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Frobenius fields for Drinfeld modules of rank 2

Alina Carmen Cojocaru and Chantal David

Abstract

Let φ be a Drinfeld module of rank 2 over the field of rational functions F = Fq(T ), with
EndF̄ (φ) = Fq[T ]. Let K be a fixed imaginary quadratic field over F and d a positive
integer. For each prime p of good reduction for φ, let πp(φ) be a root of the characteristic
polynomial of the Frobenius endomorphism of φ over the finite field Fq[T ]/p. Let Πφ(K; d)
be the number of primes p of degree d such that the field extension F (πp(φ)) is the fixed
imaginary quadratic field K. We present upper bounds for Πφ(K; d) obtained by two dif-
ferent approaches, inspired by similar ones for elliptic curves. The first approach, inspired
by the work of Serre, is to consider the image of Frobenius in a mixed Galois represen-
tation associated to K and to the Drinfeld module φ. The second approach, inspired by
the work of Cojocaru, Fouvry and Murty, is based on an application of the square sieve.
The bounds obtained with the first method are better, but depend on the fixed quadratic
imaginary field K. In our application of the second approach, we improve the results of
Cojocaru, Murty and Fouvry by considering projective Galois representations.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 827
2 Heuristic for Conjecture 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 831
3 Galois representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 832
4 The Chebotarev density theorem . . . . . . . . . . . . . . . . . . . . . . 838
5 Proof of Theorem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 840
6 Proof of Theorem 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 842
7 The square sieve for function fields . . . . . . . . . . . . . . . . . . . . . 843
8 Proof of Theorem 5 and Corollary 6 . . . . . . . . . . . . . . . . . . . . 844
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 847

1. Introduction

For q a power of an odd rational prime, let Fq denote the finite field with q elements, F̄q an algebraic
closure of Fq, A := Fq[T ] the polynomial ring over Fq, and F := Fq(T ) the field of fractions of A.
Let F̄ be an algebraic closure of F , and F sep a separable closure of F . With this notation, the prime
at infinity, ∞, of F is the fixed prime of F for which A is the ring of elements regular away from ∞.
We set |0| = |0|∞ := 0 and for an element 0 �= a ∈ A of degree deg a, we set |a| = |a|∞ := qdeg a.

Let φ be a Drinfeld A-module of rank 2 over F . That is, if τ : x �→ xq is the qth power Frobenius
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endomorphism, then φ is a ring homomorphism

φ : A −→ F{τ}, a �→ φa :=
Na∑
i=0

aiτ
i,

such that:

(1) for any a ∈ A, φa has constant term a; and

(2) for any a ∈ A, Na = 2deg a.

Here F{τ} denotes the ring of twisted polynomials over F , where τ satisfies τα = αqτ for all α ∈ F .
Notice that the Drinfeld module φ is completely determined by

φT = T + c(φ)τ + ∆(φ)τ2,

where c(φ),∆(φ) ∈ F . The coefficient ∆(φ) is called the discriminant of φ.
Now let L ∈ A be a prime (i.e. a monic irreducible polynomial) and n ∈ N∗. We define the

Ln-torsion points and the L-adic Tate module of φ as follows:

φ[Ln] := {λ ∈ F̄ : φLn(λ) = 0},
φ[L∞] := lim

�n
φ[Ln],

TL := HomAL(FL/AL, φ[L∞]),

where AL and FL are the L-completions of A and F , respectively. From the theory of Drinfeld
modules we know that

φ[Ln] � (A/LnA) × (A/LnA),
TL(φ) � AL × AL,

and that Gal(F sep/F ) acts continuously on TL(φ), giving rise to a representation

ρL∞,φ : Gal(F sep/F ) −→ Aut(TL(φ)) � GL2(AL). (1)

For a prime p of A, unramified for ρL∞,φ, let σp denote the Frobenius at p in F sep/F . Let Pp(x)
be the characteristic polynomial of ρL∞,φ(σp) and ap(φ) the trace of ρL∞,φ(σp). It is an important
result that Pp(x) does not depend on L and, furthermore, is the characteristic polynomial of the
Frobenius endomorphism of the reduction φp of φ over the finite field A/pA. Thus

Pp(x) = x2 − ap(φ)x + µpp ∈ A[x] (2)

for some µp ∈ F∗q. If we let πp(φ) denote one of the roots of Pp(x) in F̄ , then we also know that

|πp(φ)| = |p|1/2.

Therefore

|ap(φ)| � |p|1/2, (3)

a statement that has a striking resemblance with Hasse’s bound for elliptic curves.
We recall that p is called a supersingular prime for φ if the endomorphism ring EndF̄q

(φp) has
rank 4 (see [Yu95, p. 166]), and an ordinary prime for φ otherwise. Then, for the ordinary primes p

we have that F (πp(φ)) is imaginary quadratic (see [Yu95, p. 167]). For the sake of completeness, we
recall that a quadratic function field K = F (

√
g(T )) is called real if ∞ splits in K, and imaginary

otherwise. It can be shown (see [Ros02, p. 248]) that if g(T ) ∈ A is squarefree, of degree d and
leading coefficient ad, then K is real if d is even and ad is a square in F∗q, and K is imaginary if d is
odd, or d is even and ad is not a square in F∗q. For us, K = F (

√
g(T )) will be such that g(T ) ∈ A

is always squarefree and with deg g(T ) � 1.
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The purpose of this paper is to treat the following question.

Question 1. Let q,A, F be as above. Let φ be a Drinfeld A-module of rank 2 over F , with EndF̄ (φ) =
A. Let K be an imaginary quadratic field over F , and let d be a positive integer. What is the
asymptotic behaviour of the function

Πφ(K; d) := #{p prime of A : p ordinary,deg p = d, F (πp(φ)) = K},
as d → ∞?

This question is analogous to a famous question posed by Lang and Trotter in 1976 in the
context of elliptic curves (see [LT76]). In analogy with the Lang–Trotter conjecture, we predict
the following.

Conjecture 2. Let q,A, F be as above. Let φ be a Drinfeld A-module of rank 2 over F , with
EndF̄ (φ) = A. Let K be an imaginary quadratic field over F , and let d be a positive integer. There
exists a constant c(φ,K), depending on φ and K, such that

Πφ(K; d) ∼ c(φ,K)
qd/2

d
,

as d → ∞.

Remark 3. In the corresponding conjecture for an elliptic curve E/Q without complex multiplication
and a quadratic imaginary extension K of Q, formulated by Lang and Trotter [LT76, p. 69], it
is predicted that the number of ordinary rational primes p � x for which the Frobenius field
of E at p is K is asymptotically c(E,K)

√
x/ log x for a positive constant c(E,K). Similarly, a

related conjecture of Lang and Trotter coming from the same heuristics predicts that the number
of supersingular primes less than or equal to x of E/Q should be asymptotically c(E)

√
x/ log x for

some positive constant c(E). In the case of Drinfeld modules it was proven by Poonen [Poo98] that
there are Drinfeld A-modules over F of rank 2 with no supersingular primes. This does not happen
for elliptic curves, as proven by Elkies [Elk87]. One could then imagine that there exist special rank
2 Drinfeld A-modules φ with no primes p such that F (πp(φ)) = K, and in this case the constant
c(φ,K) would be 0. The authors have not yet addressed the question of trying to find those special
Drinfeld modules, if any, which seems an interesting one in the light of Poonen’s paper.

