pressure in the basal crevasse is set to be ´ρmg pb ̀  zh ́  zq. 

Next, we specify the horizontal force balance of (8). Relative to (47), there is an additional force due to 

the water pressure in the basal crevasse, and an adjustment to the ice pressure forces at x “ xc because the 

ligament l is now smaller with dual cracks (see Fig. 7). Written in a nondimensional form, the horizontal 

force-balance equation becomes 

 

´ 
`
1 ́  d̃ ´ d̃ 2 ρm 

´ 2 h 

1 ́  d̃ ´ d̃ ρm ̃  ρm ̃  
´ ´ 

2z̃ ´ d̃ 
“ ´B. (52) 

s b

˘
 

w 

` 
s 

ρi 

˘ 
b 

ρi 
w b 

` 
h b

˘
 

ρi 

 

With the crack-depth relation (51) and horizontal force balance (52), we analytically solve for crack- 
 

depth solutions,  
dˆ  ˙ „  ˆ 

 
ˆ 

ρm ́  ρi 
˙ 
˜ 

˙ȷ 

Surface crack depth: 
ρm 

s “ 1 ̀  hw 
i 

´ z̃h ´ 
ρi ρm 

1 ́  B ´ 
m i 

z̃2 ´ 2 

ρi 
w 

(53) 

for 0 ď h̃w ď z̃h, 
 

 

 

  d „  ˆ ˆ 
ρm ́  ρi 

˙ 
˜ 

˙ȷ 

Basal crack depth: ˜ “ z̃h 
ρi 

´ 
ρm

 

ρm 
B ´ 

ρm 

ρm ´ ρi  i 

z̃2 ´ 2 

ρi 
w 

for 0 ď h̃w ď z̃h.  (54) 

 

We next seek the buttressing range that permits crack formation, B˚ ď B ď BF .  Unlike the case of 

MS without a basal crevasse (49), the smallest crack depth in this dual crack solution occurs when there 

is no basal crevasse, d̃ “ 0. Plugging this in to (54) gives 
 

  ˆ 
ρ  

 ρm ́  ρi 
˙

 
BF “ 

ρm
 

m 
z̃2 ´ h̃2 for 0 ď h̃ ď z̃ . (55) 

ρi ρi   
h

 ρi 
w w h 

 

The calving criterion can be determined from (53) and (54) with D̃ ” d̃ ` d̃ “ 1, 

 

B˚ “ z̃2 for 0 ď h̃w ď z̃h. (56) 
i 

 

Interestingly, the calving threshold for a meltwater-containing surface crevasse over a meltwater basal 

crevasse does not depend on the amount of water in the surface crevasse. However, the buttressing bounds 

˜ 

d 

d 

ρm 
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´ ` 2 ď ̃  s 

 

B˚ ď B ď BF require that B˚ ď BF : according to (56) and (55), this inequality holds on LTGs when 

z̃h ě h̃w . Thus, calving is determined by the basal crevasse for the case of a meltwater-containing surface 

crevasse atop a meltwater basal crevasse, and this dual crack configuration is only valid when the head 

height of the meltwater is at least larger than the meltwater depth in the surface crevasse, z̃h ě h̃w . 

However, if the meltwater basal crevasse closes because h̃w ě z̃h, the calving threshold would be set by the 

meltwater-crevasse without a basal crevasse (MS) case defined in the previous section (50). 

 
2.3 Marine-terminating glacier 

 
Marine-terminating glaciers (MTG) cover the widest range of scenarios and have crack solutions converge 

to land-terminating glaciers (LTG) when the water at the ice front is zero. MTG also have crack solutions 

converge to ice shelves (IS) when the basal crack is saltwater-filled and the ice is at flotation everywhere. 

Thus, this section contains the most generalized crack solutions that, under some limits, converge to the 

previously presented cases. Specifically, to maintain a consistent definition of buttressing between IS, MTG, 

and LTG, the MTG case considers constant thickness and flat bed slope (see Appendix D). 

 
2.3.1 Dry surface crevasse without a basal crevasse (DS) 

The force-balance equation is the similar to LTG (41), but is now dependent on the dimensionless water 

level λ ” 
ρw ´b ě 0, which will be important throughout the MTG section, 
ρi  H 

 

ρi g 2 B“0 ρigH2 

´ 
2  

pH ´ dsq 
“ p1 ́  Bq HRxx ´ 

2 
. (57) 

As before, we use ρw as the saltwater density, but it can be defined for alternative applications as the 

lake water density. (57) gives the surface crevasse depth, 

Surface crack depth: ˜ “ 1 ́  

d ˆ 
ρi 

˙ 
B 1 λ2 

ρw 

 
ρi 

λ for 0 hw 

ρw 

 
ď 1. (58) 

 

This solution is shown by the red curve in Fig. 10 in Appendix A. A proglacial body of water alone 

acts to reduce the depth of cracks. For there to be no crevasse, we would have that 

 

BF  “ 1 for 0 ď h̃w ď 1, (59) 

d 
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λ 

w 

˜ 

m 

s 

1 ́  
ρi λ2 

λ 
ρi ˜ 

h 

ρ 

˜ 

 

while calving would occur when 
 

 ρi    2 ´ 
ρw 

B˚ “ 
1

 
ρi 

´ 
ρw 

2 for 0 ď h̃w ď 1. (60) 

 

Thus, negative buttressing is needed for calving to occur via a dry surface crevasse in a marine- 

terminating glacier. According to (9), negative buttressing would not occur in our width-averaged frame- 

work. 

 
2.3.2 Meltwater-containing surface crevasse without a basal crevasse (MS) 

 
Following the corresponding section for a Land-Terminating Glacier, we extend the derivation to include 

proglacial water at the calving front. The stress in the ice ligament from the base to the surface crevasse 

tip has the same form as (46). The force balance (47) now has the slightly modified form, 

 

ρi g 2 ρmgh2 B“0 ρigH2 

´ 
2  

pH ´ dsq 
´ ρmghw pH ́  dsq ́  

2 
“ p1 ́  Bq HRxx ´ 

2 
. (61) 

The solution for surface crevasse depth then becomes 

   d ˆ    ˙    ˆ ˙ 

˜ ˜ 
Surface crack depth: ρm 

d  “ 1 ̀  h  ´ 

ρi 

B 1 ́  λ2 

ρi ρm 

` λ2 ̀  

´ 1  h2 for 0 ď h ď 1. 

s 
ρi 

w ρw ρw ρi ρi 
w

 
w 

(62) 

To have the minimal meltwater-filled crack depth d̃ “ h̃ w , the buttressing must be 
´ 
ρm 

¯ 
˜  ` ˜  ˘ 

ρi  
´ 1 hw  2 ́  hw 

BF “ 1 ̀     
ρw 

for 0 ď h̃w  ď 1. (63) 

To have calving, the buttressing must be 

B˚ “ 

 
 ρi    2 

´ ρw 
` 

1 ρi 

 
ρm ̃ 2 

w 

2 for 0 ď hw ď 1. (64) 
´ ρw 

λ 
 

It is clear that the crack depths, B˚, and BF all converge to the results in the LTG cases when λ “ 0. 

 
2.3.3 Surface crevasse atop a meltwater basal crevasse (DS+MB/MS+MB) 

 
We now extend the previous case to consider a basal crevasse filled with meltwater, e.g., from the subglacial 

water, underneath a surface crevasse. We follow a similar format to that for the Land-Terminating Glacier 

λ 

https://doi.org/10.1017/jog.2025.10068 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2025.10068


Coffey and Lai: Horizontal force-balance calving laws 25 
 

h 
ρ   

d 

ρ 
˜ 

ρ ρ 

s b 

ρw 

ρi   h ˜ 

i 

i 

˜ 

ρ 

 

in section 2.2.3. The stress in the ice again has the form of (46), and the crack-depth relation is defined 

by (51). For the force balance equation, the only change is the water pressure at the ice front in the force 

balance of (52), 
 

´ 
`
1 ́  d̃ 

 ́
 d̃ 

 
´ 2 ρm h̃ 

 
1 ́  d̃ 

 ́
 d̃ 

 

 
ρm ̃ 2 m ˜ 

´ ´ 

 

 
2z̃ 

 
´ d̃ 

 
 ρi λ2 

s b

˘
 ρ w 

` 
s b

˘
 

ρi     w 

ρ b 

` 
h b

˘ 
ρ 

1 ́  ρi λ2 “ ́ B ́  
1 ´ ρi λ2 . (65) 

ρw ρw 

 

Solving (65) with (51) for dimensionless crevasse depths, we find that 

 
 

Surface crack depth: 
ρm 

s “ 1 ̀  hw 
i 

´ z̃h 

 

(66) 

dˆ 
ρi 

˙ „ ˆ 
ρi   2

˙ ρi   2 
ρm 

ˆ 
2

 ˆ 
ρm ́  ρi 

˙ 
˜2 

˙ȷ 
´ 1 ́  

m 
B 1 ́  λ 

w ` 
ρw

 ´ 
ρi

 
z̃h ´ hw 

i 

for 0 ď h̃w ď z̃h, 
 

 

 

  d „ ˆ  ˙    ˆ ˆ 
ρm ́  ρi 

˙ 
˜ 

˙ȷ 
Basal crack depth: d̃ “ z̃ ´ 

ρi
 ρm ρi B 1 ́  λ2 

ρi ρm ` λ2 ́  z̃2 ´ h2 

b h 
ρm

 ρm ́  ρi ρw ρw ρi 
h 

ρi 
w  

 

(67) 
 

for 0 ď h̃w ď z̃h. 

