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Abstract

The quasi-linear infiltration problem of flow from a semi-infinite wetted region on a soil
of finite depth above a horizontal water table is considered in the presence of linearised
evaporative loss away from the region. The resulting equations are solved by the Wiener-
Hopf technique in terms of certain infinite products. Expressions for the porosity and stream
function are derived, and appropriately plotted throughout the layer.

1. Introduction and formulation

In Cartesian coordinates (x, y, z), with z vertically downwards, the steady flow of
water in soils and other porous media is usually described by Darcy's Law (see
Philip [6])

F = -KV(V - z), (1.1)

where F = 9u is the volumetric flux, 9 is the fraction of the volume occupied by
water, u the actual fluid velocity and the factor K{9) is the 'hydraulic conductivity'. In
this experimental law, *(#) is the potential for the local forces (for example, surface
tension) arising from the interaction of water, air and soil.

When the soil is fully saturated, then K = Ko, a constant, but for unsaturated soils
K (where 0 < K < Ko) is a function of the moisture content 9, which, in turn is
related to the potential * . When there is no hysteresis, then K = K(^) may be
assumed.

The equation of water conservation is

VF = 0, (1.2)
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558 V. T. Buchwald and F. Viera [2]

so that for steady, saturated flow, * satisfies Laplace's equation, but in unsaturated
regions the equation

V - [ f f ( t f ) y ( * - z ) ] = 0 (1.3)

is satisfied.
The problem to be considered in this paper follows on from those solved by

Weir [12] and Buchwald and Viera [3] so that we adopt their notation by defining the
relative permeability K as

K=nK/pgkQ, (1.4)

where k0 is the saturation permeability (= /xK0/pg), /x is the dynamic viscosity and
p is the density of water. Consequently 0 < K < 1, K is a measure of wetting and
K = 1 corresponds to a fully wetted soil.

Equation (1.3) is non-linear, but Philip [7] proposes the formula

/c=exp(a*) , -oo < * < 0, (1.5)

as not only a reasonable experimental relation, but also as a transformation of (1.3)
which yields the linear equation

V2
K-a— = 0, (1.6)

dz
and the expression

F = f(ctKz - VAC) (1.7)

for the flux vector, where

/ = pgko/ctfi (1.8)

and z is the unit vector vertically downwards. In (1.5), a is a constant with dimension

inverse length.
The physical significance of a is fully discussed by Philip [6, 8], who names the

quantity 2a"1 to be the 'sorptive length'. Briefly, a is proportional to a characteristic
capillary pore radius—and for a typical length L, the number ah is a measure of the .
relative importance of gravitational and capillary forces. Philip gives the name 'quasi-
linear analysis' to the use of (1.5) to derive the linear equation (1.6) by appropriately
defining the two material constants fc0 and a.

In the special case of flow in the two dimensions {x, z), (1.2) may be satisfied by
assuming a flux stream function f such that

dz ' dx J ' (1.9)
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[3] Evaporation from a soil above a water table 559

and then, as was first shown by Raats [10], K, iff satisfy the generalised Cauchy-
Riemann equations

+

where both K and \j/ satisfy (1.6).
An analogy to wave scattering was pointed out by Waechter and Philip [11] and

Philip [9] since (1.6) transforms into a Helmholtz equation. Although this analogy
is very effective in some cases, there are two reasons for special care being required
in the transition from wave scattering solutions. First, (1.6) is strictly elliptic, so
that there are no wave-like solutions, and, moreover, all the uniqueness and extremal
properties of solutions to (1.6) are similar to those of Laplace's equation. Second,
the restriction K < 1 is not merely a matter of scaling. For certain boundary value
problems the existence of an internal K = 1 boundary implies a saturated region and
two-phase flow. Thus care must be taken to confirm that a formal solution of (1.6)
satisfies the condition 0 < K < 1.