Our aim in this paper is to obtain upper bounds for Πφ(K; d), and not an asymptotic formula.
These upper bounds will be obtained by two different approaches, which both rely in some way on
the application of the Chebotarev density theorem for function fields.

The first approach was communicated by Serre to the authors of [CFM05] (see § 6 of their paper)
in the context of elliptic curves. In our paper we apply this approach to Drinfeld modules; namely, by
building a mixed Galois representation associated to the Drinfeld module φ and the quadratic field
K, we are able to find a union of conjugacy classes describing the primes p such that F (πp(φ)) = K;
then we use the Chebotarev density theorem to estimate the number of such p. A similar mixed
Galois representation was also considered by Lang and Trotter in [LT76] to make their conjectures
in the case of elliptic curves.

The second approach is based on the square sieve and was developed for elliptic curves by
Cojocaru, Fouvry and Murty [CFM05]. Using the techniques of our paper, we can improve the
results of [CFM05]. This will be included in [CD08].

The main results of this paper are as follows.

Theorem 4. Let q,A, F be as above. Let φ be a Drinfeld A-module of rank 2 over F , with
EndF̄ (φ) = A. Let K be an imaginary quadratic field over F , and let d be a positive integer.
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Then, as d → ∞,

Πφ(K; d) 	φ,K
q(4/5)d

d1/5
.

The implied 	φ,K-constant depends on both φ and K, and, more precisely, it depends on the class
number and number of units of K.

Theorem 5. Let q,A, F be as above. Let φ be a Drinfeld A-module of rank 2 over F , with
EndF̄ (φ) = A. Let K = F (

√
g(T )) be an imaginary quadratic field over F , and let d be a positive

integer. Then, as d → ∞,

Πφ(K; d) 	φ q(7/8)d[d + deg g(T )] + q(3/4)d[d + deg g(T )]2d.

The implied 	φ-constant depends only on φ.

Theorem 5, even though weaker than Theorem 4, is uniform in K. This uniformity is essential
in applications of the method to other problems concerning the reductions of φ modulo p, though
we will not touch upon this in the present paper. However, we record the following consequence of
the uniformity in Theorem 5.

Corollary 6. Let q,A, F be as above. Let φ be a Drinfeld A-module of rank 2 over F , with
EndF̄ (φ) = A. Let d be a positive integer. We denote by Dφ(d) the set of distinct fields F (πp(φ))
obtained by running over ordinary primes p ∈ A with deg p = d. Then, as d → ∞,

|Dφ(d)| 
φ
q(1/8)d

d2
.

The implied 
φ-constant depends on φ.

Remark 7. In Question 1 we need to restrict our attention to Drinfeld A-modules over F with trivial
endomorphism ring, for otherwise the question is already understood using classical theory. Indeed,
if φ is a Drinfeld A-module over F , of rank 2, with non-trivial endomorphism ring, then we know
that EndF̄ (φ) ⊗A F =: K is an imaginary quadratic extension of F . This implies that we have an
embedding

K ⊆ EndA/p(φp) ⊗A F,

which is in fact an isomorphism, since p is an ordinary prime for φ. We also have

F (πp(φ)) ⊆ EndA/p(φp) ⊗A F ⊆ EndA/p(φp) ⊗A F.

Then, as both K and F (πp(φ)) are degree 2 extensions of F , they must be equal.

Remark 8. In Question 1 we also need to restrict our attention to primes of ordinary reduction, for
otherwise ap(φ) = 0 and so F (πp(φ)) is uniquely determined by p.

In the course of the proof of Theorem 5 we touch upon the question of the distribution of the
Frobenius traces ap(φ), which has been studied in more generality in [Dav01] (see also the references
therein). In particular, we deduce the following improvement of Theorem 1.1 of [Dav01] in the case
of rank 2 Drinfeld modules.

Theorem 9. Let q,A, F be as above. Let φ be a Drinfeld A-module of rank 2 over F , with
EndF̄ (φ) = A. Let d be a positive integer, and let t ∈ A. Then, as d → ∞,

Πφ(t; d) := #{p prime of A : ap(φ) = t,deg p = d} 	φ




q(3/4)d if t = 0,

q(4/5)d

d1/5
otherwise.

The implied 	φ-constant depends on φ.
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We remark that similar results should hold true for Drinfeld A-modules over general function
fields F over Fq(T ), though the proofs will be much more technical. Also, by exploiting in depth
features of Drinfeld modules which are divergent from those of elliptic curves, such as the Sato–
Tate law, one could shed more light on some of the big barriers in the Lang–Trotter conjecture for
Frobenius fields for elliptic curves and improve upon the results above for Drinfeld modules. Our
present paper is a first step in such investigations.

2. Heuristic for Conjecture 2

In this section we present a brief heuristic argument in support of Conjecture 2. We do not, however,
develop any probability model for our reasoning, nor do we attempt to predict a formula for the
constant c(φ,K) that appears in the conjecture.

Let q,A, F be as in § 1. Let φ be a Drinfeld A-module over F , of rank 2. Let K = F (
√

g(T )) be an
imaginary quadratic extension of F , with g(T ) ∈ A squarefree. We denote by hK the class number
of K, by OK the integral closure of A in K, by NK/F (·) the norm of K/F , and by HK the Hilbert
class field of K. We recall that OK = A+A

√
g(T ) and, for α1, α2 ∈ A, that NK/F (α1+α2

√
g(T )) =

α2
1 − g(T )α2

2.

Now let p ∈ A be an ordinary prime for φ, of degree d, and such that F (πp(φ)) = K. Using the
definition of πp(φ), we see that this implies that

ap(φ)2 − 4µpp = g(T )h(T )2

for some h(T ) ∈ A, or, in other words, that

µpp = NK/F

(
ap(φ)

2
+

h(T )
2

√
g(T )

)
.

The assertion that p is a norm from K to F is equivalent to the assertion that p splits completely
in HK ; by the Chebotarev density theorem (see § 4), this event happens with probability 1/(2hK).
Furthermore, if p is a norm from K to F , say

p = NK/F (a(T ) + b(T )
√

g(T )),

then the event a(T ) = ap(φ)/2 for some non-zero |ap(φ)| � |p|1/2 happens with probability pro-
portional to 1/|p|1/2. Assuming that the above two events are independent, we obtain that the
probability that F (πp(φ)) = K should be of the order of magnitude

1
hK |p|1/2

.

Therefore, combining the above with the prime number theorem for function fields, we obtain that,
heuristically, as d → ∞,

Πφ(K; d) ≈
∑
p∈A

p ordinary prime

1
hK |p|1/2

∼ c(φ)
hK

qd/2

d

for some constant c(φ), depending on φ.
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3. Galois representations

3.1 Galois representations associated to Drinfeld modules
Let q,A, F be as in the introduction. Let φ be a Drinfeld A-module over F , of rank 2. For a prime
L ∈ A, let ρL∞,φ be the L-adic representation associated to φ. Let Â denote the ring

Â = lim←−a
A/aA,

where the projective limit is taken over all ideals a in A. By putting together the L-adic represen-
tations ρL∞,φ, we obtain a continuous representation

ρφ : Gal(F sep/F ) −→ GL2(Â).

More generally, if φ is a Drinfeld A-module over F of arbitrary rank r, then the action of
Gal(F sep/F ) on the set of all torsion points Ftors := F (φtors) of φ gives rise to a continuous repre-
sentation

ρφ : Gal(F sep/F ) −→ GLr(Â).
Here, φtors is the set of elements λ ∈ F̄ for which there exists a ∈ A such that φa(λ) = 0. The
Mumford–Tate conjecture for Drinfeld modules of rank r with trivial endomorphism ring asserts
that ρφ has open image in GLr(Â). This general conjecture is still open; however, in the case of
rank 2 Drinfeld modules it has been recently proven by Gardeyn and Pink (see Theorem 11 below).