 
When the basal crevasse depth is zero, the corresponding buttressing is 

 
 ρi    2 ρm 

´ 
ρm   2 ρm ́ ρi ̃ 2 

¯
 

BF “ ´ ρw 
λ ` ρi

 ρi 
z̃h ́  ρi 

hw for 0 ď h̃w ď z̃h. (68) 

 

Calving, i.e. D̃ ” d̃ 

 
` d̃ 

1 ́  
ρi λ2 

 
“ 1, occurs when the buttressing number reaches 

 
 ρi    2 ρm   2 

B˚ “ ´ ρw 
λ 1 

` z̃ 
ρi     2 for 0 ď hw ď z̃h. (69) 

´ ρw 
λ 

 

The crack depths, B˚, and BF converge to the results in the LTG cases when λ “ 0. Note the lack of 

dependence of the calving stress threshold on the amount of meltwater in the surface crevasse, h̃w . This is 

the same situation as the LTG; as in section 2.2.3, for B˚ ď B ď BF to hold, this dual crevasse case can only 

exist when z̃h ě h̃w . Thus, a stable meltwater basal crevasse will not form beneath a meltwater-containing 

2 

d 

w 

λ 
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˜ w ´ i ˜ ˜ 

2 
b 

ρw 

h 

ρ 

h 
1 ́  

˜ 

ρ 

ρw 

 

surface crevasse unless z̃h ě h̃w . However, if the meltwater basal crevasse closes because h̃w ě z̃h, the 

calving threshold would be set by the MS case without a basal crevasse defined in the previous section 

(64). 
 
 
2.3.4 Surface crevasse atop a saltwater basal crevasse (DS+SB/MS+SB) 

 
In this section, we will study a simplified version of a saltwater-filled basal crevasse beneath a surface 

crevasse. Saltwater intrusions have been studied theoretically (Wilson and others, 2020; Robel and others, 

2022; Gadi and others, 2023; Bradley and Hewitt, 2024; Ehrenfeucht and others, 2024) and observationally 

(e.g., Kim and others, 2024; Rignot and others, 2024). As the precise form of water pressure and density will 

not have a simple analytical form and likely evolve with entrainment, tides, and grounding line migration, 

we develop an end-member model for fully saltwater-filled basal crevasses. 

Similar to the case of a meltwater-containing surface crevasse on an ice shelf, which combines (25) and 

(26), we have the crack-depth relation 

 

ρm d  “ 1 ̀  h 
ρ ρ ` d  ´ λ for 0 ď h ρw  b ď ´ . (70) 

s 
ρi 

w 
ρi 

b 
w 

ρm H 

 

The dimensionless force-balance equation is 
 
 
 

 ρi    2 
„  

ρm 
h̃2

 
`
1 d̃ 

d̃ ˘2 2 
ρm 

h̃  
`
1 d̃ 

d̃ ˘ 
   

d̃ ρw 
ˆ 

˙ȷ „ 
d̃ 1 

ȷ 
i 
λ2 

λ B 
ρw  . 

´ 
ρi 

w ´ 
´ s ´ b 

´ 
ρi 

w 
´ s ´ 

b  ` b 
ρi

 
H 

` b { ´ 
ρw

 “ ́  ´ 
1 ́  ρi λ2 

(71) 

Combined, we find that 

Surface crack depth: d̃ “ 1 ̀  ρm ̃  ` 
dˆ 

ρi

 
´ 1 ́  

˙ „ ˆ 
ρi 

˙ 
B 1 ́  λ2 ρm ρm ́  ρi ̃ 2 

ȷ
 ` 

s 
H ρi w 

ρw
 

ρw  b 
ρw ρi ρi 

w
 

for 0 ď h̃w ď ́  
m 

, (72) 
H 

 

 

 

 

Basal crack depth: 

 
 

d̃ “ ́  

 

 

ρi 

d 
´ 

 

 

 

1 
„

 
B 

 

 

ˆ 
ρi 

˙ 
1 ́  λ2 

 
 

ρm ρm ́  ρi ̃ 2 

ȷ
 ` 

 

 

for 0 ď h̃ 

 

 

 
ρw  b ď ́  . 

b 
H ρw 

ρi
 ρw ρi ρi 

w
 

w 
ρm H 

(73) 
 

The dual crack-depth solutions as a function of buttressing are presented in Fig.  8 without surface 

b 

b 
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ρi  H 

b 

1 ́  λ  ´ h 

ρw 

s b 

1 ́  h 

 
 

 
 

Fig. 8. Crevasse-depth solutions for Marine-Terminating Glaciers (MTG) (58), (72), and (73) as a function of 

dimensionless buttressing B for dry surface and saltwater basal crevasses (DS+SB). Colors correspond to the di- 

mensionless water level, λ ” ´ 
ρw  b .  Solid lines are basal crack depths db{H measured from the ice base at 0. 

Dash-dotted lines are surface crack depths ds{H measured downwards from the surface. For all cases with dry sur- 

face and saltwater basal crevasses (DS+SB), the calving criterion (ds ` db “ H) of MTGs is B˚ “ 0 (marked with 

yellow stars) as seen in (75). The unlikely super-buoyant scenario, λ ą 1 (Benn and others, 2017) is represented here 

with the red curves. Intruding saltwater under grounded MTGs do not form basal crevasses unless B ď BF , defined 

by (74) and shown by the blue stars. 

 

meltwater h̃w “ 0. The range of buttressing that permits dual crack formation is B˚ ď B ď BF , where 

B “ BF when d̃ “ 0 (denoted by the blue stars in Fig. 8), 

´ 
ρi 

¯  
2 ρm ρm ́ ρi ̃ 2 

  ρw ρi ρi w 

 
 

 
ρw  b 

BF “ 
1 ́  

ρi λ2 
for 0 ď h̃w ď ́  

ρm H 
, (74) 

 

while if B “ B˚ then calving occurs (D̃ ” d̃ ` d̃ “ 1; denoted by the yellow stars in Fig. 8), 
 

ρm 

´ 
ρm 

¯ 
˜2 

  ρi ρw w 
 

ρw  b 
B˚ “ ρi 

´ 
ρw 

2 for 0 ď h̃w ď ́  ρm H 
. (75) 

 

There are several interesting limits for this calving threshold. First, if there is no water in the surface 

crevasse or if ρw “ ρm, then the calving threshold is B˚ “ 0 regardless of the value of λ (denoted by the 

λ 1 
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M ρ 

w 

x 

x 

 

yellow stars in Fig. 8). Thus, if there is no net source of buttressing, the glacier would calve. Second, 

more meltwater in the surface crack will increase the magnitude of B˚, making ice more vulnerable to 

calving. Lastly, in the case of ρw “ ρm where the density of the water in the surface and basal crevasse 

is the same, the calving threshold does not depend on the amount of water in the surface crevasse, hw . 

Similar to the meltwater basal crevasse case, this holds as long as this dual crack configuration can stably 

exist, or B˚ ď B ď BF . By evaluating B˚ ď BF with (74) and (75), the stable dual crevasse configuration 

can exist so long as h̃w ď ´ 
ρw

 
b .  However, if the saltwater basal crevasse closes because h̃w ě ́  

ρw  b , 
ρm H ρm H 

the calving threshold would be set by the MS case without a basal crevasse defined in the previous section 

2.3.2. 