2. The infiltration-evaporation problem

For a soil of infinite depth most of the water descends more or less vertically
to infinity, and the question arises as to what happens if the soil is bounded below.
Philip [8] has proved that in the absence of sinks there cannot be any steady unsaturated
flow when the base is impermeable and horizontal. In our previous paper (Buchwald
and Viera, [3])3 we showed that above a horizontal impermeable base a steady solution
of the unsaturated equations is possible in the presence of a semi-infinite region of
evaporation on the surface, the remainder of the surface being wetted by rainfall or
irrigation. However, the degree of such wetting was limited by an upper bound, above
which the condition K < 1 was broken in some part of the substrate.

In this paper we consider replacing the impervious base by a water table. The result-
ing calculations are somewhat similar to BV, but there are physical and mathematical
differences which make the investigation worthwhile. In particular, the computed

- solutions confirm that steady unsaturated flow is possible for all degrees of wetting on
the surface.

Let us assume then that there is a water table at z = d, and infiltration from constant
K = K0 < 1 at z = 0, x < 0, together with evaporation at z = 0, x > 0. We make the
3BV for short
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problem non-dimensional by the transformation

x\ = x/d, zi = z/d, «i = ad,

[4]

(2.1)

and then, removing the subscript 1, the boundary value problem, as illustrated in
Figure 1, reduces to satisfying (1.6) independent of y, with the following boundary
conditions at z — 0 and z = 1.
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FIGURE 1. A wetted layer at z = 0, x < 0 lies on soil of finite depth above a horizontal water-table at
z — 1. Linear evaporation is assumed at z = 0, x > 0.

From (1.7) the vertical flux Fz into the porous medium is

(2.2)

where the constant / is defined in (1.8). Following Weir [12], it is assumed that the
flux Fe due to evaporation out of the material into the atmosphere is described by

Fe = hfK, h>0, (2.3)

across the surface z — 0. If we assume that evaporation occurs on a portion of this
surface, then, equating (2.2) and (2.3), an evaporation condition at z = 0 is given by

dz
(2.4)

In (2.3) and (2.4) the constant h is a measure of the evaporation, and h = 0 corresponds -
to zero flux. We now assume the boundary conditions illustrated in Figure 1:

(i) A wetted region on A O, so that

K = K0, z = 0, x < 0, 0 < K0 < 1, (2.5)
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(ii) evaporation on the surface OB, so that (2.4) applies for z — 0, x > 0, and
(iii) there is a water table at z = 1, so that K = 1 at z = 1.

Let

K = 4>(x,z)ePz, (2.6)

and then the problem reduces to determining (f> such that

V 2 0 - £ 2 0 = O, 0 < z < l , (2.7)

with the boundary conditions

(a) <P = K0, z = 0, x < 0; (2.8)

(b) !^.-(h + P)4> = 0, z = 0, x > 0 ; (2.9)
3

(c) 0 = exp(-0), z = l, (2.10)

where fi = -a > 0. (2.11)

Note that (2.7) is similar to that derived by Waechter and Philip [11].

3. Behaviour as |*| —> oo

(a) x < 0
It can be shown that the most general solution of (2.7) which satisfies (2.8), (2.10)

and is bounded as x —> — oo is, for x < 0, and arbitrary Bs,

00

where

v k, = J(p2+s27T2), (3.2)

- and
r

0, = Axe-pz + A2e
Pz, (3.3)

with

(ea - I)At =KOea-l, (3.4)
{ea - 1)A2 = 1 - /c0. (3.5)
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In the fully saturated case, K0 = 1, and then

A, = 1, A2 = 0.

Obviously, 0 —• 0i as x —> -oo. It should be noted from (1.7) that the flux due to H
0i is given by

F = (0,faAl),
f

and this is downwards when K0 > e~a. When K0 < e~a the flux due to 0i is upwards
from the water table to the surface.