Remark 10. A prior result due to Pink [Pin97] asserts that, for a fixed prime L ∈ A, the Galois
representation ρL∞,φ defined in (1) has open image in GLr(AL). This result could be used in our
treatment of Question 1, using an approach similar to the one in [Dav01] for a question concerning
the distribution of the values ap(φ) for a Drinfeld A-module φ over F , of arbitrary rank. However,
such an argument would have to be modified in several places to make it work for Question 1, as it
is more complicated to deal with the rings A/LnA than with the fields A/LA.

Theorem 11 (Gardeyn and Pink, 2005). Let q,A, F be as in § 1. Let φ be a Drinfeld A-module
over a finite extension of F , of rank 2. Assume that EndF̄ (φ) = A. Let Â be the ring of adeles of
A. Then the action of the Galois group Gal(F sep/F ) on the set of all torsion points of φ has open
image in GL2(Â).

Proof. The proof follows by combining the work of Pink [Pin97] and Gardeyn [Gar02b], and
was pointed out to the authors by Richard Pink. As mentioned in the remark above, it was
proven in [Pin97] that the representation with image in

∏
LGLr(AL) has open image in generic

characteristic provided that the product is over a finite set of primes. In Chapter 3 of his thesis,
Gardeyn states a residual version of the Mumford–Tate conjecture applicable to Drinfeld modules
in generic characteristic, and can prove this conjecture when the rank is at most 2. He then uses this
result, and the result of Pink mentioned above, to prove the Mumford–Tate conjecture for Drinfeld
modules in general characteristic.

Throughout the paper we will consider in parallel the Galois representations with image in GL2

and PGL2. The PGL2 case leads to better estimates in the Chebotarev density theorem whenever it
can be applied, that is, in all our applications except Theorem 9. We will use the following corollaries
to Theorem 11. One should point out that the following two corollaries are really intermediate steps
in the proof of Theorem 11, Corollary 12 being the hard part, and Corollary 13 following relatively
easily from Corollary 12.

Corollary 12. Let q,A, F be as in § 1. Let φ be a Drinfeld A-module over F , of rank 2. Assume
that EndF̄ (φ) = A. Then the representation

ρL,φ : Gal(F sep/F ) −→ GL2(A/LA),
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and its projection in PGL2(A/LA),

ρ̂L,φ : Gal(F sep/F ) −→ PGL2(A/LA),

are surjective for all but finitely many primes L ∈ A.

For any Drinfeld A-module φ, we denote by S(φ) the finite set of primes of A such that L �∈ S(φ)
implies that ρL,φ is surjective, as given by Corollary 12. The explicit dependence of the set S(φ) in
terms of φ was studied by Chen and Lee, and their work will appear in a forthcoming paper.

Corollary 13. Let q,A, F be as in § 1. Let φ be a Drinfeld A-module over F , of rank 2. Assume
that EndF̄ (φ) = A. Then, for all distinct primes L1,L2 �∈ S(φ), the representation

ρL1L2,φ : Gal(F sep/F ) −→ GL2(A/L1L2A) � GL2(A/L1A) × GL2(A/L2A),

corresponding to the Galois action on the A-module

φ[L1L2] := {λ ∈ F̄ : φL1L2(λ) = 0},
and its projection in PGL2(A/L1L2A),

ρ̂L1L2,φ : Gal(F sep/F ) −→ PGL2(A/L1L2A) � PGL2(A/L1A) × PGL2(A/L2A),

are surjective.

Let FL,φ, EL,φ, FL1L2,φ and EL1L2,φ be the fixed fields of the kernels of ρL,φ, ρ̂L,φ, ρL1L2,φ and
ρ̂L1L2,φ respectively. Note that FL,φ = F (φ[L]) and FL1L2,φ = F (φ[L1L2]). The following is a
restatement of Corollaries 12 and 13.

Corollary 14. Let q,A, F be as in § 1. Let φ be a Drinfeld A-module over F , of rank 2. Assume
that EndF̄ (φ) = A. Then the representations

ρL,φ : Gal(FL,φ/F ) −→ GL2(A/LA),
ρ̂L,φ : Gal(EL,φ/F ) −→ PGL2(A/LA),

ρL1L2,φ : Gal(FL1L2,φ/F ) −→ GL2(A/L1A) × GL2(A/L2A),
ρ̂L1L2,φ : Gal(EL1L2,φ/F ) −→ PGL2(A/L1A) × PGL2(A/L2A)

are isomorphisms for all primes L �∈ S(φ) and all distinct primes L1,L2 �∈ S(φ).

Remark 15. We remark that the Galois representation modulo L transforms the relation about the
characteristic polynomial of the Frobenius at p described by (2) into the congruence conditions

tr ρL,φ(σp) ≡ ap(φ) (modL),
det ρL,φ(σp) ≡ µpp (modL).

Similarly, ρL1L2,φ gives rise to congruences modulo L1L2. These important properties are at the
basis of the proofs of Theorems 4 and 5.

Corollary 16. Let q,A, F be as in § 1. Let φ be a Drinfeld A-module over F , of rank 2. Assume
that EndF̄ (φ) = A. Let K/F be any finite extension. Then, there exists a finite set of primes T ⊂ A
such that, for all primes L �∈ T , and for all distinct primes L1,L2 �∈ T , we have:

(1) K ∩ FL,φ = F ;

(2) FL,φ/F is a geometric extension (i.e. the algebraic closure of Fq in FL,φ is Fq itself; also, see § 4
for a more general definition); and

(3) FL1L2,φ/F is a geometric extension (in the above sense).

Furthermore, the same assertions hold for EL,φ ⊂ FL,φ and EL1L2,φ ⊂ FL1L2,φ.

833

https://doi.org/10.1112/S0010437X07003387 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X07003387


A. C. Cojocaru and C. David

Proof. It follows from Theorem 11 that the image of Gal(F sep/F ) in GL2(Â) contains an open set
of the form

US ×
∏
L�∈S

GL2(AL),

where S is a finite set of primes of A, and US ⊆
∏
L∈S GL2(AL). Then, all the fields FL,φ are disjoint

for L �∈ S, and then K intersects at most one of them. This shows part (1). For parts (2) and (3),
it suffices to recall that the degree of the algebraic closure of Fq in the (infinite) extension of F
obtained by adding all torsion points of φ is finite [Dav01, Lemma 3.2], and then the second and
third assertions follow from the first.

3.2 Galois representations associated to imaginary quadratic fields
Let q,A, F be as in the introduction. Let K = F (

√
g(T )) be an imaginary quadratic field with

g(T ) ∈ A squarefree. Following standard notation, we let OK = A+A
√

g(T ) be the integral closure
of A in K, UK := O∗K the group of units of OK , and Cl(OK) the ideal class group of OK , of
cardinality h = hK . We recall that OK is a Dedekind domain whose non-zero prime ideals are in
1:1 correspondence with the primes P of K for which P � ∞, and that UK is a finite group, as
K is a quadratic imaginary extension of F . Consequently, the class number h and the number of
units w = wK := |UK | of K are finite (see [Ros02, Chapter 14]). We write Gal(K/F ) := {1, c} for
the Galois group of K/F , where c is the complex conjugation automorphism given by c(

√
g(T )) =

−
√

g(T ). Often, for an element or ideal X of K, we write c(X) = X.
Now we let L ∈ A be a fixed prime satisfying the conditions of Corollaries 12 and 16, and which

splits completely in K, say as
LOK = LL.