 

2.4 Buttressing and the causes of calving 

 
Much of the results of crevasse depths and calving criteria depend on the buttressing number B (10). In 

Fig. 4, we used an idealized buttressing distribution B 
` 

x ̆
 
“ 1 ́  x to illustrate how buttressing affects 

L L 

crack depths. To understand how buttressing can evolve with time for an MTG on a flat bed and constant 

thickness, as in (9) the buttressing number (Appendix D) may be written as 

ˆ 
H ptq

˙2   1 ́  ρi
 

şxt τbx px1, tq dx1
 ` 

şxt τw px1, tq dx1
 

Bpx, tq “ ϕ 
H

 
w x 1 ́  

ρi    2 
`

 
x 

1 
´ 

ρ 
¯ . (76) 

ρw 
λ

 2   1 ́  ρ 
i λ2 ρigH2 

 

The first term is the positive buttressing provided by the floating ice mélange (Meng and others, 2025; 

Amundson and others, 2025) with porosity ϕ and thickness HM ptq. When mélange thickness is very small, 

as most times in the summer, the mélange buttressing is negligible. The second term comes from the lateral 

and basal drag forces exerted on ice, consisting of the force per unit width (into the page) 
şxt τbxdx1 due to 

the basal drag along the bedrock and the horizontal force per unit width due to the depth-averaged lateral 

drag on both lateral walls 
şxt τw dx1. For real glaciers, buttressing may depend on spatially varying drag in 

3-dimensions with τbxpx, yq and τw px, zq, and bed topography ρigHBxb. These buttressing extensions are 

discussed in Appendix D assuming negligible variation in glacier width along x. 

Importantly, different dominant balances between the terms in (76) can lead to a diverse set of calving 

styles. Seasonal calving behavior observed for Greenland can occur if any of the components altering 

buttressing (mélange, drag forces, or other potential contributors) vary seasonally. Thus, quantifying the 

relative magnitude of each term in (76) can help in understanding the calving styles of glaciers. 
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Case Dry Surface + Saltwater Basal (DS+SB) Meltwater Surface + Saltwater Basal (MS+SB) Meltwater Surface (MS) 

d̃ 
s 

´

1 ́  
ρi 

¯ ̀

1 ́  
?
B

˘
 

ρw 

ρm h̃w ` 
´
1 ́  ρi 

¯ ́
1 ́  

b 
ρm ́ ρi ρm ρw h̃2 

¯
 

ρi ρw 
B ̀  

ρw ́ ρi    ρ2          w 
i 

   

c 
1 ̀  

ρm h̃w ´  B 

´

1 ́  
ρi 

¯ 

` 
ρi ρm   

´ 
ρm 

¯ 
˜2

 
ρi ρw ρw  

` 
ρi       ρi  

´ 1  hw d̃ 
b 

ρi 
`
1 ́  

?
B

˘
 

ρw 

ρi  

´
1 ́  

b  
` ρm ́ ρi ρm ρw h̃2 

¯
 

ρw 
B    

ρw ́ ρi    ρ2           w 
i 

N/A 

B˚ (Calving criteria) 0 ρw ́ ρm ρm h̃2 
ρw ́ ρi  ρi    

w 

”  
ρi ρm ˜ 

ı ” ı 
´  `  h2    {  1 ́  

ρi 

ρw ρi    
w ρw 

BF 1 1 ́  ρm ́ ρi ρm ρw h̃2 
ρw ́ ρi    ρ2           w 

i 

N/A 

h̃w range 0 ”       

0, 
ρi 

ı

 
ρm 

ρi 

r ρm 
, 1s 

 

Table 2. Crack depths pd̃ , d̃ q, calving criteria B˚, buttressing required for dual crack formation BF , and the 
s b 

corresponding range of h̃w for an ice shelf, derived in section 2.1 and illustrated in Fig. 3 middle panels. The MS+SB 

column converges to DS+SB when h̃w “ 0 

 

Case Dry Surface Crevasse (DS) Meltwater Surface Crevasse (MS) 

d̃ 
s 

c 

1 ́  B 

´

1 ́  
ρi λ2

¯ 

` 
ρi λ2 

ρw ρw 

c 

1 ̀  
ρm h̃w ´ B 

´

1 ́  
ρi λ2

¯ 

` 
ρi λ2 ` 

ρm 

´ 
ρm  ´ 1

¯ 

h̃2 
ρi ρw ρw ρi ρi w 

d̃ 
b N/A N/A 

B˚ (Calving criteria) 
” 

ρi λ2
ı 
{ 

”  
´ 

ρi λ2
ı 

´ ρw 
1 ρw

 

” 
ρi λ2 ` 

´ ρw
 

ρm h̃2 
ı 

{ 
”

 
ρi     w 

1 ́  ρi λ2
ı
 

ρw 

  
   

ρi 

¯ 
˜
  ˜ 1 ́  ρi    2

ı
 

ρw 
λ 

h̃w range 0 r0, 1s 

 

Table 3. Crack depths pd̃ , d̃ q, calving criteria B˚, buttressing required for surface crack formation BF , and the 
s b 

corresponding range of h̃w for a surface crevasse on a marine-terminating glacier (MTG), derived in sections 2.3.1 

and 2.3.2 and illustrated in Fig. 3 left panels. The results converge to a LTG when λ “ 0. The MS column converges 

to DS when h̃w “ 0. 

 
3 DISCUSSION 

 
In this section we summarize and interpret our results derived in previous sections, for an ice shelf (Table 

2), MTG (Tables 3 and 4), and LTG (setting λ “ 0 in Table 3 and the MS+MB column of Table 4). 

Generally, the calving criteria depend on a set of two key dimensionless numbers tB, λu and the densities 

of ice and saltwater. If meltwater is present in either the surface or basal cracks, the calving criteria can 

depend on two more parameters h̃w , z̃h and the density of meltwater. The calving regime diagram, Fig. 9a, 

showcases MTG, LTG (λ “ 0), and IS (λ “ 1), such that the calving criteria can be plotted as a function 

of B and the dimensionless water level λ. In all cases explored, decreasing the buttressing B eventually 

leads to calving (dashed curves in Fig. 9a, also illustrated by the cartoons i through iv in b). The effect 

of the dimensionless water level λ is not as simple, as seen in the bounds for buttressing B˚ and BF in 

Tables 2, 3, and 4 and shown by the dashed and solid curves in Fig. 9a, respectively. 
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Fig. 9. Panel a displays the calving regime diagram as a function of the dimensionless buttressing B and the 

dimensionless water level λ ” ́ ρw b{pρiHq (“ 0 for land-terminating glacier with a flat bed; “ 1 for ice shelf). The 

onset of calving and crack initiation are shown by the dashed curves and bold curves, respectively, with plausible 

crack(s) existence living within the shaded regions. We use head height values of z̃h “ ρi{p2ρmq for DS+LMB 

in blue and z̃h “ 3ρi{p4ρmq for DS+HMB in black. Panel b shows four cases of glaciers reaching the calving 

threshold corresponding to different locations in panel a, labeled as i to iv, with ocean saltwater shown in blue and 

freshwater shown in green. DS = Dry Surface, MS = Meltwater Surface, DS+SB = Dry Surface and Saltwater Basal, 

DS+L(H)MB = Dry Surface and Low (High)-pressure Meltwater Basal. 

https://doi.org/10.1017/jog.2025.10068 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2025.10068


Coffey and Lai: Horizontal force-balance calving laws 31 
 

 
 

Case Meltwater Surface + Meltwater Basal (MS+MB) Meltwater Surface + Saltwater Basal (MS+SB) 

d̃ 
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´

1 ́  
ρi 

¯ ”

B 

´

1 ́  
ρi λ2

¯ 

` 
ρi λ2 ´ 

ρm 

´

z̃2 ´ 

´ 
ρm ́ ρi 
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B˚ (Calving criteria) 
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ρi λ2 ` ρm z̃2 
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ı
 

´ 
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ı 
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ρi λ2
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ρi ρw 
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ρi     2       ρm 
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ρm z̃2 ´ ρm ́ ρi h̃2 

¯ı 

{ 

”  

´ ρi λ2
ı
 

´ 
ρw 

λ ` 
ρi       ρi    h ρi 

w 1    
ρw 

”´

1 ́  ρi 

¯ 

λ2 ´ ρm  ρm ́ ρi h̃2 
ı 
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”  

´ ρi λ2
ı
 

ρw ρi         ρi 
w 1    

ρw 

h̃w range r0, z̃hs 

” 
, ́  ρw   bc  

ı
 

0    
ρm Hc 

 

Table 4. Crack depths pd̃ , d̃ q, calving criteria B˚, buttressing required for dual crack formation BF , and the 
s b 

corresponding range of h̃w for dual cracks on a marine-terminating glacier (MTG), derived in sections 2.3.3 and 2.3.4 

and illustrated in Fig. 3 middle and right panels. The results converge to DS+MB/SB when h̃w “ 0. The MS+MB 

column converges to a LTG when λ “ 0. The MS+SB column converges to an IS when ice is at flotation λ “ 1, 

b{H  “ ´ρi{ρw . 