(b) x > 0
The general solution of (2.7) which satisfies (2.9) and (2.10) is, for arbitrary Cs,

Cse~PsX s ina s ( l - z), (3.6)
s=\

where

02 = A^e + A4C , (3.7)

Ps= [p2 + <r?Y'\ (3-8)
the os are the roots of the transcendental equation

ctana + 0- = O, (3.9)

c = h + p, (3.10)

and

A"1 A3 = -(h + a)-lA4 = [h- (h+a)e°T] . (3.11)
It may be shown (for example, graphically) that (3.9) has an infinite number of of real
roots which have the asymptotic form

as=as+ c/as + O (s~3) , (3.12) -

where

Evidently 0 -> 02 as x -» oo. The flux corresponding to 02 is (0, fa A3), and this is
always vertically upwards from the water table to the evaporative surface.
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(c) A special case
Note from (3.7) and (3.11) that at z = 0,

K2 = ^ ( 0 ) = a [aea + h(ea - 1)]"' < e~a, (3.14)

and that K2 is independent of K0, of course.
Thus when K0 = K2, then necessarily 0, = 02 so that in this case

0 = 0, (3.15)

is the complete solution to the problem for all x and the expansions in (3.1) and (3.6)
vanish identically.

Thus there are three possible flow regimes for the region x —> —oo as follows:
Rl : e~a < K0 < 1. In this case water flows downwards from the surface to the

water table.
R2: K2 < K0 < e~a. Water flows upwards, but at a slower rate than in the region

x —> oo.
R3: K0 < K2. Water flows upwards to the surface faster than in the region x —»• oo.
There are two transition cases. When K0 = e~a there is no flow as x —> —oo. When

K0 = K2, then the flow in the whole region is uniformly upwards and independent of
x.

4. The Wiener-Hopf equation

Let

<t> = 0 — 0i (4.1)

Then, from (3.1), as x -> — oo,

<D = O (<?""), (4.2)

and

11 d> d> A> — O ( ex~\ (A ~W

as x —*• oo, where e > 0 may be taken as small as we like. It is also assumed that
K0 ^ K2, since in that case <t> = 0.

We take the Fourier integral pair

,z) = — f <&{x,z)eikxdx, (4.4a)

/•OO+/5

, z) = I $(k, z)e~lkx dk, (4.4b)
J-oo+iS
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where the path of integration in (4.4b) is in the strip S for which e < S < A,.
Substitution into (2.7) yields

—% - j/20 = 0 (4.5) t

dz

where

y
2 = p2 + k2. (4.6)

The general solution of (4.5) is

0 = C(k) sinhy(l - z) + D(k) cosh y(I - z). (4.7)

By construction, and from (2.10), (3.3), it follows that <p = 0i at z = 1, so that

<t>(x, l ) = 0 . (4.8)

Hence, in (4.7), D = 0. Noting from (3.3) that <f>{x, 0) = 0,(0), so that, from (2.8)

<t>(jt,O)=O, x<0, (4.9)

and hence, the Fourier transform of 4> (x, 0) yields

Csinhy = M+(k), (4.10)

where, on account of (4.2),

1 f°°
M+(k) = — / <&(x,0)e'kxdx (4.11)

2n Jo

is a function which is analytic forfc in the half-plane S+ for which lm(k) > e.
Substitution of (4.1) into (2.9) yields the condition that, for z =0 and x > 0,

c<t> = cd>\ = 4>0. (4.12)
dz dz '

where

<J>0 = (h + a) A, +hA2, (4.13)

and A\, A2 are defined in (3.4), (3.5).
The Fourier transform of the left-hand side of (4.12) yields

(y cosh Y + csinh y)C = -L~(K) + - ^ - , (4.14)
2nik
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where, since <t>(x, 0) = 0 for x < 0,

1 f° d<t> ..
= — —e'k*dx (4.15)

2JT J_OO dz

is a function which is analytic for k in the half-plane 5 , for which Im(&) < A.].
Elimination of C from (4.10) and (4.15) yields the Wiener-Hopf equation

K(k)M+(k) + L~(k) = <S>0/2nik, (4.16)

where

K(k) = (ycoshy + csinhy)/sinhy, (4.17)

and (4.16) holds for k e S = 5+ n 5".
In a manner similar to that of BV [3], it is shown in Appendix A that K(k) can be

expressed as

K(k) = K(0)P(k)P(-k), (4.18)

where

A"(0) = c + i8cothjB, (4.19)

and the infinite product

0IH]/R]|
with ps, Xs defined in (3.8), (3.2) respectively, is non-zero, uniformly convergent, and
an analytic function of k for k € S+. Similarly P(—k) is non zero and analytic for
k e S~.