Note that
OK/LOK � OK/L ×OK/L � A/LA × A/LA. (4)

For any non-zero prime ideal P ∈ OK , Ph is a principal ideal, say Ph = (α) for some α ∈ OK .
Thus we can define the quantity

πP(K) := αw ∈ OK , (5)
which is uniquely determined by P. This defines a group homomorphism

χL : Gal(Ksep/K) −→ (OK/L)∗,
σP �→ πP(K) (modL),

where Ksep denotes the separable closure of K and σP the Frobenius at P in Ksep/K.
We are interested in the representation induced from H := Gal(Ksep/K) to G := Gal(F sep/F ).

Since H is a subgroup of index 2 of G, we may write G = H ⊕Hc. Then the induced representation
is

ρL,K : Gal(F sep/F ) −→ GL2(A/LA)

σ �→
(

χL(σ) 0
0 χL(cσc)

)
if σ ∈ H,

σ �→
(

0 χL(σc)
χL(cσ) 0

)
if σ �∈ H,

where we have used the isomorphism OK/L � A/LA to write the image in GL2(A/LA).
Let NL � GL2(A/LA) be the image of the representation ρL,K , and let PN L be its projective

image, i.e. PNL is the quotient of NL by the scalars in NL. Let ρ̂L,K be the composition of ρL,K

with this quotient. Finally, let FL,K and EL,K be the fixed fields of the kernel of ρL,K and ρ̂L,K,
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respectively. We then have the isomorphisms

ρL,K : Gal(FL,K/F ) −→ NL,
ρ̂L,K : Gal(EL,K/F ) −→ PNL.

For primes p ∈ A which split completely as pOK = PP in K, the images of ρL,K and ρ̂L,K at the
Frobenius elements are given by the conjugacy classes (denoted by [ ])

ρL,K(σp) =
[(

πP(K) (modL) 0 (mod L)
0 (modL) πP(K) (mod L)

)]
,

ρ̂L,K(σp) =
[ ̂(

πP(K) (modL) 0 (mod L)
0 (modL) πP(K) (mod L)

)]
,

where ĝ denotes the coset of the matrix g in PN L.
For future use, let us also denote πP(K) by

πp(K). (6)

If p splits in K, then πp(K) is determined up to conjugation in K, and we will consider the two
roots πp(K) and πp(K) in pairs.

The following properties will be needed in the proof of our main results.

Lemma 17. For all but finitely many primes L ∈ A, the extensions FL,K/F and EL,K/F are
geometric.

Proof. We first consider the extension FL,K/K. This is an abelian extension of K associated with
the character χL as above. By the reciprocity map, it is contained in the ray class field of K at L. In
the case of function fields, explicit class field theory is solved by adjoining torsion points of rank 1
Drinfeld modules (see for example [Hay92]). Then, FL,K/K is contained in the field of L-torsion
of a rank 1 Drinfeld module over K. Following the proof of Corollary 16, as the result [Dav01,
Lemma 3.2] holds for Drinfeld modules of any rank (in particular, rank 1) over any function fields,
we get that FL,K/K is a geometric extension of K for all but finitely many L. Then, as K/F is
geometric, the result of Lemma 17 follows. Finally, EL,K ⊆ FL,K is also geometric.

Lemma 18. Let q,A, F be as in the introduction. Let K/F be an imaginary quadratic extension,
of class number h and number of units w. Let L be a prime of A which splits completely in K. Let
	 := |L| = qdegL. Then

|NL| 
h,w 	2,

|PN L| 
h,w 	,

where the implicit 
h,w-constant depends on h and w (and thus on K).

Proof. We shall need the following important result. Let Cl(L) be the ray class group modulo LOK

of K, i.e. the set of classes of ideals I of OK , coprime to LOK , under the equivalence relation

I ∼ J ⇐⇒ there exists α ∈ K∗, α ≡ 1 (modLOK), such that I = (α)J.

Then, for any C ∈ Cl(L), there exist infinitely many primes P ∈ OK such that P ∈ C (this follows,
for example, from the Chebotarev density theorem). In particular, for any γ ∈ (OK/LOK)∗, there
exist infinitely many prime ideals P ∈ OK such that

P ∼ (γ) ⇒ πP(K) ≡ γhw (modLOK).

As L splits completely in K, LOK = LL for some prime ideal L in OK . Let (α, β) be any element
of (OK/L)∗×(OK/L)∗. Let γ be the element of (OK/LOK)∗ corresponding to (α, β) by the Chinese
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remainder theorem. Then

πP(K) ≡ γhw (modLOK)

⇐⇒ πP(K) ≡ αhw (mod L) and πP(K) ≡ β
hw (mod L),

⇐⇒ πP(K) ≡ αhw (mod L) and πP(K) ≡ βhw (mod L).

Thus, for any (α0, β0) ∈ (OK/L)∗ × (OK/L)∗ such that α0 and β0 are hw th powers, there exist
infinitely many primes p ∈ A such that

pOK = PP̄,

and

πP(K) ≡ α0 (modL),

πP(K) ≡ β0 (mod L).

By the definition of ρL,K, we then deduce that

|NL| =
(

	 − 1
gcd(	 − 1, hw )

)2


h,w 	2.

To prove the result for PNL, we use the fact proved above that NL contains all matrices(
α 0
0 β

)
,

where α, β are hwth powers in (A/LA)∗. Then PNL contains the distinct cosets
(̂

1 0
0 β

)
,

where β is any hw th power in (A/LA)∗. This proves the desired lower bound for PNL.

3.3 The mixed Galois representation
Let q,A, F be as in the introduction. Let φ be a Drinfeld A-module over F , of rank 2, such that
EndF̄ (φ) = A. Let K/F be an imaginary quadratic extension, of class number h and number of
units w. Let L ∈ A be a prime which splits completely in K, and which satisfies the hypotheses
of Corollaries 12 and 16. We consider the composite fields

FL := FL,φFL,K ,

EL := EL,φEL,K,

and the product representations

ρL := ρL,φ × ρL,K : Gal(FL/F ) ↪→ GL2(A/LA) × NL,
σ �→ (ρL,φ(σ), ρL,K(σ))

and

ρ̂L := ρ̂L,φ × ρ̂L,K : Gal(EL/F ) ↪→ PGL2(A/LA) × PNL,
σ �→ (ρ̂L,φ(σ), ρ̂L,K(σ)).

The aim of this section is to give lower bounds for the size of the images of the representations ρL
and ρ̂L. We will not use the lower bound for Im(ρL) in this paper, as in the proofs of Theorems 4 and 5
we are able to use the representation ρ̂L and then obtain better upper bounds than one would obtain
using ρL. Using the representation ρL would give an upper bound of q(5/6)d in Theorem 5 (and not
q(4/5)d), and an upper bound of q(13/14)d in Theorem 9 (and not q(7/8)d). But it may not be possible to
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use representations in PGL2 for all applications, including further work on representations attached
to Drinfeld modules that the authors are considering. Therefore we include the lower bound on the
size of Im(ρL) for completeness and possible future applications.

Lemma 19. Let FL = FL,φFL,K be the composite field defined above. Let 	 = |L|. Then

[FL : F ] = |Im(ρL)| 
h,w 	5.