 

3.1 Dry surface crevasse atop a saltwater basal crevasse (DS+SB) 

In the case of a dry surface crevasse atop a saltwater basal crevasse (DS+SB) with constant ice thickness 

and a flat bed, the calving criteria is B˚ “ 0 regardless of the dimensionless water level λ (dashed purple 

line in Fig. 9a and cartoon b-iii). Since the saltwater basal crevasse has its pressure driven by the proglacial 

water height, lowering the dimensionless water level λ will also decrease the pressure in the basal crevasse. 

Hence, decreasing water level will decrease the basal crack depth, as crossing the solid purple line in Fig. 

9a represents transitioning from dual crevasses to a dry surface crevasse without a basal crevasse (DS). 

 

3.2 Dry surface crevasse atop a meltwater basal crevasse (DS+MB) 

For a basal crevasse filled with subglacial meltwater, the water pressure in the basal crevasse can be set 

by the subglacial hydrology, and thus is decoupled from the water level λ. But lowering the water level λ 

will promote meltwater basal crevasse-driven calving. For example, Figs. 9a and 10 in Appendix A show 

the buttressing bounds for a dry surface crevasse atop a meltwater basal crevasse (DS+MB) in blue and 

black: decreasing the dimensionless water level λ while keeping buttressing B fixed can result in basal 

crevasse formation and calving. Thus, increasing the water level towards flotation (λ “ 1) will increase the 

supporting force from the ocean acting on the ice front and stabilize the glacier. 

The set of two curves, blue and black, in Fig. 9a shows the sensitivity of meltwater basal crevasses 

to the piezometric head height z̃h. The head height in the basal crevasse analyzed in this paper depends 

on the subglacial hydrology, which varies spatiotemporally (e.g. Fig. S1 of Harper and others (2010)) 

and is beyond the scope of this paper. The lower-pressure (LMB) blue curves in Fig. 9a correspond to 
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2 

ρi 

ρm 

 

z̃h “ 1 ρi , while the higher-pressure (HMB) black curves assume an arbitrarily high pressure z̃h “ 3 ρi , 
2 ρm 4 ρm 

which substantially reduces the critical stresses (increase the critical buttresssing) required for calving 

(black dashed curve in Fig. 9a), weakening the glacier. Thus, the sensitivity of calving to subglacial water 

pressure is strong. Additionally, the basal crevasse formation threshold BF strongly depends on the head 

height z̃h. Basal crevasses on land-terminating glaciers have been observed in Ensminger and others (2001); 

Fountain and others (2005); Harper and others (2010) and surge-type glaciers (Rea and Evans, 2011). 
 
 

3.3 Dry (DS) or meltwater-containing surface crevasse (MS) without a basal 

crevasse 

Finally, we consider surface crevasses, dry (DS) and with meltwater (MS), without basal crevasses. The 

simplest case is the land-terminating glacier (λ “ 0), shown by Fig. 9b-i and b-ii: a dry surface crevasse 

(DS) will calve at B “ 0, as shown by i, while a meltwater-containing surface crevasse (MS) with h̃w “ 1 

will calve at B˚ “ 
ρm h̃2 , as shown by (ii).  Note that the HFB model predicts glaciers to be much 

ρi     w 

more vulnerable to calving compared with the Zero-Stress approximation. The Zero-Stress approximation 

predicts calving at B˚ “ ́ 1 and B˚ “ 2 ρm h̃w ́ 1 for the same dry and meltwater cases described above. In 

terms of critical calving stresses for dry surface crevasses on a constant thickness land-terminating glacier, 

the amount of tensile resistive stress Rxx required for calving for HFB model is only half that of the Zero- 

Stress approximation, similar to previous findings for floating ice shelves (Buck, 2023; Coffey and others, 

2024). 

For meltwater hydrofracture-induced calving, we analyze if more tension (less buttressing) is required 

for calving for the same amount of meltwater h̃w in HFB than the Zero-Stress approximation. The two 

calving criteria, B˚ “ 
ρm h̃2 for HFB and B˚ “ 2 ρm h̃w ́  1 for Zero-Stress, predict the same calving stress 
ρi     w ρi 

threshold at h̃w “ 1 ́  
b

1 ́  
ρi

 « 0.72. For calving to occur with the meltwater in a surface crevasse less 

than 72% of the ice thickness, less tensile stress (more buttressing) can lead to calving in HFB than the 

Zero-Stress approximation. 

 
3.4 Model limitations 

 
Our HFB calving models has a list of assumptions, which are all also used by the original Zero-Stress 

approximation (Nye, 1955), including the (1) zero material strength (Appendix C.1), (2) no elastic defor- 

mation associated with lake-induced flexure and tidal or wave perturbations (Appendix C.2), (3) constant 
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density (Appendix C.3), (4) neglected thermomechanical effects (Appendix C.4), and (5) neglected ice 

rheological effects (Appendix C.5). Additionally, as mentioned in Appendix D, the analysis for marine- 

terminating glaciers in this paper requires the idealistic assumptions of constant thickness and flat bed 

slope. The consideration of these aforementioned effects is beyond the scope of the current study. Note 

that assumptions (2)-(5) are also commonly assumed by existing fracture models like Linear Elastic Frac- 

ture Mechanics (van der Veen, 1998b,a; Jiménez and Duddu, 2018; Lai and others, 2020), the Zero-Stress 

approximation (Nye, 1955; Jezek, 1984; Benn and others, 2007a; Nick and others, 2010), and HFB for 

constant-thickness ice shelves (Buck, 2023; Coffey and others, 2024). While important for crack depths, 

temperature dependence has been found to be negligible for the stress criteria for calving when D̃ “ 1 in 

Coffey and others (2024), and is not considered in this paper. 
 
 

3.5 Comparison with existing ideas 

 
3.5.1 Diverse calving styles 

 
The wide-ranging calving styles can be conceptually attributed to the fact that different terms in the 

horizontal force-balance equation dominate in varying scenarios. The method of dominant balances is the 

idea that the equations may be described by the balance of the two (or more) most important terms. 

For example, the dominant balances of different terms in the Navier-Stokes equation can describe wide- 

ranging phenomena from glacial flow to hurricanes. Similarly, different combinations of the dominant 

terms in the horizontal force balance (3) across various glacial settings can exhibit a wide range of calving 

styles via different dominant balances between the horizontal hydrostatic forces acting on the crevasse wall 

and calving front, and various buttressing forces (9) such as the basal drag, lateral drag, and mélange 

buttressing. This can qualitatively explain a diverse range of calving styles, as listed below. 

HFB can capture the seasonal signature of calving through the dependence on a seasonal buttressing 

force. For Greenland marine-terminating glaciers that experience a loss of buttressing in summer, through 

thinner mélange (Xie and others, 2019; Meng and others, 2025) and reduced drag, calving occurs more 

frequently in the summer and thus exhibits seasonality (Zhang and others, 2023; Greene and others, 2024). 

Similarly, if a grounded glacier experiences saltwater intrusions or begins to float, the basal drag may be 

substantially reduced and push the system towards calving. While not modeled fully in this paper, large 

geometric effects at the ice front, such as a buoyant foot, water line melt, or undercutting, may lead to 

a mixed-mode, flexurally-driven or shear-driven calving style (Wagner and others, 2014, 2016; Slater and 
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others, 2017; How and others, 2019; Sartore and others, 2025). 

On ice shelves, if the basal drag and mélange or sea ice buttressing are negligible, calving occurs when 

the lateral drag, the major source of buttressing, is lost as ice passes by and loses contact with land, such as 

an ice rise. This can trigger rifting near the ice rise location, causing tabular icebergs, as seen around the 

Roosevelt Island on the Ross Ice Shelf and the Gipps Ice Rise on the Larsen C Ice Shelf. A similar effect 

has been modeled at Sermeq Kujalleq (Store Glacier), Greenland (Benn and others, 2023). However, we 

note that our HFB crevasse-depth model in its current form is more appropriate to describe rift initiation 

from vertical crevasses (Coffey and others, 2024), it does not describe horizontal rift propagation (Lipovsky, 

2020) and its timescales (Bassis and others, 2007). Lastly, grounding zone saltwater intrusions by tides 

(Rignot and others, 2024), causing reduced basal drag and varying water density (Wilson and others, 

2020; Robel and others, 2022; Bradley and Hewitt, 2024), may impact the crevasse formation and calving 

threshold. 