Now divide (4.16) by P(-k) and let

^ L \ ± \ (4.21)

so that H+(k), H~(k) are analytic functions of A: fork e S+, S~, respectively. Then
(4.16) may be rearranged as

Q(k) = K(0)P(k)M+(k) - H+(k) = H~(k) - L-(k)/P(-k), (4.22)

for k € S. From (A9) and (A 15) of the Appendix it follows that

(4.23)

https://doi.org/10.1017/S0334270000007803 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000007803


566 V. T. Buchwald and F. Viera [10]

as k —> oo. It is also necessary that <p, and hence <I> is piece-wise continuous on
z = 0, and hence, from (4.11) and (4.15), M+(k) = Oik'1) and L~(k) = O(\nk), as
k —> oo. Hence both sides of (4.22) vanish as k —> oo. Thus </> (k) —> 0 as k -> oo
and by analytic continuation, Q(k) is analytic for all k. Hence by Liouville's Theorem
Q (k) = 0, and, therefore, following Noble [5],

K(0)M+(k) = H+(k)/P(k), (4.24)

L~(k) = H-(k)P(-k). (4.25)

Thus, from (4.4b), (4.7), and (4.24),

where 0 < S < kt. The expression in (4.26) is suitable for obtaining <J> by the theorem
of residues for x < 0. An alternative expression, obtained by using (4.17) and (4.18),
is

<J>o f°°+iS P(-k)sinhy(l-z) _lkxJo f P(k)sinhy(lz) _lkx JK, z) = — / — • ——e lkxdk (4.27)
2ni J-oo+is k(y cosh y + c sinh y)

and this is suitable for evaluation for x > 0.
Noting that

(4.28)

expressions for the stream function \{/ are obtained from (1.10) and (1.11), so that
apart from an arbitrary constant,

$ne r(x z)
, z) = aA,x + - ^ — / , p \ l ' [ dk, (4.29)

2 tf (0) J kP(k) sinh y
where

r(jc,z) = [£sinh)/(l -z) + ycoshy(l -z)]e~ikx. (4.30)

Here again, the result in (4.29) is suitable for computations for x < 0, and the
equivalent formula for x > 0 is

'k. (4.31)
cosh y + c sinh
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5. The singularity at (0, 0)

As a first step consider the result in (4.26) in the limit as z —> 0 and S —> 0. Then

where

is part of a Fourier transform pair defined in the generalised sense, (Lighthill [4]), and
Y(x) has a singularity only at x = 0. The nature of this singularity is determined by
an inverse method.

Using the notation of (A4) and (A 10).

t) (5.3)

and hence

P(k) = G(k)/F(k) (5.4)

with AT(O) = /2(0)// , (0). Hence, from (A9) and A(15)

P(k) ~ {k/K(0)}i/2ein/4, (5.5)

as £ —> oo. By definition P(k) is analytic for Im(&) > 0, so that, necessarily

P(k) ~ {\k\/K(0)Y/2ein, (5.6)

as k -> -oo. Combining (5.5) and (5.6), it follows that in (5.2)

1 -i[K(0)?/2\k\-y2e3ni/4ssnk (5.7)
kP(k)

as k —*• ±oo. Since Y(x) has a singularity at x — 0 only, comparison with Table 1
. of [4] shows that, as x -*• 0,

Y(x) 4i{nxK(0)}[/2H(x), (5.8)

where H(x) is the Heaviside unit function, so that, in (5.1)

f x l l / 2

, 0) ~ -2O0 j ^ r H(x), (5.9)

= -Sxl/2H(x), say. (5.10)

https://doi.org/10.1017/S0334270000007803 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000007803


568 V. T. Buchwald and F. Viera [ 12]

For the next step it should be noted that $ satisfies (2.7). Let (r, <j>) be polar coordinates
centred at the origin, so that r = (x2 + z2)l/2. Dimensional analysis indicates that,
pr -+0,

4>~<t>,, (5.11)

where <£>s satisfies Laplace's equation

V 2 ^ = 0.