The implied 
h,w-constant depends on the class number h and the number of units w of K.

Proof. Since

[FL : F ] = [FL,φFL,K : F ] =
[FL,φ : F ][FL,K : F ]
[FL,φ ∩ FL,K : F ]


h,w
	6

[FL,φ ∩ FL,K : F ]

by Corollary 14 and Lemma 18, we need to show that

[FL,φ ∩ FL,K : F ] 	 	.

We first write

[FL,φ ∩ FL,K : F ] � [KFL,φ ∩KFL,K : F ] = [KFL,φ ∩ FL,K : K][K : F ]. (7)

By the choice of L, K ∩ FL,φ = F , and then Gal(KFL,φ/K) � Gal(FL,φ/F ) � GL2(A/LA) by
Corollary 14. Let E be the fixed field of SL2(A/LA) � GL2(A/LA). Then, K ⊆ E ⊆ KFL,φ, and
Gal(E/K) � (A/LA)∗. We then have two extensions of the field E: KFL,φ/E, whose Galois group is
SL2(A/LA), and EFL,K/E, whose Galois group is abelian. As SL2(A/LA) has no abelian quotient,
we have KFL,φ ∩ EFL,K = E, and then it follows from (7) that

[FL,φ ∩ FL,K : F ] � 2[KFL,φ ∩ FL,K : K] � 2[KFL,φ ∩ EFL,K : E][E : K] � 2	,

which proves the lemma.

Lemma 20. Let EL = EL,φEL,K be the composite field defined above. Let 	 = |L|. Then

[EL : F ] = |Im(ρ̂L)| 
h,w 	4.

The implied 
h,w-constant depends on the class number h and the number of units w of K.

Proof. Since

[EL : F ] = [EL,φEL,K : E] =
[EL,φ : E][EL,K : E]
[EL,φ ∩ EL,K : F ]


h,w
	4

[EL,φ ∩ EL,K : F ]

by Corollary 14 and Lemma 18, we need to show that

[EL,φ ∩ EL,K : F ]

is bounded by an absolute constant. We first write

[EL,φ ∩ EL,K : F ] � [KEL,φ ∩ KEL,K : F ] = [KEL,φ ∩ EL,K : K][K : F ].

By the choice of L, K ∩ EL,φ = F , and then Gal(KEL,φ/K) � Gal(EL,φ/F ) � PGL2(A/LA) by
Corollary 14. Furthermore, Gal(EL,K/K) is abelian, as K ⊆ EL,K ⊆ FK,L and Gal(FL,K/K) is
abelian. But the only abelian quotients of PGL2(A/LA) are of order 1 or 2, as the commutator of
PGL2(A/LA) is PSL2(A/LA), and this has index 2. Then

[EL,φ ∩ EL,K : F ] � [KEL,φ ∩ EL,K : K][K : F ] � 4,

which proves the lemma.
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4. The Chebotarev density theorem

Let F be a function field over Fq, and let L/F be a finite Galois extension of function fields with
Galois group G := Gal(L/F ). Let gF and gL be the genus of F and L respectively. Let Fqm be the
algebraic closure of Fq in L. If m = 1, we say that L/F is a geometric extension.

In what follows, we recall effective versions of the Chebotarev density theorem for the extension
L/F , with best error terms, as presented in [MS94]. We then apply this theorem to the fields
associated to the Galois representations of the previous sections.

Let C ⊆ G be a conjugacy class and let d ∈ N∗. We set

ΠC(d;L/F ) := #{p ∈ F unramified in L/F : deg p = d, σp = C},

Π(d;L/F ) := #{p ∈ F unramified in L/F : deg p = d}.

We also need the following notation from [MS94]. Let

|D| =
∑
p∈F

p ramified in L/F

deg p,

and let DL/F be the different of the extension L/F . For each ramified prime p ∈ F and P ∈ L
above p, let ρ(p) be such that

νP(DL/F ) � e(P/p)(ρ(p) + 1).

Here νP(·) denotes the valuation at P and e(P/p) the ramification index of P over p, as usual. In
particular, if L/F is tamely ramified at p, one can take ρ(p) = 0. Finally, let

ρL/F = max
p ramified

ρ(p).

Theorem 21 [MS94, p. 524]. Let L/F be a finite Galois extension, with Galois group G. Let
Fqm be the algebraic closure of Fq in L. Let C ⊆ G be a conjugacy class whose restriction to
Fqm is τaC for some positive integer aC . Let d be a positive integer. With the above notation,
we have:

(1) if d �≡ aC (mod m), then ΠC(d;L/F ) = 0; and

(2) if d ≡ aC (mod m), then∣∣∣∣ΠC(d;L/F ) − m
|C|
|G|Π(d;L/F )

∣∣∣∣ � 2gL
|C|
|G|

qd/2

d
+ 2(2gF + 1)|C|q

d/2

d
+

(
1 +

|C|
d

)
|D|.

As the Riemann–Hurwitz formula gives

2gL − 2 = (2gF − 2)|G| + |D|, (8)

the error terms above depend on |C| and |D|. The following theorem improves the previous result to
an error term depending on |C|1/2 and |D|. In the case of number fields, such a theorem holds only
under the Riemann hypothesis and the Artin conjecture (which were proven by Weil over function
fields).

Theorem 22 [MS94, p. 525]. Let L/F be a finite Galois extension, with Galois group G. Let
Fqm be the algebraic closure of Fq in L. Let C ⊆ G be a conjugacy class whose restriction to
Fqm is τaC for some positive integer aC . Let d be a positive integer. With the above notation,
we have:
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(1) if d �≡ aC (modm), then ΠC(d;L/F ) = 0; and

(2) if d ≡ aC (modm), then∣∣∣∣ΠC(d;L/F ) − m
|C|
|G|Π(d;L/F )

∣∣∣∣
� 2|C|1/2

(
(gF − 1 + (ρL/F + 1)|D|)q

d/2

d
+ (2gF + 1)

qd/2

d
+

|D|
2d

)
+ |D|.

We now apply Theorem 22 for the Galois extensions FL/Fq(T ) and EL/Fq(T ), and we then need
to understand the different of these extensions.

Proposition 23 [Gar02a, Proposition 6]. Let q,A, F be as in § 1. Let φ be a Drinfeld A-module of
rank 2 over F . Let a ∈ A be a polynomial of positive degree. Then

DF (φ[a])/F ⊇ (a2∆φ),

where ∆φ depends only on the Drinfeld module φ, and not on a, and is defined in [Gar02a, p. 246].

It follows from the above proposition that the extension FL = FL,φFL,K is ramified only at
L and at primes depending on the Drinfeld module φ and the quadratic extension K. In our
applications, ramification at primes different from L is bounded by an absolute constant, and we
are only interested in ρ(L). Let L1 be a prime above L in FL,φ, let L2 be a prime above L in FL,K ,
and let L be a prime above L in FL. It follows from Proposition 23 that

νL1(DFL,φ/F ) � 2e(L1/L).

The extension FL,K has degree dividing (	 − 1)2 over the quadratic extension K, and there is then
no wild ramification at L in FL,K/F . Since

DFL,φ/FDFL,K/F ⊆ DFL/F ,

this implies that

νL(DFL/F ) � 2e(L/L),

and one can take ρFL/F = 1. As EL ⊆ FL, we can take the same bound for EL/F .
Then, applying Theorem 22, we get the following results.