While each of these examples has been previously studied, the key point is that the force-balance 

equation can serve as a unified fundamental equation to describe a range of diverse calving styles. 

 
3.5.2 Dependence on thickness H 

 
One important feature of HFB, the Zero-Stress approximation, and LEFM is that the calving thresholds 

scale linearly with the ice thickness H (Coffey and others, 2024). Physically speaking, a greater ice 

thickness results in higher lithostatic stresses, meaning the ice needs correspondingly larger tensile stresses 

to calve. However, this is not the case when a constant critical stress threshold for different ice thicknesses 

is assumed for calving. When calving is set to occur above a critical stress or thickness, we would expect 

runaway behavior because the ice is generally thicker upstream and the depth-averaged deviatoric stress 

scales with H (Haseloff and Sergienko, 2022) (e.g. Marine Ice Cliff Instability (MICI) (Bassis and Walker, 

2012; DeConto and Pollard, 2016)). Future theoretical work implementing HFB with MICI is important 

for understanding ice cliff stability. 

 
3.5.3 Comparison with existing calving laws 

 
HFB, Zero-Stress and LEFM can all be considered as “crevasse-depth” calving laws (Choi and others, 2018; 

Wilner and others, 2023; Benn and others, 2007b, 2023) in that calving occurs when the crevasse (surface 

plus basal) depth equals the ice thickness. Most calving laws involve tuning unmeasurable parameters, e.g., 
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the parameter σmax in the von Mises law (Morlighem and others, 2016; Choi and others, 2018; Wilner and 

others, 2023; Downs and others, 2023). Our results involve measurable and known parameters (stresses, 

thickness, and bed topography), except for the meltwater-filled crevasse cases. Our analytical HFB model 

shows that the fundamental parameters that govern calving are the in-situ buttressing stresses B, the 

dimensionless water level λ, and the densities of ice and water in the crevasses.  If meltwater is present 

in the crevasses, both the surface meltwater depth h̃w and the meltwater head height z̃h will affect the 

calving criteria. Thus, our HFB formulation can yield diverse calving criteria, suggesting that using one 

universal threshold value of stress for all glacier calving is not appropriate. Multiple thresholds must be 

used to effectively capture the various scenarios, including but not limited to those mentioned in this 

paper. Further work comparing these criteria with observations and integration in numerical models with 

additional effects (Bassis and Ma, 2015; Berg and Bassis, 2022) will be informative. An initial comparison 

between the HFB theory and the observed ice-shelf rift locations is available in Coffey and others (2024). 

Recent work (Zarrinderakht and others, 2022; Coffey and others, 2024) shows that LEFM for a surface 

or basal crevasse gives stress thresholds for ice shelf calving that can be understood through torque balance, 

Στ “ 0. It has also been shown and argued (Yu and others, 2017; Jiménez and Duddu, 2018; Huth and 

others, 2021; Zarrinderakht and others, 2022; Coffey and others, 2024) that the hydrostatic ocean restoring 

force can not be neglected. In Appendix B, we show that the calving stress from the conventional LEFM 

solution used for isolated ice shelf basal crevasses (van der Veen, 1998a) written with torque balance 

(Zarrinderakht and others, 2022) can be modified to consider the ocean restoring force and allow for ice 

shelf deflection, thus predicting the same calving stress threshold as HFB. 

 

4 CONCLUSION 

In this paper, we generalize the Horizontal Force-Balance (HFB) fracture model (Buck, 2023; Coffey and 

others, 2024) across ice shelves (IS), land-terminating glaciers (LTG), and marine-terminating glaciers 

(MTG). We examine six tensile crack configurations in HFB defined in Fig. 3, which lead to different calving 

stress thresholds (see Tables 2, 3, and 4). Our generalized HFB model yields analytical solutions for crack 

depths and the calving criteria. We show that in the absence of meltwater in the surface or basal cracks, 

the calving criteria fundamentally depend on the dimensionless buttressing force B, the dimensionless 

water level λ ” 
´ρw b , as well as the ice to saltwater density ratio (constant). These parameters can either 

be measured or calculated. In the cases when meltwater is present in crevasses, a few more parameters 
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play a role: dimensionless meltwater depth h̃w ” hw {H in the surface crevasse, dimensionless head height 

z̃h ” zh{H in the meltwater basal crevasse, and the ice to meltwater density ratio (constant). In other 

words, with a specified tB, λ, h̃w , z̃hu and crack configuration, a HFB calving criteria can be obtained 

analytically. Our result is summarized in Tables 2, 3 and 4. 

The generalized crevasse-depth calving laws using HFB have great explanatory power. In general, 

lower buttressing B can lead to calving in every crack configuration explored. Similarly, lowering the 

dimensionless water level λ has the same effect, except in the case of calving driven by saltwater basal 

crevasses. For land-terminating glaciers with dry surface crevasses (DS), and marine-terminating glaciers 

and ice shelves with dry surface crevasses and saltwater-filled basal crevasses (DS+SB), the calving criteria 

is simply no buttressing, B˚ “ 0, regardless of the dimensionless water level λ. This result of MTG 

converges to IS and LTG with a flat bed when λ “ 1 and 0, respectively. 

Our result indicates that there is generally no reason to expect a universal threshold value of calving 

stress for all glaciers due to each crack configuration’s (Fig. 3) varying dependence on the parameters 

B, λ, h̃w , z̃h. HFB can be used to model a range of calving styles in a unified framework. For example, 

the seasonality of calving in Greenland can be caused by a decrease of buttressing in the summer via 

B “ B˚ “ 0. This loss of summer buttressing can be attributed to various sources, e.g., reduced basal 

and lateral drag, thinner mélange, and their combinations. We note that the HFB calving threshold only 

depends on the net buttressing B and is agnostic to the buttressing loss mechanisms. Climate warming is 

a threat as the calving criteria is very sensitive to the surface meltwater depth h̃w and subglacial meltwater 

head height z̃h. 

Modeling of the diverse calving styles (Alley and others, 2023; Bassis and others, 2024) is a challenge. 

Our HFB model can analytically predict transitions between six crack configurations across ice shelves, 

marine-terminating glaciers and land-terminating glaciers. The dynamical coupling between HFB and an 

ice flow model to assess calving behavior during glacial retreat is a topic for future study. 
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A CRACK  DEPTH  D{H  VERSUS  DIMENSIONLESS  WATER  LEVEL  λ 

 
In this Appendix, we seek to further develop intuition for the HFB theory, specifically for crack depths 

as functions of the dimensionless water level λ, buttressing B, and the dimensionless surface crevasse 
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meltwater depth h̃w . Fig. 9a represents a calving regime diagram as a function of dimensionless water 

level versus buttressing. Choosing one crack configuration, one may select a point on this calving regime 

diagram and have a corresponding measure of crack depths. In Fig. 8, we examine horizontal slices, or 

fixed values of dimensionless water level λ, of Fig. 9a for a dry surface crevasse atop a saltwater basal 

crevasse (DS+SB). In this appendix, we consider vertical slices, or fixed dimensionless buttressing B, of 

Fig. 9a with variable surface meltwater h̃w ” hw {H as plotted in Fig. 10. 

In Fig. 10, a surface crevasse without a basal crevasse on a MTG would have depth d6 . If basal 

crevasses form, the surface crevasse associated with this dual fracture setup ds branches slightly off from 

this surface-crevasse-only curve, and may enable calving. 

The first row, a and b, represent vertical transects of Fig. 9a at B “ 0.15 and B “ 0.3, respectively. 

We see in b that by increasing the buttressing, we shut off the low pressure meltwater basal crevasses 

(DS+LMB in blue shading in a) from forming, as there is not enough tension. Further, the dimensionless 

water level required for calving from a high pressure meltwater basal crevasse (DS+HMB in dash-dotted 

black) decreases, while the calving threshold for a saltwater basal crevasse (DS+SB in dash-dotted purple) 

does not change. Thus, lowering ocean water level stabilizes a saltwater basal crevasse yet destabilizes a 

meltwater basal crevasse. 

Comparing each row, we see minimal change between dry surface crevasses (DS) from a to b and surface 

crevasses with meltwater (MS) filling 10% of the ice thickness from c to d. However, comparing e to f where 

meltwater fills 50% of the ice thickness, we see a large change for surface crevasses with meltwater (MS). 

By increasing the amount of water relative to the ice thickness h̃w ” hw {H, we see calving around λ „ 0.4. 