Hence <$>s and the corresponding stream function * are the real and imaginary parts
of a function of the complex variable £ = x + iz. Thus

4>, + itf, = -S£1/2. (5.12)

Inspection shows that for z = 0, the result in (5.12) is consistent with (5.10). Let
£ = re'6, and then, in polar coordinates, as r —> 0,

0 - 0 , ~ - S r 1 / 2 cos-0, (5.13)

x/r-iri ~ - S r 1 / 2 sin V (5.14)

In (5.13) and (5.14), 0, is given in (3.3), and Vi is from (1.10), (1.11) to be given by

(5.15)

6. Results

For 0 < z < 1 the integrals in (4.26) - (4.31) are O I k~V21 as k ->• oo so that the
integrals may be evaluated by using Jordan's Lemma, and summing residues at the
poles in S+ for x < 0, and in S~ for x > 0.

For x < 0 we use (4.26) and (4.29), for which the poles in S+ are at

Y = niti, k = Xni = (01 + n2n2)l/2 i, (6.1)

with the results that, for x < 0,

n <t>Qe^z •^ n sin nnz r , „ ,
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-1.8 1.8

FIGURE 2. Contour lines for (a) the relative permeability *: and (b) the stream function ^ for ft = 2,
P = 0.1 and K0 = 1. Note that K =S 1 for x < 0, and that the flow is downward for x < 0 and upward for

and

n<t>oe
Pz ^^ n(nn cos rutz — P sin nnz)eK*

(6.3)

In (6.2) and (6.3), Au A2 are given in (3.4), (3.5), <t>0 in (4.13), tf(0) in (4.19) and the
infinite product P(k) in (4.20).

For x > 0, the singularities in S~ are poles at k = 0, and k — —ipn, y — ion,
where pn, on are determined from (3.8) and (3.9). In (4.27), all the poles are simple,
and the result is that, for x > 0,

( 6 . 4 )

where 02 is defined in (3.7) and (3.11).
In the expression for \j/ in (4.31) there is a double pole at k = 0, the contribution

from which is

(6.5)
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0.5 0

[14]

- 1 . 8

A

-a -.a
' i i

-1.8 - 1
X
(b)

l 1.8

FIGURE 3. As for Figure 2, but with KD = 0.5. This case is in the region Rt, so that flow is everywhere
upward, but faster for x > 0. Note that the stream function contours are closer for x > 0.

where

The result is that, for x > 0,

x/z = M + aA3x — Q>oe

and

H = (6-6)

i[o-ncoscrn(l -z) + Psinan(l - z)] ,

n=l

Af 1 11
M = <t>QH V —

(6.7)

(6.8)

The sum in (6.8), obtained by differentiating the logarithm of (4.20), converges only
slowly. A quick method of finding this sum is given in Appendix B.

Using (6.2), (6.3), (6.4) and (6.7) numerical values of the relative porosity K and
the stream function xfr were obtained as functions of (x, z) for various values of .the
parameters h, P and K0. It is conjectured from the physics of the problem that even for
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-1.8 -1 ^ 1 1-8

FIGURE 4. As for Figure 2 and 3, but with KQ = 0.2, so that upward flow is faster for x < 0.

K0 = 1 (that is, a fully saturated boundary at z = 0, x = 0) the quasi-linear equations
have a solution which satisfies K < 1 everywhere in the layer, and this corresponds
to a physically acceptable solution for all values of the parameters. The numerical
results so far obtained for a range parameter values are consistent with this conjecture.