Theorem 24. Let q,A, F be as in § 1. Let φ be a Drinfeld A-module over F , of rank 2. Assume
that EndF̄ (φ) = A. Let d be a positive integer. Suppose that L,L1 and L2 are primes satisfying
the hypotheses of Corollaries 12 and 16. If we fix a union of conjugacy classes C in Gal(FL,φ/F ),
Gal(EL,φ/F ) or Gal(EL1L2,φ/F ), respectively, we have as d → ∞ that

ΠC(d;FL,φ/F ) =
|C|

(	2 − 	)(	2 − 1)
Π(d;FL,φ/F ) + Oφ(|C|1/2qd/2 deg(L)),

ΠC(d;EL,φ/F ) =
|C|

	(	2 − 1)
Π(d;EL,φ/F ) + Oφ(|C|1/2qd/2 deg(L))

and

ΠC(d;EL1L2,φ/F ) =
|C|

	1(	2
1 − 1)	2(	2

2 − 1)
Π(d;EL1L2,φ/F ) + Oφ(|C|1/2qd/2 deg(L1L2)),

where 	 := |L|, 	1 := |L1| and 	2 := |L2|. The implied Oφ-constants depend on φ.

Theorem 25. Let q,A, F be as in § 1. Let φ be a Drinfeld A-module over F , of rank 2. Assume that
EndF̄ (φ) = A. Let K/F be an imaginary quadratic extension. Let d be a positive integer. Then,
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for all but finitely many primes L ∈ A, if we fix a union of conjugacy classes C in Gal(FL/F ) or
Gal(EL/F ), we have as d → ∞,

ΠC(d;FL/F ) =
|C|

(	2 − 1)(	2 − 	)
Π(d;FL/F ) + Oφ,K(|C|1/2qd/2 deg(L)),

ΠC(d;EL/F ) =
|C|

	(	2 − 1)
Π(d;EL/F ) + Oφ,K(|C|1/2qd/2 deg(L)),

where 	 = |L|, as usual. The implied Oφ,K-constant depends on φ and K.

5. Proof of Theorem 4

Let q,A, F be as in the introduction. Let φ be a Drinfeld A-module over F , of rank 2, such that
EndF̄ (φ) = A. Let K/F be an imaginary quadratic extension, of class number h and number of
units w. Let d be a positive integer. Our goal in this section is to derive an upper bound for Πφ(K; d)
of Theorem 4.

First, let us fix an arbitrary prime L ∈ A which satisfies Corollaries 12 and 16 and which splits
completely in K. Let 	 := |L|. We want to use the Chebotarev density theorem on the finite Galois
extension EL = EL,φEL,K/F . In this section, we will write GL for Gal(EL/F ). We first find a
conjugacy class of GL describing the primes p ∈ A such that F (πp(φ)) = K.

Lemma 26. We keep the above setting. Let p ∈ A be a prime which is unramified in FL/F . If
F (πp(φ)) = K, then

πp(φ)hw = πp(K),

with πp(φ) and πp(K) as defined in §§ 1 and 3.2, respectively.

Proof. On the one hand, using (2) and the hypothesis of our lemma, we see that

µpp = πp(φ)πp(φ)

with πp(φ), πp(φ) ∈ K, where the bar denotes the complex conjugation in K/F and where µp ∈ F∗q,
as in (2). Therefore

pOK = (πp(φ))(πp(φ)). (9)

In particular, p splits completely in K.
On the other hand, using the definition of πp(K), we see that

phwOK = (πp(K))(πp(K)). (10)

From (9) and (10) it follows that πp(φ)hw = πp(K) (after possibly renaming the roots).

Lemma 27. Let a, b be independent variables and n a positive integer. There exists a polynomial
Pn(x) ∈ Z[x] such that

(an + bn)2

(ab)n
= Pn

(
(a + b)2

ab

)
.

Proof. Observe that
(a + b)2

ab
=

a

b
+ 2 +

b

a
and

(an + bn)2

anbn
=

an

bn
+ 2 +

bn

an
.
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Thus, if we set t := a/b, we need to show that

tn + 2 +
1
tn

= Pn

(
t + 2 +

1
t

)

for some polynomial Pn(x) ∈ Z[x]. It suffices to show that(
t + 2 +

1
t

)n

= tn + 2 +
1
tn

+ Qn

(
t + 2 +

1
t

)
(11)

for some polynomial Qn(x) ∈ Z[x]. Then we define Pn(x) := xn − Qn(x).
We prove (11) by induction on n. Clearly, Q1(x) = 0 and Q2(x) = 4x − 4. Let us assume that

(11) holds for each k � n − 1. Then for k = n we have:(
t + 2 +

1
t

)n

=
(

tn−1 + 2 +
1

tn−1
+ Qn−1

(
t + 2 +

1
t

))(
t + 2 +

1
t

)

=
(

tn + 2 +
1
tn

)
+

(
t + 2 +

1
t

)
Qn−1

(
t + 2 +

1
t

)

+ 2
(

t + 2 +
1
t

)n−1

− 2Qn−1

(
t + 2 +

1
t

)
+

(
t + 2 +

1
t

)n−2

− Qn−2

(
t + 2 +

1
t

)
+ 2

(
t + 2 +

1
t

)
− 8.

Now take

Qn(x) := xQn−1(x) + 2xn−1 − 2Qn−1(x) + xn−2 − Qn−2(x) + 2x − 8.

This completes the proof of the lemma.

Let g be a matrix in GL2(A/LA). Then the function

t(g) :=
tr2(g)
det(g)

,

where det and tr denote the determinant and trace of a matrix, is well defined in PGL2(A/LA).
We denote by ĝ the projective image of g. Let

CL ⊆ PGL2(A/LA) × PNL

be the union of conjugacy classes of matrices defined by

CL := {(ĝ1, ĝ2) ∈ PGL2(A/LA) × PNL : t(g2) ≡ Phw (t(g1)) (modL)}. (12)

Lemma 28. We keep the above setting and notation. Then

Πφ(K; d) � ΠCL(d;EL/F ),

where the quantity on the right-hand side was defined (in more generality) in § 5.

Proof. Let p ∈ A be a prime of degree d, unramified in FL, such that F (πp(φ)) = K. In particular,
p splits in K. Then, from Lemma 26,

πp(K) = πp(φ)hw ,

and from Lemma 27,

(πp(K) + πp(K))2

πp(K)πp(K)
=

(πp(φ)hw + πp(φ)
hw

)2

πp(φ)hwπp(φ)
hw

= Phw

(
(πp(φ) + πp(φ))2

πp(φ)πp(φ)

)
.
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Both sides of the above equality are elements of A. Reducing modulo L and using the definition of
ρL,K for split primes and Remark 15, this gives

t(ρ̂L,K(σp)) ≡ Phw (t(ρ̂L,φ(σp))) (modL)

which is the defining property of CL. Thus ρ̂L(σp) ∈ CL, as desired.

Lemma 29. Let CL ⊆ PGL2(A/LA)×PN L be the union of conjugacy classes defined in (12). Then

|CL| 	h,w 	3.

Proof. Let ĝ2 ∈ PNL. There are two types of cosets in PNL, with representatives(
1 0
0 α

)
or

(
0 1
α 0

)

for α ∈ (A/LA)∗ (in fact, α is a hwth power in (A/LA)∗, but we do not need to consider this to
get the upper bound that we need). For a fixed f ∈ (A/LA)∗, there are at most two cosets of PNL
of the first type such that

t

((
1 0
0 α

))
=

(1 + α)2

α
= f.