Furthermore, the meltwater-surface-crevasse-alone crack depth d6 is typically greater in e than in f, and all 

other crack configurations branch from this solution. Thus, whereas in b there is not enough tension for 

a low pressure meltwater basal crevasse (DS+LMB in blue) to form, in e this configuration cannot form 

because the meltwater-containing surface crevasse has already calved at a higher dimensionless water level. 

We end with two subtle points related to crack formation (dashed lines) and calving thresholds (dashed- 

dotted lines) for meltwater and saltwater basal crevasses. First, akin to how smaller head height zh results 

in a smaller window for meltwater basal crevasses (DS+MB) to exist in Fig. 9a, we see the same behavior 

in (MS+MB) by increasing surface meltwater h̃w comparing each row of Fig. 10. However, this is purely 

due to a change in the crack formation threshold BF ; the calving threshold B˚  does not change.  On 

the other hand, for surface crevasses atop saltwater basal crevasses (MS+SB), both crack formation BF
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Fig. 10. Transects of the dimensionless water level and buttressing calving regime diagram of Fig. 9a, with 

dimensionless crack depths versus water level given buttressing. The left column a, c, and e use a buttressing value 

of B “ 0.15, while the right column b, d, and f use B “ 0.3.  The first row, a and b, have dry surface crevasses 

h̃w ” hw {H “ 0 , while the second and third rows, c, d and e, f, have surface crevasses with meltwater to fill 10% 

or 50% of the ice thickness, respectively. Shaded contours represent where crack configuration solutions (DS, MS, 

DS/MS+SB, DS/MS+LMB, DS/MS+HMB) exist. We use a similar crack configuration color key as Fig. 9a. 
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and calving B˚ thresholds change with h̃w , requiring higher dimensionless water level λ and thus higher 

saltwater pressure for the crack to form BF , and less pressure for calving B˚.  Importantly, with a dry 

surface crevasse and saltwater basal crevasse (DS+SB), the critical dimensionless water level λ for calving 

remains above 1, which represents flotation. Scenarios with λ ą 1, and thus calving by saltwater basal 

crevasse in these panels, represent an unlikely super-buoyant case (Benn and others, 2017). 

 
B TORQUE EQUILIBRIUM CALVING ARGUMENT 

 

Recent work has established that the stress required for calving from a one horizontal dimension (1HD) 

ice shelf basal crevasse may be described through a torque-balance argument (Zarrinderakht and others, 

2022). This torque-balance argument matches with the result of Linear Elastic Fracture Mechanics (Tada 

and others, 2000; van der Veen, 1998a; Lai and others, 2020). Additionally, this torque balance has been 

used to approximately describe the calving stress in Mode I basal crevasse LEFM including a vertical 

temperature profile (Coffey and others, 2024). However, as noted in Yu and others (2017); Jiménez and 

Duddu (2018); Zarrinderakht and others (2022); Coffey and others (2024), an issue with this formulation 

is that the ice shelf base is treated as stress-free. Instead, a hydrostatic ocean would exert pressure on 

the ice base as it deforms, and would affect the stress required for calving. Including this pressure in our 

torque balance, we show that the only rifting stress that can satisfy both force balance and torque balance 

with beam flexure explicitly modeled is Rxx “ 1 p1 ́  ρi{ρw q ρigH or B˚ “ 0, the HFB result. 

In static equilibrium, where forces and torques sum to zero, the relevant component of torque τy at the 

crevassed location x “ xc may be written as 

 
τy “ pr ^ F q ¨ ŷ “ rz Fx ´ rxFz “ 0, (B1) 

 

where following Zarrinderakht and others (2022), we take r to be the distance vector from the crevassed 

location at the surface px “ xc, z “ sq, F is the force vector, ŷ is the unit vector into the page, and rx, rz 

and Fx, Fz are the distances and forces in the horizontal and vertical, respectively. The first term, rz Fx, is 

included in Zarrinderakht and others (2022); Coffey and others (2024), and accounts for the forces acting 

along the newly-formed rift walls. The second term, ́ rxFz , is missing from previous work, and accounts 

for the hydrostatic restoring force of the ocean due to ice shelf base vertical displacement. Thus, the torque 

is not balanced purely at the rift location x “ xc, but instead is balanced some length in x of the ice shelf 

or newly-formed iceberg. 
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ρw 
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In the case where the ice shelf can be modeled as incompressible, (B1) may be written as 

 
„ż s 

2 
b 

 

pRxx ´ ρig ps ́  zqq ps ́  zq dz ̀  

ż 0 ȷ 

ρw gz ps ́  zq dz 
b 

ż L 

´ 2ρw g 
0 

w pxq xdx “ 0. (B2) 

 

The first two terms come from rz Fx and are the torques acting along the newly-formed rift walls, while 

the last term comes from ́ rxFz and is the force applied along the deflecting ice shelf base, with w pxq ą 0 

indicating downward ice shelf deflection (Turcotte and Schubert, 2014). This configuration considers the 

basal crack xc to be in the center of a symmetric ice shelf of length 2L. 

The rifting stress can be obtained by solving (B2) for Rxx. This has been done in Zarrinderakht and 

others (2022); Coffey and others (2024), neglecting the last term in (B2) due to the ocean restoring force, 

 
 

   Rxx   

1 
´
1 ́  

ρi 

¯ 
ρigH 

2 
ˆ 

3 
2 ́  

 ρi  

˙
 

ρw 

 
. (B3) 

2 ρw 
 

However, this rifting stress ignoring ocean restoring force is inconsistent with the rifting stress obtained 

IT 
´ ¯ 

from horizontal force balance Rxx “ Rxx ” 1 ρi
 ρigH. Below we show how by considering the ocean 

restoring force (the last term in (B2)), the torque balance would not be inconsistent with the horizontal 

force balance. 

If we model ice as a thin elastic beam (Hetényi and Hetbenyi, 1946; Turcotte and Schubert, 2014), 

which inherently assumes force balance in the calculation of deflection w pxq with the bending moment at 

the crevassed location Mc ” M px “ xcq, we will converge to the same answer as HFB theory but with 

the addition of explicitly modeling bending. From Hetényi and Hetbenyi (1946); Turcotte and Schubert 

(2014), the deflection profile is akin to the bending of the elastic lithosphere at an ocean trench (Turcotte 

and Schubert, 2014). With x “ 0 placed at rift location, the deflection may be written as 

α2Mc ˆ
´x 

˙ ̂ ˆ 
Vc α 

˙ 
x x 

˙ 
w pxq “ exp 

2D α 
1   cos sin 

c α α 
, (B4) 

 

with the flexural wavelength 
„ 

4D 
ȷ1{4 

α 
ρw g 

, (B5) 

 

where Vc is the shear force and D “ EH3{ 
`
12 

`
1 ́  ν2

˘˘ 
is the rigidity. Unlike the lithosphere problem in 

Turcotte and Schubert (2014), there is no shear force applied to the beam surface that pushes the beam 

downwards/upwards so Vc “ 0.  Thus, evaluating (B2) with (B4) and (B5), and taking the limit as the 

“ 

M 

” 
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2 

 

length of the ice shelf L approaches infinity, 

 
 

lim 
ż L 

w pxq xdx “ ́  α
2 α2Mc “ ́  

Mc 
, (B6) 

LÑ8   0 2 2D ρw g 

 

and we may write the torque along the ice shelf base as 
 
 

´rxFz “ 2Mc. (B7) 

 

Substituting (B7) into (B2) we have 

 
„ż s 

2 
b 

 

pRxx ´ ρig ps ́  zqq ps ́  zq dz ̀  

ż 0 ȷ 

ρw gz ps ́  zq dz 
b 

´ 2Mc “ 0, (B8) 

 

with bending moment 

 
 

Mc “ 

ż s 

pRxx ´ ρig ps ́  zqq ps ́  zq dz ̀  
b 

ż 0 

ρw gz ps ́  zq dz. (B9) 
b 

 

This bending moment has been defined in previous literature (e.g., Weertman (1957); Buck (2024)) with a 

different z “ 0; however, this does not change the final expression. What is important is the moment arm 

(the vertical distance from the ice surface in this problem ps ́  zq) is the same as that used in Zarrinderakht 

and others (2022) and in the bracket term in (B8). Therefore, the torque-balance constraint cannot be used 

to solve for the depth-averaged rifting stress Rxx when the ice shelf base can deflect, as used (Zarrinderakht 

and others, 2022; Coffey and others, 2024) to describe rifting from basal crevasse LEFM (van der Veen, 

1998a). 