A selection of numerical results is presented in the figures which illustrates the
three flow regimes Rt : e~a < K0 < 1, R2 : K2 < K0 < e~a and /?3 : K0 < K2. The first
calculations take (h, P) = (2, 0.1), and then choosing K0 = 1, 0.5 and 0.2 yields flow
in the regions Rt, R2 and /?3, respectively. These cases are illustrated in Figures 2-4.
As expected, there is strong downward flow for x < 0 in Figure 2, and upward flow
for x > 0, with a transition region near x = 0.

The effect of a decrease in the sorptive length f}~1 is illustrated in Figure 5, in which
P = 0.4, h = 2 and K0 = 1. Comparison with Figure 2 shows a stronger downward
flow in x < 0, and consequent extra penetration of the flow from the wetted region
into x > 0.

In Figure 6 the effect of decreasing the evaporation is shown. Comparison of
Figure 6b with Figure 5b shows deep penetration from the wetted region into x > 0.
This penetration will increase as h decreases.
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_0

[16]

- 1 . 8

FIGURE 5. This figure should be compared with Figure 2, with h = 2, K0 = 1, but ft having the
increased value of 0.4.

-1.8

FIGURE 6. Relative permeability and stream function for K0 = 1, P = 0.4 as in Figure 5, but with
reduced evaporation h = 0.2.
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Appendix A

For p > 0, and

y = (f + k2y/2. (Al)

the even entire function

/,(£) = y-1 sinh y (A2)

has zeros at k = ±ikn, where

An = (£2 + rt27T2)'/2, n = 1 ,2 ,3 , . . . , (A3)

Hence, by a well known factorisation theorem (Whittaker and Watson, [13])

Mk) = M0)F(k)F(-k), (A4)

where

F(k) = e-^ik/n f l f 1 - — 1 eik/l" (A5)

is analytic and non-zero for \m{k) > —kt, since kn ~ nn as n -»• oo so that the
infinite product in (A5) is uniformly convergent. Also F(—k) is analytic and non-zero
for Im(it) < A.|. In (A5), v0 is Euler's constant.

From the Weierstrass definition of the factorial function (Abramowitz and Ste-
gun, [1]).

F0(k) = {(-ik/n)\}-] = e-vaikln n i l - — ] eik/n". (A6)

After some rearrangement it follows that

l0(^)
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Since Xn = nn + O(n~l) as n -*• oo, the second infinite product in (A7) is uniformly
convergent, and tends to 1 as k -> oo. Moreover

00 n2n2

n=\

so that

nn
Y\-rr=P/sinhp,

(A8)

as k -> oo. By Stirling's formula, then,

F(k) ~ [2kf, (0)}-1/2 [ - — 1 e>"4, (A9)
I en J

as k —> oo. Similarly, let

f2(k) = cosh y + CY'1 sinh y, (A10)

and then, following BV [3] (equations 5.1-5.7) and Buchwald [2],

f2(k) = MO)G(k)G(-k), (All)

where

G(k) = e-VQik/n FT 1 eikln\ (A12)

and

Al = ( ^ + an
2)1/2, (A13)

where the an are the non trivial roots of

ctancr +CT = 0. (A14)

Note that G(k), G(—k) are analytic and non-zero for Im(fc) > — p\, \xa(k) < p\,
respectively. Moreover, as k —> oo,

ik/n

G(*)~{2/ 2 (0)r ' / 2 | -— j • (A15)
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Appendix B

Since the series in (5.8) is absolutely convergent, we rewrite (5.8) in the form

0 (X

The series

=21n2, (B2)

M - 1 «J
and from (1.15) and (1.25),

K=nn + O(n-1), pn = (n - ^\ n + O («"'), (B3)

as n -> oo, so that the terms in each of the first two series in (Bl) are O (n~3) as
n ->• oo, which is rapid enough convergence to make computation feasible.
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