Then, as t(g1) determines t(g2) by Lemma 27, the number of (ĝ1, ĝ2) ∈ CL with ĝ2 of the first type
is at most

2|PGL2(A/LA)| 	 	3.

For cosets ĝ2 ∈ PNL of the second type, we always have t(g2) = 0. The number of possible values
of t(g1) such that Phw (t(g1)) = 0 is bounded by the degree of the polynomial Phw , which depends
only on hw (and not on L). Then,

#{(ĝ1, ĝ2) ∈ CL : ĝ2 is of the second type} 	hw 	 n(	),

where n(	) is an upper bound for the number of cosets ĝ1 in PGL2(A/LA) with t(g1) = f for any
fixed value f ∈ A/LA. It is an easy computation to see that n(	) 	 	2, and this completes the
proof.

Finally, we are ready to prove Theorem 4. From Lemma 28 and Theorem 25 we see that

Πφ(K; d) � ΠCL(d;EL/F ) =
|CL|
|GL|

Π(d;EL/F ) + Oφ,K(|CL|1/2qd/2 deg(L)).

Combining this with the estimates of Lemmas 20 and 29, we deduce that

Πφ(K; d) 	φ,K
1
	

qd

d
+ 	3/2qd/2 logq 	.

Now we choose the arbitrary prime L ∈ A such that

	 = |L| =
qd/5

d4/5

and obtain the desired result. This completes the proof of Theorem 4.

6. Proof of Theorem 9

Let q,A, F be as in the introduction. Let φ be a Drinfeld A-module over F , of rank 2, and such
that EndF̄ (φ) = A. Let d be a positive integer and t ∈ A. It is clear that

#{p ∈ A : deg p = d, ap(φ) = t} � #{p ∈ A : deg p = d, ap(φ) ≡ t (modL)} (13)
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for any prime L ∈ A. We choose a prime L which satisfies the hypotheses of Corollary 12. Using
the observation of Remark 15 we obtain that

#{p ∈ A : p � L∆(φ),deg p = d, ap(φ) ≡ t (modL)} = ΠCL(d;FL,φ/F ),

where

CL := {g ∈ GL2(A/LA) : tr g ≡ t (modL)}
(note that this is different from the set CL defined in (12)). It is easy to see that |CL| = 	3 + O(	2),
and so from Theorem 24 we deduce that

ΠCL(d;FL,φ/F ) 	φ
1
	

qd

d
+ 	3/2qd/2 degL.

We choose

	 :=
qd/5

d4/5

and plug it back into (13) to obtain

Πφ(t; d) 	φ
q(4/5)d

d1/5
.

To prove the stronger result for supersingular primes (or, equivalently, those primes p with
ap(φ) = 0), we work with the Galois representation ρ̂L,φ : Gal(EL,φ/F ) → PGL2(A/LA). Choosing
L to satisfy Corollary 12, we have

|Gal(EL,φ/F )| = |PGL2(A/LA)| = 	(	2 − 1), (14)

where 	 := |L|, as usual. The condition tr(g) = 0 is well defined for matrices g ∈ PGL2(A/LA),
and we denote by C0

L the union of conjugacy classes of these matrices. It is easy to see that |C0
L| =

	2 + O(	); thus, arguing as above, we obtain

#{p ∈ A : deg p = d, ap(φ) = 0} � #{p ∈ A : deg p = d, ap(φ) ≡ 0 (modL)}
� #{p ∈ A : deg p = d, ρ̂L,φ(σp) ∈ C0

L}

	φ
1
	

qd

d
+ 	qd/2 degL.

We choose

	 :=
qd/4

d
,

and replace in the above estimate to get the second part of Theorem 9.

7. The square sieve for function fields

Let q,A be as in the introduction. In this section we prove a function field analogue of the square
sieve developed in [Hea84]. For this, we need to recall the definition of the quadratic symbol in A.

Let L ∈ A be a prime and let a ∈ A. We define

(
a

L

)
=




0 if L | a;
1 if L � a and x2 ≡ a (modL) is solvable;
−1 if L � a and x2 ≡ a (modL) is not solvable.

As in the rational case, it is easy to show that

a(|L|−1)/2 ≡
(

a

L

)
(modL).
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From this we deduce the basic properties:

(1) if a ≡ b (modL), then (
a

L

)
=

(
b

L

)
;

(2)
(

ab

L

)
=

(
a

L

)(
b

L

)
.

From the fact that (A/LA)∗ is cyclic it follows easily that

#
{

a ∈ A/LA :
(

a

L

)
= 1

}
= #

{
a ∈ A/LA :

(
a

L

)
= −1

}
=

|L| − 1
2

. (15)

For proofs of these results and other properties, we refer the reader to [Ros02, p. 24].
With these definitions and remarks, we are now ready to state the following theorem.

Theorem 30 (The square sieve for function fields). Let q,A be as in § 1. Let A be a finite set of
(not necessarily distinct) non-zero elements of A. Let P be a finite set of primes of A. Set

S(A) := {a ∈ A : a = b2 for some b ∈ A},
and for any a ∈ A define

νP(a) := #{L ∈ P : L|a}.
Then

|S(A)| � |A|
|P| + max

L1,L2∈P
L1 �=L2

∣∣∣∣
∑
a∈A

(
a

L1

)(
a

L2

)∣∣∣∣ +
2
|P|

∑
a∈A

νP(a) +
1

(|P|)2
∑
a∈A

νP(a)2.

Proof. The proof of this theorem is a straightforward function field analogue of the proof of the
classical square sieve. For the sake of completeness, we include it here.

We note that if a ∈ A is a square, then
∑
L∈P

(
a

L

)
=

∑
L∈P
L�a

(
a

L

)
= |P| − νP(a).

Therefore

|S(A)| �
∑
a∈A

1
|P|2

[∑
L∈P

(
a

L

)
+ νP(a)

]2

� |A|
|P| +

1
|P|2

∑
L1,L2∈P
L1 �=L2

∑
a∈A

(
a

L1

)(
a

L2

)
+

2
|P|

∑
a∈A

νP(a) +
1

|P|2
∑
a∈A

νP(a)2,

from which we deduce the result.

8. Proof of Theorem 5 and Corollary 6

Let q,A, F be as in the introduction. Let φ be a Drinfeld A-module over F , of rank 2 and with
EndF̄ (φ) = A. Let K = F (

√
g(T )) be an imaginary quadratic field over F , with g(T ) ∈ A squarefree.

Finally, let d be a positive integer. We will use the square sieve to obtain upper bounds for the
quantity Πφ(K; d).

First, we observe that the condition F (πp(φ)) = K given in the definition of Πφ(K; d) implies
that

ap(φ)2 − 4µpp = g(T )h(T )2
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for some h(T ) ∈ A. Therefore, by multiplying both sides by g(T ), we see that our task is to count
primes p for which g(T ){ap(φ)2 − 4µpp} is a square in A. We set

A := {g(T ){ap(φ)2 − 4µpp} : p ∈ A an ordinary prime for φ ,deg p = d}

and

P := {L ∈ A : L prime ,degL = θ}
for some parameter θ = θ(d) �= d, to be chosen optimally later.