Instead, Euler-Bernoulli beam theory inherently assumes static equilibrium, or force and torque balance 

(Turcotte and Schubert, 2014). As such, the HFB rifting stress, Rxx “ 1 p1 ́  ρi{ρw q ρigH or B˚ “ 0, is the 

unique rifting stress that can satisfy force and torque balance. This helps explain the agreement of HFB 

with the numerical simulation of basal crevasse rifting with flexure in the blue curves of Fig. 6 in Buck 

(2023). Additionally, it is clear that a vertical temperature profile would not modify this result, providing 

a simple explanation for the result of Coffey and others (2024) that the rifting stress threshold with HFB 

is independent of the vertical temperature profile. 
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C MODEL  LIMITATIONS 

 

C.1 Material strength and energy 

 
One potential limitation of our HFB model may be the lack of a material strength or fracture toughness 

(Lawn, 1993; Litwin and others, 2012). We develop a scaling argument that suggests that the added force 

required to overcome the material strength through the entire ice thickness is negligible compared to the 

force required to calve a glacier with zero fracture toughness. 

One way to envision the zero material strength assumption in HFB is to consider a row of touching 

domino tiles. There is no cohesive force between each tile and its neighbor; thus, at each tile border, there 

is zero strength. The force required for full separation of tiles, i.e. calving, may be written considering 

conservative forces only as 

Fx “ 
B

 

 

, (C1) 
Bx 

where in the absence of a fracture toughness or other sources of potential energy, the potential energy is 

just gravitational, U “ UG. This has already been shown to describe the HFB theory (Coffey and others, 

2024) and compressive buckling (Coffey and others, 2022). In fracture mechanics (Lawn, 1993; Anderson, 

2017), the Griffith criterion for crack growth is 

 

BC 
“ 0, (C2) 

where U is the total energy of the system, and C is crack length times length into the page (Lawn, 1993; 

Anderson, 2017). Following Lawn (1993), a nonzero material strength (thus nonzero fracture toughness) 

may be defined with a surface energy US . The surface energy release rate may be written as 

BUS 

BC  
“

 

K2 
Ic , (C3) 

E1 

 
1 

where KIc is the mode I fracture toughness of ice, measured as 0.15 MPa ¨ m 2  (Litwin and others, 2012), 

and E1 is the Young’s Modulus E in plane stress, or E{ 
`
1 ́  ν2

˘ 
in plane strain with Poisson’s ratio ν. To 

have calving, one would need to have  B
 

BC 
pUG ̀  UI ̀  Wextq ě ́  BUS

 for C increasing from initial flaw size 

through full thickness, with internal energy UI , such as elastic strain energy, heat, or chemical effects and 

external work Wext. We have tacitly assumed kinetic energy is negligible. If there was a nonzero fracture 

U 
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x 

ρw 

I c 

BC 

 

toughness KIc ą 0, what would be the force required to overcome this surface energy? 
 

   
  US  

ż  
K2 K2 H∆y 

Fx “ 
B

 
Bx 

B 
dC “ 

B 

BC  Bx 

Ic dC 
E1 

Ic 

E1∆x 
. (C4) 

 

For a saltwater basal crevasse and a dry surface crevasse, the force required to calve with zero fracture 
 

toughness is 
 
 

 
The ratio of these forces gives, 

F  “ 
B UG 

Bx 

∆y 
ˆ

 

“ 
2 

1 ́  
 ρi  

λ2

˙
 

ρw 

 
ρigH2. (C5) 

 

  2K2 
   

E1∆x 
´
1 ́  

ρi λ2
¯ 

ρigH 
„ O 

`
10´6

˘
 

 

, (C6) 

 

where we have taken fracture toughness as above, E1 „ 109 Pa, ∆x “ 100 m, ρi “ 917 kg m´3, ρw “ 1028 

kg m´3, g “ 9.8 m s´2, H “ 300 m, and λ “ 1. The surface energy US term (related to material strength) 

in Griffith’s energy balance  B
 

BC 
pUG ̀  UI ̀  Wextq ě ́  BUS

 is negligible compared with the gravitational 

potential term UG. Thus, our simple scaling argument suggests that the force required to calve a glacier 

with zero fracture toughness, in the absence of buttressing, is approximately the same as that of a glacier 

with the fracture toughness of ice (Litwin and others, 2012). 

 

C.2 Alternate mechanisms 

 
In this section, we summarize the alternate mechanisms that we do not consider in this paper. Our 

force balance predicts tensile hydrofracture-induced calving involves full-thickness fracture. However, as 

suggested by Weertman and others (Weertman, 1971; Zarrinderakht and others, 2022), the closure of 

surface crevasse tips may also enable drainage and hydrofracture without necessarily causing calving. 

Second, we do not model the non-isostatic effects of lake loading, drainage, flexural unloading, nor 

calving aftereffects (MacAyeal and Sergienko, 2013; Banwell and others, 2013; MacAyeal and others, 2003; 

Scambos and others, 2009; Amundson and others, 2010). Dolines, moulins, and blisters underneath the 

ice sheet (Moore, 1993; Chase and others, 2021; Lai and others, 2021; Hageman and others, 2024; Banwell 

and others, 2024) are consequences of lake loading and drainage on ice shelves and ice sheets. The nearly 

axisymmetric nature of these drainage features suggests that a full 3D stress field may be required to model 

drainage that can lead to calving (MacAyeal and Sergienko, 2013; Banwell and others, 2013). 

„ 

ż 
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Tides and ocean waves can also elastically deform the ice and induce stresses that interact with crevasses 

(Freed-Brown and others, 2012; Nekrasov and MacAyeal, 2023). While we do not model these time- 

dependent processes, if we allow for thin beam flexure, we show in Appendix B that a torque-balance 

argument will converge to our B˚ “ 0 solution. 

C.3 Constant density 

 
We assume constant densities for both the ice and the water source. We note that firn has been implicated 

as important for surface crevasses (Gao and others, 2023; Clayton and others, 2024; Meng and others, 

2024). We leave ρ pzq effects as an area of possible future study. 

 

C.4 Thermomechanical effects 

 
If coupling force balance with the heat equation, one could potentially consider crevasse wall refreezing 

or melting. Future work fully accounting for these time-dependent thermomechanical processes may yield 

insightful results. 

 

C.5 Complicated or unknown fracture processes 

 
There are many possible complications with fracture mechanics and rheology (Zarrinderakht and others, 

2023), such as stress concentration, the fracture process zone length (Pralong and Funk, 2005), material 

behavior (brittle, quasibrittle, or ductile) and a potential size effect (Baant and others, 2021), crack tip 

shielding (Zarrinderakht and others, 2024), crack nucleation given ice fabric and deformation mechanism 

(Frost, 2001), flexure, shear (Clerc and others, 2019; Bassis and others, 2021; Needell and Holschuh, 2023), 

and densely spaced fractures. 

An assumption of HFB is that changes in traction applied to our ice geometry (Fig. 2) must be 

balanced by crack-depth changes. In reality, the rheology of ice permits internal viscous deformation that 

can accommodate changing boundary conditions. 

 

DDERIVING BUTTRESSING FROM VAN DER VEEN AND WHILLANS’ 

FORCE  BALANCE 

 

The goal of this Appendix is twofold. First, we find the common form of buttressing in (10), as shown for 

ice shelves in Gudmundsson (2013). We show the assumptions that are required for ice shelves, marine- and 
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b 

ż 
t 

 

land-terminating glaciers to arrive at (10). We assume constant thickness and flat bed slope for marine- 

terminating glaciers, and flat bed slope for land-terminating glaciers. Second, we discuss extending the 

force balance to 3D. We conclude by discussing a challenge of applying HFB in 3D. 

Depth-integrating the Stokes equations and using a traction-free surface boundary condition, the x̂- 

component of the momentum equation was derived in Van Der Veen and Whillans (1989) (see equation 
 

14):  

ż s 

Bx Rxxdz ̀  By 

b 

 

ż s 

Rxy dz ́  ρigHBxs ́  Rxz |pz“bq ̀  Rxx|pz“bqBxb ̀  Ryx|pz“bqBy b “ 0. (D1) 
b 

 

Following the convention set in Cuffey and Paterson (2010), we will denote the second term as ´τw , and 

group the last 3 terms as the total basal resistance ́ τbx. To turn this equation into a force-balance equation 

per unit width, we integrate the above equation from xc to xt and use H “ s ́  b, 

 

xt xt ˆ 
H2 

x

 ż xt 
˙ 

HRxx|xc 
´ pτw ` τbxq dx ́  ρig 

2  x  ` HBxbdx “ 0. (D2) 
| 

c
 

xc xc 

 

For our local force-balance argument, the quantity of interest at xc is 
şs 

σxxdz. We may rearrange to solve 

for this, 

 ż s
 x x ρig x x ρig 

x 
ż xt 

ż xt 
 

 

σxx| c dz “ HRxx| c ´ 
b 

H2| c “ HRxx| t ´ H2| t ´ pτw ` τbxq dx ́  ρig 
xc 

HBxbdx. (D3) 
xc 

 

We focus here on the last two terms on the right-hand side: 1) gradients in the depth-integrated horizontal 

shear stresses due to the lateral wall τw and the basal drag τbx, and 2) the basal topography-induced stress. 

Given constant thickness, retrograde bed slope provides a force in the opposite direction of the flow, and 

vice versa. Typically, we expect τw and τbx to greatly contribute to normal buttressing, as these forces 

originate from drag applied at the lateral and bottom boundaries of the glacier. 

2 2 
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ρw 

ˇ ˇ 

t 

ρ 

ρ 

ρ 
t 

ρ ρ 

ρ 

ρ ρ 

|   

ρ 

ρ 

t 

2 2 

t 

ż 

2 2 

 

D.1 Ice shelf buttressing 

 
For ice shelves, the horizontal component of normal stress along the base ρigHBxb can be calculated using 

the isostatic assumption b “ ́  
ρi H. The horizontal force per unit width at xc becomes 

 

s 

σxx

ˇxc 
dz “ 

b 

s 

σxx

ˇxt 
dz ́  

b 

ż s 

ż xt 

 
xc 

pτw ` τbxq dx ̀  ρig 

ż xt 

ż xt 

 
xc 

ρi 

HBxHdx (D4a) 
w 

ρi H2  
x 

“ rRxx ́  ρig ps ́  zqs
xt dz ́  

b 

pτw ` τbxq dx ̀  ρig 
xc w 2 

|xc 
(D4b) 

     1 2 
ż xt ρi H2  

x 

“ HtRxx ´ 
2 

ρigHt ´ 
pτw ` τbxq dx ̀  ρig 

xc w 2 
|xc 

(D4c) 

B“0 1 
ˆ 

ρi   ˙
 

2 1 2 

“ HtRxx ´ pBMlangeq 
2 

ż xt 

1 ́  
w 

ρi H2  
x 

ρigHc ´ 2 
ρigHt 

´ pτw ̀  τbxq dx ̀  ρig 
xc w 2  

|xc 
(D4d) 

1 
ˆ 

ρi 
˙
 2 1 

ˆ 
ρi   ˙

 
2 1 2 

“ 1 ́  
w 

ż xt 

ρigHt ́  pBMlangeq 1 ´ 
w 

ρi H2  
x 

ρigHc ´ 2 
ρigHt 

´ pτw ̀  τbxq dx ̀  ρig 
xc w 2 

|xc 
(D4e) 

1 
ˆ 

ρi 
˙ ρigH2 ´ pBMlange 1 

ˆ
ρi 

˙ 1 ́  ρigH2 ´ 
ż xt 

pτw ̀  τbxq dx, (D4f) 

“ 
2 

´ 
ρw 

c 
q 

2 ρw 
c
 x 

 

where Ht and Hc are the ice thickness at xt and xc, respectively. In the transition from (D4c) to (D4d), 

if there is no ice mélange, then BMlange “ 0. We can write the left hand side of the equation in terms of 

σxx “ Rxx ´ ρigps ́  zq and rearrange (D4f), 

 

xc 
1 
ˆ

 ρi 

˙
 2 

1 
ˆ 

ρi 
˙ 

2 
xt

 

HcRxx| “ 1 ́  
w 

ρigHc ́  pBMlangeq 1 ´ 
w 

ρigHc ́  pτw ` τbxq dx. (D5) 
xc 

We define the dimensionless buttressing force as 

şxt   τw
 τbx  dx 

B ” BMlange ` xc 
p ` q , (D6) 

1 
´
1 ́  

ρi 

¯ 
ρigH2 

2 ρw c 

such that (D5) can be written as 
  Rxx   

xc
 

1 
´
1 ́  

ρi 

¯ 
ρigHc 

“ 1 ´ B. (D7) 

2 ρw 

If there is no drag applied to the ice shelf base or lateral margins, then B “ 0; if there is buttressing then 

B ą 0. 

ż ż 

c 
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´ xc 

| 

şxt 

ρw ρw c 

ρ ρw 

2  H
2 

| 

1 1 

c xc 

xt 

2 ρ 

 

D.2 Marine-terminating glacier buttressing 

 
For MTGs and LTGs, the assumption of local isostasy modified due to the bedrock. Rearranging (D3), we 

have that 

xc xt ρi g xt xt xt 
 

 Rxx| 
 

 

HtRxx| ´ 2 H
2|x 

ş 
pτw ` τbxq dx ́  ρig 

ş
 HBxbdx 

“ ´ ¯ , (D8) 
1 

´
1 ́  λ2 ρi 

¯ 
ρigHc 

1 1 ́  λ2 ρi
 ρigH2 

2 ρw 2 ρw c 

 

where λ “ ´ 
ρw

 
b  xc | is the dimensionless water level. To achieve consistency with the ice shelf case, we 

ρi H 

can simplfy the MTG case to have constant thickness and a flat bed. This allows (D8) to be written as 
 

xc 
1 

´
1 ́  λ2 ρi 

¯ 
ρigH2 ´ 0 ́  

ş
 pτw ` τbxq dx ́  0 

  Rxx |   
1 

´
1 ́  λ2 ρi 

¯ 
ρigHc 

“ ́BMlange ̀  

 

   2 ρw c xc   
´ ¯ . (D9) 1   1 ́  λ2 ρi ρigH2 

2 ρw 2 ρw c 

 

Thus, the buttressing number for the constant thickness and flat bed MTG is defined as 
 
 

 Rxx 
xc

 xc 
pτw ` τbxq dx 

B ” 1 ́  
1 
´ 

2 
1 ́  λ2 ρi

 

¯ 
ρigHc 

“ BMlange ` 
1 
´ 

2 
1 ́  λ2 ρi

 

¯ 
ρigH2 

, (D10) 

 

Following Meng and others (2025), a simple form for the dimensionless mélange buttressing force per unit 

width is 

     2    1 ́  
ρi  

 

„ 
1 
ˆ 

ρi 
˙ 

2 

ȷ „ 
1 
ˆ 

2 ρi 
˙ 

ȷ ˆ 
HM ptq

˙ 
ρw 

BMlange ptq “ 1 ´ 
w ϕρigHM ptq   {   

2
 

1 ́  λ 
w 

ρigHc  “ ϕ 
c 1 ́  

ρi λ 2 , (D11) 

 

with mélange porosity ϕ and seasonally-varying mélange thickness HM ptq. 

 
D.3 Land-terminating glacier buttressing 

 

For LTGs, there is no mélange at the ice front. Force balance at the ice front guarantees that HtRxx 
xt ´ 

t “ 0. Thus, (D8) simplifies to 
 

xc 
şxt   τw

 τbx ρigHBxbq dx 
 

 

Rxx| 1 ́  
xc 

p
 `  ` “ 1 ´ B. (D12) 

2 ρigHc 
“

 
 

 

2 ρigH2 
c 

 

To achieve consistency with the MTG definition of the buttressing number (D10), we assume a flat bed. 

For the MTG result to converge to the LTG result, the LTG must have constant thickness; similarly, the 

MTG result converges to the IS case when the IS has a flat ice shelf bed elevation b. 

ρi g 

H 
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L 

 

D.4 3D Force Balance 

 
Our HFB analysis can be extended to 3 spatial dimensions, which is not included in the paper, but would 

involve one more integral along y of (D3). One should account for variable bed slope and thickness, yielding 

ż yR 
ż s

 x

 yR 
„       

x 
ρig 

x 
ż xt 

ȷ ż xt  
y
 

yL b 
σxx| c dzdy “ 

yL 

HRxx| t ´ H2| t ´ pτbx ̀  ρigHBxbq dx 
xc 

dy ̀  HRxy |y
R dx. (D13) 

xc 

 

If we had an arbitrary shape, we would use (3) and arrive at the same conclusion: the horizontal forces 

acting on the control volume must balance 

In the application of HFB to more complicated geometries, one must determine the control volume, 

which may potentially align with a curved crevasse plane and may not be a priori known. This may be an 

interesting avenue for future research. 

ż 

2 
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