In this setting we apply the square sieve and obtain

Πφ(K; d) � |A|
|P| + max

L1,L2∈P
L1 �=L2

∣∣∣∣
∑
p∈A

deg p=d

′
(

g(T ){ap(φ)2 − 4µpp}
L1

)(
g(T ){ap(φ)2 − 4µpp}

L2

)∣∣∣∣

+
2
|P|

∑
a∈A

νP(a) +
1

|P|2
∑
a∈A

νP(a)2,

where the prime on the summation signifies that we are summing over ordinary primes p for φ.
From the prime number theorem for function fields we deduce that

|A|
|P| � qd−θ θ

d
. (16)

By noting that

νP(a) � deg a

and by using the bound (3) given in § 1, we see that for ordinary primes p of degree d we have

νP(g(T ){ap(φ)2 − 4µpp}) � d + deg g(T ).

We infer the estimates
2
|P|

∑
a∈A

νP(a) 	 qd−θ θ

d
[d + deg g(T )], (17)

1
|P|2

∑
a∈A

νP(a)2 	 qd−2θ θ2

d
[d + deg g(T )]2. (18)

It remains to evaluate

max
L1,L2∈P
L1 �=L2

∣∣∣∣
∑
p∈A

deg p=d

′
(

g(T ){ap(φ)2 − 4µpp}
L1

)(
g(T ){ap(φ)2 − 4µpp}

L2

)∣∣∣∣.

In doing so, we deviate from the proof in [CFM05] by making one simple (but important) observation
and a reduction to PGL2-extensions; these new ingredients lead to substantial savings in the final
exponent of q. A more clear comparison with the method in [CFM05] is described in [CD08].

Let us fix L1,L2 ∈ P distinct primes such that the Galois representation ρL1L2,φ is surjective
and the extension FL1L2,φ/F is geometric, i.e. L1,L2 satisfy Corollaries 13 and 16. We remark that,
by choosing d sufficiently large, we can ensure that these conditions hold. Now we consider the sum

SL1,L2 :=
∑
p∈A

deg p=d

′
(

g(T ){ap(φ)2 − 4µpp}
L1

)(
g(T ){ap(φ)2 − 4µpp}

L2

)
,

which we write as

SL1,L2 =
(

g(T )
L1

)(
g(T )
L2

)
(T1 + T2 − T3 − T4), (19)
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where

T1 := #
{

p ∈ A : p ordinary,deg p = d,

(
ap(φ)2 − 4µpp

L1

)
=

(
ap(φ)2 − 4µpp

L2

)
= 1

}
,

T2 := #
{

p ∈ A : p ordinary,deg p = d,

(
ap(φ)2 − 4µpp

L1

)
=

(
ap(φ)2 − 4µpp

L2

)
= −1

}
,

T3 := #
{

p ∈ A : p ordinary,deg p = d,

(
ap(φ)2 − 4µpp

L1

)
= −

(
ap(φ)2 − 4µpp

L2

)
= 1

}
,

T4 := #
{

p ∈ A : p ordinary,deg p = d,

(
ap(φ)2 − 4µpp

L1

)
= −

(
ap(φ)2 − 4µpp

L2

)
= −1

}
.

We will estimate each of the terms T1, T2, T3 and T4. Using Remark 15, we write

Ti = #{p ∈ A : p ordinary,deg p = d, (ρ̂L1,φ(σp), ρ̂L2,φ(σp)) ∈ Ci},

where σp is the Frobenius at p in F sep/F and Ci, 1 � i � 4, are the unions of conjugacy classes in

Gal(EL1L2/F ) � PGL2(A/L1L2A)

defined by:

C1 :=
{

(ĝ1, ĝ2) ∈ PGL2(A/L1L2A) :
(

(tr g1)2 − 4 det g1

L1

)
=

(
(tr g2)2 − 4 det g2

L2

)
= 1

}
,

C2 :=
{

(ĝ1, ĝ2) ∈ PGL2(A/L1L2A) :
(

(tr g1)2 − 4 det g1

L1

)
=

(
(tr g2)2 − 4 det g2

L2

)
= −1

}
,

C3 :=
{

(ĝ1, ĝ2) ∈ PGL2(A/L1L2A) :
(

(tr g1)2 − 4 det g1

L1

)
= −

(
(tr g2)2 − 4 det g2

L2

)
= 1

}
,

C4 :=
{

(ĝ1, ĝ2) ∈ PGL2(A/L1L2A) :
(

(tr g1)2 − 4 det g1

L1

)
= −

(
(tr g2)2 − 4 det g2

L2

)
= −1

}
.

We recall that ĝ denotes the projective image of a matrix g. The conditions defining the sets Ci

are well defined in PGL2(A/L1L2A) � PGL2(A/L1A) × PGL2(A/L2A). Since they are unions of
conjugacy classes in PGL2(A/L1A) × PGL2(A/L2A) and since L1,L2 have been chosen such that
ρ̂L1L2,φ is an isomorphism, we can use Theorem 24 to estimate Ti, 1 � i � 4. For this, we only need
to estimate |Ci|, 1 � i � 4. We rely on the following lemma.

Lemma 31. Let q,A be as in § 1. Let L ∈ A be a prime such that |L| = 	. Then:

(1) #
{

ĝ ∈ PGL2(A/LA) :
(

(tr g)2 − 4 det g

L

)
= 1

}
=

	3

2
+ O(	2);

(2) #
{

ĝ ∈ PGL2(A/LA) :
(

(tr g)2 − 4 det g

L

)
= −1

}
=

	3

2
+ O(	2).

Proof. The proof consists of an easy counting argument relying on (15), and we leave it as an
exercise for the reader.

Using this lemma, we obtain

|Ci| =
(

	3
1

2
+ O

(
	2
1

))(
	3
2

2
+ O(	2

2)
)

=
	3
1	

3
2

4
+ O(	2

1	
2
2(	1 + 	2)),

for each 1 � i � 4. Then, by Theorem 24, we obtain

Ti =
	2
1	

2
2

4(	2
1 − 1)(	2

2 − 1)
· qd

d
+ O

(
	1 + 	2

	1	2
· qd

d

)
+ Oφ(	3/2

1 	
3/2
2 · qd/2 logq(	1 + 	2)) + Oφ(q(3/4)d)
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for each 1 � i � 4, where the last error term comes from the estimate given in Theorem 9 for the
number of supersingular primes for φ.

We are now ready to estimate SL1,L2 and to conclude the proof of the theorem. Using the above
estimates for T1, T2, T3 and T4 in (19), we deduce that

SL1,L2 	φ
qd−θ

d
+ qd/2+3θθ + q(3/4)d, (20)

where we are also using that |L1| = |L2| = qθ (recall the definition of the set P). By putting together
(16)–(20), we deduce further that

Πφ(K; d) 	φ qd/2+3θθ + qd−θ θ

d
[d + deg g(T )] + qd−2θ θ2

d
[d + deg g(T )]2 + q(3/4)d.

We choose

θ :=
d

8
and conclude that

Πφ(K; d) 	φ q(7/8)d[d + deg g(T )] + q(3/4)dd[d + deg g(T )]2.

We emphasize that the implicit 	φ-constant depends only on φ, and not on the field K.
To prove Corollary 6, we write

#{p ∈ A : p prime ,deg p = d} = Πφ(0; d) +
∑

K∈Dφ(d)

Πφ(K; d),

where Πφ(0; d) denotes the number of degree d supersingular primes for φ and Dφ(d) denotes the set
of distinct fields F (πp(φ)) obtained by running over ordinary primes p ∈ A with deg p = d. Using
Theorems 5 and 9, we obtain

|Dφ(d)| 
φ
qd

dmaxK∈Dφ(d) Πφ(K; d)

φ

qd/8

d2
.

This completes the proof of the corollary.
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